1
|
Shi X, Li Y, Zhou H, Hou X, Yang J, Malik V, Faiola F, Ding J, Bao X, Modic M, Zhang W, Chen L, Mahmood SR, Apostolou E, Yang FC, Xu M, Xie W, Huang X, Chen Y, Wang J. DDX18 coordinates nucleolus phase separation and nuclear organization to control the pluripotency of human embryonic stem cells. Nat Commun 2024; 15:10803. [PMID: 39738032 DOI: 10.1038/s41467-024-55054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs. Loss of DDX18 disrupts nucleolar substructures, impairing centromere clustering and perinucleolar heterochromatin (PNH) formation. To probe this further, we develop NoCasDrop, a tool enabling precise nucleolar targeting and controlled liquid condensation, which restores centromere clustering and PNH integrity while modulating developmental gene expression. This study reveals how nucleolar phase separation dynamics govern chromatin organization and cell fate, offering fresh insights into the molecular regulation of stem cell pluripotency.
Collapse
Affiliation(s)
- Xianle Shi
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanjing Li
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiukun Hou
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Francesco Faiola
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junjun Ding
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xichen Bao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Miha Modic
- The Francis Crick Institute and University College London, London, UK
| | - Weiyu Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Syed Raza Mahmood
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Effie Apostolou
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Feng-Chun Yang
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mingjiang Xu
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Yong Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Liu X, Ling X, Tian Q, Huang Z, Ding J. Nuclear remodeling during cell fate transitions. Curr Opin Genet Dev 2024; 90:102287. [PMID: 39631291 DOI: 10.1016/j.gde.2024.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Totipotent stem cells, the earliest cells in embryonic development, can differentiate into complete embryos and extra-embryonic tissues, making them essential for understanding both development and regenerative medicine. This review examines recent advances in the dynamic remodeling of nuclear structures during the transition between totipotency and pluripotency, as well as other cell fate transition processes. Additionally, we highlight innovative experimental and computational methods that elucidate the relationship between nuclear architecture and cell fate decisions. By integrating these insights, we aim to enhance our understanding of how nuclear remodeling influences totipotency and other cell fate transitions, paving the way for future research in this critical field.
Collapse
Affiliation(s)
- Xinyi Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoru Ling
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qi Tian
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zibin Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junjun Ding
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Solberg T, Kobayashi-Ishihara M, Siomi H. The impact of retrotransposons on zygotic genome activation and the chromatin landscape of early embryos. Ann N Y Acad Sci 2024; 1542:11-24. [PMID: 39576233 DOI: 10.1111/nyas.15260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In mammals, fertilization is followed by extensive reprogramming and reorganization of the chromatin accompanying the transcriptional activation of the embryo. This reprogramming results in blastomeres with the ability to give rise to all cell types and a complete organism, including extra-embryonic tissues, and is known as totipotency. Transcriptional activation occurs in a process known as zygotic genome activation (ZGA) and is tightly linked to the expression of transposable elements, including endogenous retroviruses (ERVs) such as endogenous retrovirus with leucine tRNA primer (ERVL). Recent studies discovered the importance of ERVs in this process, yet the race to decipher the network surrounding these elements is still ongoing, and the molecular mechanism behind their involvement remains a mystery. Amid a recent surge of studies reporting the discovery of various factors and pathways involved in the regulation of ERVs, this review provides an overview of the knowns and unknowns in the field, with a particular emphasis on the chromatin landscape and how ERVs shape preimplantation development in mammals. In so doing, we highlight recent discoveries that have advanced our understanding of how these elements are involved in transforming the quiescent zygote into the most powerful cell type in mammals.
Collapse
Affiliation(s)
- Therese Solberg
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | | | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| |
Collapse
|
4
|
Wang S, Li Z, Chen C, Guo T, Zhao S, Zhao J, Zhang W, Qi Y, Zhang J, Wang Y, Lv Y, Gu C. MACC1 enhances an oncogenic RNA splicing of IRAK1 through interacting with HNRNPH1 in lung adenocarcinoma. J Cell Physiol 2024; 239:e31426. [PMID: 39221900 DOI: 10.1002/jcp.31426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Dysregulation of alternative pre-mRNA splicing plays a critical role in the progression of cancers, yet the underlying molecular mechanisms remain largely unknown. It is reported that metastasis-associated in colon cancer 1 (MACC1) is a novel prognostic and predictive marker in many types of cancers, including lung adenocarcinoma. Here, we reveal that the oncogene MACC1 specifically drives the progression of lung adenocarcinoma through its control over cancer-related splicing events. MACC1 depletion inhibits lung adenocarcinoma progression through triggering IRAK1 from its long isoform, IRAK1-L, to the shorter isoform, IRAK1-S. Mechanistically, MACC1 interacts with splicing factor HNRNPH1 to prevent the production of the short isoform of IRAK1 mRNA. Specifically, the interaction between MACC1 and HNRNPH1 relies on the involvement of MACC1's SH3 domain and HNRNPH1's GYR domain. Further, HNRNPH1 can interact with the pre-mRNA segment (comprising exon 11) of IRAK1, thereby bridging MACC1's regulation of IRAK1 splicing. Our research not only sheds light on the abnormal splicing regulation in cancer but also uncovers a hitherto unknown function of MACC1 in tumor progression, thereby presenting a novel potential therapeutic target for clinical treatment.
Collapse
Affiliation(s)
- Shiqing Wang
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhuoshi Li
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Chaoqun Chen
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Tao Guo
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Shilei Zhao
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Wang
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuesheng Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chundong Gu
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Chen B, Jia M, Zhao G, Liu Y, Song Y, Sun M, Chi W, Wang X, Jiang Q, Xin G, Zhang C. STAG2 promotes naive-primed transition via activating Lin28a transcription in mouse embryonic stem cells. J Biol Chem 2024; 300:107958. [PMID: 39510176 PMCID: PMC11635655 DOI: 10.1016/j.jbc.2024.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/14/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Mouse embryonic stem cells (mESCs) exist in two distinct pluripotent states: the naive and the primed. Mainly by inducing differentiation of mESCs in vitro, conducting RNA sequencing analyses, and specifying expression of the regulatory genes, we explored the regulatory mechanisms underlying the transition between the naive and primed states. We found that, under the defined differentiation-inducing conditions, the naive state of mESCs shifted to the primed state within 2 days of differentiation induction, during which the cell cycle- and differentiation-related proteins changes significantly. Specifically, we uncovered that the expression of STAG2, a subunit of the Cohesin complex, was upregulated. We further revealed that knockout of STAG2 resulted in upregulation of the naive gene sets and downregulation of the primed gene sets, indicating importance of STAG2 in regulating the naive-primed transition. More importantly, STAG2 knockout led to a reduction in number of the bivalent genes, a decrease in Lin28a transcription, and a reduced cytoplasmic localization of Lin28a. Overexpressing Lin28a or a Lin28a variant lacking the nucleolar localization signal (Lin28aΔNoLS) in STAG2 knockout cells rescued the downregulation of the primed marker genes Dnmt3a/3b. Collectively, we conclude that STAG2 facilitates the naive-primed transition of mESCs by activating Lin28a transcription and that this work may offer a new insight into the regulation of pluripotency in mESCs.
Collapse
Affiliation(s)
- Bo Chen
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Mingkang Jia
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Gan Zhao
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yumin Liu
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yihong Song
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Mengjie Sun
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wangfei Chi
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiangyang Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Guangwei Xin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China.
| | - Chuanmao Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
6
|
Jia S, Wen X, Zhu M, Fu X. The pluripotent-to-totipotent state transition in mESCs activates the intrinsic apoptotic pathway through DUX-induced DNA replication stress. Cell Mol Life Sci 2024; 81:440. [PMID: 39460804 PMCID: PMC11512989 DOI: 10.1007/s00018-024-05465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
The pluripotent mouse embryonic stem cell (mESCs) can transit into the totipotent-like state, and the transcription factor DUX is one of the master regulators of this transition. Intriguingly, this transition in mESCs is accompanied by massive cell death, which significantly impedes the establishment and maintenance of totipotent cells in vitro, yet the underlying mechanisms of this cell death remain largely elusive. In this study, we found that the totipotency transition in mESCs triggered cell death through the upregulation of DUX. Specifically, R-loops are accumulated upon DUX induction, which subsequently lead to DNA replication stress (RS) in mESCs. This RS further activates p53 and PMAIP1, ultimately leading to Caspase-9/7-dependent intrinsic apoptosis. Notably, inhibiting this intrinsic apoptosis not only mitigates cell death but also enhances the efficiency of the totipotency transition in mESCs. Our findings thus elucidate one of the mechanisms underlying cell apoptosis during the totipotency transition in mESCs and provide a strategy for optimizing the establishment and maintenance of totipotent cells in vitro.
Collapse
Affiliation(s)
- Shunze Jia
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinpeng Wen
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minwei Zhu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xudong Fu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Jia YK, Yu Y, Guan L. Advances in understanding the regulation of pluripotency fate transition in embryonic stem cells. Front Cell Dev Biol 2024; 12:1494398. [PMID: 39479513 PMCID: PMC11521825 DOI: 10.3389/fcell.2024.1494398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Embryonic stem cells (ESCs) sourced from the inner cell mass of blastocysts, are akin to this tissue in function but lack the capacity to form all extraembryonic structures. mESCs are transient cell populations that express high levels of transcripts characteristic of 2-cell (2C) embryos and are identified as "2-cell-like cells" (2CLCs). Previous studies have shown that 2CLCs can contribute to both embryonic and extraembryonic tissues upon reintroduction into early embryos. Approximately 1% of mESCs dynamically transition from pluripotent mESCs into 2CLCs. Nevertheless, the scarcity of mammalian embryos presents a significant challenge to the molecular characterization of totipotent cells. To date, Previous studies have explored various methods for reprogramming pluripotent cells into totipotent cells. While there is a good understanding of the molecular regulatory network maintaining ES pluripotency, the process by which pluripotent ESCs reprogram into totipotent cells and the associated molecular mechanisms of totipotent regulation remain poorly understood. This review synthesizes recent insights into the regulatory pathways of ESC reprogramming into 2CLC, exploring molecular mechanisms modulated by transcriptional regulators, small molecules, and epigenetic changes. The objective is to construct a theoretical framework for the field of researchers.
Collapse
Affiliation(s)
- Yong kang Jia
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Yang Yu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Guan
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Lin Y, Zheng J, Mai Z, Lin P, Lu Y, Cui L, Zhao X. Unveiling the veil of RNA binding protein phase separation in cancer biology and therapy. Cancer Lett 2024; 601:217160. [PMID: 39111384 DOI: 10.1016/j.canlet.2024.217160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
RNA-binding protein (RBP) phase separation in oncology reveals a complex interplay crucial for understanding tumor biology and developing novel therapeutic strategies. Aberrant phase separation of RBPs significantly influences gene regulation, signal transduction, and metabolic reprogramming, contributing to tumorigenesis and drug resistance. Our review highlights the integral roles of RBP phase separation in stress granule dynamics, mRNA stabilization, and the modulation of transcriptional and translational processes. Furthermore, interactions between RBPs and non-coding RNAs add a layer of complexity, providing new insights into their collaborative roles in cancer progression. The intricate relationship between RBPs and phase separation poses significant challenges but also opens up novel opportunities for targeted therapeutic interventions. Advancing our understanding of the molecular mechanisms and regulatory networks governing RBP phase separation could lead to breakthroughs in cancer treatment strategies.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
9
|
Hu J, Yuan J, Shi Q, Guo X, Liu L, Esteban MA, Lv Y. Single-cell profiling identifies LIN28A mRNA targets in the mouse pluripotent-to-2C-like transition and somatic cell reprogramming. J Biol Chem 2024; 300:107824. [PMID: 39343008 PMCID: PMC11584578 DOI: 10.1016/j.jbc.2024.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate totipotency, pluripotency maintenance, and induction. The intricacies of how they modulate these processes through their interaction with RNAs remain to be elucidated. Here we employed Targets of RBPs Identified By Editing (TRIBE) with single-cell resolution (scTRIBE) to profile the mRNA targets of the key pluripotency regulator LIN28A in mouse embryonic stem cells (ESCs), 2-cell embryo-like cells (2CLCs), and somatic cell reprogramming. LIN28A is known to act by controlling the maturation of the let-7 microRNA, but, in addition, it binds to multiple mRNAs and influences their stability and translation efficiency. However, the mRNA targets of LIN28A in 2CLCs and reprogramming are unclear. Through quantitative single-cell analysis of the scTRIBE dataset, we observed a marked increase in the binding of LIN28A to mRNAs of ribosome biogenesis factors and a selected group of totipotency factors in 2CLCs within ESC cultures. Our results suggest that LIN28A extends the half-life of at least some of these mRNAs, providing new insights into its role in the totipotent state. We also uncovered the distinct trajectory-specific LIN28A-mRNA networks in reprogramming, helping explain how LIN28A facilitates the mesenchymal-to-epithelial transition and pluripotency acquisition. Our study not only clarifies the multifunctional role of LIN28A in these processes but also highlights the importance of decoding RNA-protein interactions at the single-cell level.
Collapse
Affiliation(s)
- Jieyi Hu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianwen Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; BGI Research, Shenzhen, China; 3DC STAR Lab, BGI CELL, Shenzhen, China
| | - Quan Shi
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiangpeng Guo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Longqi Liu
- BGI Research, Hangzhou, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; 3DC STAR Lab, BGI CELL, Shenzhen, China.
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; 3DC STAR Lab, BGI CELL, Shenzhen, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
10
|
Hao X, Li Y, Gao H, Wang Z, Fang B. Inhalation Anesthetics Play a Janus-Faced Role in Self-Renewal and Differentiation of Stem Cells. Biomolecules 2024; 14:1167. [PMID: 39334933 PMCID: PMC11430341 DOI: 10.3390/biom14091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Inhalation anesthesia stands as a pivotal modality within clinical anesthesia practices. Beyond its primary anesthetic effects, inhaled anesthetics have non-anesthetic effects, exerting bidirectional influences on the physiological state of the body and disease progression. These effects encompass impaired cognitive function, inhibition of embryonic development, influence on tumor progression, and so forth. For many years, inhaled anesthetics were viewed as inhibitors of stem cell fate regulation. However, there is now a growing appreciation that inhaled anesthetics promote stem cell biological functions and thus are now regarded as a double-edged sword affecting stem cell fate. In this review, the effects of inhaled anesthetics on self-renewal and differentiation of neural stem cells (NSCs), embryonic stem cells (ESCs), and cancer stem cells (CSCs) were summarized. The mechanisms of inhaled anesthetics involving cell cycle, metabolism, stemness, and niche of stem cells were also discussed. A comprehensive understanding of these effects will enhance our comprehension of how inhaled anesthetics impact the human body, thus promising breakthroughs in the development of novel strategies for innovative stem cell therapy approaches.
Collapse
Affiliation(s)
- Xiaotong Hao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hairong Gao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhilin Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
11
|
Gao C, Gao X, Gao F, Du X, Wu S. A CRISPR/Cas9 screen in embryonic stem cells reveals that Mdm2 regulates totipotency exit. Commun Biol 2024; 7:809. [PMID: 38961268 PMCID: PMC11222520 DOI: 10.1038/s42003-024-06507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
During early embryonic development, the transition from totipotency to pluripotency is a fundamental and critical process for proper development. However, the regulatory mechanisms governing this transition remain elusive. Here, we conducted a comprehensive genome-wide CRISPR/Cas9 screen to investigate the 2-cell-like cells (2CLCs) phenotype in mouse embryonic stem cells (mESCs). This effort led to the identification of ten regulators that play a pivotal role in determining cell fate during this transition. Notably, our study revealed Mdm2 as a significant negative regulator of 2CLCs, as perturbation of Mdm2 resulted in a higher proportion of 2CLCs. Mdm2 appears to influence cell fate through its impact on cell cycle progression and H3K27me3 epigenetic modifications. In summary, the results of our CRISPR/Cas9 screen have uncovered several genes with distinct functions in regulating totipotency and pluripotency at various levels, offering a valuable resource for potential targets in future molecular studies.
Collapse
Affiliation(s)
- Chen Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
12
|
Fu B, Ma H, Liu D. Essential roles of the nucleolus during early embryonic development: a regulatory hub for chromatin organization. Open Biol 2024; 14:230358. [PMID: 38689555 PMCID: PMC11065130 DOI: 10.1098/rsob.230358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
The nucleolus is the most prominent liquid droplet-like membrane-less organelle in mammalian cells. Unlike the nucleolus in terminally differentiated somatic cells, those in totipotent cells, such as murine zygotes or two-cell embryos, have a unique nucleolar structure known as nucleolus precursor bodies (NPBs). Previously, it was widely accepted that NPBs in zygotes are simply passive repositories of materials that will be gradually used to construct a fully functional nucleolus after zygotic genome activation (ZGA). However, recent research studies have challenged this simplistic view and demonstrated that functions of the NPBs go beyond ribosome biogenesis. In this review, we provide a snapshot of the functions of NPBs in zygotes and early two-cell embryos in mice. We propose that these membrane-less organelles function as a regulatory hub for chromatin organization. On the one hand, NPBs provide the structural platform for centric and pericentric chromatin remodelling. On the other hand, the dynamic changes in nucleolar structure control the release of the pioneer factors (i.e. double homeobox (Dux)). It appears that during transition from totipotency to pluripotency, decline of totipotency and initiation of fully functional nucleolus formation are not independent events but are interconnected. Consequently, it is reasonable to hypothesize that dissecting more unknown functions of NPBs may shed more light on the enigmas of early embryonic development and may ultimately provide novel approaches to improve reprogramming efficiency.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of
Agricultural Sciences, Harbin150086, People's Republic of China
- Key Laboratory of Combining Farming and Animal Husbandry,
Ministry of Agriculture and Rural Affairs, Harbin150086, People's Republic of China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of
Agricultural Sciences, Harbin150086, People's Republic of China
- Key Laboratory of Combining Farming and Animal Husbandry,
Ministry of Agriculture and Rural Affairs, Harbin150086, People's Republic of China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of
Agricultural Sciences, Harbin150086, People's Republic of China
- Key Laboratory of Combining Farming and Animal Husbandry,
Ministry of Agriculture and Rural Affairs, Harbin150086, People's Republic of China
| |
Collapse
|
13
|
Yu H, Zhao J, Shen Y, Qiao L, Liu Y, Xie G, Chang S, Ge T, Li N, Chen M, Li H, Zhang J, Wang X. The dynamic landscape of enhancer-derived RNA during mouse early embryo development. Cell Rep 2024; 43:114077. [PMID: 38592974 DOI: 10.1016/j.celrep.2024.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China; School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Institute of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yuxuan Shen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Qiao
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuheng Liu
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Guanglei Xie
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuhui Chang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tingying Ge
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Nan Li
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55904, USA
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xi Wang
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
14
|
Vega-Sendino M, Ruiz S. Transition from totipotency to pluripotency in mice: insights into molecular mechanisms. Biochem Soc Trans 2024; 52:231-239. [PMID: 38288760 DOI: 10.1042/bst20230442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
Totipotency is the ability of a single cell to develop into a full organism and, in mammals, is strictly associated with the early stages of development following fertilization. This unlimited developmental potential becomes quickly restricted as embryonic cells transition into a pluripotent state. The loss of totipotency seems a consequence of the zygotic genome activation (ZGA), a process that determines the switch from maternal to embryonic transcription, which in mice takes place following the first cleavage. ZGA confers to the totipotent cell a transient transcriptional profile characterized by the expression of stage-specific genes and a set of transposable elements that prepares the embryo for subsequent development. The timely silencing of this transcriptional program during the exit from totipotency is required to ensure proper development. Importantly, the molecular mechanisms regulating the transition from totipotency to pluripotency have remained elusive due to the scarcity of embryonic material. However, the development of new in vitro totipotent-like models together with advances in low-input genome-wide technologies, are providing a better mechanistic understanding of how this important transition is achieved. This review summarizes the current knowledge on the molecular determinants that regulate the exit from totipotency.
Collapse
Affiliation(s)
- Maria Vega-Sendino
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD 20814, U.S.A
| | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD 20814, U.S.A
| |
Collapse
|
15
|
Tan T, Gao B, Yu H, Pan H, Sun Z, Lei A, Zhang L, Lu H, Wu H, Daley GQ, Feng Y, Zhang J. Dynamic nucleolar phase separation influenced by non-canonical function of LIN28A instructs pluripotent stem cell fate decisions. Nat Commun 2024; 15:1256. [PMID: 38341436 PMCID: PMC10858886 DOI: 10.1038/s41467-024-45451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
LIN28A is important in somatic reprogramming and pluripotency regulation. Although previous studies addressed that LIN28A can repress let-7 microRNA maturation in the cytoplasm, few focused on its role within the nucleus. Here, we show that the nucleolus-localized LIN28A protein undergoes liquid-liquid phase separation (LLPS) in mouse embryonic stem cells (mESCs) and in vitro. The RNA binding domains (RBD) and intrinsically disordered regions (IDR) of LIN28A contribute to LIN28A and the other nucleolar proteins' phase-separated condensate establishment. S120A, S200A and R192G mutations in the IDR result in subcellular mislocalization of LIN28A and abnormal nucleolar phase separation. Moreover, we find that the naive-to-primed pluripotency state conversion and the reprogramming are associated with dynamic nucleolar remodeling, which depends on LIN28A's phase separation capacity, because the LIN28A IDR point mutations abolish its role in regulating nucleolus and in these cell fate decision processes, and an exogenous IDR rescues it. These findings shed light on the nucleolar function in pluripotent stem cell states and on a non-canonical RNA-independent role of LIN28A in phase separation and cell fate decisions.
Collapse
Affiliation(s)
- Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China
| | - Bo Gao
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hongru Pan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhen Sun
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Anhua Lei
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Li Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hengxing Lu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China.
- Center of Gene/Cell Engineering and Genome Medicine, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Lu X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol 2024; 15:mjad052. [PMID: 37604781 PMCID: PMC10794949 DOI: 10.1093/jmcb/mjad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are important components of transposable elements that constitute ∼40% of the mouse genome. ERVs exhibit dynamic expression patterns during early embryonic development and are engaged in numerous biological processes. Therefore, ERV expression must be closely monitored in cells. Most studies have focused on the regulation of ERV expression in mouse embryonic stem cells (ESCs) and during early embryonic development. This review touches on the classification, expression, and functions of ERVs in mouse ESCs and early embryos and mainly discusses ERV modulation strategies from the perspectives of transcription, epigenetic modification, nucleosome/chromatin assembly, and post-transcriptional control.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
17
|
Nogueira IPM, Costa GMJ, Lacerda SMDSN. Avian iPSC Derivation to Recover Threatened Wild Species: A Comprehensive Review in Light of Well-Established Protocols. Animals (Basel) 2024; 14:220. [PMID: 38254390 PMCID: PMC10812705 DOI: 10.3390/ani14020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) were first generated by Yamanaka in 2006, revolutionizing research by overcoming limitations imposed by the use of embryonic stem cells. In terms of the conservation of endangered species, iPSC technology presents itself as a viable alternative for the manipulation of target genetics without compromising specimens. Although iPSCs have been successfully generated for various species, their application in nonmammalian species, particularly avian species, requires further in-depth investigation to cover the diversity of wild species at risk and their different protocol requirements. This study aims to provide an overview of the workflow for iPSC induction, comparing well-established protocols in humans and mice with the limited information available for avian species. Here, we discuss the somatic cell sources to be reprogrammed, genetic factors, delivery methods, enhancers, a brief history of achievements in avian iPSC derivation, the main approaches for iPSC characterization, and the future perspectives and challenges for the field. By examining the current protocols and state-of-the-art techniques employed in iPSC generation, we seek to contribute to the development of efficient and species-specific iPSC methodologies for at-risk avian species. The advancement of iPSC technology holds great promise for achieving in vitro germline competency and, consequently, addressing reproductive challenges in endangered species, providing valuable tools for basic research, bird genetic preservation and rescue, and the establishment of cryobanks for future conservation efforts.
Collapse
Affiliation(s)
| | | | - Samyra Maria dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (I.P.M.N.); (G.M.J.C.)
| |
Collapse
|
18
|
Pezic D, Weeks S, Varsally W, Dewari PS, Pollard S, Branco MR, Hadjur S. The N-terminus of Stag1 is required to repress the 2C program by maintaining rRNA expression and nucleolar integrity. Stem Cell Reports 2023; 18:2154-2173. [PMID: 37802073 PMCID: PMC10679541 DOI: 10.1016/j.stemcr.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023] Open
Abstract
Our understanding of how STAG proteins contribute to cell identity and disease have largely been studied from the perspective of chromosome topology and protein-coding gene expression. Here, we show that STAG1 is the dominant paralog in mouse embryonic stem cells (mESCs) and is required for pluripotency. mESCs express a wide diversity of naturally occurring Stag1 isoforms, resulting in complex regulation of both the levels of STAG paralogs and the proportion of their unique terminal ends. Skewing the balance of these isoforms impacts cell identity. We define a novel role for STAG1, in particular its N-terminus, in regulating repeat expression, nucleolar integrity, and repression of the two-cell (2C) state to maintain mESC identity. Our results move beyond protein-coding gene regulation via chromatin loops to new roles for STAG1 in nucleolar structure and function, and offer fresh perspectives on how STAG proteins, known to be cancer targets, contribute to cell identity and disease.
Collapse
Affiliation(s)
- Dubravka Pezic
- Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, UK
| | - Samuel Weeks
- Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, UK
| | - Wazeer Varsally
- Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, UK
| | - Pooran S Dewari
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Cancer Research UK Scotland Centre, Edinburgh, UK
| | - Steven Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Cancer Research UK Scotland Centre, Edinburgh, UK
| | - Miguel R Branco
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, UK
| | - Suzana Hadjur
- Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, UK.
| |
Collapse
|
19
|
Hamm DC, Paatela EM, Bennett SR, Wong CJ, Campbell AE, Wladyka CL, Smith AA, Jagannathan S, Hsieh AC, Tapscott SJ. The transcription factor DUX4 orchestrates translational reprogramming by broadly suppressing translation efficiency and promoting expression of DUX4-induced mRNAs. PLoS Biol 2023; 21:e3002317. [PMID: 37747887 PMCID: PMC10553841 DOI: 10.1371/journal.pbio.3002317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/05/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
Translational control is critical for cell fate transitions during development, lineage specification, and tumorigenesis. Here, we show that the transcription factor double homeobox protein 4 (DUX4), and its previously characterized transcriptional program, broadly regulates translation to change the cellular proteome. DUX4 is a key regulator of zygotic genome activation in human embryos, whereas misexpression of DUX4 causes facioscapulohumeral muscular dystrophy (FSHD) and is associated with MHC-I suppression and immune evasion in cancer. We report that translation initiation and elongation factors are disrupted downstream of DUX4 expression in human myoblasts. Genome-wide translation profiling identified mRNAs susceptible to DUX4-induced translation inhibition, including those encoding antigen presentation factors and muscle lineage proteins, while DUX4-induced mRNAs were robustly translated. Endogenous expression of DUX4 in human FSHD myotubes and cancer cell lines also correlated with reduced protein synthesis and MHC-I presentation. Our findings reveal that DUX4 orchestrates cell state conversion by suppressing the cellular proteome while maintaining translation of DUX4-induced mRNAs to promote an early developmental program.
Collapse
Affiliation(s)
- Danielle C. Hamm
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Ellen M. Paatela
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington State, United States of America
| | - Sean R. Bennett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Chao-Jen Wong
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Amy E. Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Cynthia L. Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Andrew A. Smith
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington State, United States of America
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andrew C. Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington State, United States of America
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Department of Neurology, University of Washington, Seattle, Washington State, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| |
Collapse
|
20
|
Sun X, Zhang T, Tong B, Cheng L, Jiang W, Sun Y. POGZ suppresses 2C transcriptional program and retrotransposable elements. Cell Rep 2023; 42:112867. [PMID: 37494184 DOI: 10.1016/j.celrep.2023.112867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
The POGZ gene has been found frequently mutated in neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and intellectual disability (ID). We have recently shown that POGZ maintains mouse embryonic stem cells (ESCs). However, the exact mechanisms remain unclear. Here, we show that POGZ plays an important role in the maintenance of ESCs by silencing Dux and endogenous retroviruses (ERVs). POGZ maintains a silent chromatin state at Dux and ERVs by associating with and recruiting TRIM28 and SETDB1, and its loss leads to decreased levels of H3K9me3/H4K20me3, resulting in up-regulation of 2C transcripts and ESC transition to a 2C-like state. POGZ suppresses different classes of ERVs through direct (IAPEy, the intracisternal A-type particle elements) and indirect regulation (MERVL). Activation of POGZ-bound ERVs is associated with up-regulation of nearby neural disease genes such as Serpina3m. Our findings provide important insights into understanding the disease mechanism caused by POGZ dysfunction.
Collapse
Affiliation(s)
- Xiaoyun Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Bei Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Linxi Cheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yuhua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China.
| |
Collapse
|
21
|
Li Z, Xu H, Li J, Xu X, Wang J, Wu D, Zhang J, Liu J, Xue Z, Zhan G, Tan BCP, Chen D, Chan YS, Ng HH, Liu W, Hsu CH, Zhang D, Shen Y, Liang H. Selective binding of retrotransposons by ZFP352 facilitates the timely dissolution of totipotency network. Nat Commun 2023; 14:3646. [PMID: 37339952 DOI: 10.1038/s41467-023-39344-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Acquisition of new stem cell fates relies on the dissolution of the prior regulatory network sustaining the existing cell fates. Currently, extensive insights have been revealed for the totipotency regulatory network around the zygotic genome activation (ZGA) period. However, how the dissolution of the totipotency network is triggered to ensure the timely embryonic development following ZGA is largely unknown. In this study, we identify the unexpected role of a highly expressed 2-cell (2C) embryo specific transcription factor, ZFP352, in facilitating the dissolution of the totipotency network. We find that ZFP352 has selective binding towards two different retrotransposon sub-families. ZFP352 coordinates with DUX to bind the 2C specific MT2_Mm sub-family. On the other hand, without DUX, ZFP352 switches affinity to bind extensively onto SINE_B1/Alu sub-family. This leads to the activation of later developmental programs like ubiquitination pathways, to facilitate the dissolution of the 2C state. Correspondingly, depleting ZFP352 in mouse embryos delays the 2C to morula transition process. Thus, through a shift of binding from MT2_Mm to SINE_B1/Alu, ZFP352 can trigger spontaneous dissolution of the totipotency network. Our study highlights the importance of different retrotransposons sub-families in facilitating the timely and programmed cell fates transition during early embryogenesis.
Collapse
Affiliation(s)
- Zhengyi Li
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Haiyan Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Jiaqun Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiao Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Junjiao Wang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Danya Wu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jiateng Zhang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Juan Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Ziwei Xue
- Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Guankai Zhan
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Bobby Cheng Peow Tan
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore, Singapore
| | - Di Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Yun-Shen Chan
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Huck Hui Ng
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117597, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 639798, Singapore
| | - Wanlu Liu
- Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Chih-Hung Hsu
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Yang Shen
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore, Singapore.
- Vision Medicals Co., Ltd, G10 BLDG, Huaxin Park, 31 Kefeng Ave, Gaungzhou, 510000, China.
| | - Hongqing Liang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
22
|
Wolin E, Guo JK, Blanco MR, Perez AA, Goronzy IN, Abdou AA, Gorhe D, Guttman M, Jovanovic M. SPIDR: a highly multiplexed method for mapping RNA-protein interactions uncovers a potential mechanism for selective translational suppression upon cellular stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543769. [PMID: 37333139 PMCID: PMC10274648 DOI: 10.1101/2023.06.05.543769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
RNA binding proteins (RBPs) play crucial roles in regulating every stage of the mRNA life cycle and mediating non-coding RNA functions. Despite their importance, the specific roles of most RBPs remain unexplored because we do not know what specific RNAs most RBPs bind. Current methods, such as crosslinking and immunoprecipitation followed by sequencing (CLIP-seq), have expanded our knowledge of RBP-RNA interactions but are generally limited by their ability to map only one RBP at a time. To address this limitation, we developed SPIDR (Split and Pool Identification of RBP targets), a massively multiplexed method to simultaneously profile global RNA binding sites of dozens to hundreds of RBPs in a single experiment. SPIDR employs split-pool barcoding coupled with antibody-bead barcoding to increase the throughput of current CLIP methods by two orders of magnitude. SPIDR reliably identifies precise, single-nucleotide RNA binding sites for diverse classes of RBPs simultaneously. Using SPIDR, we explored changes in RBP binding upon mTOR inhibition and identified that 4EBP1 acts as a dynamic RBP that selectively binds to 5'-untranslated regions of specific translationally repressed mRNAs only upon mTOR inhibition. This observation provides a potential mechanism to explain the specificity of translational regulation controlled by mTOR signaling. SPIDR has the potential to revolutionize our understanding of RNA biology and both transcriptional and post-transcriptional gene regulation by enabling rapid, de novo discovery of RNA-protein interactions at an unprecedented scale.
Collapse
Affiliation(s)
- Erica Wolin
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Jimmy K. Guo
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R. Blanco
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Andrew A. Perez
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Isabel N. Goronzy
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Ahmed A. Abdou
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Mitchell Guttman
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| |
Collapse
|
23
|
Broughton K, Esquer C, Echeagaray O, Firouzi F, Shain G, Ebeid D, Monsanto M, Yaareb D, Golgolab L, Gude N, Sussman MA. Surface Lin28A expression consistent with cellular stress parallels indicators of senescence. Cardiovasc Res 2023; 119:743-758. [PMID: 35880724 PMCID: PMC10409908 DOI: 10.1093/cvr/cvac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/03/2022] [Accepted: 06/26/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Declining cellular functional capacity resulting from stress or ageing is a primary contributor to impairment of myocardial performance. Molecular pathway regulation of biological processes in cardiac interstitial cells (CICs) is pivotal in stress and ageing responses. Altered localization of the RNA-binding protein Lin28A has been reported in response to environmental stress, but the role of Lin28A in response to stress in CICs has not been explored. Surface Lin28A redistribution is indicative of stress response in CIC associated with ageing and senescence. METHODS AND RESULTS Localization of Lin28A was assessed by multiple experimental analyses and treatment conditions and correlated to oxidative stress, senescence, and ploidy in adult murine CICs. Surface Lin28A expression is present on 5% of fresh CICs and maintained through Passage 2, increasing to 21% in hyperoxic conditions but lowered to 14% in physiologic normoxia. Surface Lin28A is coincident with elevated senescence marker p16 and beta-galactosidase (β-gal) expression in CICs expanded in hyperoxia, and also increases with polyploidization and binucleation of CICs regardless of oxygen culture. Transcriptional profiling of CICs using single-cell RNA-Seq reveals up-regulation of pathways associated with oxidative stress in CICs exhibiting surface Lin28A. Induction of surface Lin28A by oxidative stress is blunted by treatment of cells with the antioxidant Trolox in a dose-dependent manner, with 300 μM Trolox exposure maintaining characteristics of freshly isolated CICs possessing low expression of surface Lin28A and β-gal with predominantly diploid content. CONCLUSION Surface Lin28A is a marker of environmental oxidative stress in CICs and antioxidant treatment antagonizes this phenotype. The biological significance of Lin28 surface expression and consequences for myocardial responses may provide important insights regarding mitigation of cardiac stress and ageing.
Collapse
Affiliation(s)
- Kathleen Broughton
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Carolina Esquer
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Oscar Echeagaray
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Fareheh Firouzi
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Grant Shain
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - David Ebeid
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Megan Monsanto
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Dena Yaareb
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Leila Golgolab
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Natalie Gude
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A Sussman
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
24
|
Xiao H, Feng X, Liu M, Gong H, Zhou X. SnoRNA and lncSNHG: Advances of nucleolar small RNA host gene transcripts in anti-tumor immunity. Front Immunol 2023; 14:1143980. [PMID: 37006268 PMCID: PMC10050728 DOI: 10.3389/fimmu.2023.1143980] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of genes that can be transcript into long non-coding RNA SNHG (lncSNHG) and further processed into small nucleolar RNAs (snoRNAs). Although lncSNHGs and snoRNAs are well established to play pivotal roles in tumorigenesis, how lncSNHGs and snoRNAs regulate the immune cell behavior and function to mediate anti-tumor immunity remains further illustrated. Certain immune cell types carry out distinct roles to participate in each step of tumorigenesis. It is particularly important to understand how lncSNHGs and snoRNAs regulate the immune cell function to manipulate anti-tumor immunity. Here, we discuss the expression, mechanism of action, and potential clinical relevance of lncSNHGs and snoRNAs in regulating different types of immune cells that are closely related to anti-tumor immunity. By uncovering the changes and roles of lncSNHGs and snoRNAs in different immune cells, we aim to provide a better understanding of how the transcripts of SNHGs participate in tumorigenesis from an immune perspective.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Feng
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mengjun Liu
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hanwen Gong
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiao Zhou
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- *Correspondence: Xiao Zhou,
| |
Collapse
|
25
|
Yi Y, Zeng Y, Sam TW, Hamashima K, Tan RJR, Warrier T, Phua JX, Taneja R, Liou YC, Li H, Xu J, Loh YH. Ribosomal proteins regulate 2-cell-stage transcriptome in mouse embryonic stem cells. Stem Cell Reports 2023; 18:463-474. [PMID: 36638791 PMCID: PMC9968990 DOI: 10.1016/j.stemcr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
A rare sub-population of mouse embryonic stem cells (mESCs), the 2-cell-like cell, is defined by the expression of MERVL and 2-cell-stage-specific transcript (2C transcript). Here, we report that the ribosomal proteins (RPs) RPL14, RPL18, and RPL23 maintain the identity of mESCs and regulate the expression of 2C transcripts. Disregulation of the RPs induces DUX-dependent expression of 2C transcripts and alters the chromatin landscape. Mechanically, knockdown (KD) of RPs triggers the binding of RPL11 to MDM2, an interaction known to prevent P53 protein degradation. Increased P53 protein upon RP KD further activates its downstream pathways, including DUX. Our study delineates the critical roles of RPs in 2C transcript activation, ascribing a novel function to these essential proteins.
Collapse
Affiliation(s)
- Yao Yi
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tsz Wing Sam
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Rachel Jun Rou Tan
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Tushar Warrier
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jun Xiang Phua
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore; Joint Center for Single Cell Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
26
|
Li L, Li P, Chen J, Li L, Shen Y, Zhu Y, Liu J, Lv L, Mao S, Chen F, Hu G, Yuan K. Rif1 interacts with non-canonical polycomb repressive complex PRC1.6 to regulate mouse embryonic stem cells fate potential. CELL REGENERATION 2022; 11:25. [PMID: 35915272 PMCID: PMC9343540 DOI: 10.1186/s13619-022-00124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Mouse embryonic stem cells (mESCs) cycle in and out of a transient 2-cell (2C)-like totipotent state, driven by a complex genetic circuit involves both the coding and repetitive sections of the genome. While a vast array of regulators, including the multi-functional protein Rif1, has been reported to influence the switch of fate potential, how they act in concert to achieve this cellular plasticity remains elusive. Here, by modularizing the known totipotency regulatory factors, we identify an unprecedented functional connection between Rif1 and the non-canonical polycomb repressive complex PRC1.6. Downregulation of the expression of either Rif1 or PRC1.6 subunits imposes similar impacts on the transcriptome of mESCs. The LacO-LacI induced ectopic colocalization assay detects a specific interaction between Rif1 and Pcgf6, bolstering the intactness of the PRC1.6 complex. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis further reveals that Rif1 is required for the accurate targeting of Pcgf6 to a group of genomic loci encompassing many genes involved in the regulation of the 2C-like state. Depletion of Rif1 or Pcgf6 not only activates 2C genes such as Zscan4 and Zfp352, but also derepresses a group of the endogenous retroviral element MERVL, a key marker for totipotency. Collectively, our findings discover that Rif1 can serve as a novel auxiliary component in the PRC1.6 complex to restrain the genetic circuit underlying totipotent fate potential, shedding new mechanistic insights into its function in regulating the cellular plasticity of embryonic stem cells.
Collapse
|
27
|
Xu H, Liang H. The regulation of totipotency transcription: Perspective from in vitro and in vivo totipotency. Front Cell Dev Biol 2022; 10:1024093. [PMID: 36393839 PMCID: PMC9643643 DOI: 10.3389/fcell.2022.1024093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/13/2022] [Indexed: 09/08/2024] Open
Abstract
Totipotency represents the highest developmental potency. By definition, totipotent stem cells are capable of giving rise to all embryonic and extraembryonic cell types. In mammalian embryos, totipotency occurs around the zygotic genome activation period, which is around the 2-cell stage in mouse embryo or the 4-to 8-cell stage in human embryo. Currently, with the development of in vitro totipotent-like models and the advances in small-scale genomic methods, an in-depth mechanistic understanding of the totipotency state and regulation was enabled. In this review, we explored and summarized the current views about totipotency from various angles, including genetic and epigenetic aspects. This will hopefully formulate a panoramic view of totipotency from the available research works until now. It can also help delineate the scaffold and formulate new hypotheses on totipotency for future research works.
Collapse
Affiliation(s)
| | - Hongqing Liang
- Division of Human Reproduction and Developmental Genetics, Women’s Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Rodríguez-Quiroz R, Valdebenito-Maturana B. SoloTE for improved analysis of transposable elements in single-cell RNA-Seq data using locus-specific expression. Commun Biol 2022; 5:1063. [PMID: 36202992 PMCID: PMC9537157 DOI: 10.1038/s42003-022-04020-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Transposable Elements (TEs) contribute to the repetitive fraction in almost every eukaryotic genome known to date, and their transcriptional activation can influence the expression of neighboring genes in healthy and disease states. Single cell RNA-Seq (scRNA-Seq) is a technical advance that allows the study of gene expression on a cell-by-cell basis. Although a current computational approach is available for the single cell analysis of TE expression, it omits their genomic location. Here we show SoloTE, a pipeline that outperforms the previous approach in terms of computational resources and by allowing the inclusion of locus-specific TE activity in scRNA-Seq expression matrixes. We then apply SoloTE to several datasets to reveal the repertoire of TEs that become transcriptionally active in different cell groups, and based on their genomic location, we predict their potential impact on gene expression. As our tool takes as input the resulting files from standard scRNA-Seq processing pipelines, we expect it to be widely adopted in single cell studies to help researchers discover patterns of cellular diversity associated with TE expression.
Collapse
Affiliation(s)
- Rocío Rodríguez-Quiroz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
29
|
Zhang C, Wen H, Liu S, Fu E, Yu L, Chen S, Han Q, Li Z, Liu N. Maternal Factor Dppa3 Activates 2C-Like Genes and Depresses DNA Methylation in Mouse Embryonic Stem Cells. Front Cell Dev Biol 2022; 10:882671. [PMID: 35721479 PMCID: PMC9203971 DOI: 10.3389/fcell.2022.882671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) contain a rare cell population of “two-cell embryonic like” cells (2CLCs) that display similar features to those found in the two-cell (2C) embryo and thus represent an in vitro model for studying the progress of zygotic genome activation (ZGA). However, the positive regulator determinants of the 2CLCs’ conversion and ZGA have not been completely elucidated. Here, we identify a new regulator promoting 2CLCs and ZGA transcripts. Through a combination of overexpression (OE), knockdown (KD), together with transcriptional analysis and methylome analysis, we find that Dppa3 regulates the 2CLC-associated transcripts, DNA methylation, and 2CLC population in ESCs. The differentially methylated regions (DMRs) analysis identified 6,920 (98.2%) hypomethylated, whilst only 129 (1.8%) hypermethylated, regions in Dppa3 OE ESCs, suggesting that Dppa3 facilitates 2CLCs reprogramming. The conversion to 2CLCs by overexpression of Dppa3 is also associated with DNA damage response. Dppa3 knockdown manifest impairs transition into the 2C-like state. Global DNA methylome and chromatin state analysis of Dppa3 OE ESCs reveal that Dppa3 facilitates the chromatin configuration to 2CLCs reversion. Our finding for the first time elucidates a novel role of Dppa3 in mediating the 2CLC conversion, and suggests that Dppa3 is a new regulator for ZGA progress.
Collapse
Affiliation(s)
- Chuanyu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Hang Wen
- School of Medicine, Nankai University, Tianjin, China
| | - Siying Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Enze Fu
- School of Medicine, Nankai University, Tianjin, China
| | - Lu Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Qingsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, China
- *Correspondence: Zongjin Li, ; Na Liu,
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, China
- *Correspondence: Zongjin Li, ; Na Liu,
| |
Collapse
|
30
|
Xie SQ, Leeke BJ, Whilding C, Wagner RT, Garcia-Llagostera F, Low Y, Chammas P, Cheung NTF, Dormann D, McManus MT, Percharde M. Nucleolar-based Dux repression is essential for embryonic two-cell stage exit. Genes Dev 2022; 36:331-347. [PMID: 35273077 PMCID: PMC8973846 DOI: 10.1101/gad.349172.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Upon fertilization, the mammalian embryo must switch from dependence on maternal transcripts to transcribing its own genome, and in mice this involves the transient up-regulation of MERVL transposons and MERVL-driven genes at the two-cell stage. The mechanisms and requirement for MERVL and two-cell (2C) gene up-regulation are poorly understood. Moreover, this MERVL-driven transcriptional program must be rapidly shut off to allow two-cell exit and developmental progression. Here, we report that robust ribosomal RNA (rRNA) synthesis and nucleolar maturation are essential for exit from the 2C state. 2C-like cells and two-cell embryos show similar immature nucleoli with altered structure and reduced rRNA output. We reveal that nucleolar disruption via blocking RNA polymerase I activity or preventing nucleolar phase separation enhances conversion to a 2C-like state in embryonic stem cells (ESCs) by detachment of the MERVL activator Dux from the nucleolar surface. In embryos, nucleolar disruption prevents proper nucleolar maturation and Dux silencing and leads to two- to four-cell arrest. Our findings reveal an intriguing link between rRNA synthesis, nucleolar maturation, and gene repression during early development.
Collapse
Affiliation(s)
- Sheila Q Xie
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Bryony J Leeke
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Chad Whilding
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Ryan T Wagner
- University of California at San Francisco, San Francisco, California 91413, USA
| | - Ferran Garcia-Llagostera
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - YiXuan Low
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Paul Chammas
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Nathan T-F Cheung
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Dirk Dormann
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Michael T McManus
- University of California at San Francisco, San Francisco, California 91413, USA
| | - Michelle Percharde
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
31
|
Ren W, Gao L, Mou Y, Deng W, Hua J, Yang F. DUX: One Transcription Factor Controls 2-Cell-like Fate. Int J Mol Sci 2022; 23:ijms23042067. [PMID: 35216182 PMCID: PMC8877164 DOI: 10.3390/ijms23042067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
The double homeobox (Dux) gene, encoding a double homeobox transcription factor, is one of the key drivers of totipotency in mice. Recent studies showed Dux was temporally expressed at the 2-cell stage and acted as a transcriptional activator during zygotic genome activation (ZGA) in embryos. A similar activation occurs in mouse embryonic stem cells, giving rise to 2-cell-like cells (2CLCs). Though the molecular mechanism underlying this expanded 2CLC potency caused by Dux activation has been partially revealed, the regulation mechanisms controlling Dux expression remain elusive. Here, we discuss the latest advancements in the multiple levels of regulation of Dux expression, as well as Dux function in 2CLCs transition, aiming to provide a theoretical framework for understanding the mechanisms that regulate totipotency.
Collapse
Affiliation(s)
- Wei Ren
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Xianyang 712100, China
- College of Innovation and Experiment, Northwest A & F University, Xianyang 712100, China
| | - Leilei Gao
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Xianyang 712100, China
| | - Yaling Mou
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Xianyang 712100, China
| | - Wen Deng
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Correspondence: (W.D.); (F.Y.)
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Xianyang 712100, China
| | - Fan Yang
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Xianyang 712100, China
- Correspondence: (W.D.); (F.Y.)
| |
Collapse
|
32
|
Chen Z, Xie Z, Zhang Y. DPPA2 and DPPA4 are dispensable for mouse zygotic genome activation and pre-implantation development. Development 2021; 148:dev200178. [PMID: 34878123 PMCID: PMC8722388 DOI: 10.1242/dev.200178] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
How maternal factors in oocytes initiate zygotic genome activation (ZGA) remains elusive in mammals, partly due to the challenge of de novo identification of key factors using scarce materials. Two-cell (2C)-like cells have been widely used as an in vitro model in order to understand mouse ZGA and totipotency because of their expression of a group of two-cell embryo-specific genes and their simplicity for genetic manipulation. Recent studies indicate that DPPA2 and DPPA4 are required for establishing the 2C-like state in mouse embryonic stem cells in a DUX-dependent manner. These results suggest that DPPA2 and DPPA4 are essential maternal factors that regulate Dux and ZGA in embryos. By analyzing maternal knockout and maternal-zygotic knockout embryos, we unexpectedly found that DPPA2 and DPPA4 are dispensable for Dux activation, ZGA and pre-implantation development. Our study suggests that 2C-like cells do not fully recapitulate two-cell embryos in terms of regulation of two-cell embryo-specific genes, and, therefore, caution should be taken when studying ZGA and totipotency using 2C-like cells as the model system.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Zhenfei Xie
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Yu H, Sun Z, Tan T, Pan H, Zhao J, Zhang L, Chen J, Lei A, Zhu Y, Chen L, Xu Y, Liu Y, Chen M, Sheng J, Xu Z, Qian P, Li C, Gao S, Daley GQ, Zhang J. rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin. Nat Commun 2021; 12:6365. [PMID: 34753899 PMCID: PMC8578659 DOI: 10.1038/s41467-021-26576-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
The nucleolus is the organelle for ribosome biogenesis and sensing various types of stress. However, its role in regulating stem cell fate remains unclear. Here, we present evidence that nucleolar stress induced by interfering rRNA biogenesis can drive the 2-cell stage embryo-like (2C-like) program and induce an expanded 2C-like cell population in mouse embryonic stem (mES) cells. Mechanistically, nucleolar integrity maintains normal liquid-liquid phase separation (LLPS) of the nucleolus and the formation of peri-nucleolar heterochromatin (PNH). Upon defects in rRNA biogenesis, the natural state of nucleolus LLPS is disrupted, causing dissociation of the NCL/TRIM28 complex from PNH and changes in epigenetic state and reorganization of the 3D structure of PNH, which leads to release of Dux, a 2C program transcription factor, from PNH to activate a 2C-like program. Correspondingly, embryos with rRNA biogenesis defect are unable to develop from 2-cell (2C) to 4-cell embryos, with delayed repression of 2C/ERV genes and a transcriptome skewed toward earlier cleavage embryo signatures. Our results highlight that rRNA-mediated nucleolar integrity and 3D structure reshaping of the PNH compartment regulates the fate transition of mES cells to 2C-like cells, and that rRNA biogenesis is a critical regulator during the 2-cell to 4-cell transition of murine pre-implantation embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Zhen Sun
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tan
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Hongru Pan
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Jing Zhao
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Ling Zhang
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anhua Lei
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yuqing Zhu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Lang Chen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yuyan Xu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yaxin Liu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, 100871, Beijing, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jin Zhang
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China.
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China.
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
Su G, Wang L, Gao G, Wu S, Yang L, Wu M, Liu X, Yang M, Wei Z, Bai C, Li G. C23 gene regulates the nucleolin structure and biosynthesis of ribosomes in bovine intraspecific and interspecific somatic cell nuclear transfer embryos. FASEB J 2021; 35:e21993. [PMID: 34670005 DOI: 10.1096/fj.202100737rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
Somatic cell nuclear transfer (SCNT) can reprogram differentiated somatic cells to produce individual animals, thus having advantages in animal breeding and chromatin reprogramming. Interspecies SCNT (iSCNT) provides extreme cases of reprogramming failure that can be used to understand the basic biological mechanism of genome reprogramming. It is important to understand the possible mechanisms for the failure of zygotic genome activation (ZGA) in iSCNT embryos in order to improve the efficiency of SCNT embryos. In the present study, we compared the development of bovine-bovine (B-B), ovine-ovine (O-O) SCNT, and ovine-bovine (O-B) iSCNT embryos and found that a developmental block existed in the 8-cell stage in O-B iSCNT embryos. RNA sequencing and q-PCR analysis revealed that the large ribosomal subunit genes (RPL) or the small ribosomal subunit genes (RPS) were expressed at lower levels in the O-B iSCNT embryos. The nucleolin (C23) gene that regulates the ribosomal subunit generation was transcribed at a lower level during embryonic development in O-B iSCNT embryos. In addition, the nucleolin exhibited a clear circular-ring structure in B-B 8-cell stage embryos, whereas this was shell-like or dot-like in the O-B embryos. Furthermore, overexpression of C23 could increase the blastocyst rate of both SCNT and iSCNT embryos and partly rectify the ring-like nucleolin structure and the expression of ribosomal subunit related genes were upregulation, while knockdown of C23 increased the shell-like nucleolin-structure in B-B cloned embryos and downregulated the expression of ribosomal subunit related genes. These results implied that abnormal C23 and ribosome subunit gene expression would lead to the developmental block of iSCNT embryos and ZGA failure. Overexpression of the C23 gene could partly improve the blastocyst development and facilitate the nucleolin structure in bovine preimplantation SCNT embryos.
Collapse
Affiliation(s)
- Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lina Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangqi Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Meiling Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Miaomiao Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|