1
|
Vick LV, Rosario S, Riess JW, Canter RJ, Mukherjee S, Monjazeb AM, Murphy WJ. Potential roles of sex-linked differences in obesity and cancer immunotherapy: revisiting the obesity paradox. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:5. [PMID: 38800540 PMCID: PMC11116109 DOI: 10.1038/s44324-024-00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
Obesity, a condition of excess adiposity usually defined by a BMI > 30, can have profound effects on both metabolism and immunity, connecting the condition with a broad range of diseases, including cancer and negative outcomes. Obesity and cancer have been associated with increased incidence, progression, and poorer outcomes of multiple cancer types in part due to the pro-inflammatory state that arises. Surprisingly, obesity has also recently been demonstrated in both preclinical models and clinical outcomes to be associated with improved response to immune checkpoint inhibition (ICI). These observations have laid the foundation for what has been termed the "obesity paradox". The mechanisms underlying these augmented immunotherapy responses are still unclear given the pleiotropic effects obesity exerts on cells and tissues. Other important variables such as age and sex are being examined as further affecting the obesity effect. Sex-linked factors exert significant influences on obesity biology, metabolism as well as differential effects of different immune cell-types. Age can be another confounding factor contributing to the effects on both sex-linked changes, immune status, and obesity. This review aims to revisit the current body of literature describing the immune and metabolic changes mediated by obesity, the role of obesity on cancer immunotherapy, and to highlight questions on how sex-linked differences may influence obesity and immunotherapy outcome.
Collapse
Affiliation(s)
- Logan V. Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA USA
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Jonathan W. Riess
- Department of Medicine, Division of Hematology/Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Robert J. Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA USA
| | - Sarbajit Mukherjee
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, University of California School of Medicine, Sacramento, CA USA
| | - William J. Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA USA
- Department of Internal Medicine, Division of Malignant Hematology, Cellular Therapy and Transplantation, University of California Davis School of Medicine, Sacramento, CA USA
| |
Collapse
|
2
|
Lee SH, Lee H, Park R. Systemic Immune Modulation Induced by Ephedrine in Obese-Diabetes ( db/ db) Mice. Curr Issues Mol Biol 2023; 45:10097-10108. [PMID: 38132476 PMCID: PMC10742494 DOI: 10.3390/cimb45120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Immune-modulatory effects in obese-diabetes (db/db) mice were observed to understand the possible mechanism(s) of ephedrine-induced unfavorable responses. The ephedrine doses were selected based on the FDA report (NTP Tech Rep Ser NO 307; CAS# 134-72-5), which showed the non-toxic dose for B6C3F1 mice. In db/db mice, higher doses (6 and 12 mg/mouse) of ephedrine significantly harmed the liver and lung morphology, including fatty liver with multiple blood vessel engorgement, alveolar wall thickening, and inflammatory response in the lung. The immune micro-environment of db/db mice was an inflammatory state with suppressed adaptive cellular immunity. After the administration of ephedrine, significant deterioration of NK activity was observed with lowered gene transcription of klrk1 encoding NKG2D, and of ccl8, a NK cell targeting chemokine. Suppressed cellular immunity in db/db mice was lowered ever further by single ephedrine treatment, as was evidenced by mitogen-induced T or B cell proliferations. These observations demonstrate that at the non-toxic doses in normal B6C3F1 mice, ephedrine clearly suppressed systemic immunity of db/db mice. The data suggest that the immune micro-environment of obese individuals is fragile and susceptible to ephedrine-related pathologic response, and this may be a prelude to the induction of obesity-related secondary immunological disorders.
Collapse
Affiliation(s)
- Seung-hoon Lee
- Department of Life Science, Yongin University, 470 Samga Dong, Cheo-In Gu, Yong-In Si 17092, Republic of Korea;
| | - Hyunah Lee
- Immunecell Therapy Research Center, Seoul Song Do Colorectal Hospital, 78 Dasan-ro, Jung-gu, Seoul 04597, Republic of Korea
| | - Rackhyun Park
- Department of Life Science, Yongin University, 470 Samga Dong, Cheo-In Gu, Yong-In Si 17092, Republic of Korea;
| |
Collapse
|
3
|
Vick LV, Canter RJ, Monjazeb AM, Murphy WJ. Multifaceted effects of obesity on cancer immunotherapies: Bridging preclinical models and clinical data. Semin Cancer Biol 2023; 95:88-102. [PMID: 37499846 PMCID: PMC10836337 DOI: 10.1016/j.semcancer.2023.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Obesity, defined by excessive body fat, is a highly complex condition affecting numerous physiological processes, such as metabolism, proliferation, and cellular homeostasis. These multifaceted effects impact cells and tissues throughout the host, including immune cells as well as cancer biology. Because of the multifaceted nature of obesity, common parameters used to define it (such as body mass index in humans) can be problematic, and more nuanced methods are needed to characterize the pleiotropic metabolic effects of obesity. Obesity is well-accepted as an overall negative prognostic factor for cancer incidence, progression, and outcome. This is in part due to the meta-inflammatory and immunosuppressive effects of obesity. Immunotherapy is increasingly used in cancer therapy, and there are many different types of immunotherapy approaches. The effects of obesity on immunotherapy have only recently been studied with the demonstration of an "obesity paradox", in which some immune therapies have been demonstrated to result in greater efficacy in obese subjects despite the direct adverse effects of obesity and excess body fat acting on the cancer itself. The multifactorial characteristics that influence the effects of obesity (age, sex, lean muscle mass, underlying metabolic conditions and drugs) further confound interpretation of clinical data and necessitate the use of more relevant preclinical models mirroring these variables in the human scenario. Such models will allow for more nuanced mechanistic assessment of how obesity can impact, both positively and negatively, cancer biology, host metabolism, immune regulation, and how these intersecting processes impact the delivery and outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Logan V Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, University of California School of Medicine, Sacramento, CA, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA; Department of Internal Medicine, Division of Malignant Hematology, Cellular Therapy and Transplantation, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
4
|
Szeto A, Cecati M, Ahmed R, McCabe PM, Mendez AJ. Oxytocin reduces adipose tissue inflammation in obese mice. Lipids Health Dis 2020; 19:188. [PMID: 32819381 PMCID: PMC7441653 DOI: 10.1186/s12944-020-01364-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Obesity and adipose tissue expansion is characterized by a chronic state of systemic inflammation that contributes to disease. The neuropeptide, oxytocin, working through its receptor has been shown to attenuate inflammation in sepsis, wound healing, and cardiovascular disease. The current study examined the effects of chronic oxytocin infusions on adipose tissue inflammation in a murine model of obesity, the leptin receptor-deficient (db/db) mouse. METHODS The effect of obesity on oxytocin receptor protein and mRNA expression in adipose tissue was evaluated by Western blotting and real-time polymerase chain reaction. Mice were implanted with osmotic minipumps filled with oxytocin or vehicle for 8 weeks. At study endpoint adipose tissue inflammation was assessed by measurement of cytokine and adipokine mRNA tissue levels, adipocyte size and macrophage infiltration via histopathology, and plasma levels of adiponectin and serum amyloid A as markers of systemic inflammation. RESULTS The expression of adipose tissue oxytocin receptor was increased in obese db/db mice compared to lean controls. In adipose tissue oxytocin infusion reduced adipocyte size, macrophage infiltration, IL-6 and TNFα mRNA expression, and increased the expression of the anti-inflammatory adipokine, adiponectin. In plasma, oxytocin infusion reduced the level of serum amyloid A, a marker of systemic inflammation, and increased circulating adiponectin. CONCLUSIONS In an animal model of obesity and diabetes chronic oxytocin treatment led to a reduction in visceral adipose tissue inflammation and plasma markers of systemic inflammation, which may play a role in disease progression.
Collapse
Affiliation(s)
- Angela Szeto
- Department of Psychology, University of Miami, PO Box 248185, Coral Gables, FL, 33124, USA
| | - Monia Cecati
- Department of Medicine and Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA
| | - Raisa Ahmed
- Department of Psychology, University of Miami, PO Box 248185, Coral Gables, FL, 33124, USA
| | - Philip M McCabe
- Department of Psychology, University of Miami, PO Box 248185, Coral Gables, FL, 33124, USA
| | - Armando J Mendez
- Department of Medicine and Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
The Effect of Microporous Polysaccharide Hemospheres on Wound Healing and Scarring in Wild-Type and db/db Mice. Adv Skin Wound Care 2017; 30:169-180. [DOI: 10.1097/01.asw.0000513149.43488.56] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Chronic stress aggravates glucose intolerance in leptin receptor-deficient (db/db) mice. GENES AND NUTRITION 2015; 10:458. [PMID: 25791744 DOI: 10.1007/s12263-015-0458-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/05/2015] [Indexed: 12/17/2022]
Abstract
Genetic predisposition and environmental challenges interact to determine individual vulnerability to obesity and type 2 diabetes. We previously established a mouse model of chronic subordination stress-induced hyperphagia, obesity, metabolic like-syndrome and insulin resistance in the presence of a high-fat diet. However, it remains to be established if social stress could also aggravate glucose intolerance in subjects genetically predisposed to develop obesity and type 2 diabetes. To answer this question, we subjected genetically obese mice due to deficiency of the leptin receptor (db/db strain) to chronic subordination stress. Over five weeks, subordination stress in db/db mice led to persistent hyperphagia, hyperglycemia and exacerbated glucose intolerance altogether suggestive of an aggravated disorder when compared to controls. On the contrary, body weight and fat mass were similarly affected in stressed and control mice likely due to the hyperactivity shown by subordinate mice. Stressed db/db mice also showed increased plasma inflammatory markers. Altogether our results suggest that chronic stress can aggravate glucose intolerance but not obesity in genetically predisposed subjects on the basis of a disrupted leptin circuitry.
Collapse
|
7
|
Yang HI, Kim WS, Kim DH, Kang JS. Histopathological Evaluation of Heart Toxicity of a Novel Selective PPAR-γ Agonists CKD-501 in db/db Mice. Biomol Ther (Seoul) 2013; 21:84-8. [PMID: 24009864 PMCID: PMC3762307 DOI: 10.4062/biomolther.2012.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 11/22/2022] Open
Abstract
High risk of cardiovascular diseases caused by existing PPAR-γ agonists such as rosiglitazone and pioglitazone has been recently reported. CKD-501 is a novel selective PPAR-γ agonist as a potential target to reduce cardiovascular risk in non-insulin dependent diabetes mellitus (NIDDM). In this study, We investigated potential cardiotoxicity of CKD-501 and compared its toxicity with that of rosiglitazone or pioglitazone using db/db mice. After 12-week repeated administration of CKD-501 at doses of 3, 10 and 30 mg/kg/day or rosiglitazone at doses of 10 and 30 mg/kg/day or pioglitazone at doses of 200 and 540 mg/kg/day, animals were sacrificed for investigation of potential toxicities. Diameters of left ventricles and areas of cardiomyocytes were measured. And lipid accumulation and apoptosis in heart muscle were examined by oil red O staining and TUNEL staining, respectively. Diameters of left ventricles were significantly increased in high dose treatment group of pioglitazone compared to control (p<0.05), while other groups showed a tendency for an increase. All test articles induced significantly the increase of area of cardiomyocytes in heart compared to control (p<0.01), in regular order as pioglitazone > CKD-501 ≥ rosiglitazone. However, lipid accumulation and apoptotic changes in heart were not observed in all dosing groups. Taken together, the myocardial cell hypertrophy of CKD-501 are relatively lower than that of pioglitazone and similar to rosiglitazone. And it is suggested that the myocardial cell hypertrophy of CKD-501 are less adverse in clinical use for the management of the NIDDM.
Collapse
Affiliation(s)
- Hyun-Il Yang
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan 331-707, Republic of Korea
| | | | | | | |
Collapse
|
8
|
Lee H, Jang IS, Park J, Kim SH, Baek SY, Go SH, Lee SH. Systemic immune modulation induced by alcoholic beverage intake in obese-diabetes (db/db) mice. Food Chem Toxicol 2012; 53:286-93. [PMID: 23261674 DOI: 10.1016/j.fct.2012.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/31/2012] [Accepted: 12/09/2012] [Indexed: 12/20/2022]
Abstract
Alcohol over-consumption is generally immunosuppressive. In this study, the effects of single or repetitive alcohol administration on the systemic immunity of db/db mice were observed to clarify the possible mechanisms for the increased susceptibility of obese individuals to alcohol-related immunological health problems. Alcohol (as a form of commercially available 20% distilled-alcoholic beverage) was orally administered one-time or seven times over 2 weeks to db/db mice and normal C57BL/6J mice. Immunologic alterations were analyzed by observation of body weight and animal activity, along with proportional changes of splenocytes for natural killer cells, macrophages, and T and B lymphocytes. Modulation of plasma cytokine level and immune-related genes were also ascertained by micro-bead assay and a microarray method, respectively. The immune micro-environment of db/db mice was an inflammatory state and adaptive cellular immunity was significantly suppressed. Low-dose alcohol administration reversed the immune response, decreasing inflammatory responses and the increment of adaptive immunity mainly related to CD4(+) T cells, but not CD8(+) T cells, to normal background levels. Systemic immune modulation due to alcohol administration in the obese-diabetic mouse model may be useful in the understanding of the induction mechanism, which will aid the development of therapeutics for related secondary diseases.
Collapse
Affiliation(s)
- Hyunah Lee
- Office of Biomedical Professors, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Il-Won Dong, Kang-Nam Gu, Seoul 135-710, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
9
|
|