1
|
Chen M, Song L, Zeng A. Harnessing nature's arsenal: Targeting the TGF-β/Smad Cascade with novel natural anti-fibrotic agents. Fitoterapia 2025; 181:106372. [PMID: 39778722 DOI: 10.1016/j.fitote.2024.106372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Hepatic fibrosis is a wound healing response that leads to excessive deposition of extracellular matrix (ECM) due to sustained liver injury. Hepatic stellate cells (HSCs) are key players in ECM synthesis, with the TGF-β/Smad signaling pathway being central to their activation. Despite advances in understanding the pathogenesis of hepatic fibrosis, effective anti-fibrotic therapies are still lacking. METHODS This treatise conducts a comprehensive review of the literature on the hepatoprotective effects of natural products, including natural medicine compounds, herbal extracts, and polysaccharides. The focus is on their ability to modulate the TGF-β pathway, which is critical in the activation of HSCs and ECM synthesis in hepatic fibrosis. RESULTS The review identifies a variety of natural products that have shown promise in inhibiting the TGF-β/Smad signaling cascade, thereby reducing the activation of HSCs and ECM accumulation. These findings highlight the potential of these natural products as therapeutic agents in the treatment of hepatic fibrosis. CONCLUSIONS The exploration of natural products as modulators of the TGF-β pathway presents a novel avenue for both clinical and preclinical research into hepatic fibrosis. Further investigation is warranted to fully understand the mechanisms of action and to develop these compounds into effective anti-fibrotic pharmaceuticals.
Collapse
Affiliation(s)
- Maohua Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine,Chengdu, Sichuan 610041, PR China; Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China. Chengdu, Sichuan 610072, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine,Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
2
|
Carbone K, Sytar O, Sharopov F, Pezzani R, Romano R, Santini A, Kieliszek M, Khan T, Khan K, Caunii A, Habtemariam S, Sharifi-Rad J, Butnariu M. Anticancer Attributes and Multifaceted Pharmacological Implications of Laetrile and Amygdalin. Cell Biol Int 2025; 49:205-220. [PMID: 39873182 DOI: 10.1002/cbin.12276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Laetrile, known as vitamin B17, is often used interchangeably with amygdalin. Laetrile is a semi-synthesis product of amygdalin, whereas amygdalin is a naturally occurring substance in many plants. Both compounds have a nitrile functional group that, when activated by the intestinal enzyme β-glucosidases, releases hydrogen cyanide. The two compounds have been considered for a long time as alternative therapy for cancer treatment however, findings available in the literature are discordant on the real efficacy of laetrile/amygdalin for the treatment of cancer, often highlighting a negative benefit-risk ratio. In this regard, the study aimed to comprehensively analyze the scientific data on laetrile/amygdalin, with a special emphasis on their pharmacokinetics, underlying pharmacological properties, mode of action as a potent antitumor agent, and effect on human health. The results showed that there is no clear evidence on the efficacy of cancer therapy following laetrile/amygdalin administration, especially at the clinical trial level. However, the in vitro studies of the biological activity of these compounds showed positive effects related to their antifibrotic, anti-inflammatory, antiasthmatic, and immunoregulatory processes. Laetrile's mechanism of action closely resembles amygdalin, affecting cancer signaling pathways. However, due to its cyanide toxicity, it was banned by the food and drug administration (FDA) due to safety concerns. Despite not receiving permission from the FDA, laetrile emerged as an alternative therapy in the 1970s. Nonetheless, continuing research is investigating safer methods of activating Laetrile for targeted cancer treatment. This opens interesting prospects in using these compounds in alternative medical therapies, for which, however, further research is needed.
Collapse
Affiliation(s)
- Katya Carbone
- CREA-Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Kyiv, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Farukh Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Tooba Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Preclinical and Clinical Department, Lahore, Pakistan
| | - Angela Caunii
- "Victor Babes" University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent, UK
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from Timisoara, Timișoara, Romania
| |
Collapse
|
3
|
Fernandes Q, Billa N. Amygdalin in antineoplastic medicine and the relevance of nanotechnology. Biomed Pharmacother 2025; 182:117772. [PMID: 39700870 DOI: 10.1016/j.biopha.2024.117772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024] Open
Abstract
Amygdalin is a plant-based cyanogenic glycoside that has been the subject of both scientific interest and controversy for decades. Traditionally used in alternative medicine for its diverse biological activities, including anticancer, where amygdalin has been explored in complementary therapy. However, clinical utilization of amygdalin remains contentious due to concerns about its safety, primarily the release of hydrogen cyanide during its metabolism. Advancements in nanotechnology provides scope for the safe and targeted of amygdalin with improved bioavailability and targeted delivery of amygdalin, thereby, potentially eliminating the toxic effects. This review offers an update on the current research status surrounding amygdalin, with a focus on its molecular mechanisms of action, biological activities, and potential therapeutic applications. It also critically examines the challenges tied to its clinical use, particularly the safety concerns stemming from cyanide toxicity. Finally, the potential of nanotechnology in addressing cytotoxicity constraints is highlighted.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Centre for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Nashiru Billa
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Abdel-Gawad DRI, Ibrahim MA, El-Banna HA, Hassan WH, Abo El-Ela FI. Evaluating the therapeutic potential of amygdalin: Cytotoxic and antimicrobial properties. Tissue Cell 2024; 89:102443. [PMID: 38908223 DOI: 10.1016/j.tice.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Leukemia is an incurable disease; it exhibits strong resistance to chemotherapy and other therapies, and it represents the most common childhood cancer and mortality. The cytotoxic of amygdalin (AMG) against the cell line of human monocytic leukemia (THP-1) was recorded, before determining other pharmacological effects. The cells were exposed to AMG for 24 hr at 37°C at different concentrations, the cytotoxic effect was determined via the MTT assay. The cells and the supernatant were collected for analyzing the oxidant/antioxidant status, apoptotic markers, and anti-microbial activity. Results showed a marked anti-proliferative cytotoxic effect of AMG which is concentration and time-dependent, the lipid peroxidation content was significantly decreased while the total thiol was increased in the treated cell line, significant up-regulation of Caspase-3 (Cas-3) and Bcl-2-associated X protein (BAX) and down-regulation of B-cell lymphoma 2 (Bcl-2). Furthermore, The bacterial activity was detected via Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Disc Diffusion assays, while the antifungal evaluation was done by the Minimum Fungicidal Concentration (MFC). Antimicrobial experiments revealed that AMG exerted potent, broad-spectrum antimicrobial effects toward a diversity of dangerously infecting pathogens. In conclusion; the prevailing research suggests that AMG is an effective anticarcinogenic and antimicrobial substance. The utilization of AMG subsequently in masks or wound dressings to prevent bacterial & fungal infections, including mucormycosis following COVID-19, as well as infections caused by penicillium and aspergillus, is a highly effective strategy in combating resistant microorganisms.
Collapse
Affiliation(s)
- Doaa R I Abdel-Gawad
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Egypt.
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hossny A El-Banna
- Department of pharmacology, Faculty of Veterinary Medicine - Cairo University, Egypt.
| | - Walid H Hassan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Egypt
| |
Collapse
|
5
|
Guo X, Qu FX, Zhang JD, Zheng F, Xin Y, Wang R, Li JY, Li HY, Lu CH. Amygdalin and exercise training exert a synergistic effect in improving cardiac performance and ameliorating cardiac inflammation and fibrosis in a rat model of myocardial infarction. Appl Physiol Nutr Metab 2024; 49:360-374. [PMID: 37944128 DOI: 10.1139/apnm-2023-0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
This study investigated the effects of amygdalin (AMY, a cyanogenic glycoside widely distributed in the fruits and seeds of Rosaceae plants) on cardiac performance and ventricular remodeling in a rat model of myocardial infarction (MI). We also investigated whether the combination of AMY with exercise training (ExT) has a beneficial synergistic effect in treating MI rats. MI was induced by the ligation of the left anterior descending coronary artery in male SD rats. ExT or AMY treatment was started 1 week after MI and continued for 1 week (short-term) or 8 weeks (long-term). Cardiac function was evaluated by echocardiographic and hemodynamic parameters. Heart tissues were harvested and subjected to 2,3,5-triphenyl-tetrazolium chloride, Masson's trichrome, hematoxylin-eosin, and immunohistochemical staining. Gene expression was determined by quantitative polymerase chain reaction. Western blot gave a qualitative assessment of protein levels. AMY or ExT improved cardiac function and reduced infarct size in MI rats. AMY or ExT also suppressed myocardial fibrosis and attenuated inflammation in the infarct border zone of hearts from MI rats, as evidenced by inhibition of collagen deposition, inflammatory cell infiltration, and pro-inflammatory markers (interleukin 1β, interleukin 6, tumor necrosis factor-α, and cyclooxygenase 2). Notably, the effects of AMY combined with ExT were superior to those of AMY alone or ExT alone. Mechanistically, these beneficial functions were correlated with the inhibition of MI-induced activation of the transforming growth factor-β/Smad pathway. Collectively, AMY and ExT exert a synergistic effect on improving cardiac performance and ameliorating cardiac inflammation and fibrosis after MI, and the effects of long-term intervention were better than short-term intervention.
Collapse
Affiliation(s)
- Xiao Guo
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao 266034, Shandong, People's Republic of China
| | - Feng-Xia Qu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao 266034, Shandong, People's Republic of China
| | - Ji-Dong Zhang
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Fa Zheng
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao 266034, Shandong, People's Republic of China
| | - Yue Xin
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao 266034, Shandong, People's Republic of China
| | - Rong Wang
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao 266034, Shandong, People's Republic of China
| | - Jing-Yuan Li
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao 266034, Shandong, People's Republic of China
| | - Hai-Ying Li
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao 266034, Shandong, People's Republic of China
| | - Chang-Hong Lu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao 266034, Shandong, People's Republic of China
| |
Collapse
|
6
|
Zhang H, Hu Y, Liu X, Li R, Pan Y, Liu C, Yang T. Pharmacokinetic study of five components of Fuzheng Huayu tablets in healthy human plasma. Biomed Chromatogr 2024; 38:e5782. [PMID: 38016814 DOI: 10.1002/bmc.5782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023]
Abstract
Natural medicines play a crucial role in clinical drug applications, serving as a primary traditional Chinese medicine for the clinical treatment of liver fibrosis. Understanding the in vivo metabolic process of the Fuzheng Huayu (FZHY) formula is essential for delving into its material basis and mechanism. In recent years, there has been a growing body of research focused on the mechanisms and component analysis of FZHY. This study aimed to examine the pharmacokinetics of FZHY in healthy volunteers following oral administration. Blood samples were collected at designated time intervals after the oral intake of 9.6-g FZHY tablets. A UHPLC-Q/Exactive method was developed to assess the plasma concentrations of five components post-FZHY ingestion. The peak time for all components occurred within 10 min. The peak concentration (Cmax ) values for amygdalin, schisandrin, and schisandrin A ranged from 3.47 to 28.80 ng/mL, with corresponding AUC(0-t) values ranging from 10.63 to 103.20 ng h/mL. For schisandrin B and prunasin, Cmax values were in the range of 86.52 to 229.10 ng/mL, and their AUC(0-t) values ranged from 375.26 to 1875.54 ng h/mL, indicating significant exposure within the body. These findings demonstrate that the developed method enables rapid and accurate detection and quantification of the five components in FZHY, offering a valuable reference for its clinical study.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yeqing Hu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Xueying Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Rongsheng Li
- Shanghai Huanghai Pharmaceutical Co., LTD., Shanghai, China
| | - Yifeng Pan
- Shanghai Huanghai Pharmaceutical Co., LTD., Shanghai, China
| | - Chenghai Liu
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
7
|
Oleszek M, Kowalska I, Bertuzzi T, Oleszek W. Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules 2023; 28:342. [PMID: 36615534 PMCID: PMC9823944 DOI: 10.3390/molecules28010342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023] Open
Abstract
Billions of tons of agro-industrial residues are produced worldwide. This is associated with the risk of pollution as well as management and economic problems. Simultaneously, non-edible portions of many crops are rich in bioactive compounds with valuable properties. For this reason, developing various methods for utilizing agro-industrial residues as a source of high-value by-products is very important. The main objective of the paper is a review of the newest studies on biologically active compounds included in non-edible parts of crops with the highest amount of waste generated annually in the world. The review also provides the newest data on the chemical and biological properties, as well as the potential application of phytochemicals from such waste. The review shows that, in 2020, there were above 6 billion tonnes of residues only from the most popular crops. The greatest amount is generated during sugar, oil, and flour production. All described residues contain valuable phytochemicals that exhibit antioxidant, antimicrobial and very often anti-cancer activity. Many studies show interesting applications, mainly in pharmaceuticals and food production, but also in agriculture and wastewater remediation, as well as metal and steel industries.
Collapse
Affiliation(s)
- Marta Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Terenzio Bertuzzi
- DIANA, Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
8
|
Barakat H, Aljutaily T, Almujaydil MS, Algheshairy RM, Alhomaid RM, Almutairi AS, Alshimali SI, Abdellatif AAH. Amygdalin: A Review on Its Characteristics, Antioxidant Potential, Gastrointestinal Microbiota Intervention, Anticancer Therapeutic and Mechanisms, Toxicity, and Encapsulation. Biomolecules 2022; 12:biom12101514. [PMID: 36291723 PMCID: PMC9599719 DOI: 10.3390/biom12101514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Bioactive amygdalin, found in high concentrations in bitter almonds, has been recognized as a symbol of the cyanogenic glycoside chemical organic substance, which was initially developed as a pharmaceutical for treating cancer after being hydrolyzed to hydrogen cyanide (HCN). Regrettably, research has shown that HCN can also damage normal cells, rendering it non-toxic to the human body. Extreme controversy surrounds both in vivo and in vitro studies, making its use risky. This review provides an extensive update on characteristics, antioxidant potential, gastrointestinal microbiota intervention, anticancer therapeutic, mechanisms, toxicity, and encapsulation of amygdalin. Antioxidant, anti-tumor, anti-fibrotic, antiatherosclerosis, anti-inflammatory, immunomodulatory, and analgesic characteristics, and the ability to improve digestive and reproductive systems, neurodegeneration, and cardiac hypertrophy are just some of the benefits of amygdalin. Studies verified the HCN-produced amygdalin to be harmful orally, but only at very high doses. Although intravenous treatment was less effective than the oral method, the oral route has a dose range of 0.6 to 1 g daily. Amygdalin’s toxicity depends heavily on the variety of bacteria in the digestive tract. Unfortunately, there is currently no foolproof method for determining the microbial consortium and providing a safe oral dosage for every patient. Amygdalin encapsulation in alginate-chitosan nanoparticles (ACNPs) is a relatively new area of research. Amygdalin has an enhanced cytotoxic effect on malignant cells, and ACNPs can be employed as an active drug-delivery system to release this compound in a regulated, sustained manner without causing any harm to healthy cells or tissues. In conclusion, a large area of research for a substance that might be the next step in cancer therapy is opened up due to unverified and conflicting data.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
- Correspondence: or
| | - Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mona S. Almujaydil
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Reham M. Algheshairy
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Raghad M. Alhomaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdulkarim S. Almutairi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh I. Alshimali
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
9
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
10
|
Wang YL, Yang M, Li RS, Hu YQ, Pan YF, Tao Y. Simultaneous determination of eight analytes of Fuzheng Huayu recipe in beagle dog plasma by UHPLC-Q/Exactive Orbitrap HRMS and its application to toxicokinetics. Biomed Chromatogr 2022; 36:e5329. [PMID: 34997600 PMCID: PMC9287080 DOI: 10.1002/bmc.5329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
Fuzheng Huayu recipe (FZHY) is a Chinese patent medicine for the treatment of liver fibrosis. This study aimed to investigate the toxicokinetics of FZHY in beagle dogs after oral administration. Blood samples were collected on days 1, 15 and 28 after oral gavage of FZHY dosages of 400 or 1,200 mg/kg body weight once a day. A UHPLC–Q‐Orbitrap method was developed and validated to simultaneously determine and quantify eight components of FZHY in beagle dog plasma. The times to peak concentration for eight components were18–120 min. The peak concentrations (Cmax) of amygdalin, genistein, daidzein and 3,4‐dihydroxybenzaldehyde were 1.43–43.50 ng/ml, the areas under the concentration–time curve (AUC(0–t)) were 2.45–6,098.25 ng min/ml, and the apparent volumes of distribution (Vd) were 0.05–131.23 × 104 ml/kg. The values of Cmax of prunasin, schisantherin A, schisandrin A and schisandrin were 7.35–1,450.73 ng/ml, the values of AUC(0–t) were 3,642.30–330,388.65 ng min/ml, and the values of Vd were 11.15–1,087.18 × 104 ml/kg. No obvious accumulation of the eight compounds was observed in beagle dogs. The results showed that the method is rapid, accurate and sensitive, and is suitable for detecting the eight analytes of FZHY. This study provides an important basis for the assessment of FZHY safety.
Collapse
Affiliation(s)
- Yu-Lin Wang
- Department of Cardiology, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Mingjv Yang
- Grade 2018, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Ye-Qing Hu
- Department of Cardiology, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | | | - Yang Tao
- Department of Cardiology, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
11
|
Xiao Z, Ji Q, Fu YD, Gao SQ, Hu YH, Liu W, Chen GF, Mu YP, Chen JM, Liu P. Amygdalin Ameliorates Liver Fibrosis through Inhibiting Activation of TGF-β/Smad Signaling. Chin J Integr Med 2021; 29:316-324. [PMID: 34816365 DOI: 10.1007/s11655-021-3304-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model, and the underlying mechanisms were partly dissected in vivo and in vitro. METHODS Thirty-two male mice were randomly divided into 4 groups, including control, model, low- and high-dose amygdalin-treated groups, 8 mice in each group. Except the control group, mice in the other groups were injected intraperitoneally with 10% carbon tetrachloride (CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis. At the first 3 weeks, amygdalin (1.35 and 2.7 mg/kg body weight) were administered by gavage once a day. Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week. At the end of 6 weeks, liver tissue samples were harvested to detect the content of hydroxyproline (Hyp). Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue. The expressions of collagen I (Col-I), alpha-smooth muscle actin (α-SMA), CD31 and transforming growth factor β (TGF-β)/Smad signaling pathway were observed by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot, respectively. The activation models of hepatic stellate cells, JS-1 and LX-2 cells induced by TGF-β1 were used in vitro with or without different concentrations of amygdalin (0.1, 1, 10 µmol/L). LSECs. The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells (LSECs) dedifferentiation markers CD31 and CD44 were observed. RESULTS High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area, and decreased the mRNA and protein expressions of Col-I, α-SMA, CD31 and p-Smad2/3 in liver tissues of mice compared to the model group (P<0.01). Amygdalin down-regulated the expressions of Col-I and α-SMA in JS-1 and LX-2 cells, and TGFβ R1, TGFβ R2 and p-Smad2/3 in LX-2 cells compared to the model group (P<0.05 or P<0.01). Moreover, 1 and 10 µmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group (P<0.05 or P<0.01). CONCLUSIONS Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-β/Smad signaling pathway, consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.
Collapse
Affiliation(s)
- Zhun Xiao
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- E-Institute of Shanghai Municipal Education Commission Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiang Ji
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ya-Dong Fu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- E-Institute of Shanghai Municipal Education Commission Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Si-Qi Gao
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- E-Institute of Shanghai Municipal Education Commission Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yong-Hong Hu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gao-Feng Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yong-Ping Mu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Mei Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ping Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- E-Institute of Shanghai Municipal Education Commission Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
12
|
T J, S S, X J, V P S, N P, U V, C A J, P V M. Effect of cyanide ions (CN-) extracted from cassava (Manihotesculenta Crantz) on Alveolar Epithelial Cells (A549 cells). Toxicology 2021; 464:153019. [PMID: 34740671 DOI: 10.1016/j.tox.2021.153019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Cassava (Manihotesculenta Crantz) is one of the most important root crops in tropical countries. It is a major source of cyanogenic glycosides viz. linamarin and lotaustralin, and these on breakdown liberate HCN and ketone. Cassava cyanide extract (CCE) from cassava leaves and tuber rinds were formulated as a biopesticide against certain borer insect pests of horticultural crops. Adenocarcinomic human alveolar basal epithelial cells (A549) were treated with three different concentrations (100, 200, 400 ppm) of CCE. The MTT and NRU assays showed dose-dependent cytotoxicity. The DCFH-DA assay does not show any free radical scavenging activity, whereas the NRR assay showed a reduction in the nitrile radicals with an increase in the concentration of the bioactive compound. A negative correlation was found between the concentration of the bioactive principles and mitochondrial and lysosomal functions. Various cellular assays demonstrated the cellular response of the CCE, and it was found that at higher concentration (400 ppm), the CCE exert a significant necrotic cell death rather than apoptosis. The results of the study indicated that the CCE have a remarkable tendency of anti-proliferative ability.
Collapse
Affiliation(s)
- Joseph T
- ICAR-Central Tuber Crops Research Institute (CTCRI), Trivandrum, 695 017 Kerala, India
| | - Sreejith S
- ICAR-Central Tuber Crops Research Institute (CTCRI), Trivandrum, 695 017 Kerala, India
| | - Joseph X
- Toxicology Division, Biomedical Technology Wing, Sree Institute for Medical Sciences and Technology (Govt. of India), Trivandrum, 695 012 Kerala, India
| | - Sangeetha V P
- Toxicology Division, Biomedical Technology Wing, Sree Institute for Medical Sciences and Technology (Govt. of India), Trivandrum, 695 012 Kerala, India
| | - Prajitha N
- Toxicology Division, Biomedical Technology Wing, Sree Institute for Medical Sciences and Technology (Govt. of India), Trivandrum, 695 012 Kerala, India
| | - Vandana U
- Toxicology Division, Biomedical Technology Wing, Sree Institute for Medical Sciences and Technology (Govt. of India), Trivandrum, 695 012 Kerala, India
| | - Jayaprakas C A
- ICAR-Central Tuber Crops Research Institute (CTCRI), Trivandrum, 695 017 Kerala, India.
| | - Mohanan P V
- Toxicology Division, Biomedical Technology Wing, Sree Institute for Medical Sciences and Technology (Govt. of India), Trivandrum, 695 012 Kerala, India.
| |
Collapse
|
13
|
Esmat M, Abdel-Aal AA, Shalaby MA, Fahmy MEA, Badawi MAM, Elmallawany MA, Magdy M, Afife AA, Shafi IRA. Punica granatum and amygdalin extracts plus cobalamin combined with albendazole reduce larval burden and myositis in experimental trichinosis. ACTA ACUST UNITED AC 2021; 30:e012021. [PMID: 34730610 DOI: 10.1590/s1984-29612021084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022]
Abstract
Trichinellosis is a zoonosis results from eating raw or semi-cooked meat of infected animals. Medicinal plants have been used lately as alternatives and/or combined therapies to resolve some drawbacks of the current regimens. This work analyzed the effect of albendazole monotherapy on Trichinella spiralis experimental infection (group A), in comparison to P. granatum and amygdalin extracts +cobalamin (group B), plus its combination with albendazole (group C). The study revealed that the extracts alone or combined with albendazole had an inferior effect to albendazole monotherapy regarding number of adult worms (40.83 ±3.82, 18.67 ±1.86 and 16.83 ±2.32, respectively). However, their effect was more obvious in muscle phase combined with albendazole, achieving the lower number of larvae/mL tissue homogenate (22.33 ±3.27 in comparison to 39.67 ±2.58 achieved by albendazole monotherapy). The extracts exerted a significant immunomodulatory effect by reducing the local CD4+ expression in the intestine as well as in muscle phase (1.15 ±0.25 and 3.80 ±0.65 in comparison to 4.97 ±0.37 and 12.20 ±0.87 with albendazole monotherapy, respectively). So, these extracts improved the therapeutic efficacy of albendazole, specifically in muscle phase and counteracted the inflammatory reaction caused by albendazole monotherapy, thus extensively alleviating the resulting myositis.
Collapse
Affiliation(s)
- Marwa Esmat
- Department of Medical Parasitology, Faculty of Medicine, Misr University for Science and Technology, 6 October city, Egypt
| | - Amany Ahmed Abdel-Aal
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Postgraduate Studies & Scientific Research, Armed Forces College of Medicine - AFCM, Cairo, Egypt
| | - Maisa Ahmed Shalaby
- Medical Parasitology Department, Theodor Bilharz Research Institute - TBRI, Giza, Egypt
| | | | | | | | - Mona Magdy
- Department of Pathology, Theodor Bilharz Research Institute - TBRI, Giza, Egypt
| | - Adam Ashraf Afife
- College of Life Sciences, Faculty of Medicine, Leicester University, Leicester, United Kingdom
| | | |
Collapse
|
14
|
Fu Y, Xiao Z, Tian X, Liu W, Xu Z, Yang T, Hu Y, Zhou X, Fang J, Gao S, Zhang D, Mu Y, Zhang H, Hu Y, Huang C, Chen J, Liu P. The Novel Chinese Medicine JY5 Formula Alleviates Hepatic Fibrosis by Inhibiting the Notch Signaling Pathway. Front Pharmacol 2021; 12:671152. [PMID: 34630075 PMCID: PMC8493219 DOI: 10.3389/fphar.2021.671152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Advanced liver fibrosis can lead to cirrhosis, resulting in an accelerated risk of hepatocellular carcinoma and liver failure. Fuzheng Huayu formula (FZHY) is a traditional Chinese medicine formula treated liver fibrosis in China approved by a Chinese State Food and Drug Administration (NO: Z20050546), composed of Salvia Miltiorrhiza bge., Prunus davidiana (Carr.) Franch., cultured Cordyceps sinensis (BerK.) Sacc. Mycelia, Schisandra chinensis (Turcz.) Baill., Pinus massoniana Lamb., and Gynostemma pentaphyllum (Thunb.) Makino. However, the main active substances and mechanism of FZHY are unclear. The aim of this study is to identify a novel anti-fibrotic compound, which consists of the main active ingredients of FZHY, and investigate its mechanism of pharmacological action. The main active ingredients of FZHY were investigated by quantitative analysis of FZHY extracts and FZHY-treated plasma and liver in rats. The anti-fibrotic composition of the main active ingredients was studied through uniform design in vivo, and its mechanism was evaluated in carbon tetrachloride (CCl4)- and bile duct ligation (BDL)-induced liver fibrosis models in rats and mice, and transforming growth factor beta 1-induced LX-2 cell activation model in vitro. A novel Chinese medicine, namely JY5 formula, consisting of salvianolic acid B, schisantherin A, and amygdalin, the main active ingredients of FZHY, significantly alleviated hepatic hydroxyproline content and collagen deposition in CCl4-and BDL-induced fibrotic liver in rats and mice. In addition, JY5 inhibited the activation of hepatic stellate cells (HSCs) by inactivating Notch signaling in vitro and in vivo. In this study, we found a novel JY5 formula, which exerted anti-hepatic fibrotic effects by inhibiting the Notch signaling pathway, consequently suppressing HSCs activation. These results provide an adequate scientific basis for clinical research and application of the JY5 formula, which may be a potential novel therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Yadong Fu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Zhun Xiao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tao Yang
- Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghong Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Xiaoxi Zhou
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Jing Fang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Siqi Gao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Dingqi Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
15
|
Kolesarova A, Baldovska S, Roychoudhury S. The Multiple Actions of Amygdalin on Cellular Processes with an Emphasis on Female Reproduction. Pharmaceuticals (Basel) 2021; 14:881. [PMID: 34577581 PMCID: PMC8468697 DOI: 10.3390/ph14090881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The present review summarizes the current knowledge on the provenance and properties, metabolism and toxicity, mechanism of action, physiological, and therapeutic roles of amygdalin-a molecule present in the seeds of apricot and other plants-with an emphasis on the action of amygdalin on reproductive processes, particularly in the female. Amygdalin influences physiological processes including female reproduction at various regulatory levels via extra- and intracellular signaling pathways regulating secretory activity, cell viability, steroidogenesis, proliferation, and apoptosis. On the other hand, while being metabolized in the body, amygdalin releases significant amounts of cyanide, which may lead to acute health hazard in those individuals who may be at risk. Despite some contradictions in the available data about benefits and toxic effects of amygdalin, its potential applicability at low doses may present a promising tool for regulation of various reproductive and other physiological processes including disease management primarily in cancer phytotherapy, animal production, medicine, and biotechnology. However, further research involving carefully designed dose-response studies is required to overcome the possible side effects of amygdalin and assure its safety as a therapeutic agent.
Collapse
Affiliation(s)
- Adriana Kolesarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia
| | - Simona Baldovska
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | | |
Collapse
|
16
|
Amygdalin: Toxicity, Anticancer Activity and Analytical Procedures for Its Determination in Plant Seeds. Molecules 2021; 26:molecules26082253. [PMID: 33924691 PMCID: PMC8069783 DOI: 10.3390/molecules26082253] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Amygdalin (d-Mandelonitrile 6-O-β-d-glucosido-β-d-glucoside) is a natural cyanogenic glycoside occurring in the seeds of some edible plants, such as bitter almonds and peaches. It is a medically interesting but controversial compound as it has anticancer activity on one hand and can be toxic via enzymatic degradation and production of hydrogen cyanide on the other hand. Despite numerous contributions on cancer cell lines, the clinical evidence for the anticancer activity of amygdalin is not fully confirmed. Moreover, high dose exposures to amygdalin can produce cyanide toxicity. The aim of this review is to present the current state of knowledge on the sources, toxicity and anticancer properties of amygdalin, and analytical methods for its determination in plant seeds.
Collapse
|
17
|
He XY, Wu LJ, Wang WX, Xie PJ, Chen YH, Wang F. Amygdalin - A pharmacological and toxicological review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112717. [PMID: 32114166 DOI: 10.1016/j.jep.2020.112717] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amygdalin is commonly distributed in plants of the Rosaceae, such as peach, plum, loquat, apple and bayberry, but most notably in the seeds (kernels) of apricot almonds. As a naturally aromatic cyanogenic compound, it has long been used in Asia, Europe and other regions for the treatment of various diseases including cough, asthma, nausea, leprosy and leukoderma. Importantly, in recent years, an increasing attention has been paid to its antitumor effect. AIM OF THE STUDY The paper aims to review the pharmacological activities and toxicological effects of amygdalin and provide a reference and perspective for its further investigation. METHODS Electronic databases including the Web of Science, Cochrane Library, PubMed, EMBASE, the Chinese Biological Medicine Database, China National Knowledge Infrastructure, Wanfang database and VIP information database were searched up to November 2019 to identify eligible studies. A meticulous review was performed, an in-depth analysis on the pharmacological activity and toxicology of amygdalin was conducted, and perspectives for future research were also discussed. RESULTS A total of 110 papers about in vitro/in vivo studies on amygdalin have been reviewed. Analysis on the data suggested that this compound presented pharmacological activities of anti-tumor, anti-fibrotic, anti-inflammatory, analgesic, immunomodulatory, anti-atherosclerosis, ameliorating digestive system and reproductive system, improving neurodegeneration and myocardial hypertrophy, as well as reducing blood glucose. In addition, studies revealed that amygdalin's toxicity was caused by its poisonous decomposite product of benzaldehyde and hydrogen cyanide after oral ingestion, toxicity of intravenous administration route was far less than the oral route, and it can be avoidable with an oral dose ranging from 0.6 to 1 g per day. CONCLUSION This paper has systematically reviewed the pharmacology and toxicology of amygdalin and provided comprehensive information on this compound. We hope this review highlights some perspectives for the future research and development of amygdalin.
Collapse
Affiliation(s)
- Xiao-Yan He
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Li-Juan Wu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Wen-Xiang Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Pei-Jun Xie
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, PR China
| | - Yun-Hui Chen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China.
| | - Fei Wang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, PR China.
| |
Collapse
|
18
|
Kim SY, Heo S, Kim SH, Kwon M, Sung NJ, Ryu AR, Lee MY, Park SA, Youn HS. Suppressive effects of dehydrocostus lactone on the toll-like receptor signaling pathways. Int Immunopharmacol 2019; 78:106075. [PMID: 31812722 DOI: 10.1016/j.intimp.2019.106075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/17/2023]
Abstract
Toll-like receptors (TLRs) are a group of pattern-recognition receptors (PRRs) that are at the core of innate and adaptive immune responses. TLRs activation triggers the activation of two downstream signaling pathways, the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF)-dependent pathways. To evaluate the therapeutic potential of DHL, a natural sesquiterpene lactone derived from Inulahelenium L. and Saussurea lappa, we examined its effect on signal transduction via the TLR signaling pathways. DHL inhibited the activation of nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3), the representative transcription factors involved in the inflammatory response, induced by TLR agonists, as well as the expression of cyclooxygenase-2 and interferon inducible protein-10. DHL also inhibited the activation of NF-κB and IRF3 induced by the overexpression of downstream signaling components of the TLRs signaling pathways. All results suggest that DHL might become a new therapeutic drug for a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Su Yeon Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Sunghye Heo
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Seung Han Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Minji Kwon
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Nam Ji Sung
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - A-Reum Ryu
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Sin-Aye Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyung-Sun Youn
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
19
|
Kim AY, Shim HJ, Kim SY, Heo S, Youn HS. Differential regulation of MyD88- and TRIF-dependent signaling pathways of Toll-like receptors by cardamonin. Int Immunopharmacol 2018; 64:1-9. [DOI: 10.1016/j.intimp.2018.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023]
|
20
|
Sun L, Fahey P, Zhu X, Ng W, Chen ZP, Qiu Y, Lai H, Lin J, Lin L. A Cohort Study to Examine the Use of Chinese Herbal Medicine in Combination With Conventional Therapies for Patients With Hepatocellular Carcinoma in China. Integr Cancer Ther 2018; 17:902-911. [PMID: 29775121 PMCID: PMC6142107 DOI: 10.1177/1534735418775819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background. Hepatocellular carcinoma (HCC) is one of the major
malignancies associated with high mortality rates. Chinese herbal medicine (CHM)
alone, or in combination with conventional therapies (CT), has been widely used
for patients with HCC in China. This study aims to explore how integrative
therapy (IT) through the combination of CHM and CT affects the survival of
patients with intermediate-advanced HCC. Methods. A retrospective
cohort study was performed at the First Affiliated Hospital of Guangzhou
University of Chinese Medicine, Guangzhou, China. Data of consecutive patients
diagnosed with intermediate-advanced HCC and a specific traditional Chinese
medicine diagnostic pattern between January 2006 and December 2013 were
retrieved from the electronic medical record system at the hospital. Patients
were divided into 3 groups based on the therapies used, that is, IT, CHM alone,
and CT alone, and the survival times of these patients was compared.
Results. A total of 328 patients were included in this study.
Median follow-up period was 26.4 months (95% confidence interval [CI] =
22.7-38.9). Median overall survival was 11.0 months for IT, 8.6 months for CHM,
and 9.4 months for CT groups (P < .001). The adjusted hazard
ratio (HR) of death for the IT group was 0.55 (95% CI = 0.38-0.79,
P = .001) relative to the CT group and 0.68 (95% CI =
0.52-0.90, P = .007) relative to the CHM group, after adjusting
for the factors that impact prognosis. Stratified analysis shows that IT can
significantly lower the risk of death, especially for patients with good
performance status (PS) and Child-Pugh class A. Conclusions. It was
indicated that the integrative approach with combination of CHM and CT might
improve survival for patients with intermediate-advanced HCC, especially for
patients with good PS and Child-Pugh class A. However, a randomized controlled
trial is warranted for a conclusive statement.
Collapse
Affiliation(s)
- Lingling Sun
- 1 Guangzhou University of Chinese Medicine First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Paul Fahey
- 2 Western Sydney University, Campbelltown, New South Wales, Australia
| | - Xiaoshu Zhu
- 2 Western Sydney University, Campbelltown, New South Wales, Australia
| | - Weng Ng
- 3 South West Sydney Local Health District, Liverpool, New South Wales, Australia
| | - Zhuo Ping Chen
- 1 Guangzhou University of Chinese Medicine First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yiwen Qiu
- 1 Guangzhou University of Chinese Medicine First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Hezheng Lai
- 2 Western Sydney University, Campbelltown, New South Wales, Australia
| | - Jietao Lin
- 1 Guangzhou University of Chinese Medicine First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Lizhu Lin
- 1 Guangzhou University of Chinese Medicine First Affiliated Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Kim AY, Shim HJ, Shin HM, Lee YJ, Nam H, Kim SY, Youn HS. Andrographolide suppresses TRIF-dependent signaling of toll-like receptors by targeting TBK1. Int Immunopharmacol 2018. [DOI: 10.1016/j.intimp.2018.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Kim MS, Kim SH, Jeon D, Kim HY, Han JY, Kim B, Lee K. Low-dose cadmium exposure exacerbates polyhexamethylene guanidine-induced lung fibrosis in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:384-396. [PMID: 29590002 DOI: 10.1080/15287394.2018.1451177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) is a toxic metal present in tobacco smoke, air, food, and water. Inhalation is an important route of Cd exposure, and lungs are one of the main target organs for metal-induced toxicity. Cd inhalation is associated with an increased risk of pulmonary diseases. The present study aimed to assess the effects of repeated exposure to low-dose Cd in a mouse model of polyhexamethylene guanidine (PHMG)-induced lung fibrosis. Mice were grouped into the following groups: vehicle control (VC), PHMG, cadmium chloride (CdCl2), and PHMG + CdCl2. Animals in the PHMG group exhibited increased numbers of total cells and inflammatory cells in the bronchoalveolar lavage fluid (BALF) accompanied by inflammation and fibrosis in lung tissues. These parameters were exacerbated in mice in the PHMG + CdCl2 group. In contrast, mice in the CdCl2 group alone displayed only minimal inflammation in pulmonary tissue. Expression of inflammatory cytokines and fibrogenic mediators was significantly elevated in lungs of mice in the PHMG group compared with that VC. Further, expression of these cytokines and mediators was enhanced in pulmonary tissue in mice administered PHMG + CdCl2. Data demonstrate that repeated exposure to low-dose Cd may enhance the development of PHMG-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Min-Seok Kim
- a National Center for Efficacy Evaluation of Respiratory Disease Product , Korea Institute of Toxicology , Jeongeup-si , Republic of Korea
| | - Sung-Hwan Kim
- a National Center for Efficacy Evaluation of Respiratory Disease Product , Korea Institute of Toxicology , Jeongeup-si , Republic of Korea
- b Department of Human and Environmental Toxicology , University of Science & Technology , Daejeon , Republic of Korea
| | - Doin Jeon
- a National Center for Efficacy Evaluation of Respiratory Disease Product , Korea Institute of Toxicology , Jeongeup-si , Republic of Korea
| | - Hyeon-Young Kim
- a National Center for Efficacy Evaluation of Respiratory Disease Product , Korea Institute of Toxicology , Jeongeup-si , Republic of Korea
| | - Jin-Young Han
- a National Center for Efficacy Evaluation of Respiratory Disease Product , Korea Institute of Toxicology , Jeongeup-si , Republic of Korea
| | - Bumseok Kim
- c Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program) , College of Veterinary Medicine, Chonbuk National University , Iksan , Republic of Korea
| | - Kyuhong Lee
- a National Center for Efficacy Evaluation of Respiratory Disease Product , Korea Institute of Toxicology , Jeongeup-si , Republic of Korea
- b Department of Human and Environmental Toxicology , University of Science & Technology , Daejeon , Republic of Korea
| |
Collapse
|
23
|
Liczbiński P, Bukowska B. Molecular mechanism of amygdalin action in vitro: review of the latest research. Immunopharmacol Immunotoxicol 2018; 40:212-218. [PMID: 29486614 DOI: 10.1080/08923973.2018.1441301] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amygdalin, named as 'laetrile' and 'vitamin B-17' was initially supposed to be a safe drug for cancer treatment and was recognized by followers of natural medicine since it has been considered to be hydrolyzed only in cancer cells releasing toxic hydrogen cyanide (HCN), and thus destroying them. Unfortunately, current studies have shown that HCN is also released in normal cells, therefore it may not be safe for human organism. However, there have still been research works conducted on anti-cancer properties of this compound. In vitro experiments have shown induction of apoptosis by amygdalin as a result of increased expression of Bax protein and caspase-3 and reduced expression of antiapoptotic BcL-2protein. Amygdalin has also been shown to inhibit the adhesion of breast cancer cells, lung cancer cells and bladder cancer cells by decreased expression of integrin's, reduction of catenin levels and inhibition of the Akt-mTOR pathway, which may consequently lead to inhibition of metastases of cancer cells. It has also been revealed that amygdalin in renal cancer cells increased expression of p19 protein resulting in inhibition of cell transfer from G1-phase to S-phase, and thus inhibited cell proliferation. Other studies have indicated that amygdalin inhibits NF-kβ and NLRP3 signaling pathways, and consequently has anti-inflammatory effect due to reducing the expression of proinflammatory cytokines such as pro-IL-1β. Moreover, the effect of amygdalin on TGFβ/CTGF pathway, anti-fibrous activity and expression of follistatin resulting in activation of muscle cells growth has been reported. This compound might be applicable in the treatment of various cancer cell types.
Collapse
Affiliation(s)
- Przemysław Liczbiński
- a Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection , University of Lodz , Lodz , Poland
| | - Bożena Bukowska
- a Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection , University of Lodz , Lodz , Poland
| |
Collapse
|
24
|
Shin HM, Shim HJ, Kim AY, Lee YJ, Nam H, Youn HS. Eicosapentaenoic acid suppresses TRIF-dependent signaling pathway of TLRs by targeting TBK1. J Food Biochem 2017. [DOI: 10.1111/jfbc.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyeon-Myeong Shin
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| | - Hyun-Jin Shim
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| | - Ah-Yeon Kim
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| | - Yoo Jung Lee
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| | - Hyeonjeong Nam
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| | - Hyung-Sun Youn
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| |
Collapse
|
25
|
Park J, Kim H, Lee IS, Kim KH, Kim Y, Na YC, Lee JH, Jang HJ. The therapeutic effects of Yongdamsagan-tang on autoimmune hepatitis models. Biomed Pharmacother 2017; 94:244-255. [PMID: 28763748 DOI: 10.1016/j.biopha.2017.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an immunity disorder that is the result of antibodies in the liver tissue of the patient that are attacked by activated immune cells due to an unknown cause. In this study, we aimed to investigate the anti-inflammatory effect of Yongdamsagan-tang (YST) extracts and confirm effects on autoimmune hepatitis models as the therapeutic agent using the YST extracted by various solvents. YST, a mixture of 11 herbal extracts, is known in traditional Korean medicine as a widely used treatment for inflammatory diseases. We proposed the AIH-condition in vitro model by the addition of recombinant IL-17A and then observed several markers linked to AIH symptoms, including an increase of IL-6 expression, lipid accumulation, and fibrosis. In AIH-condition hepatic cell model, YST reduced IL-6 expression and lipid accumulation caused by treatment of IL-17 combination in hepatocyte cells. Also, YST blocked several activated fibrosis factors including transforming growth factor-β (TGF- β1), collagen type 1 (Col-α1(I)), and α-smooth muscle actin (α-SMA) in liver stellate cells. Furthermore, pretreatment with YST protected hepatic damage and reduces histological injury by suppressing apoptosis mediator and inflammatory cytokines expression in concanavalin A (Con A)-induced autoimmune hepatitis mice model. The findings here improve our understanding of YST extracted by 80% ethanol, suggesting that YST can be used as a therapeutic treatment for AIH.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hayeon Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - In-Seung Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kang-Hoon Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yumi Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yun-Cheol Na
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jang-Hoon Lee
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| | - Hyeung-Jin Jang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|