1
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (Beijing) 2023; 4:e218. [PMID: 36994237 PMCID: PMC10041388 DOI: 10.1002/mco2.218] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
Collapse
Affiliation(s)
- Shiqi Nong
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xiaoyue Han
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yu Xiang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yuran Qian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yuhao Wei
- Department of Clinical MedicineWest China School of MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tingyue Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Keyue Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Kai Shen
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuelei Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Tang Y, Jin Y, Li H, Xin H, Chen J, Li X, Pan Y. PBRM1
deficiency oncogenic addiction is associated with activated
AKT–mTOR
signalling and aerobic glycolysis in clear cell renal cell carcinoma cells. J Cell Mol Med 2022; 26:3837-3849. [PMID: 35672925 PMCID: PMC9279584 DOI: 10.1111/jcmm.17418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/16/2022] Open
Abstract
The PBRM1 (PB1) gene which encodes the specific subunit BAF180 of the PBAF SWI/SNF complex, is highly mutated (~ 40%) in clear cell renal cell carcinoma (ccRCC). However, its functions and impact on cell signalling are still not fully understood. Aerobic glycolysis, also known as the ‘Warburg Effect’, is a hallmark of cancer, whether PB1 is involved in this metabolic shift in clear cell renal cell carcinoma remains unclear. Here, with established stable knockdown PB1 cell lines, we performed functional assays to access the effects on 786‐O and SN12C cells. Based on the RNA‐seq data, we selected some genes encoding key glycolytic enzymes, including PFKP, ENO1, PKM and LDHA, and examined the expression levels. The AKT–mTOR signalling pathway activity and expression of HIF1α were also analysed. Our data demonstrate that PB1 deficiency promotes the proliferation, migration, Xenograft growth of 786‐O and SN12C cells. Notably, knockdown of PB1 activates AKT–mTOR signalling and increases the expression of key glycolytic enzymes at both mRNA and protein levels. Furthermore, we provide evidence that deficient PB1 and hypoxic conditions exert a synergistic effect on HIF 1α expression and lactate production. Thus, our study provides novel insights into the roles of tumour suppressor PB1 and suggests that the AKT–mTOR signalling pathway, as well as glycolysis, is a potential drug target for ccRCC patients with deficient PB1.
Collapse
Affiliation(s)
- Yu Tang
- Department of Medical Genetics Zunyi Medical University Zunyi China
- Key Laboratory of Gene Detection and Treatment in Guizhou Province Zunyi China
| | - Yan‐Hong Jin
- Department of Medical Genetics Zunyi Medical University Zunyi China
- Key Laboratory of Gene Detection and Treatment in Guizhou Province Zunyi China
| | - Hu‐Li Li
- Department of Medical Genetics Zunyi Medical University Zunyi China
| | - Hui Xin
- Department of Medical Genetics Zunyi Medical University Zunyi China
- Key Laboratory of Gene Detection and Treatment in Guizhou Province Zunyi China
| | - Jin‐Dong Chen
- Department of Urology University of Rochester Medical Center Rochester New York USA
- Exploring Health LLC Guangzhou China
| | - Xue‐Ying Li
- Department of Medical Genetics Zunyi Medical University Zunyi China
| | - You‐Fu Pan
- Department of Medical Genetics Zunyi Medical University Zunyi China
- Key Laboratory of Gene Detection and Treatment in Guizhou Province Zunyi China
| |
Collapse
|
3
|
Hipólito A, Martins F, Mendes C, Lopes-Coelho F, Serpa J. Molecular and Metabolic Reprogramming: Pulling the Strings Toward Tumor Metastasis. Front Oncol 2021; 11:656851. [PMID: 34150624 PMCID: PMC8209414 DOI: 10.3389/fonc.2021.656851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is a major hurdle to the efficient treatment of cancer, accounting for the great majority of cancer-related deaths. Although several studies have disclosed the detailed mechanisms underlying primary tumor formation, the emergence of metastatic disease remains poorly understood. This multistep process encompasses the dissemination of cancer cells to distant organs, followed by their adaptation to foreign microenvironments and establishment in secondary tumors. During the last decades, it was discovered that these events may be favored by particular metabolic patterns, which are dependent on reprogrammed signaling pathways in cancer cells while they acquire metastatic traits. In this review, we present current knowledge of molecular mechanisms that coordinate the crosstalk between metastatic signaling and cellular metabolism. The recent findings involving the contribution of crucial metabolic pathways involved in the bioenergetics and biosynthesis control in metastatic cells are summarized. Finally, we highlight new promising metabolism-based therapeutic strategies as a putative way of impairing metastasis.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| |
Collapse
|
4
|
Tang S, Meng MV, Slater JB, Gordon JW, Vigneron DB, Stohr BA, Larson PEZ, Wang ZJ. Metabolic imaging with hyperpolarized 13 C pyruvate magnetic resonance imaging in patients with renal tumors-Initial experience. Cancer 2021; 127:2693-2704. [PMID: 33844280 DOI: 10.1002/cncr.33554] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Optimal treatment selection for localized renal tumors is challenging because of their variable biologic behavior and limitations in the preoperative assessment of tumor aggressiveness. The authors investigated the emerging hyperpolarized (HP) 13 C magnetic resonance imaging (MRI) technique to noninvasively assess tumor lactate production, which is strongly associated with tumor aggressiveness. METHODS Eleven patients with renal tumors underwent HP 13 C pyruvate MRI before surgical resection. Tumor 13 C pyruvate and 13 C lactate images were acquired dynamically. Five patients underwent 2 scans on the same day to assess the intrapatient reproducibility of HP 13 C pyruvate MRI. Tumor metabolic data were compared with histopathology findings. RESULTS Eight patients had tumors with a sufficient metabolite signal-to-noise ratio for analysis; an insufficient tumor signal-to-noise ratio was noted in 2 patients, likely caused by poor tumor perfusion and, in 1 patient, because of technical errors. Of the 8 patients, 3 had high-grade clear cell renal cell carcinoma (ccRCC), 3 had low-grade ccRCC, and 2 had chromophobe RCC. There was a trend toward a higher lactate-to-pyruvate ratio in high-grade ccRCCs compared with low-grade ccRCCs. Both chromophobe RCCs had relatively high lactate-to-pyruvate ratios. Good reproducibility was noted across the 5 patients who underwent 2 HP 13 C pyruvate MRI scans on the same day. CONCLUSIONS The current results demonstrate the feasibility of HP 13 C pyruvate MRI for investigating the metabolic phenotype of localized renal tumors. The initial data indicate good reproducibility of metabolite measurements. In addition, the metabolic data indicate a trend toward differentiating low-grade and high-grade ccRCCs, the most common subtype of renal cancer. LAY SUMMARY Renal tumors are frequently discovered incidentally because of the increased use of medical imaging, but it is challenging to identify which aggressive tumors should be treated. A new metabolic imaging technique was applied to noninvasively predict renal tumor aggressiveness. The imaging results were compared with tumor samples taken during surgery and showed a trend toward differentiating between low-grade and high-grade clear cell renal cell carcinomas, which are the most common type of renal cancers.
Collapse
Affiliation(s)
- Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California
| | - Maxwell V Meng
- Department of Urology, University of California-San Francisco, San Francisco, California
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California
| | - Bradley A Stohr
- Department of Pathology, University of California-San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California
| |
Collapse
|
5
|
Yang J, Lin P, Yang M, Liu W, Fu X, Liu D, Tao L, Huo Y, Zhang J, Hua R, Zhang Z, Li Y, Wang L, Xue J, Li H, Sun Y. Integrated genomic and transcriptomic analysis reveals unique characteristics of hepatic metastases and pro-metastatic role of complement C1q in pancreatic ductal adenocarcinoma. Genome Biol 2021; 22:4. [PMID: 33397441 PMCID: PMC7780398 DOI: 10.1186/s13059-020-02222-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers due to its high metastasis rate in the liver. However, little is known about the molecular features of hepatic metastases due to difficulty in obtaining fresh tissues and low tumor cellularity. RESULTS We conduct exome sequencing and RNA sequencing for synchronous surgically resected primary tumors and the paired hepatic metastases from 17 hepatic oligometastatic pancreatic ductal adenocarcinoma and validate our findings in specimens from 35 of such cases. The comprehensive analysis of somatic mutations, copy number alterations, and gene expressions show high similarity between primary tumors and hepatic metastases. However, hepatic metastases also show unique characteristics, such as a higher degree of 3p21.1 loss, stronger abilities of proliferation, downregulation of epithelial to mesenchymal transition activity, and metabolic rewiring. More interesting, altered tumor microenvironments are observed in hepatic metastases, especially a higher proportion of tumor infiltrating M2 macrophage and upregulation of complement cascade. Further experiments demonstrate that expression of C1q increases in primary tumors and hepatic metastases, C1q is mainly produced by M2 macrophage, and C1q promotes migration and invasion of PDAC cells. CONCLUSION Taken together, we find potential factors that contribute to different stages of PDAC metastasis. Our study broadens the understanding of molecular mechanisms driving PDAC metastasis.
Collapse
Affiliation(s)
- Jianyu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ping Lin
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xueliang Fu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lingye Tao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanmiao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junfeng Zhang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yixue Li
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200032, China.
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science & Technology, Shanghai, 201203, China.
| | - Liwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200240, China.
| | - Hong Li
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
6
|
Clark DJ, Zhang H. Proteomic approaches for characterizing renal cell carcinoma. Clin Proteomics 2020; 17:28. [PMID: 32742246 PMCID: PMC7391522 DOI: 10.1186/s12014-020-09291-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma is among the top 15 most commonly diagnosed cancers worldwide, comprising multiple sub-histologies with distinct genomic, proteomic, and clinicopathological features. Proteomic methodologies enable the detection and quantitation of protein profiles associated with the disease state and have been explored to delineate the dysregulated cellular processes associated with renal cell carcinoma. In this review we highlight the reports that employed proteomic technologies to characterize tissue, blood, and urine samples obtained from renal cell carcinoma patients. We describe the proteomic approaches utilized and relate the results of studies in the larger context of renal cell carcinoma biology. Moreover, we discuss some unmet clinical needs and how emerging proteomic approaches can seek to address them. There has been significant progress to characterize the molecular features of renal cell carcinoma; however, despite the large-scale studies that have characterized the genomic and transcriptomic profiles, curative treatments are still elusive. Proteomics facilitates a direct evaluation of the functional modules that drive pathobiology, and the resulting protein profiles would have applications in diagnostics, patient stratification, and identification of novel therapeutic interventions.
Collapse
Affiliation(s)
- David J. Clark
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231 USA
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231 USA
| |
Collapse
|
7
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
8
|
Xu WH, Wang J, Huo DZ, Yin GC, Cao DL, Shi GH, Qu YY, Ye DW, Zhang HL. C-Reactive Protein Levels and Survival Following Cytoreductive Nephrectomy in 118 Patients with Metastatic Renal Cell Carcinoma Treated with Sunitinib: A Retrospective Study. Med Sci Monit 2019; 25:8984-8994. [PMID: 31769434 PMCID: PMC6897293 DOI: 10.12659/msm.918635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to evaluate the factors associated with a survival benefit for patients with metastatic renal cell carcinoma (mRCC) treated with sunitinib, with and without cytoreductive nephrectomy (CN). Material/Methods This retrospective clinical study included 118 patients with mRCC who were treated with CN and sunitinib (CN-sunitinib) (N=70) and with sunitinib-alone (N=48). Categorical clinicopathological variables were compared with hypothesis tests using contingency tables and a chi-squared test. Independent indicators for progression-free survival (PFS) and overall survival (OS) were analyzed with univariate and multivariate Cox regression models. The Kaplan-Meier method and log-rank test were used to evaluate patient survival. Results The median PFS and OS for the 118 patients were 8.38 and 15.48 months, respectively. There were no significant differences between the CN-sunitinib group and the sunitinib-alone group for either PFS (7.2 months vs. 11.6 months; P=0.525) or OS (16.7 months vs. 15.2 months; P=0.839). Stratification of patients based on clinicopathological characteristics showed that CN was significantly associated with reduced PFS and OS for patients with lymph node metastasis (PFS, P<0.001; OS, P<0.001) and high International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) risk scores (PFS, P=0.003; OS, P=0.011). However, CN was associated with a significant survival benefit for patients with low levels of serum C-reactive protein (CRP<10 mg/L) (PFS, P=0.026; OS, P=0.007). Conclusions Sunitinib-alone without CN improved the survival of patients with mRCC who had high IMDC risk scores or lymph node metastasis. CN and sunitinib resulted in significantly improved survival in patients with low serum CRP.
Collapse
Affiliation(s)
- Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Jun Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Da-Zhu Huo
- Department of Research Management, Fudan University Shanghai Cancer Center, Shanghai, China (mainland)
| | - Guo-Cai Yin
- Clinical Medicine, Jining Medical University, Jining, Shandong, China (mainland)
| | - Da-Long Cao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
9
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
10
|
Abstract
Although the investigation into biomarkers specific for pulmonary metastasis within osteosarcoma (OS) has recently expanded, their usage within the clinic remains sparse. The current screening protocol after any OS diagnosis includes a chest CT scan; however, metastatic lung nodules frequently go undetected and remain the primary cause of death in OS. Recently, screening technologies such as liquid biopsy and next-generation sequencing have revealed a promising array of biomarkers with predictive and diagnostic value for the pulmonary metastasis associated with OS. These biomarkers draw from genomics, transcriptomics, epigenetics, and metabolomics. When assessed in concert, their utility is most promising as OS is a highly heterogeneous cancer. Accordingly, there has been an expansion of clinical trials not only aimed at further demonstrating the significance of these individual biomarkers but to also reveal which therapies resolve the pulmonary metastasis once detected. This review will focus on the recently discovered and novel metastatic biomarkers within OS, their molecular and cellular mechanisms, the expansion of humanized OS mouse models amenable to their testing, and the associated clinical trials aimed at managing the metastatic phase of OS.
Collapse
|
11
|
Luo Q, Cui M, Deng Q, Liu J. Comprehensive analysis of differentially expressed profiles and reconstruction of a competing endogenous RNA network in papillary renal cell carcinoma. Mol Med Rep 2019; 19:4685-4696. [PMID: 30957192 PMCID: PMC6522832 DOI: 10.3892/mmr.2019.10138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) function as competing endogenous RNAs (ceRNAs). ceRNA networks may serve important roles in various tumors, as demonstrated by an increasing number of studies; however, papillary renal cell carcinoma (PRCC)-associated ceRNA networks mediated by lncRNAs remain unknown. Increased knowledge of ceRNA networks in PRCC may aid the identification of novel targets and biomarkers in the treatment of PRCC. In the present study, a comprehensive investigation of mRNA, lncRNA, and microRNA (miRNA) expression in PRCC was conducted using sequencing data from The Cancer Genome Atlas. Differential expression (DE) profiles of mRNAs, lncRNAs and miRNAs were evaluated, with 1,970 mRNAs, 1,201 lncRNAs and 96 miRNAs identified as genes with significantly different expression between PRCC and control paracancerous tissues. Based on the identified DEmRNAs, a protein-protein interaction network was generated using the STRING database. Furthermore, a ceRNA network for PRCC was determined using a targeted assay combined with the DE of miRNAs, mRNAs and lncRNAs, enabling the identification of important lncRNA-miRNA and miRNA-mRNA pairs. Analysis of the ceRNA network led to the extraction of a subnetwork and the identification of lncRNA maternally expressed 3 (MEG3), lncRNA PWRN1, miRNA (miR)-508, miR-21 and miR519 as important genes. Reverse transcription-quantitative polymerase chain reaction analysis was conducted to validate the results of the bioinformatics analyses; it was revealed that lncRNA MEG3 expression levels were downregulated in PRCC tumor tissues compared with adjacent non-tumor tissues. In addition, survival analysis was conducted to investigate the association between identified genes and the prognosis of patients with PRCC, indicating the potential involvement of 13 mRNAs, 15 lncRNAs and six miRNAs. In conclusion, the present study may improve understanding of the regulatory mechanisms of ceRNA networks in PRCC and provide novel insight for future studies of prognostic biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Qing Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Meng Cui
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qinfu Deng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
12
|
Sriram R, Gordon J, Baligand C, Ahamed F, Delos Santos J, Qin H, Bok RA, Vigneron DB, Kurhanewicz J, Larson PEZ, Wang ZJ. Non-Invasive Assessment of Lactate Production and Compartmentalization in Renal Cell Carcinomas Using Hyperpolarized 13C Pyruvate MRI. Cancers (Basel) 2018; 10:cancers10090313. [PMID: 30189677 PMCID: PMC6162434 DOI: 10.3390/cancers10090313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/15/2023] Open
Abstract
Optimal treatment selection for localized renal tumors is challenging due to their variable biological behavior and limited ability to pre-operatively assess their aggressiveness. We investigated hyperpolarized (HP) 13C pyruvate MRI to noninvasively assess tumor lactate production and compartmentalization, which are strongly associated with renal tumor aggressiveness. Orthotopic tumors were created in mice using human renal cell carcinoma (RCC) lines (A498, 786-O, UOK262) with varying expression of lactate dehydrogenase A (LDHA) which catalyzes the pyruvate-to-lactate conversion, and varying expression of monocarboxylate transporter 4 (MCT4) which mediates lactate export out of the cells. Dynamic HP 13C pyruvate MRI showed that the A498 tumors had significantly higher 13C pyruvate-to-lactate conversion than the UOK262 and 786-O tumors, corresponding to higher A498 tumor LDHA expression. Additionally, diffusion-weighted HP 13C pyruvate MRI showed that the A498 tumors had significantly higher 13C lactate apparent diffusion coefficients compared to 786-O tumors, with corresponding higher MCT4 expression, which likely reflects more rapid lactate export in the A498 tumors. Our data demonstrate the feasibility of HP 13C pyruvate MRI to inform on tumor lactate production and compartmentalization, and provide the scientific premise for future clinical investigation into the utility of this technique to noninvasively interrogate renal tumor aggressiveness and to guide treatment selection.
Collapse
Affiliation(s)
- Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Celine Baligand
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Fayyaz Ahamed
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Justin Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Jia L, Huang S, Yin X, Zan Y, Guo Y, Han L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci 2018; 208:123-130. [PMID: 30025823 DOI: 10.1016/j.lfs.2018.07.027] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/03/2018] [Accepted: 07/15/2018] [Indexed: 02/07/2023]
Abstract
Tumor metastasis is the primary factor causing death of cancer patients and it is a study emphasis in cancer treatment to suppress tumor metastasis by inhibiting glycolysis, which is the main way of energy supply for cell mobility in tumor. In the present study, we aimed to explore the effect of quercetin, a bioactive flavonoid, on tumor metastasis and cell glycolysis and its related functionary mechanism in breast cancer progression. Firstly, trans-well invasion assay and wound healing assay indicated that quercetin effectively suppressed cell mobility. The corresponding western blot revealed that quercetin treatment down-regulated the expression of cell migration marker proteins, such as matrix metalloproteinase 2 (MMP-2), MMP-9 and vascular endothelial growth factor (VEGF). The further experiments exhibited that quercetin successfully blocked cell glycolysis by inhibiting the level of glucose uptake and the production of lactic acid, and also decreased the level of glycolysis-related proteins Pyruvate kinase M2 (PKM2), Glucose transporter1(GLUT1) and Lactate dehydrogenase A (LDHA). The above results revealed that quercetin might inhibit glycolysis to limit the migration of tumor cells by reducing the acidity of the tumor microenvironment. Moreover, our further investigation showed that quercetin induced obvious autophagy via inactivating the Akt-mTOR pathway. At the same time, the application of autophagy inhibitor 3-MA and Akt-mTOR pathway inducer IGF-1 further demonstrated that quercetin exerted inhibiting effect on cell mobility and glycolysis through Akt-mTOR pathway mediated autophagy induction. At last, the in vivo experiments also showed that quercetin treatment could suppress tumor growth and metastasis, inhibit glycolysis and induce autophagy through the inhibition of p-AKT/AKT. Taken together, we firstly revealed that quercetin suppressed the progression of breast cancer by inhibiting cell mobility and glycolysis through Akt-mTOR pathway mediated autophagy induction and may provide a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Lijun Jia
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China.
| | - Shan Huang
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China
| | - Xiaoran Yin
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China
| | - Ying Zan
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China
| | - Ya Guo
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China
| | - Lili Han
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China
| |
Collapse
|
14
|
Shen M, Zhao X, Zhao L, Shi L, An S, Huang G, Liu J. Met is involved in TIGAR-regulated metastasis of non-small-cell lung cancer. Mol Cancer 2018; 17:88. [PMID: 29753331 PMCID: PMC5948872 DOI: 10.1186/s12943-018-0839-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
TIGAR is a p53 target gene that is known to protect cells from ROS-induced apoptosis by promoting the pentose phosphate pathway. The role of TIGAR in tumor cell invasion and metastasis remains elusive. Here we found that downregulation of TIGAR reduced the invasion and metastasis of NSCLC cells in vitro and in vivo. Immunohistochemical analysis of 72 NSCLC patients showed that TIGAR and Met protein expression was positively correlated with late stages of lung cancer. Besides, patients with high co-expression of TIGAR and Met presented a significantly worse survival. In addition, we found that Met signaling pathway is involved in TIGAR-induced invasion and metastasis. Our study indicates that TIGAR/Met pathway may be a novel target for NSCLC therapy. It is necessary to evaluate the expression of TIGAR before Met inhibitors are used for NSCLC treatment.
Collapse
Affiliation(s)
- Mengqin Shen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liang Shi
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, 200093, China. .,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
15
|
Yuan L, Zeng G, Chen L, Wang G, Wang X, Cao X, Lu M, Liu X, Qian G, Xiao Y, Wang X. Identification of key genes and pathways in human clear cell renal cell carcinoma (ccRCC) by co-expression analysis. Int J Biol Sci 2018; 14:266-279. [PMID: 29559845 PMCID: PMC5859473 DOI: 10.7150/ijbs.23574] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Human clear cell renal cell carcinoma (ccRCC) is the most common solid lesion within kidney, and its prognostic is influenced by the progression covering a complex network of gene interactions. In our study, we screened differential expressed genes, and constructed protein-protein interaction (PPI) network and a weighted gene co-expression network to identify key genes and pathways associated with the progression of ccRCC (n = 56). Functional and pathway enrichment analysis demonstrated that upregulated differentially expressed genes (DEGs) were significantly enriched in response to wounding, positive regulation of immune system process, leukocyte activation, immune response and cell activation. Downregulated DEGs were significantly enriched in oxidation reduction, monovalent inorganic cation transport, ion transport, excretion and anion transport. In the PPI network, top 10 hub genes were identified (TOP2A, MYC, ALB, CDK1, VEGFA, MMP9, PTPRC, CASR, EGFR and PTGS2). In co-expression network, 6 ccRCC-related modules were identified. They were associated with immune response, metabolic process, cell cycle regulation, angiogenesis and ion transport. In conclusion, our study illustrated the hub genes and pathways involved in the progress of ccRCC, and further molecular biological experiments are needed to confirm the function of the candidate biomarkers in human ccRCC.
Collapse
Affiliation(s)
- Lushun Yuan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaolong Wang
- Department of Urology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Xinyue Cao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington DC, USA
| | - Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Teoh ST, Lunt SY. Metabolism in cancer metastasis: bioenergetics, biosynthesis, and beyond. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1406] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/10/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Shao Thing Teoh
- Department of Biochemistry and Molecular Biology; Department of Chemical Engineering and Materials Science, Michigan State University; East Lansing MI USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology; Department of Chemical Engineering and Materials Science, Michigan State University; East Lansing MI USA
| |
Collapse
|
17
|
Lichner Z, Mac-Way F, Yousef GM. Obstacles in Renal Regenerative Medicine: Metabolic and Epigenetic Parallels Between Cellular Reprogramming and Kidney Cancer Oncogenesis. Eur Urol Focus 2017; 5:250-261. [PMID: 28847686 DOI: 10.1016/j.euf.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
CONTEXT Regenerative medicine has recently presented a revolutionary solution to end-stage kidney disease. Reprogramming patients' own cells generates induced pluripotent stem cells that are subsequently differentiated to "kidney organoid," a structure that is anatomically and functionally similar to the kidney. This approach holds the promise of a transplantable, immunocompetent, and functional kidney that could be produced in vitro. However, caution must be taken due to the molecular-level similarities between induced pluripotent stem cells and renal cell carcinomas. As such, if cell reprogramming is not tightly controlled, it can lead to carcinogenic changes. OBJECTIVE Based on recent next-generation sequencing results and other supporting data, we identified three major molecular attributes of renal cell carcinoma: metabolic alterations, epigenetic changes, and miRNA-based alterations. Strikingly, these variations are mirrored in induced pluripotent stem cells, which are the main cell source of renal regenerative medicine. Our objective was to discuss the shared metabolic, epigenetic and miRNA-regulated characteristics and to abridge their significance in renal regenerative medicine. EVIDENCE ACQUISITION English-language literature was retrieved through PubMed. EVIDENCE SYNTHESIS Authors collected the published evidence and evaluated the content based on independent literature findings. Articles were filtered to include only highly relevant, recent publications that presented reproducible results by authorities of the field. CONCLUSIONS The kidney represents a unique metabolic environment that could be hijacked by induced pluripotent stem cells or by partially differentiated cells for oncogenic transformation. Future differentiation protocols must produce kidney organoids that are fully engaged in filtration function. PATIENT SUMMARY A new technology can produce mini-kidneys or kidney organoids. This review discusses some of the challenges this technology has to face, including its high oncogenic potential. Understanding these similarities will lead to the safe creation of new functional kidney units in patients with kidney failure.
Collapse
Affiliation(s)
- Zsuzsanna Lichner
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Fabrice Mac-Way
- Research Center of CHU de Québec, l'Hôtel-Dieu de Québec Hospital, Division of Nephrology, Faculty and Department of Medicine, Laval University, Quebec, Canada
| | - George M Yousef
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
18
|
Payen VL, Porporato PE, Baselet B, Sonveaux P. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci 2016; 73:1333-48. [PMID: 26626411 PMCID: PMC11108399 DOI: 10.1007/s00018-015-2098-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 12/16/2022]
Abstract
Metabolic adaptations are intimately associated with changes in cell behavior. Cancers are characterized by a high metabolic plasticity resulting from mutations and the selection of metabolic phenotypes conferring growth and invasive advantages. While metabolic plasticity allows cancer cells to cope with various microenvironmental situations that can be encountered in a primary tumor, there is increasing evidence that metabolism is also a major driver of cancer metastasis. Rather than a general switch promoting metastasis as a whole, a succession of metabolic adaptations is more likely needed to promote different steps of the metastatic process. This review addresses the contribution of pH, glycolysis and the pentose phosphate pathway, and a companion paper summarizes current knowledge regarding the contribution of mitochondria, lipids and amino acid metabolism. Extracellular acidification, intracellular alkalinization, the glycolytic enzyme phosphoglucose isomerase acting as an autocrine cytokine, lactate and the pentose phosphate pathway are emerging as important factors controlling cancer metastasis.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium
| | - Bjorn Baselet
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK∙CEN, 2400, Mol, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium.
| |
Collapse
|
19
|
Semeniuk-Wojtaś A, Stec R, Szczylik C. Are primary renal cell carcinoma and metastases of renal cell carcinoma the same cancer? Urol Oncol 2016; 34:215-20. [PMID: 26850779 DOI: 10.1016/j.urolonc.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 11/30/2015] [Accepted: 12/21/2015] [Indexed: 01/09/2023]
Abstract
Metastasis is a process consisting of cells spreading from the primary site of the cancer to distant parts of the body. Our understanding of this spread is limited and molecular mechanisms causing particular characteristics of metastasis are still unknown. There is some evidence that primary renal cell carcinoma (RCC) and metastases of RCC exhibit molecular differences that may effect on the biological characteristics of the tumor. Some authors have detected differences in clear cell and nonclear cell component between these 2 groups of tumors. Investigators have also determined that primary RCC and metastases of RCC diverge in their range of renal-specific markers and other protein expression, gene expression pattern, and microRNA expression. There are also certain proteins that are variously expressed in primary RCCs and their metastases and have effect on clinical outcome, e.g., endothelin receptor type B, phos-S6, and CD44. However, further studies are needed on large cohorts of patients to identify differences representing promising targets for prognostic purposes predicting disease-free survival and the metastatic burden of a patient as well as their suitability as potential therapeutic targets. To sum up, in this review we have attempted to summarize studies connected with differences between primary RCC and its metastases and their influence on the biological characteristics of renal cancer.
Collapse
Affiliation(s)
| | - Rafał Stec
- Department of Oncology, Military Institute of Medicine in Warsaw, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology, Military Institute of Medicine in Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
White-Al Habeeb NM, Di Meo A, Scorilas A, Rotondo F, Masui O, Seivwright A, Gabril M, Girgis AHA, Jewett MA, Yousef GM. Alpha-enolase is a potential prognostic marker in clear cell renal cell carcinoma. Clin Exp Metastasis 2015; 32:531-41. [DOI: 10.1007/s10585-015-9725-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/27/2015] [Indexed: 01/20/2023]
|
21
|
Sima J, Zhang B, Yu Y, Sima X, Mao Y. Overexpression of Numb suppresses growth, migration, and invasion of human clear cell renal cell carcinoma cells. Tumour Biol 2015; 36:2885-92. [PMID: 25480416 DOI: 10.1007/s13277-014-2918-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/28/2014] [Indexed: 12/18/2022] Open
Abstract
The objective of the study was to investigate the impact of Numb on cell growth, cell migration, and invasion in human clear cell renal cell carcinoma (ccRCC). Endogenous expression of Numb was evaluated in the ccRCC cell lines (786-O, Caki-1, and Caki-2) and control reference human renal proximal tubular epithelial cells. Numb expression was decreased in the ccRCC cells compared with the control cells (P < 0.01). Then, 786-O and Caki-1 cells described as suitable transfection hosts were used in transfection to carry out biological function studies. The three experimental groups were as follows: Numb-ORF (transfected with Numb-ORF plasmid), blank-vector (transfected with pCMV6-entry), and cell-alone group (no DNA). Numb expression in the Numb-ORF groups was significantly higher than that in the controls (P < 0.01). Cell growth was remarkably reduced (P < 0.01), and the number of migrating or invading cells was reduced (P < 0.01) in the Numb-ORF groups compared with controls. Furthermore, the ratio of G0/G1 phase in the Numb-ORF group of 786-O cells was increased, and the S phase fraction and proliferation index was decreased (P < 0.01). Cyclin D1 and MMP-9 expression was reduced in the Numb-ORF groups compared with controls. Here, we have provided data for attenuated Numb expression in the ccRCC cells. Overexpression of Numb could induce G0/G1 phase arrest and inhibit cell proliferation, migration, and invasion. The suppressive effects might be due to downregulation of cyclin D1 or MMP-9 expression. Taken together, our data suggest that Numb may possibly function as a tumor suppressor involved in the carcinogenesis of ccRCC.
Collapse
Affiliation(s)
- Jin Sima
- Department of Urology, Aerospace Central Hospital, No. 15 Yuquan Road, Beijing, 100049, China
| | | | | | | | | |
Collapse
|
22
|
Wang J, Zuo Y, Man YG, Avital I, Stojadinovic A, Liu M, Yang X, Varghese RS, Tadesse MG, Ressom HW. Pathway and network approaches for identification of cancer signature markers from omics data. J Cancer 2015; 6:54-65. [PMID: 25553089 PMCID: PMC4278915 DOI: 10.7150/jca.10631] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022] Open
Abstract
The advancement of high throughput omic technologies during the past few years has made it possible to perform many complex assays in a much shorter time than the traditional approaches. The rapid accumulation and wide availability of omic data generated by these technologies offer great opportunities to unravel disease mechanisms, but also presents significant challenges to extract knowledge from such massive data and to evaluate the findings. To address these challenges, a number of pathway and network based approaches have been introduced. This review article evaluates these methods and discusses their application in cancer biomarker discovery using hepatocellular carcinoma (HCC) as an example.
Collapse
Affiliation(s)
- Jinlian Wang
- 1. Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- 7. Genetics and Genomics Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiming Zuo
- 1. Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- 6. Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | - Yan-gao Man
- 2. Bon Secours Cancer Institute, Richmond VA, USA
| | | | - Alexander Stojadinovic
- 2. Bon Secours Cancer Institute, Richmond VA, USA
- 3. Division of Surgical Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Meng Liu
- 4. Department of Public Health School of Hunter College, City University of New York, NYC, USA
| | - Xiaowei Yang
- 4. Department of Public Health School of Hunter College, City University of New York, NYC, USA
| | - Rency S. Varghese
- 1. Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Mahlet G Tadesse
- 5. Department of Mathematics and Statistics, Georgetown University, Washington DC, USA
| | - Habtom W Ressom
- 1. Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
23
|
Karamchandani JR, Gabril MY, Ibrahim R, Scorilas A, Filter E, Finelli A, Lee JY, Ordon M, Pasic M, Romaschin AD, Yousef GM. Profilin-1 expression is associated with high grade and stage and decreased disease-free survival in renal cell carcinoma. Hum Pathol 2014; 46:673-80. [PMID: 25704627 DOI: 10.1016/j.humpath.2014.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/18/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is associated with high mortality, although individual outcomes are highly variable. Identification of patients with increased risk of disease progression can guide customizing management plan according to disease severity. Profilin-1 (Pfn1) has been recently identified as overexpressed in metastatic ccRCC compared with primary tumors. We examined Pfn1 expression in a tissue microarray of 384 cases of histologically confirmed primary ccRCC with detailed clinical follow-up. Profilin-1 expression showed both cytoplasmic and nuclear staining patterns. The immunoexpression of Pfn1 was scored in a semiquantitative fashion. There was no significant difference in Pfn1 expression between normal kidney and kidney ccRCC. Our results show that strong cytoplasmic Pfn1 expression is associated with high-grade (P < .001) and high-stage (III-IV) (P = .018) disease. Univariate analysis of the data set showed that higher Pfn1 expression is associated with significantly shorter disease-free survival (hazard ratio 7.36, P = .047) and also lower overall survival. Kaplan-Meier analysis showed that high cytoplasmic expression of Pfn1 was also associated with a statistically significant lower disease-free survival (P = .018). It was also associated with lower overall survival, although this was not statistically significant. Profilin-1 lost its prognostic significance in the multivariate analysis when controlling for grade and stage. Profilin-1 expression was not associated with significant prognostic deference in the subgroup of patients with stage 1 disease. Our results suggest that the evaluation of Pfn1 by immunohistochemistry may help to identify patients with an increased risk of disease progression. We validated our results at the messenger RNA level on an independent patient cohort. Higher messenger RNA expression of Pfn1 is associated with significantly lower survival.
Collapse
Affiliation(s)
- Jason R Karamchandani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8
| | | | - Rania Ibrahim
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8
| | | | - Emily Filter
- London Health Sciences, London, Ontario, Canada N6A 5A5
| | - Antonio Finelli
- Division of Urologic Oncology, Princess Margaret Hospital, University Health Network, Department of Surgery, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Jason Y Lee
- Division of Urology, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Michael Ordon
- Division of Urology, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Maria Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Department of Laboratory Medicine, St. Joseph's Health Centre, Toronto, Ontario, Canada M6R 1B5
| | - Alexander D Romaschin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8.
| |
Collapse
|
24
|
Arreola A, Cowey CL, Coloff JL, Rathmell JC, Rathmell WK. HIF1α and HIF2α exert distinct nutrient preferences in renal cells. PLoS One 2014; 9:e98705. [PMID: 24879016 PMCID: PMC4039535 DOI: 10.1371/journal.pone.0098705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 05/06/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hypoxia Inducible Factors (HIF1α and HIF2α) are commonly stabilized and play key roles related to cell growth and metabolic programming in clear cell renal cell carcinoma. The relationship of these factors to discretely alter cell metabolic activities has largely been described in cancer cells, or in hypoxic conditions, where other confounding factors undoubtedly compete. These transcription factors and their specific roles in promoting cancer metabolic phenotypes from the earliest stages are poorly understood in pre-malignant cells. METHODS We undertook an analysis of SV40-transformed primary kidney epithelial cells derived from newborn mice genetically engineered to express a stabilized HIF1α or HIF2α transgene. We examined the metabolic profile in relation to each gene. RESULTS Although the cells proliferated similarly, the metabolic profile of each genotype of cell was markedly different and correlated with altered gene expression of factors influencing components of metabolic signaling. HIF1α promoted high levels of glycolysis as well as increased oxidative phosphorylation in complete media, but oxidative phosphorylation was suppressed when supplied with single carbon source media. HIF2α, in contrast, supported oxidative phosphorylation in complete media or single glucose carbon source, but these cells were not responsive to glutamine nutrient sources. This finding correlates to HIF2α-specific induction of Glul, effectively reducing glutamine utilization by limiting the glutamate pool, and knockdown of Glul allows these cells to perform oxidative phosphorylation in glutamine media. CONCLUSION HIF1α and HIF2α support highly divergent patterns of kidney epithelial cell metabolic phenotype. Expression of these factors ultimately alters the nutrient resource utilization and energy generation strategy in the setting of complete or limiting nutrients.
Collapse
Affiliation(s)
- Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Genetics Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - C. Lance Cowey
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Now at Baylor Sammons Cancer Center, Dallas, Texas, United States of America
| | - Jonathan L. Coloff
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Now at Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeffrey C. Rathmell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - W. Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Genetics Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
25
|
Girgis H, Masui O, White NM, Scorilas A, Rotondo F, Seivwright A, Gabril M, Filter ER, Girgis AH, Bjarnason GA, Jewett MA, Evans A, Al-Haddad S, Siu KM, Yousef GM. Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma. Mol Cancer 2014; 13:101. [PMID: 24885701 PMCID: PMC4022787 DOI: 10.1186/1476-4598-13-101] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022] Open
Abstract
Background Over 90% of cancer-related deaths in clear cell renal cell carcinoma (RCC) are caused by tumor relapse and metastasis. Thus, there is an urgent need for new molecular markers that can potentiate the efficacy of the current clinical-based models of prognosis assessment. The objective of this study is to evaluate the potential significance of lactate dehydrogenase A (LDHA), assessed by immunohistochemical staining, as a prognostic marker in clear cell renal cell carcinoma in relation to clinicopathological features and clinical outcome. Methods We assessed the expression of LDHA at the protein level, by immunohistochemistry, and correlated its expression with multiple clinicopathological features including tumor size, clinical stage, histological grade, disease-free and overall survival in 385 patients with primary clear cell renal cell carcinoma. We also correlated the LDHA expression with overall survival, at mRNA level, in an independent data set of 170 clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases. Cox proportional hazards models adjusted for the potential clinicopathological factors were used to test for associations between the LDHA expression and both disease-free survival and overall survival. Results There is statistically significant positive correlation between LDHA level of expression and tumor size, clinical stage and histological grade. Moreover, LDHA expression shows significantly inverse correlation with both disease-free survival and overall survival in patients with clear cell renal cell carcinoma. Our results are validated by examining LDHA expression, at the mRNA level, in the independent data set of clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases which also shows that higher lactate dehydrogenase A expression is associated with significantly shorter overall survival. Conclusion Our results indicate that LDHA up-regulation can be a predictor of poor prognosis in clear cell renal cell carcinoma. Thus, it represents a potential prognostic biomarker that can boost the accuracy of other prognostic models in patients with clear cell renal cell carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - George M Yousef
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, St, Michael's Hospital, Toronto M5B 1 W8, Canada.
| |
Collapse
|
26
|
Zaravinos A, Pieri M, Mourmouras N, Anastasiadou N, Zouvani I, Delakas D, Deltas C. Altered metabolic pathways in clear cell renal cell carcinoma: A meta-analysis and validation study focused on the deregulated genes and their associated networks. Oncoscience 2014; 1:117-31. [PMID: 25594006 PMCID: PMC4278286 DOI: 10.18632/oncoscience.13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 12/27/2013] [Indexed: 12/16/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the predominant subtype of renal cell carcinoma (RCC). It is one of the most therapy-resistant carcinomas, responding very poorly or not at all to radiotherapy, hormonal therapy and chemotherapy. A more comprehensive understanding of the deregulated pathways in ccRCC can lead to the development of new therapies and prognostic markers. We performed a meta- analysis of 5 publicly available gene expression datasets and identified a list of co- deregulated genes, for which we performed extensive bioinformatic analysis coupled with experimental validation on the mRNA level. Gene ontology enrichment showed that many proteins are involved in response to hypoxia/oxygen levels and positive regulation of the VEGFR signaling pathway. KEGG analysis revealed that metabolic pathways are mostly altered in ccRCC. Similarly, Ingenuity Pathway Analysis showed that the antigen presentation, inositol metabolism, pentose phosphate, glycolysis/gluconeogenesis and fructose/mannose metabolism pathways are altered in the disease. Cellular growth, proliferation and carbohydrate metabolism, were among the top molecular and cellular functions of the co-deregulated genes. qRT-PCR validated the deregulated expression of several genes in Caki-2 and ACHN cell lines and in a cohort of ccRCC tissues. NNMT and NR3C1 increased expression was evident in ccRCC biopsies from patients using immunohistochemistry. ROC curves evaluated the diagnostic performance of the top deregulated genes in each dataset. We show that metabolic pathways are mostly deregulated in ccRCC and we highlight those being most responsible in its formation. We suggest that these genes are candidate predictive markers of the disease.
Collapse
Affiliation(s)
- Apostolos Zaravinos
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Myrtani Pieri
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nikos Mourmouras
- Department of Urology, Asklipieio General Hospital, Athens, Greece
| | | | - Ioanna Zouvani
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | - Dimitris Delakas
- Department of Urology, Asklipieio General Hospital, Athens, Greece
| | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|