1
|
Mirandari A, Parker H, Ashton-Key M, Stevens B, Walewska R, Stamatopoulos K, Bryant D, Oscier DG, Gibson J, Strefford JC. The genomic and molecular landscape of splenic marginal zone lymphoma, biological and clinical implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:877-901. [PMID: 39280243 PMCID: PMC11390296 DOI: 10.37349/etat.2024.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 09/18/2024] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare, predominantly indolent B-cell lymphoma constituting fewer than 2% of lymphoid neoplasms. However, around 30% of patients have a shorter survival despite currently available treatments and the prognosis is especially poor for the 5-15% of cases that transform to a large cell lymphoma. Mounting evidence suggests that the molecular pathogenesis of SMZL is critically shaped by microenvironmental triggering and cell-intrinsic aberrations. Immunogenetic investigations have revealed biases in the immunoglobulin gene repertoire, indicating a role of antigen selection. Furthermore, cytogenetic studies have identified recurrent chromosomal abnormalities such as deletion of the long arm of chromosome 7, though specific disease-associated genes remain elusive. Our knowledge of SMZL's mutational landscape, based on a limited number of cases, has identified recurring mutations in KLF2, NOTCH2, and TP53, as well as genes clustering within vital B-cell differentiation pathways. These mutations can be clustered within patient subgroups with different patterns of chromosomal lesions, immunogenetic features, transcriptional signatures, immune microenvironments, and clinical outcomes. Regarding SMZL epigenetics, initial DNA methylation profiling has unveiled epigenetically distinct patient subgroups, including one characterized by elevated expression of Polycomb repressor complex 2 (PRC2) components. Furthermore, it has also demonstrated that patients with evidence of high historical cell division, inferred from methylation data, exhibit inferior treatment-free survival. This review provides an overview of our current understanding of SMZL's molecular basis and its implications for patient outcomes. Additionally, it addresses existing knowledge gaps, proposes future research directions, and discusses how a comprehensive molecular understanding of the disease will lead to improved management and treatment choices for patients.
Collapse
Affiliation(s)
- Amatta Mirandari
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Margaret Ashton-Key
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Department of Pathology, University Hospital Southampton NHS Foundation Trust, SO16 6YD Southampton, UK
| | - Benjamin Stevens
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - David G Oscier
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
2
|
Tsatsakis A, Oikonomopoulou T, Nikolouzakis TK, Vakonaki E, Tzatzarakis M, Flamourakis M, Renieri E, Fragkiadaki P, Iliaki E, Bachlitzanaki M, Karzi V, Katsikantami I, Kakridonis F, Hatzidaki E, Tolia M, Svistunov AA, Spandidos DA, Nikitovic D, Tsiaoussis J, Berdiaki A. Role of telomere length in human carcinogenesis (Review). Int J Oncol 2023; 63:78. [PMID: 37232367 PMCID: PMC10552730 DOI: 10.3892/ijo.2023.5526] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Cancer is considered the most important clinical, social and economic issue regarding cause‑specific disability‑adjusted life years among all human pathologies. Exogenous, endogenous and individual factors, including genetic predisposition, participate in cancer triggering. Telomeres are specific DNA structures positioned at the end of chromosomes and consist of repetitive nucleotide sequences, which, together with shelterin proteins, facilitate the maintenance of chromosome stability, while protecting them from genomic erosion. Even though the connection between telomere status and carcinogenesis has been identified, the absence of a universal or even a cancer‑specific trend renders consent even more complex. It is indicative that both short and long telomere lengths have been associated with a high risk of cancer incidence. When evaluating risk associations between cancer and telomere length, a disparity appears to emerge. Even though shorter telomeres have been adopted as a marker of poorer health status and an older biological age, longer telomeres due to increased cell growth potential are associated with the acquirement of cancer‑initiating somatic mutations. Therefore, the present review aimed to comprehensively present the multifaceted pattern of telomere length and cancer incidence association.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Tatiana Oikonomopoulou
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Taxiarchis Konstantinos Nikolouzakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Elisavet Renieri
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Evaggelia Iliaki
- Laboratory of Microbiology, University Hospital of Heraklion, 71500 Heraklion
| | - Maria Bachlitzanaki
- Department of Medical Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion
| | - Vasiliki Karzi
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Ioanna Katsikantami
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Fotios Kakridonis
- Department of Spine Surgery and Scoliosis, KAT General Hospital, 14561 Athens
| | - Eleftheria Hatzidaki
- Department of Neonatology and Neonatal Intensive Care Unit (NICU), University Hospital of Heraklion, 71500 Heraklion
| | - Maria Tolia
- Department of Radiation Oncology, University Hospital of Crete, 71110 Heraklion, Greece
| | - Andrey A. Svistunov
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
3
|
Olbertova H, Plevova K, Pavlova S, Malcikova J, Kotaskova J, Stranska K, Spunarova M, Trbusek M, Navrkalova V, Dvorackova B, Tom N, Pal K, Jarosova M, Brychtova Y, Panovska A, Doubek M, Pospisilova S. Evolution of TP53 abnormalities during CLL disease course is associated with telomere length changes. BMC Cancer 2022; 22:137. [PMID: 35114947 PMCID: PMC8812042 DOI: 10.1186/s12885-022-09221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Telomeres are protective structures at chromosome ends which shorten gradually with increasing age. In chronic lymphocytic leukemia (CLL), short telomeres have been associated with unfavorable disease outcome, but the link between clonal evolution and telomere shortening remains unresolved. Methods We investigated relative telomere length (RTL) in a well-characterized cohort of 198 CLL patients by qPCR and focused in detail on a subgroup 26 patients who underwent clonal evolution of TP53 mutations (evolTP53). In the evolTP53 subgroup we explored factors influencing clonal evolution and corresponding changes in telomere length through measurements of telomerase expression, lymphocyte doubling time, and BCR signaling activity. Results At baseline, RTL of the evolTP53 patients was scattered across the entire RTL spectrum observed in our CLL cohort. RTL changed in the follow-up samples of 16/26 (62%) evolTP53 cases, inclining to reach intermediate RTL values, i.e., longer telomeres shortened compared to baseline while shorter ones prolonged. For the first time we show that TP53 clonal shifts are linked to RTL change, including unexpected RTL prolongation. We further investigated parameters associated with RTL changes. Unstable telomeres were significantly more frequent among younger patients (P = 0.032). Shorter telomeres were associated with decreased activity of the B-cell receptor signaling components p-ERK1/2, p-ZAP-70/SYK, and p-NFκB (P = 0.04, P = 0.01, and P = 0.02, respectively). Conclusions Our study revealed that changes of telomere length reflect evolution in leukemic subclone proportion, and are associated with specific clinico-biological features of the explored cohort. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09221-z.
Collapse
Affiliation(s)
- Helena Olbertova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Medical Genetics and Genomics Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pavlova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jitka Malcikova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kotaskova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Stranska
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michaela Spunarova
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Trbusek
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Navrkalova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbara Dvorackova
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Nikola Tom
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Karol Pal
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Marie Jarosova
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Medical Genetics and Genomics Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Yvona Brychtova
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Anna Panovska
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Medical Genetics and Genomics Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic. .,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic. .,Department of Medical Genetics and Genomics Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
4
|
Rafat A, Dizaji Asl K, Mazloumi Z, Movassaghpour AA, Farahzadi R, Nejati B, Nozad Charoudeh H. Telomerase-based therapies in haematological malignancies. Cell Biochem Funct 2022; 40:199-212. [PMID: 35103334 DOI: 10.1002/cbf.3687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 02/02/2023]
Abstract
Telomeres are specialized genetic structures present at the end of all eukaryotic linear chromosomes. They progressively get shortened after each cell division due to end replication problems. Telomere shortening (TS) and chromosomal instability cause apoptosis and massive cell death. Following oncogene activation and inactivation of tumour suppressor genes, cells acquire mechanisms such as telomerase expression and alternative lengthening of telomeres to maintain telomere length (TL) and prevent initiation of cellular senescence or apoptosis. Significant TS, telomerase activation and alteration in expression of telomere-associated proteins are frequent features of different haematological malignancies that reflect on the progression, response to therapy and recurrence of these diseases. Telomerase is a ribonucleoprotein enzyme that has a pivotal role in maintaining the TL. However, telomerase activity in most somatic cells is insufficient to prevent TS. In 85-90% of tumour cells, the critically short telomeric length is maintained by telomerase activation. Thus, overexpression of telomerase in most tumour cells is a potential target for cancer therapy. In this review, alteration of telomeres, telomerase and telomere-associated proteins in different haematological malignancies and related telomerase-based therapies are discussed.
Collapse
Affiliation(s)
- Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Mazloumi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Nejati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Zavacka K, Plevova K. Chromothripsis in Chronic Lymphocytic Leukemia: A Driving Force of Genome Instability. Front Oncol 2021; 11:771664. [PMID: 34900721 PMCID: PMC8661134 DOI: 10.3389/fonc.2021.771664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Chromothripsis represents a mechanism of massive chromosome shattering and reassembly leading to the formation of derivative chromosomes with abnormal functions and expression. It has been observed in many cancer types, importantly, including chronic lymphocytic leukemia (CLL). Due to the associated chromosomal rearrangements, it has a significant impact on the pathophysiology of the disease. Recent studies have suggested that chromothripsis may be more common than initially inferred, especially in CLL cases with adverse clinical outcome. Here, we review the main features of chromothripsis, the challenges of its assessment, and the potential benefit of its detection. We summarize recent findings of chromothripsis occurrence across hematological malignancies and address its causes and consequences in the context of CLL clinical features, as well as chromothripsis-related molecular abnormalities described in published CLL studies. Furthermore, we discuss the use of the current knowledge about genome functions associated with chromothripsis in the optimization of treatment strategies in CLL.
Collapse
Affiliation(s)
- Kristyna Zavacka
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno & Faculty of Medicine, Masaryk University, Brno, Czechia.,Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno & Faculty of Medicine, Masaryk University, Brno, Czechia.,Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia.,Institute of Medical Genetics and Genomics, University Hospital Brno & Masaryk University, Brno, Czechia
| |
Collapse
|
6
|
Jebaraj BMC, Stilgenbauer S. Telomere Dysfunction in Chronic Lymphocytic Leukemia. Front Oncol 2021; 10:612665. [PMID: 33520723 PMCID: PMC7844343 DOI: 10.3389/fonc.2020.612665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Telomeres are nucleprotein structures that cap the chromosomal ends, conferring genomic stability. Alterations in telomere maintenance and function are associated with tumorigenesis. In chronic lymphocytic leukemia (CLL), telomere length is an independent prognostic factor and short telomeres are associated with adverse outcome. Though telomere length associations have been suggested to be only a passive reflection of the cell's replication history, here, based on published findings, we suggest a more dynamic role of telomere dysfunction in shaping the disease course. Different members of the shelterin complex, which form the telomere structure have deregulated expression and POT1 is recurrently mutated in about 3.5% of CLL. In addition, cases with short telomeres have higher telomerase (TERT) expression and activity. TERT activation and shelterin deregulation thus may be pivotal in maintaining the minimal telomere length necessary to sustain survival and proliferation of CLL cells. On the other hand, activation of DNA damage response and repair signaling at dysfunctional telomeres coupled with checkpoint deregulation, leads to terminal fusions and genomic complexity. In summary, multiple components of the telomere system are affected and they play an important role in CLL pathogenesis, progression, and clonal evolution. However, processes leading to shelterin deregulation as well as cell intrinsic and microenvironmental factors underlying TERT activation are poorly understood. The present review comprehensively summarizes the complex interplay of telomere dysfunction in CLL and underline the mechanisms that are yet to be deciphered.
Collapse
Affiliation(s)
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
- Klinik für Innere Medizin I, Universitätsklinikum des Saarlandes, Homburg, Germany
| |
Collapse
|
7
|
Pepper C, Norris K, Fegan C. Clinical utility of telomere length measurements in cancer. Curr Opin Genet Dev 2020; 60:107-111. [PMID: 32220800 DOI: 10.1016/j.gde.2020.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 10/24/2022]
Abstract
Cancer remains one of the leading causes of death in the developed world and despite impressive advances in therapeutic modalities, only a small subset of patients are currently cured. The underlying genetic heterogeneity of cancers clearly plays a crucial role in determining both the clinical course of individual pathologies and their responses to standard treatments. Although every tumour is to some extent distinct, there are recurrent features of cancers that can be exploited as therapeutic targets and as prognostic and predictive biomarkers; one such attribute is telomere length. Here we discuss the utility of telomere length evaluation in cancer and describe some of the promise and challenges of bringing this into clinical practice.
Collapse
Affiliation(s)
- Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, United Kingdom.
| | - Kevin Norris
- Division of Cancer & Genetics, Cardiff University Medical School, Cardiff, CF14 4XN, United Kingdom
| | - Christopher Fegan
- Division of Cancer & Genetics, Cardiff University Medical School, Cardiff, CF14 4XN, United Kingdom
| |
Collapse
|
8
|
Palmitelli M, Stanganelli C, Stella F, Krzywinski A, Bezares R, González Cid M, Slavutsky I. Analysis of basal chromosome instability in patients with chronic lymphocytic leukaemia. Mutagenesis 2019; 34:245-252. [PMID: 31037299 DOI: 10.1093/mutage/gez009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/22/2019] [Accepted: 04/15/2019] [Indexed: 01/25/2023] Open
Abstract
Genomic instability is a hallmark of cancer, contributing to tumour development and transformation, being chromosome instability (CIN) the most common form in human cancer. Chronic lymphocytic leukaemia (CLL) is the most frequent adult leukaemia in the Western world. In this study, we have evaluated basal CIN in untreated patients with CLL by measuring chromosome aberrations (CAs) and micronucleus (MN) frequency and their association with different prognostic factors. Seventy-two patients and 21 normal controls were analysed. Cytogenetic and fluorescence in situ hybridisation (FISH) studies were performed. IGHV (immunoglobulin heavy chain variable region) mutational status was evaluated by reverse transcription polymerase chain reaction and sequencing. An increased number of CA in patients compared with controls (P = 0.0001) was observed. Cases with abnormal karyotypes showed increased CA rate than those with normal karyotypes (P = 0.0026), with a particularly highest frequency in cases with complex karyotypes. Among FISH risk groups, a significant low frequency of CA was found in patients with no FISH alterations compared to those with del13q14 and ≥2 FISH alterations (P = 0.0074). When mean CA value (6.7%) was considered, significant differences in the distribution of low and high CA frequency between cases with normal and abnormal karyotypes (P = 0.002) were observed. By MN analysis, higher frequency in patients compared to controls (P = 0.0001) was also found, as well as between cases with ≥2 FISH abnormalities and those with no FISH alterations (P = 0.026). Similarly, significant differences were observed when patients were divided according to mean MN frequency (2.2%; P ≤ 0.04). Interestingly, patients with high MN frequency had shorter time to first treatment than those with low frequency (P = 0.024). Cases with mutated and unmutated IGHV status showed increased CA and MN frequencies compared to controls (P ≤ 0.0007), but no differences between both groups were found. Our results support the strong interaction between CIN and genomic complexity as well as their influence on poor outcome in this pathology.
Collapse
Affiliation(s)
- Micaela Palmitelli
- Laboratorio de Mutagénesis, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Flavia Stella
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Andrea Krzywinski
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Raimundo Bezares
- Servicio de Hematología, Hospital Teodoro Álvarez, Buenos Aires, Argentina
| | - Marcela González Cid
- Laboratorio de Mutagénesis, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
9
|
Wysoczanska B, Dratwa M, Gebura K, Mizgala J, Mazur G, Wrobel T, Bogunia-Kubik K. Variability within the human TERT gene, telomere length and predisposition to chronic lymphocytic leukemia. Onco Targets Ther 2019; 12:4309-4320. [PMID: 31239704 PMCID: PMC6551596 DOI: 10.2147/ott.s198313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The human telomerase reverse transcriptase (TERT) gene encodes the catalytic subunit of telomerase that is essential for maintenance of telomere length. We aimed to find out whether variability within the TERT gene could be associated with telomere length and development of the disease in non-treated patients with chronic lymphocytic leukemia (CLL). Materials and methods: Telomere length, rs2736100, rs2853690, rs33954691, rs35033501 single-nucleotide polymorphisms, and variable number of tandem repeats (VNTR-MNS16A) were assessed in patients at diagnosis. In addition, blood donors served as controls for the polymorphism studies. Results: The minor rs35033501 A variant was more frequent among CLL patients than in healthy controls (OR=3.488, p=0.039). CLL patients over 60 years of age were characterized with lower disease stage at diagnosis (p=0.001 and p=0.008, for the Rai and Binet criteria, respectively). The MNS16A VNTR-243 short allele was more frequent in patients with a low disease stage (p=0.020 and p=0.028, for the Rai and Binet staging system) and also among older patients having longer telomeres (p=0.046). Patients with Rai 0-I stage were characterized with longer telomeres than those with more advanced disease (p=0.030). This relationship was especially pronounced in patients carrying the rs2736100 C allele, independently of the criteria used, ie, Binet (p=0.048) or Rai (p=0.001). Conclusion: Our results showed that the genetic variation within the TERT gene seems to play a regulatory role in CLL and telomere length.
Collapse
Affiliation(s)
- Barbara Wysoczanska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Katarzyna Gebura
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Jakub Mizgala
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, 50-001, Poland
| | - Tomasz Wrobel
- Department of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw50-367, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| |
Collapse
|
10
|
Nava-Rodríguez MP, Domínguez-Cruz MD, Aguilar-López LB, Borjas-Gutiérrez C, Magaña-Torres MT, González-García JR. Genomic instability in a chronic lymphocytic leukemia patient with mono-allelic deletion of the DLEU and RB1 genes. Mol Cytogenet 2019; 12:2. [PMID: 30733830 PMCID: PMC6357463 DOI: 10.1186/s13039-019-0417-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/22/2019] [Indexed: 01/10/2023] Open
Abstract
Background The most frequent cytogenetic abnormality detected in chronic lymphocytic leukemia (CLL) patients is the presence of a deletion within the chromosome band 13q14. Deletions can be heterogeneous in size, generally encompassing the DLEU1 and DLEU2 genes (minimal deleted region), but at times also including the RB1 gene. The latter, larger type of deletions are associated with worse prognosis. Genomic instability is a characteristic of most cancers and it has been observed in CLL patients mainly associated with telomere shortening. Case presentation Cytogenetic and fluorescence in situ hybridization studies of a CLL patient showed a chromosomal translocation t(12;13)(q15;q14), a mono-allelic 13q14 deletion encompassing both the DLEU and RB1 genes, and genomic instability manifested as chromosomal breaks, telomeric associations, binucleated cells, nucleoplasmic bridges, and micronucleated cells. In conclusion, our CLL patient showed genomic instability in conjunction with a 13q14 deletion of approximately 2.6 megabase pair involving the DLEU and RB1 genes, as well as other genes with potential for producing genomic instability due to haploinsufficiency.
Collapse
Affiliation(s)
- María Paulina Nava-Rodríguez
- 1Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara, Guadalajara, Jalisco Mexico.,2División de Genética, Centro de investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Guadalajara, Jalisco Mexico
| | | | | | - César Borjas-Gutiérrez
- 4UMAE H. Especialidades-CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco México
| | - María Teresa Magaña-Torres
- 2División de Genética, Centro de investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Guadalajara, Jalisco Mexico
| | - Juan Ramón González-García
- 2División de Genética, Centro de investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Guadalajara, Jalisco Mexico
| |
Collapse
|
11
|
Olbertova H, Plevova K, Stranska K, Pospisilova S. Telomere dynamics in adult hematological malignancies. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 163:1-7. [PMID: 30631211 DOI: 10.5507/bp.2018.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023] Open
Abstract
Telomeres are repetitive DNA sequences protecting physical ends of linear chromosomes against degradation and end-to-end chromosomal fusion. Telomeres shorten with each cell division, which regulates the cellular lifespan in somatic cells and limits their renewal capacity. Cancer cells are often able to overcome this physiological barrier and become immortal with unlimited replicative capacity. In this review, we present current knowledge on the role of telomeres in human aging with a focus on their behavior in hematological malignancies of adults. Associations of telomere length to age-related diseases and to the prevention of telomere shortening are also discussed.
Collapse
Affiliation(s)
- Helena Olbertova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Stranska
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Liu Y, Li Z, Tang X, Li M, Shi F. Association between hTERT Polymorphisms and Female Papillary Thyroid Carcinoma. Recent Pat Anticancer Drug Discov 2019; 14:268-279. [PMID: 31538903 DOI: 10.2174/1574892814666190919145453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND A previous genome-wide association study showed that hTERT rs10069690 and rs2736100 polymorphisms were associated with thyroid cancer risk. OBJECTIVE This study further investigated the association between increased risk and clinicopathologic characteristics for Papillary Thyroid Carcinoma (PTC) and hTERT polymorphisms rs10069690 or rs2736100 in a Chinese female population. METHODS The hTERT genotypes of 276 PTC patients and 345 healthy subjects were determined with regard to SNPs rs10069690 and rs2736100. The association between these SNPs and the risk of PTC and clinicopathologic characteristics was investigated by logistic regression. RESULTS We found a significant difference between PTC and rs10069690 (Odds Ratio (OR) = 1.515; P = 0.005), but not between PTC and rs2736100. When the analysis was limited to females, rs10069690 and rs2736100 were both associated with increased risk for PTC in female individuals (OR = 1.647, P = 0.007; OR = 1.339, P = 0.041, respectively). Further haplotype analysis revealed a stimulative effect of haplotypes TC and CA of TERT rs10069690-rs2736100, which increased risk for PTC in female individuals (OR = 1.579, P = 0.014; OR = 0.726, P = 0.025, respectively). Furthermore, the heterozygote A/C of rs2736100 showed significant difference for age (OR = 0.514, P = 0.047). CONCLUSION Our finding suggests that hTERT polymorphisms rs10069690 and rs2736100 are associated with increased risk for PTC in Chinese female population and rs2736100 may be related to age. Consistent with US20170360914 and US20170232075, they are expected to be a potential molecular target for anti-cancer therapy.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Xinyue Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Min Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
| | - Feng Shi
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
| |
Collapse
|
13
|
Eskandari E, Hashemi M, Naderi M, Bahari G, Safdari V, Taheri M. Leukocyte Telomere Length Shortening, hTERT Genetic Polymorphisms and Risk of Childhood Acute Lymphoblastic Leukemia. Asian Pac J Cancer Prev 2018; 19:1515-1521. [PMID: 29936725 PMCID: PMC6103564 DOI: 10.22034/apjcp.2018.19.6.1515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Telomeres are involved in chromosomal stability, cellular immortality and tumorigenesis. Human
telomerase reverse transcriptase (TERT) is essential for the maintenance of telomere DNA length. Recently, a variable
tandem-repeats polymorphism, MNS16A, located in the downstream region of the TERT gene, was reported to have
an effect on TERT expression and telomerase activity. Previous studies have linked both relative telomere length
(RTL) and TERT variants with cancer. Therefore, we evaluated associations between RTL, TERT gene polymorphisms
(hTERT, rs2735940 C/T and MNS16A Ins/Del) and risk of childhood acute lymphoblastic leukemia (ALL) in an Iranian
population. Methods: RTL was determined by a multiplex quantitative PCR-based method, and variants of the hTERT,
rs2735940 C/T and MNS16A Ins/Del, were genotyped by amplification refractory mutation system PCR (ARMS-PCR),
and PCR, respectively. Results: Our results indicated that RTL was shorter in ALL patients (1.53±0.12) compared to
the control group (2.04±0.19) (P=0.029). However, no associations between hTERT gene variants or haplotypes and
the risk of childhood ALL were observed (P>0.05). Also hTERT polymorphisms were not associated with RTL or
patient clinicopathological characteristics, including age (P=0.304), sex (P=0.061) organomegally (P=0.212) CSF
involvement (P=0.966) or response to treatment (P=0.58). Conclusions: We found that telomere attrition may be
related to the pathogenesis of childhood ALL, irrespective to TERT variants.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | | | | | | | | | | |
Collapse
|
14
|
Steinbrecher D, Jebaraj BMC, Schneider C, Edelmann J, Cymbalista F, Leblond V, Delmer A, Ibach S, Tausch E, Scheffold A, Bloehdorn J, Hallek M, Dreger P, Döhner H, Stilgenbauer S. Telomere length in poor-risk chronic lymphocytic leukemia: associations with disease characteristics and outcome. Leuk Lymphoma 2017; 59:1614-1623. [PMID: 29063805 DOI: 10.1080/10428194.2017.1390236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Telomere length in chronic lymphocytic leukemia (CLL) is described as an independent prognostic factor based largely on previously untreated patients from chemotherapy based trials. Here, we studied telomere length associations in high-risk, relapsed/refractory CLL treated with alemtuzumab in the CLL2O study (n = 110) of German and French CLL study groups. Telomere length (median 3.28 kb, range 2.52-7.24 kb) was relatively short, since 84.4% of patients had 17p- which is generally associated with short telomeres. Median telomere length was used for dichotomization into short and long telomere subgroups. Telomere length was associated with s-TK (p = .025) and TP53 mutations (p = .050) in untreated patients, while no association with clinical/biological characteristics was observed in relapsed/refractory CLL. Short telomeres had significant association with shorter PFS (p = .018) only in refractory CLL. Presence of short telomeres, loss of genes maintaining genomic integrity (SMC5) and increased incidence of chromothripsis, indicated the prevalence of genomic instability in this high-risk cohort (clinicaltrials.gov: NCT01392079).
Collapse
Affiliation(s)
| | | | - Christof Schneider
- a Department of Internal Medicine III , University of Ulm , Ulm , Germany
| | - Jennifer Edelmann
- b Barts Cancer Institute, Queen Mary University of London , London , UK
| | | | - Véronique Leblond
- d Service d'Hématologie , Hôpital Pitié-Salpêtrière , Paris , France
| | - Alain Delmer
- e Service d'Hématologie Clinique , CHU de Reims , Reims , France
| | - Stefan Ibach
- f WiSP Wissenschaftliche Service Pharma GmbH , Langenfeld , Germany
| | - Eugen Tausch
- a Department of Internal Medicine III , University of Ulm , Ulm , Germany
| | - Annika Scheffold
- a Department of Internal Medicine III , University of Ulm , Ulm , Germany
| | - Johannes Bloehdorn
- a Department of Internal Medicine III , University of Ulm , Ulm , Germany
| | - Michael Hallek
- g Internal Medicine I , University Cologne , Cologne , Germany
| | - Peter Dreger
- h Internal Medicine V , University of Heidelberg , Heidelberg , Germany
| | - Hartmut Döhner
- a Department of Internal Medicine III , University of Ulm , Ulm , Germany
| | | |
Collapse
|
15
|
Thomay K, Fedder C, Hofmann W, Kreipe H, Stadler M, Titgemeyer J, Zander I, Schlegelberger B, Göhring G. Telomere shortening, TP53 mutations and deletions in chronic lymphocytic leukemia result in increased chromosomal instability and breakpoint clustering in heterochromatic regions. Ann Hematol 2017; 96:1493-1500. [PMID: 28691153 DOI: 10.1007/s00277-017-3055-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/19/2017] [Indexed: 01/09/2023]
Abstract
Complex karyotypes are associated with a poor prognosis in chronic lymphocytic leukemia (CLL). Using mFISH, iFISH, and T/C-FISH, we thoroughly characterized 59 CLL patients regarding parameters known to be involved in chromosomal instability: status of the genes ATM and TP53 and telomere length. Interestingly, a deletion of the ATM locus in 11q, independent of the cytogenetic context, was associated with significantly diminished risk (p<0.05) of carrying a mutation in TP53. In patients with loss or mutation of TP53, chromosomal breakage occurred more frequently (p<0.01) in (near-) heterochromatic regions. Median telomere length in patients with complex karyotypes was significantly shorter than that of healthy controls and shorter than in all other cytogenetic cohorts. Furthermore, the median telomere length of patients carrying a TP53 mutation was significantly shorter than without mutation. We conclude that telomere shortening in combination with loss of TP53 induces increased chromosomal instability with preferential involvement of (near-) heterochromatic regions.
Collapse
Affiliation(s)
- Kathrin Thomay
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Caroline Fedder
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Michael Stadler
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625, Hannover, Germany
| | - Jan Titgemeyer
- Onkologische Praxis Celle, Neumarkt 1, 29221, Celle, Germany
| | - Ingo Zander
- Onkologie am Raschplatz, Rundestr. 10, 30161, Hannover, Germany
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
16
|
Dos Santos PC, Panero J, Stanganelli C, Palau Nagore V, Stella F, Bezares R, Slavutsky I. Dysregulation of H/ACA ribonucleoprotein components in chronic lymphocytic leukemia. PLoS One 2017; 12:e0179883. [PMID: 28666010 PMCID: PMC5493334 DOI: 10.1371/journal.pone.0179883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/06/2017] [Indexed: 11/18/2022] Open
Abstract
Telomeres are protective repeats of TTAGGG sequences located at the end of human chromosomes. They are essential to maintain chromosomal integrity and genome stability. Telomerase is a ribonucleoprotein complex containing an internal RNA template (hTR) and a catalytic subunit (hTERT). The human hTR gene consists of three major domains; among them the H/ACA domain is essential for telomere biogenesis. H/ACA ribonucleoprotein (RNP) complex is composed of four evolutionary conserved proteins, including dyskerin (encoded by DKC1 gene), NOP10, NHP2 and GAR1. In this study, we have evaluated the expression profile of the H/ACA RNP complex genes: DKC1, NOP10, NHP2 and GAR1, as well as hTERT and hTR mRNA levels, in patients with chronic lymphocytic leukemia (CLL). Results were correlated with the number and type of genetic alteration detected by conventional cytogenetics and FISH (fluorescence in situ hybridization), IGHV (immunoglobulin heavy chain variable region) mutational status, telomere length (TL) and clinico-pathological characteristics of patients. Our results showed significant decreased expression of GAR1, NOP10, DKC1 and hTR, as well as increased mRNA levels of hTERT in patients compared to controls (p≤0.04). A positive correlation between the expression of GAR1-NHP2, GAR1-NOP10, and NOP10-NHP2 (p<0.0001), were observed. The analysis taking into account prognostic factors showed a significant increased expression of hTERT gene in unmutated-IGHV cases compared to mutated-CLL patients (p = 0.0185). The comparisons among FISH groups exhibited increased expression of DKC1 in cases with two or more alterations with respect to no abnormalities, trisomy 12 and del13q14, and of NHP2 and NOP10 compared to those with del13q14 (p = 0.03). The analysis according to TL showed a significant increased expression of hTERT (p = 0.0074) and DKC1 (p = 0.0036) in patients with short telomeres compared to those with long TL. No association between gene expression and clinical parameters was found. Our results suggest a role for these telomere associated genes in genomic instability and telomere dysfunction in CLL.
Collapse
Affiliation(s)
- Patricia Carolina Dos Santos
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Julieta Panero
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Virginia Palau Nagore
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Flavia Stella
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Raimundo Bezares
- Servicio de Hematología, Hospital Teodoro Álvarez, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
17
|
Ghione P, Genuardi E, Rossi D, Drandi D, Mantoan B, Barbero D, Bernocco E, Monitillo L, Cerri M, Ruggeri M, Omede P, Deambrogi C, De Paoli L, Passera R, Coscia M, Cavallo F, Massaia M, Boccadoro M, Gaidano G, Ladetto M, Ferrero S. Progressive telomere shortening is part of the natural history of chronic lymphocytic leukaemia and impacts clinical outcome: evidences from long term follow-up. Br J Haematol 2017; 181:693-695. [PMID: 28369711 DOI: 10.1111/bjh.14681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Paola Ghione
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Elisa Genuardi
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Davide Rossi
- Department of Haematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland
| | - Daniela Drandi
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Barbara Mantoan
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Daniela Barbero
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Elisa Bernocco
- Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Luigia Monitillo
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Michaela Cerri
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Marina Ruggeri
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Paola Omede
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Clara Deambrogi
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Lorenzo De Paoli
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Roberto Passera
- Nuclear Medicine, San Giovanni Battista Hospital and University of Torino, Torino, Italy
| | - Marta Coscia
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Massimo Massaia
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Mario Boccadoro
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Marco Ladetto
- Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Simone Ferrero
- Department of Molecular Biotechnologies and Health Sciences, Division of Haematology, University of Torino, Torino, Italy
| |
Collapse
|
18
|
Ojha J, Codd V, Nelson CP, Samani NJ, Smirnov IV, Madsen NR, Hansen HM, de Smith AJ, Bracci PM, Wiencke JK, Wrensch MR, Wiemels JL, Walsh KM. Genetic Variation Associated with Longer Telomere Length Increases Risk of Chronic Lymphocytic Leukemia. Cancer Epidemiol Biomarkers Prev 2016; 25:1043-9. [PMID: 27197291 DOI: 10.1158/1055-9965.epi-15-1329] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/31/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Shorter mean telomere length in leukemic cells has been associated with more aggressive disease. Germline polymorphisms in telomere maintenance genes affect telomere length and may contribute to CLL susceptibility. METHODS We collected genome-wide data from two groups of patients with CLL (N = 273) and two control populations (N = 5,725). In ancestry-adjusted case-control comparisons, we analyzed eight SNPs in genes definitively associated with inter-individual variation in leukocyte telomere length (LTL) in prior genome-wide association studies: ACYP2, TERC, NAF1, TERT, OBFC1, CTC1, ZNF208, and RTEL1 RESULTS: Three of the eight LTL-associated SNPs were associated with CLL risk at P < 0.05, including those near: TERC [OR, 1.46; 95% confidence interval (CI), 1.15-1.86; P = 1.8 × 10(-3)], TERT (OR = 1.23; 95% CI, 1.02-1.48; P = 0.030), and OBFC1 (OR, 1.36; 95% CI, 1.08-1.71; P = 9.6 × 10(-3)). Using a weighted linear combination of the eight LTL-associated SNPs, we observed that CLL patients were predisposed to longer LTL than controls in both case-control sets (P = 9.4 × 10(-4) and 0.032, respectively). CLL risk increased monotonically with increasing quintiles of the weighted linear combination. CONCLUSIONS Genetic variants in TERC, TERT, and OBFC1 are associated with both longer LTL and increased CLL risk. Because the human CST complex competes with shelterin for telomeric DNA, future work should explore the role of OBFC1 and other CST complex genes in leukemogenesis. IMPACT A genetic predisposition to longer telomere length is associated with an increased risk of CLL, suggesting that the role of telomere length in CLL etiology may be distinct from its role in disease progression. Cancer Epidemiol Biomarkers Prev; 25(7); 1043-9. ©2016 AACR.
Collapse
Affiliation(s)
- Juhi Ojha
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Ivan V Smirnov
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Nils R Madsen
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Helen M Hansen
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Adam J de Smith
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - John K Wiencke
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Margaret R Wrensch
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Joseph L Wiemels
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California. Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Kyle M Walsh
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Program in Neurologic Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| | | |
Collapse
|