1
|
Ren F, Ma Y, Zhang K, Luo Y, Pan R, Zhang J, Kan C, Hou N, Han F, Sun X. Exploring the multi-targeting phytoestrogen potential of Calycosin for cancer treatment: A review. Medicine (Baltimore) 2024; 103:e38023. [PMID: 38701310 PMCID: PMC11062656 DOI: 10.1097/md.0000000000038023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Cancer remains a significant challenge in the field of oncology, with the search for novel and effective treatments ongoing. Calycosin (CA), a phytoestrogen derived from traditional Chinese medicine, has garnered attention as a promising candidate. With its high targeting and low toxicity profile, CA has demonstrated medicinal potential across various diseases, including cancers, inflammation, and cardiovascular disease. Studies have revealed that CA possesses inhibitory effects against a diverse array of cancers. The underlying mechanism of action involves a reduction in tumor cell proliferation, induction of tumor cell apoptosis, and suppression of tumor cell migration and invasion. Furthermore, CA has been shown to enhance the efficacy of certain chemotherapeutic drugs, making it a potential component in treating malignant tumors. Given its high efficacy, low toxicity, and multi-targeting characteristics, CA holds considerable promise as a therapeutic agent for cancer treatment. The objective of this review is to present a synthesis of the current understanding of the antitumor mechanism of CA and its research progress.
Collapse
Affiliation(s)
- Fangbing Ren
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
2
|
Ning N, Nan Y, Chen G, Huang S, Lu D, Yang Y, Meng F, Yuan L. Anti-Tumor Effects and Toxicity Reduction Mechanisms of Prunella vulgaris: A Comprehensive Review. Molecules 2024; 29:1843. [PMID: 38675663 PMCID: PMC11052495 DOI: 10.3390/molecules29081843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
PURPOSE To investigate and systematically describe the mechanism of action of Prunella vulgaris (P. vulgaris) against digestive system tumors and related toxicity reduction. METHODS This study briefly describes the history of medicinal food and the pharmacological effects of P. vulgaris, focusing on the review of the anti-digestive tumor effects of the active ingredients of P. vulgaris and the mechanism of its toxicity reduction. RESULTS The active ingredients of P. vulgaris may exert anti-tumor effects by inducing the apoptosis of cancer cells, inhibiting angiogenesis, inhibiting the migration and invasion of tumor cells, and inhibiting autophagy. In addition, P. vulgaris active ingredients inhibit the release of inflammatory factors and macrophages and increase the level of indicators of oxidative stress through the modulation of target genes in the pathway to achieve the effect of toxicity reduction. CONCLUSION The active ingredients in the medicine food homology plant P. vulgaris not only treat digestive system tumors through different mechanisms but also reduce the toxic effects. P. vulgaris is worthy of being explored more deeply.
Collapse
Affiliation(s)
- Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Doudou Lu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Yating Yang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Fandi Meng
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| |
Collapse
|
3
|
Wang J, Ma C, Tang Z, Sun Z, Qaed E, Chi X, Wang J, Jamalat Y, Geng Z, Tang Z, Yao Q. Mechanism study of oleanolic acid derivative, K73-03, inducing cell apoptosis in hepatocellular carcinoma. Cancer Cell Int 2024; 24:17. [PMID: 38185661 PMCID: PMC10771654 DOI: 10.1186/s12935-023-03119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 01/09/2024] Open
Abstract
Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a kind of pentacyclic triterpene, which widely distributes in nature. OA possesses a powerful anti-cancer effect; however, its low solubility limits its bioavailability and application. In this study, a new OA derivative, K73-03, was used to determine its effect on liver cancer cells and detailed molecular mechanisms. Here, we show that K73-03 may lead to the disorder of mitochondria in HepG2 cells, leading to excessive ROS production and apoptosis in cells. Meanwhile, K73-03 could induce cell apoptosis by inhibiting JAK2/STAT3 pathway and NF-κB/P65 pathway. Collectively, this study may provide a preliminary basis for further cancer treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Physiology, Dalian Medical University, Dalian, China
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Chuchu Ma
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhongyuan Tang
- Department of Orthodontics, College of Stomatology, Jilin University, Changchun, Jilin, 130033, P.R. China
| | - Zhengwu Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xinming Chi
- Histology and Embryology Department, Dalian Medical University, Dalian, China
| | - Jun Wang
- Pathophysiology Department, Dalian Medical University, Dalian, China
| | - Yazeed Jamalat
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhaohong Geng
- Department of Cardiology, 2th Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 467, Dalian, 116000, China.
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China.
| | - Qiying Yao
- Department of Physiology, Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Patrad E, Khalighfard S, Amiriani T, Khori V, Alizadeh AM. Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cell Oncol 2022; 45:1073-1117. [PMID: 36149600 DOI: 10.1007/s13402-022-00715-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-β, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-β, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.
Collapse
Affiliation(s)
- Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Özdemir Z, Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. PHYTOCHEMISTRY 2022; 203:113340. [PMID: 35987401 DOI: 10.1016/j.phytochem.2022.113340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
Medicinal plants have been used to treat different diseases throughout the human history namely in traditional medicine. Most of the plants mentioned in this review article belong among them, including those that are widely spread in the nature, counted frequently to be food and nutrition plants and producing pharmacologically important secondary metabolites. Triterpenoids represent an important group of plant secondary metabolites displaying emerging pharmacological importance. This review article sheds light on four selected triterpenoids, oleanolic, ursolic, betulinic and platanic acid, and on their amide derivatives as important natural or semisynthetic agents in cancer treatment, and, in part, in pathogenic microbe treatment. A literature search was made in the Web of Science for the given key words covering the required area of secondary plant metabolites and their amide derivatives. The most recently published findings on the biological activity of the selected triterpenoids, and on the structures and biological activity of their relevant amide derivatives have been summarized therein. Mainly anti-cancer effects, and, in part, antimicrobial and other effects of the four selected triterpenoids and their amide derivatives have also been reviewed. A comparison of the effects of the parent plant products and those of their amide derivatives has been made.
Collapse
Affiliation(s)
- Zulal Özdemir
- University of Chemistry and Technology in Prague, Technická 5, 16028, Prague 6, Czech Republic; Institute of Experimental Botany AS CR, Isotope Laboratory, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Zdeněk Wimmer
- University of Chemistry and Technology in Prague, Technická 5, 16028, Prague 6, Czech Republic; Institute of Experimental Botany AS CR, Isotope Laboratory, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
6
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
7
|
Wan Y, Liu D, Xia J, Xu JF, Zhang L, Yang Y, Wu JJ, Ao H. Ginsenoside CK, rather than Rb1, possesses potential chemopreventive activities in human gastric cancer via regulating PI3K/AKT/NF-κB signal pathway. Front Pharmacol 2022; 13:977539. [PMID: 36249752 PMCID: PMC9556731 DOI: 10.3389/fphar.2022.977539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ginsenoside Rb1, a main component of ginseng, is often transformed into ginsenoside CK by intestinal flora to exert various pharmacological activity. However, it remains unclear whether ginsenoside CK is responsible for the anti-gastric cancer effect of ginsenoside Rb1 in vivo. In this study, network pharmacology was applied to predict the key signal pathways of ginsenoside Rb1 and ginsenoside CK when treating gastric cancer. The anti-proliferative effects of ginsenoside Rb1 and ginsenoside CK and the underlying mechanism in gastric cancer cells were explored by MTT, Hoechst3328 staining, ELISA, RT-qPCR and Western blotting. The results showed that PI3K-AKT/NF-κB signal pathway was the common important pathway of ginsenoside Rb1 and CK in the treatment of gastric cancer. The results of MTT assay showed that ginsenoside Rb1 could hardly inhibit the proliferation of HGC-27 cells, whereas ginsenoside CK could inhibit the proliferation of HGC-27 cells. Hoechst3328 staining showed that cells in the ginsenoside CK group were densely stained bright blue and nuclear fragmented, indicating that apoptosis occurred. ELISA results showed that ginsenoside CK could effectively downregulate the levels of cyclin CyclinB1 and CyclinD1, but ginsenoside Rb1 had no significant effect. Also, the results of Western blot and RT-qPCR showed that ginsenoside CK inhibited the expressions of anti-apoptosis-related protein Bcl-2 and apoptosis-related pathway PI3K/AKT/NF-κB, and promoted the expression of pro-apoptosis proteins Bax and Caspase 3, whereas ginsenoside Rb1 exerted no effect. In short, ginsenoside Rb1 had no anti-gastric cancer cell activity in vitro, but ginsenoside CK could effectively inhibit cell proliferation and induce cell apoptosis in HGC-27 cells. The mechanism might relate to the inhibitory effect of ginsenoside CK on the PI3K/AKT/NF-κB pathway. These results suggest that ginsenoside CK might be the in vivo material basis for the anti-gastric cancer activity of ginsenosides.
Collapse
Affiliation(s)
- Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Hui Ao,
| |
Collapse
|
8
|
Gao CX, Tang CH, Wu TJ, Hu Y, Peng YL, Liu ML, Liu QW, Chen HF, Yang ZH, Zheng X. Anticancer activity of oleanolic acid and its derivatives modified at A-ring and C-28 position. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022:1-14. [PMID: 36151896 DOI: 10.1080/10286020.2022.2120863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Oleanolic acid (OA) is a five-ring triterpenoid compound, which is widely present in plants. Due to a wide range of pharmacological activities, oleanolic acid has attracted more and more attention. However, oleanolic acid is insoluble in water and has low bioavailability, which limits its clinical application. In this review, we focus on summarizing the anti-cancer activity and mechanism of the A ring or C-28 carboxyl modified derivatives of OA since 2015, to determine the strength of its anti-cancer effectiveness and evaluate whether it could be used as a clinical anti-cancer drug.
Collapse
Affiliation(s)
- Cong-Xi Gao
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Cai-Hong Tang
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Ting-Juan Wu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Yue Hu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Ya-Ling Peng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Mei-Ling Liu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Qian-Wen Liu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Hong-Fei Chen
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Ze-Hua Yang
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Xing Zheng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| |
Collapse
|
9
|
Roman G. Anticancer activity of Mannich bases: a review of recent literature. ChemMedChem 2022; 17:e202200258. [PMID: 35678192 DOI: 10.1002/cmdc.202200258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Indexed: 11/05/2022]
Abstract
This report summarizes the latest published data on the antiproliferative action and cytotoxic activity of Mannich bases, a structurally heterogeneous category of chemical entities that includes compounds which are synthesized via the grafting of an aminomethyl function onto diverse substrates by means of the Mannich reaction. The present overview of the topic is an update to the information assembled in a previously published review that covered the literature up to 2014.
Collapse
Affiliation(s)
- Gheorghe Roman
- Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic polymers, 41A Aleea Gr. Ghica Voda, 700487, Iasi, ROMANIA
| |
Collapse
|
10
|
Tang ZY, Li Y, Tang YT, Ma XD, Tang ZY. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 2021; 145:112397. [PMID: 34798468 DOI: 10.1016/j.biopha.2021.112397] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA, 3 β - hydroxyoleanolic acid-12-en-28-oic acid) is a pentacyclic triterpenoid present in many plants. As a new framework for development of semi synthetic triterpenoids, OA is of great significance in the discovery of anticancer drugs. Some of these derivatives, such as CDDO (2-cyano-3,12-dioxooleana-1, 9 (11)-dien-28-oic acid) have been verified in clinical trials, while other derivatives studied previously, such as SZC014, SZC015 and SZC017 (OA derivatives respectively), are also candidate drugs for cancer treatment. This paper reviews the preclinical studies, literature evidence, target analysis and anticancer mechanism of OA and its derivatives. The mechanism of action of its derivatives mainly includes anti-cancer cell proliferation, inducing tumor cell apoptosis, inducing autophagy, regulating cell cycle regulatory proteins, inhibiting vascular endothelial growth, anti angiogenesis, inhibiting tumor cell migration and invasion. In recent years, the molecular mechanism of OA and its derivatives has been elucidated. These effects seem to be mediated by the alterations in a variety of signaling pathways induced by OA and its derivatives. In conclusion, OA and its derivatives are considered as important candidate drugs for the treatment of cancer, indicating that OA and its derivatives have the potential to be used as anticancer drugs in practice.
Collapse
Affiliation(s)
- Zhong-Yuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, Jilin, PR China
| | - Yang Li
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yu-Ting Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiao-Dong Ma
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ze-Yao Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
11
|
Papaefthymiou A, Christodoulidis G, Koffas A, Doulberis M, Polyzos SA, Manolakis A, Potamianos S, Kapsoritakis A, Kountouras J. Role of autophagy in gastric carcinogenesis. World J Gastrointest Oncol 2021; 13:1244-1262. [PMID: 34721765 PMCID: PMC8529927 DOI: 10.4251/wjgo.v13.i10.1244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer represents a common and highly fatal malignancy, and thus a pathophysiology-based reconsideration is necessary, given the absence of efficient therapeutic regimens. In this regard, emerging data reveal a significant role of autophagy in gastric oncogenesis, progression, metastasis and chemoresistance. Although autophagy comprises a normal primordial process, ensuring cellular homeostasis under energy depletion and stress conditions, alterations at any stage of the complex regulatory system could stimulate a tumorigenic and promoting cascade. Among others, Helicobacter pylori infection induces a variety of signaling molecules modifying autophagy, during acute infection or after chronic autophagy degeneration. Subsequently, defective autophagy allows malignant transformation and upon cancer establishment, an overactive autophagy is stimulated. This overexpressed autophagy provides energy supplies and resistance mechanisms to gastric cancer cells against hosts defenses and anticancer treatment. This review interprets the implicated autophagic pathways in normal cells and in gastric cancer to illuminate the potential preventive, therapeutic and prognostic benefits of understanding and intervening autophagy.
Collapse
Affiliation(s)
- Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
| | | | - Apostolos Koffas
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Michael Doulberis
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau 5001, Switzerland
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Anastasios Manolakis
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Spyros Potamianos
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Andreas Kapsoritakis
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
| |
Collapse
|
12
|
Hosseinzadeh E, Hassanzadeh A, Marofi F, Alivand MR, Solali S. Flavonoid-Based Cancer Therapy: An Updated Review. Anticancer Agents Med Chem 2021; 20:1398-1414. [PMID: 32324520 DOI: 10.2174/1871520620666200423071759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/27/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
As cancers are one of the most important causes of human morbidity and mortality worldwide, researchers try to discover novel compounds and therapeutic approaches to decrease survival of cancer cells, angiogenesis, proliferation and metastasis. In the last decade, use of special phytochemical compounds and flavonoids was reported to be an interesting and hopeful tactic in the field of cancer therapy. Flavonoids are natural polyphenols found in plant, fruits, vegetables, teas and medicinal herbs. Based on reports, over 10,000 flavonoids have been detected and categorized into several subclasses, including flavonols, anthocyanins, flavanones, flavones, isoflavones and chalcones. It seems that the anticancer effect of flavonoids is mainly due to their antioxidant and anti inflammatory activities and their potential to modulate molecular targets and signaling pathways involved in cell survival, proliferation, differentiation, migration, angiogenesis and hormone activities. The main aim of this review is to evaluate the relationship between flavonoids consumption and cancer risk, and discuss the anti-cancer effects of these natural compounds in human cancer cells. Hence, we tried to collect and revise important recent in vivo and in vitro researches about the most effective flavonoids and their main mechanisms of action in various types of cancer cells.
Collapse
Affiliation(s)
- Elham Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Wang SS, Zhang QL, Chu P, Kong LQ, Li GZ, Li YQ, Yang L, Zhao WJ, Guo XH, Tang ZY. Synthesis and antitumor activity of α,β-unsaturated carbonyl moiety- containing oleanolic acid derivatives targeting PI3K/AKT/mTOR signaling pathway. Bioorg Chem 2020; 101:104036. [DOI: 10.1016/j.bioorg.2020.104036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
|
14
|
Li D, Zhao L, Li Y, Kang X, Zhang S. Gastro-Protective Effects of Calycosin Against Precancerous Lesions of Gastric Carcinoma in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2207-2219. [PMID: 32606591 PMCID: PMC7294567 DOI: 10.2147/dddt.s247958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023]
Abstract
Aim Gastric cancer is a leading cause of cancer death worldwide. In-depth research of precancerous lesions of gastric carcinoma (PLGC) with malignant transformation potential is a key measure to prevent the development of gastric carcinoma. Recently, calycosin has been shown to have anticancer effects in vitro and in vivo. The molecular mechanism by which calycosin affects PLGC, however, has not yet been elucidated. The purpose of this study was to evaluate the effect and mechanism of calycosin in N‐methyl‐Nʹ‐nitro‐N‐nitrosoguanidine (MNNG)-induced PLGC rats. Methods The effects of calycosin in the gastric mucosa of rats with PLGC were evaluated using histopathology and transmission electron microscopy (TEM). For further characterization, the expression levels of integrin β1, nuclear factor kappa B (NF-κB), p-NF-κB, DARPP-32 and signal transducer and activator of transcription 3 (STAT3) were determined by Western blot assay and immunohistochemistry. Results Hematoxylin–eosin and high iron diamine–Alcian blue–periodic acid-Schiff (HID-AB-PAS) staining showed that intestinal metaplasia and dysplasia were significantly ameliorated in the calycosin intervention groups compared with the model group. Further, TEM results showed that calycosin intervention tempered microvascular abnormalities and cell morphology of primary and parietal cells in PLGC tissues. The results suggested that calycosin had gastro-protective effects in MNNG-induced PLGC rats. Western blot and immunohistochemistry analysis showed that the increased protein expression levels of NF-κB, p-NF-κB, DARPP-32 and STAT3 in the model group were downregulated by calycosin. The upregulation of integrin β1 expression induced by MNNG was decreased in the calycosin groups. Conclusion Collectively, calycosin protected against gastric mucosal injury in part via regulation of the integrin β1/NF-κB/DARPP-32 pathway and suppressed the expression of STAT3 in PLGC. The elucidation of this effect and mechanism of calycosin in PLGC provides a potential therapeutic strategy for treatment of gastric precancerous lesions.
Collapse
Affiliation(s)
- Danyan Li
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Luqing Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Yuxin Li
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiuhong Kang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
15
|
Xu J, Shen W, Pei B, Wang X, Sun D, Li Y, Xiu L, Liu X, Lu Y, Zhang X, Yue X. Xiao Tan He Wei Decoction reverses MNNG-induced precancerous lesions of gastric carcinoma in vivo and vitro: Regulation of apoptosis through NF-κB pathway. Biomed Pharmacother 2018; 108:95-102. [PMID: 30218863 DOI: 10.1016/j.biopha.2018.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 02/08/2023] Open
Abstract
In recent years, Chinese medicine has played an important role in the prognosis of gastric cancer. Precancerous lesions of gastric carcinoma (PLGC) is a class of gastric cancer which is closely related to the gastric mucosal pathology changes in the role of carcinogenic incentives, and plays key role in the progression of normal gastric mucosal cells into gastric cancerous cells. In current experiment, we explore the relationship between Chinese traditional medicine (Xiao Tan He Wei Decoction) and gastric cancer in the PLGC rat animal models and epithelial-mesenchymal transitioned GES-1 cells which were induced useing 1- Methyl-3-nitro-1-nitrosoguanidine (MNNG). PLGC rat model showed significant deterioration in the gastric mucosa with terrible growth rate in body weight and more atypical hyperplasia in gastric mucosa. MC cells, MNNG induced GES-1 cells which epithelial- mesenchymal-transition (EMT)-related proteins have a great change compare with normal GES-1 cells. The cells had characteristics of malignant cells including proliferation, invasion and metastasis ability. Our research founds that Xiao Tan He Wei Decoction could inhibit cell proliferation and increased apoptosis by increase the level of pro-apoptotic proteins like Bax and caspase-3 and decreased the level of anti-apoptotic protein Bcl-2, block the cells in G0/G1 phase simultaneously. Furthermore, Xiao Tan He Wei Decoction could inhibit nuclear factor kappa-light-chain-enhancer (NF-kB) activity and inhibit its transfer from the cytoplasm to the nucleus. However, when we incubated with NF-κB activator PMA, the effect of Xiao Tan He Wei Decoction was reversed. These results suggested that Xiao Tan He Wei Decoction could be used as a method for the treatment of gastric precancerous lesions, and possibly provide a theoretical basis for the clinical treatment of gastric cancer and gastric precancerous lesions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Wei Shen
- Changjiang Road Community Health Service Center, NO. 639, Tonghe Road, Zhangmiao Street, Baoshan Qv, Shanghai, 200431, China
| | - Bei Pei
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xiaowei Wang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Dazhi Sun
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yongjin Li
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - LiJuan Xiu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xuan Liu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ye Lu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xuan Zhang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - XiaoQiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
16
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|
17
|
Song Y, Kong L, Sun B, Gao L, Chu P, Ahsan A, Qaed E, Lin Y, Peng J, Ma X, Zhang J, Wang S, Tang Z. Induction of autophagy by an oleanolic acid derivative, SZC017, promotes ROS-dependent apoptosis through Akt and JAK2/STAT3 signaling pathway in human lung cancer cells. Cell Biol Int 2017; 41:1367-1378. [PMID: 28880428 DOI: 10.1002/cbin.10868] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022]
Abstract
The signal transducers and activators of transcription 3 (STAT3) signaling pathway is a common feature in many solid tumors including non-small cell lung cancer, whereas current therapies usually fail to treat this disease in majority of cases. In the present study, we aimed to investigate the cytotoxic effect and the underlying mechanisms of SZC017, an oleanolic acid derivative, on human lung cancer cells. Cell viability was significantly decreased in SZC017-treated lung cancer cells. Mechanistically, SZC017 reduced A549 cell viability by activating both apoptosis and autophagy pathways. SZC017 was able to inhibit the phosphorylation of Akt, JAK2, and STAT3 in A549 cells, resulting in the inactivation of Akt and JAK2/STAT3 signaling pathways. In addition, SZC017 could induce ROS generation and Ca2+ release. Pretreatment with N-Acetyl L-Cysteine, a ROS scavenger, could fully reverse SZC017-induced ROS and increase the expression of Akt, p-STAT3, and procaspase-3, while decrease the ratio of LC3-II/I and the expression of Beclin-1. In summary, our study provides pharmacological evidence that SZC017 exhibits potential use in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Lingqi Kong
- College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Bin Sun
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Lei Gao
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Peng Chu
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Anil Ahsan
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Yuan Lin
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Jinyong Peng
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Jianbin Zhang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Shisheng Wang
- College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| |
Collapse
|
18
|
Synergistic Antitumour Properties of viscumTT in Alveolar Rhabdomyosarcoma. J Immunol Res 2017; 2017:4874280. [PMID: 28791312 PMCID: PMC5534308 DOI: 10.1155/2017/4874280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/18/2017] [Accepted: 05/28/2017] [Indexed: 12/16/2022] Open
Abstract
Aqueous mistletoe extracts from the European mistletoe (Viscum album) contain mainly mistletoe lectins and viscotoxins as cytotoxic compounds. Lipophilic triterpene acids, which do not occur in conventional mistletoe preparations, were solubilised with β-cyclodextrins. The combination of an aqueous extract (viscum) and a triterpene-containing extract (TT) recreated a whole mistletoe extract (viscumTT). These extracts were tested on rhabdomyosarcoma in vitro, ex vivo, and in vivo with regard to anticancer effects. Viscum and viscumTT inhibited cell proliferation and induced apoptosis effectively in a dose-dependent manner in vitro and ex vivo, whereas TT showed only moderate inhibitory effects. viscumTT proved to be more effective than the single extracts and displayed a synergistic effect in vitro and a stronger effect in vivo. viscumTT induced apoptosis via the extrinsic and intrinsic pathways, evidenced by the loss of mitochondrial membrane potential and activation of CASP8 and CASP9. CASP10 inhibitor inhibited apoptosis effectively, emphasising the importance of CASP10 in viscumTT-induced apoptosis. Additionally, viscumTT changed the ratio of apoptosis-associated proteins by downregulation of antiapoptotic proteins such as XIAP and BIRC5, thus shifting the balance towards apoptosis. viscumTT effectively reduced tumour volume in patient-derived xenografts in vivo and may be considered a promising substance for rhabdomyosarcoma therapy.
Collapse
|
19
|
Erzhi Pill® Repairs Experimental Liver Injury via TSC/mTOR Signaling Pathway Inhibiting Excessive Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28638431 PMCID: PMC5468563 DOI: 10.1155/2017/5653643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study aimed to investigate the mechanism of hepatoprotective effect of Erzhi Pill (EZP) on the liver injury via observing TSC/mTOR signaling pathway activation. The experimental liver injury was induced by 2-acetylaminofluorene (2-AAF) treatment combined with partial hepatectomy (PH). EZP treated 2-AAF/PH-induced liver injury by the therapeutic and prophylactic administration. After the administration of EZP, the activities of aspartic transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AKP), and gamma-glutamyl transpeptidase (γ-GT) were decreased, followed by the decreased levels of hepatocyte apoptosis and caspase-3 expression. However, the secretion of albumin, liver weight, and index of liver weight were elevated. Microscopic examination showed that EZP restored pathological liver injury. Meanwhile, Rheb and mammalian target of rapamycin (mTOR) activation were suppressed, and tuberous sclerosis complex (TSC) expression was elevated in liver tissues induced by 2-AAF/PHx and accompanied with lower-expression of Bax, Notch1, p70S6K, and 4E-EIF and upregulated levels of Bcl-2 and Cyclin D. Hepatoprotective effect of EZP was possibly realized via inhibiting TSC/mTOR signaling pathway to suppress excessive apoptosis of hepatocyte.
Collapse
|
20
|
Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. Int J Mol Sci 2017; 18:ijms18030643. [PMID: 28300756 PMCID: PMC5372655 DOI: 10.3390/ijms18030643] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Nowadays, much attention has been paid to diet and dietary supplements as a cost-effective therapeutic strategy for prevention and treatment of a myriad of chronic and degenerative diseases. Rapidly accumulating scientific evidence achieved through high-throughput technologies has greatly expanded the understanding about the multifaceted nature of cancer. Increasingly, it is being realized that deregulation of spatio-temporally controlled intracellular signaling cascades plays a contributory role in the onset and progression of cancer. Therefore, targeting regulators of oncogenic signaling cascades is essential to prevent and treat cancer. A plethora of preclinical and epidemiological evidences showed promising role of phytochemicals against several types of cancer. Oleanolic acid, a common pentacyclic triterpenoid, is mainly found in olive oil, as well as several plant species. It is a potent inhibitor of cellular inflammatory process and a well-known inducer of phase 2 xenobiotic biotransformation enzymes. Main molecular mechanisms underlying anticancer effects of oleanolic acid are mediated by caspases, 5' adenosine monophosphate-activated protein kinase, extracellular signal-regulated kinase 1/2, matrix metalloproteinases, pro-apoptotic Bax and bid, phosphatidylinositide 3-kinase/Akt1/mechanistic target of rapamycin, reactive oxygen species/apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase, nuclear factor-κB, cluster of differentiation 1, CKD4, s6k, signal transducer and activator of transcription 3, as well as aforementioned signaling pathways . In this work, we critically review the scientific literature on the molecular targets of oleanolic acid implicated in the prevention and treatment of several types of cancer. We also discuss chemical aspects, natural sources, bioavailability, and safety of this bioactive phytochemical.
Collapse
|
21
|
Zhou H, Yuan M, Yu Q, Zhou X, Min W, Gao D. Autophagy regulation and its role in gastric cancer and colorectal cancer. Cancer Biomark 2017; 17:1-10. [PMID: 27314289 DOI: 10.3233/cbm-160613] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autophagy is associated with the occurrence, development, cellular adaptation, progression, treatment and prognosis of gastric cancer (GC) and colorectal cancer (CRC). The effect of autophagy in these two cancers has attracted our attention. OBJECTIVE The aim of this study was to describe the functional and regulatory mechanisms associated with autophagy in GC and CRC. METHODS We reviewed recent publications describing the role of autophagy in GC and CRC, including the functional characteristics, clinical significance and regulatory mechanisms. RESULTS Autophagy plays context-dependent dual roles in the development and progression of GC and CRC. It can either promote tumor growth and cell survival or can contribute to tumor suppression and promote cell death. Both of these effects employ complex regulatory networks, such as those mediated by p53, PI3K/Akt/mTOR, Ras and microRNA. Among the cellular process associated with these pathways, autophagy is a potential target for anti-tumor therapy. CONCLUSION Autophagy is associated with both tumorigenic and protective effects in cancer. However, the role of autophagy in GC and CRC remains unclear. Although the translation of the basic science of autophagy into clinical practice is a long process, the modulation of autophagy as a potential therapeutic approach in GC and CRC merits further investigation.
Collapse
Affiliation(s)
- Huangyan Zhou
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Academy of Medical Sciences, Nanchang, Jiangxi, China.,Institute of Immunotherapy, Nanchang University, Nanchang, Jiangxi, China
| | - Min Yuan
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Weiping Min
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Academy of Medical Sciences, Nanchang, Jiangxi, China.,Institute of Immunotherapy, Nanchang University, Nanchang, Jiangxi, China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Academy of Medical Sciences, Nanchang, Jiangxi, China.,Institute of Immunotherapy, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Zeng M, Wei X, Wu Z, Li W, Zheng Y, Li B, Meng X, Fu X, Fei Y. Simulated ischemia/reperfusion-induced p65-Beclin 1-dependent autophagic cell death in human umbilical vein endothelial cells. Sci Rep 2016; 6:37448. [PMID: 27857190 PMCID: PMC5114588 DOI: 10.1038/srep37448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury detrimentally alters the prognosis of patients undergoing revascularization after acute myocardial infarction. Our previous study demonstrated that NF-κB-induced autophagy plays a detrimental role in cardiac I/R injury using a rabbit myocardial I/R model. In this study, we sought to explore the specific mechanism of this autophagy-mediated cell damage in an in vitro simulated ischemia/reperfusion (sI/R) model using human umbilical vein endothelial cells. Our current study demonstrates that simulated I/R induces autophagy in a p65-Beclin 1-dependent manner, which can be suppressed with the inhibition of NF-κB. Furthermore, rapamycin which promotes autophagy, exacerbates sI/R-induced cell death. While 3-methyladenine rescues cell damage. Our data thus suggest that I/R promotes NF-κB p65 activity mediated Beclin 1-mediated autophagic flux, thereby exacerbating myocardial injury.
Collapse
Affiliation(s)
- Min Zeng
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Xin Wei
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Zhiyong Wu
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Wei Li
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Yin Zheng
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Bing Li
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Xuqing Meng
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Xiuhong Fu
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Yi Fei
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| |
Collapse
|
23
|
Li F, Liu Y, Wang S, Wei G, Cheng M. Synthesis and tumor cytotoxicity of novel 1,2,3-triazole-substituted 3-oxo-oleanolic acid derivatives. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-6301-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|