1
|
Abdulmalek SA, Saleh AM, Shahin YR, El Azab EF. Functionalized siRNA-chitosan nanoformulations promote triple-negative breast cancer cell death via blocking the miRNA-21/AKT/ERK signaling axis: in-silico and in vitro studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6941-6962. [PMID: 38592437 PMCID: PMC11422444 DOI: 10.1007/s00210-024-03068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Oncogenic microRNA (miRNA), especially miRNA-21 upregulation in triple-negative breast cancer (TNBC), suggests a new class of therapeutic targets. In this study, we aimed to create GE11 peptide-conjugated small interfering RNA-loaded chitosan nanoparticles (GE11-siRNA-CSNPs) for the targeting of EGFR overexpressed TNBC and selectively inhibit miRNA-21 expression. A variety of in-silico and in vitro cellular and molecular studies were conducted to investigate the binding affinities of specific targets used as well as the anticancer efficacies and mechanisms of GE11-siRNA-CSNPs in TNBC cells. An in-silico assessment reveals a distinct binding affinity of miRNA-21 with siRNA as well as between the extracellular domain of EGFR and synthesized peptides. Notably, the in vitro results showed that GE11-siRNA-CSNPs were revealed to have better cytotoxicity against TNBC cells. It significantly inhibits miRNA-21 expression, cell migration, and colony formation. The results also indicated that GE11-siRNA-CSNPs impeded cell cycle progression. It induces cell death by reducing the expression of the antiapoptotic gene Bcl-2 and increasing the expression of the proapoptotic genes Bax, Caspase 3, and Caspase 9. Additionally, the docking analysis and immunoblot investigations verified that GE1-siRNA-CSNPs, which specifically target TNBC cells and suppress miRNA-21, can prevent the effects of miRNA-21 on the proliferation of TNBC cells via controlling EGFR and subsequently inhibiting the PI3K/AKT and ERK1/2 signaling axis. The GE11-siRNA-CSNPs design, which specifically targets TNBC cells, offers a novel approach for the treatment of breast cancer with improved effectiveness. This study suggests that GE11-siRNA-CSNPs could be a promising candidate for further assessment as an additional strategy in the treatment of TNBC.
Collapse
Affiliation(s)
- Shaymaa A Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Abdulrahman M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El‑Aini Street, Cairo, 11562, Egypt
- Aweash El-Hagar Family Medicine Center, Epidemiological Surveillance Unit, MOHP, Mansoura, 35711, Egypt
| | - Yasmin R Shahin
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Eman Fawzy El Azab
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia
| |
Collapse
|
2
|
Xiong Y, Xu X, Zhou X, Tong Y, Yu C. Anlotinib inhibits cervical cancer cell proliferation and invasion by suppressing cytokine secretion in activated cancer-associated fibroblasts. Front Oncol 2024; 14:1412660. [PMID: 39193386 PMCID: PMC11347301 DOI: 10.3389/fonc.2024.1412660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Objective The aim of this study was to investigate whether anlotinib could exert an inhibitory effect on the proliferation and invasion of cervical cancer cells by inhibiting cytokines secreted by activated cancer-associated fibroblasts (CAFs). Methods CAFs were isolated from cervical cancer tissues and experimentally studied in vivo and in vitro. Molecular biology experimental methods were used to verify whether anlotinib could inhibit the pro-carcinogenic effects of CAFs derived from cervical cancer tissues. Results CAFs promote the proliferation and invasion of cervical cancer cells. Anlotinib inhibited the activation of CAFs and suppressed the promotion of cervical cancer cells by CAFs. Anlotinib inhibited the expression of multiple cytokines within CAFs and suppressed the release of interleukin (IL)-6 (IL-6) and IL-8. In vivo studies have shown that anlotinib diminished the growth of xenografted cervical cancer cells, and treatment in combination with docetaxel had an even more significant tumor growth inhibitory effect. Conclusion Anlotinib inhibits the pro-cancer effects of CAFs by suppressing the activation of CAFs and the secretion of pro-cancer cytokines. Our findings suggest that the combination of anlotinib and docetaxel may be a potential strategy for the treatment of refractory cervical cancer.
Collapse
Affiliation(s)
- Yaozu Xiong
- Department of Radiation Oncology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Xiaoting Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xilei Zhou
- Department of Radiation Oncology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Yusuo Tong
- Department of Radiation Oncology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Changhua Yu
- Department of Radiation Oncology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| |
Collapse
|
3
|
Li X, Liu C, Zhang X, Sun C, Ling J, Liu Y, Zuo Y, Cao Y, Zhang C, Jiang T, Wang M, Liu J, Lu J. Bruceine A: Suppressing metastasis via MEK/ERK pathway and invoking mitochondrial apoptosis in triple-negative breast cancer. Biomed Pharmacother 2023; 168:115784. [PMID: 37879215 DOI: 10.1016/j.biopha.2023.115784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC), as the most aggressive subtype of breast cancer, presents a scarcity of miraculous drugs in suppressing its proliferation and metastasis. Bruceine A (BA) is a functional group-rich quassin compound with extensive and distinctive pharmacological activities. Within the present study, we investigated the capabilities of BA in suppressing TNBC proliferation and metastasis as well as its potential mechanisms. The results displayed that BA dramatically repressed the proliferation of MDA-MB-231 and 4T1 cells with corresponding IC50 values of 78.4 nM and 524.6 nM, respectively. Concurrently, BA arrested cells in G1 phase by downregulating cycle-related proteins Cyclin D1 and CDK4. Furthermore, BA distinctly induced mitochondrial dysfunction as manifested by diminished mitochondrial membrane potential, elevated reactive oxygen species generation, minimized ATP production, and Caspase-dependent activation of the mitochondrial apoptosis pathway. Additionally, BA restrained the invasion and metastasis of TNBC cells by repressing MMP9 and MMP2 expression. Intriguingly, after pretreatment with MEK activator C16-PAF, the inhibitory effect of BA on MEK/ERK pathway was notably diminished, while the proliferation suppression and metastasis repression exerted by BA were all strikingly curtailed. Molecular docking illustrated that BA potently combined with residues on the MEK1 protein with the presence of diverse intermolecular interactions. Ultimately, BA effectively suppressed tumor growth in the 4T1 xenograft tumor model with no detectable visceral toxicity in the high-dose group and, astonishingly, repressed tumor metastasis in the 4T1-luc lung metastasis model. Collectively, our study demonstrates that BA is a promising chemotherapeutic agent for treating TNBC and suppressing lung metastasis.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Changqun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Ling
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yilan Liu
- Hematology Department, The General Hospital of the Western Theater Command PLA, Chengdu, China
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuening Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, 515000, China.
| | - Jin Liu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| |
Collapse
|
4
|
Kumar H, Gupta NV, Jain R, Madhunapantula SV, Babu CS, Kesharwani SS, Dey S, Jain V. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res 2023; 54:271-292. [PMID: 36791960 DOI: 10.1016/j.jare.2023.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous, aggressive phenotype of breast cancer with associated chemoresistance. The development of chemo- or radioresistance could be attributed to diverse tumor microenvironments, overexpression of membrane proteins (transporters), epigenetic changes, and alteration of the cell signaling pathways/genes associated with the development of cancer stem cells (CSCs). AIM OF REVIEW Due to the diverse and heterogeneous nature of TNBC, therapeutic response to the existing modalities offers limited scope and thus results in reccurance after therapy. To establish landmark therapeutic efficacy, a number of novel therapeutic modalities have been proposed. In addition, reversal of the resistance that developed during treatment may be altered by employing appropriate therapeutic modalities. This review aims to discuss the plethora of investigations carried out, which will help readers understand and make an appropriate choice of therapy directed toward complete elimination of TNBC. KEY SCIENTIFIC CONCEPTS OF REVIEW This manuscript addresses the major contributory factors from the tumor microenvironment that are responsible for the development of chemoresistance and poor prognosis. The associated cellular events and molecular mechanism-based therapeutic interventions have been explained in detail. Inhibition of ABC transporters, cell signaling pathways associated with CSCs, and epigenetic modification offers promising results in this regard. TNBC progression, invasion, metastasis and recurrence can also be inhibited by blocking multiple cell signaling pathways, targeting specific receptors/epigenetic targets, disrupting bioenergetics and generating reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - SubbaRao V Madhunapantula
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - C Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | | | - Surajit Dey
- Roseman University of Health Sciences, College of Pharmacy, Henderson, NV, USA
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India.
| |
Collapse
|
5
|
Chaudhuri A, Kumar DN, Dehari D, Patil R, Singh S, Kumar D, Agrawal AK. Endorsement of TNBC Biomarkers in Precision Therapy by Nanotechnology. Cancers (Basel) 2023; 15:cancers15092661. [PMID: 37174125 PMCID: PMC10177107 DOI: 10.3390/cancers15092661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is a heterogeneous disease which accounts globally for approximately 1 million new cases annually, wherein more than 200,000 of these cases turn out to be cases of triple-negative breast cancer (TNBC). TNBC is an aggressive and rare breast cancer subtype that accounts for 10-15% of all breast cancer cases. Chemotherapy remains the only therapy regimen against TNBC. However, the emergence of innate or acquired chemoresistance has hindered the chemotherapy used to treat TNBC. The data obtained from molecular technologies have recognized TNBC with various gene profiling and mutation settings that have helped establish and develop targeted therapies. New therapeutic strategies based on the targeted delivery of therapeutics have relied on the application of biomarkers derived from the molecular profiling of TNBC patients. Several biomarkers have been found that are targets for the precision therapy in TNBC, such as EGFR, VGFR, TP53, interleukins, insulin-like growth factor binding proteins, c-MET, androgen receptor, BRCA1, glucocorticoid, PTEN, ALDH1, etc. This review discusses the various candidate biomarkers identified in the treatment of TNBC along with the evidence supporting their use. It was established that nanoparticles had been considered a multifunctional system for delivering therapeutics to target sites with increased precision. Here, we also discuss the role of biomarkers in nanotechnology translation in TNBC therapy and management.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohit Patil
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Pharmaceutics, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
6
|
Fibronectin Functions as a Selective Agonist for Distinct Toll-like Receptors in Triple-Negative Breast Cancer. Cells 2022; 11:cells11132074. [PMID: 35805158 PMCID: PMC9265717 DOI: 10.3390/cells11132074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs). Using two triple-negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231, we show that FnEDA and FnIII-1c induce the pro-tumorigenic cytokine, IL-8, by serving as agonists for TLR5 and TLR2, the canonical receptors for bacterial flagellin and lipoprotein, respectively. We also find that FnIII-1c is not recognized by MDA-MB-468 cells but is recognized by MDA-MB-231 cells, suggesting a cell type rather than ligand specific utilization of TLRs. As IL-8 plays a major role in the progression of TNBC, these studies suggest that tumor-induced structural changes in the fibronectin matrix promote an inflammatory microenvironment conducive to metastatic progression.
Collapse
|
7
|
Bräutigam K, Kabore-Wolff E, Hussain AF, Polack S, Rody A, Hanker L, Köster F. Inhibitors of PD-1/PD-L1 and ERK1/2 impede the proliferation of receptor positive and triple-negative breast cancer cell lines. J Cancer Res Clin Oncol 2021; 147:2923-2933. [PMID: 34185141 PMCID: PMC8397671 DOI: 10.1007/s00432-021-03694-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is characterized by an unfavorable prognosis and missing systemic therapeutic approaches beside chemotherapy. Targeting the immune checkpoint PD-1/PD-L1 showed promising results in breast cancer and especially in TNBC. The extracellular signal-regulated kinase 1/2 (ERK1/2) is an important driver of carcinogenesis. Here, the effect of combined PD-1/PD-L1 and ERK1/2 inhibitor treatment is investigated of cell growth and intracellular impact of breast cancer cell lines. METHODS The IC50 values of each inhibitor and the effect of combined treatment were determined in three TNBC cell lines of different subtypes and one non-TNBC cell line. Phospho-specific antibodies were used in western blot analyses to investigate an effect on ERK1/2 activation. Expressions of immune modulatory and cell cycle-associated genes were examined by quantitative reverse transcription PCR. RESULTS Both inhibitors PD-1/PD-L1 and ERK1/2 impeded the proliferation of TNBC to a higher extent than of non-TNBC. By combined treatment, cell lines were inhibited either synergistically or additively. ERK1/2 and S6 phosphorylation were reduced and expressions of c-Fos and FosL were diminished after ERK1/2 inhibitor as single and combined treatment. Between genes involved in immune modulation, IL-8 was upregulated in TNBC cells after combined treatment. CONCLUSION In conclusion, combination of PD-1/PD-L1 and ERK1/2 inhibitors showed favorable effects for a new therapy strategy, with better results in TNBC cell lines than in non-TNBC cells. The effects have to be validated in models that can reflect the interaction between immune and tumor cells like the situation in the tumor micro-environment.
Collapse
Affiliation(s)
- Karen Bräutigam
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Elodie Kabore-Wolff
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Ahmad Fawzi Hussain
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephan Polack
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Achim Rody
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Lars Hanker
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Frank Köster
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Lim H, Koh M, Jin H, Bae M, Lee SY, Kim KM, Jung J, Kim HJ, Park SY, Kim HS, Moon WK, Hwang S, Cho NH, Moon A. Cancer-associated fibroblasts induce an aggressive phenotypic shift in non-malignant breast epithelial cells via interleukin-8 and S100A8. J Cell Physiol 2021; 236:7014-7032. [PMID: 33748944 DOI: 10.1002/jcp.30364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment have been associated with tumor progression in breast cancer. Although crosstalk between breast cancer cells and CAFs has been studied, the effect of CAFs on non-neoplastic breast epithelial cells is not fully understood to date. Here, we investigated the effect of CAFs on aggressive phenotypes in non-neoplastic MCF10A breast epithelial cells. CAFs induced epithelial-to-mesenchymal transition (EMT) and invasive phenotype in MCF10A cells. S100A8, a potential prognostic marker in several cancers, was markedly increased in MCF10A cells by CAFs. S100A8 was crucial for CAFs-induced invasive phenotype of MCF10A cells. Among cytokines increased by CAFs, interleukin (IL)-8 induced S100A8 through transcription factors p65 NF-κB and C/EBPβ. In a xenograft mouse model with MCF10A cells and CAFs, tumor was not developed, suggesting that coinjection with CAFs may not be sufficient for in vivo tumorigenicity of MCF10A cells. Xenograft mouse tumor models with MDA-MB-231 breast carcinoma cells provided an in vivo evidence for the effect of CAFs on breast cancer progression as well as a crucial role of IL-8 in tumor growth and S100A8 expression in vivo. Using a tissue microarray of human breast cancer, we showed that S100A8 expression was correlated with poor outcomes. S100A8 expression was more frequently detected in cancer-adjacent normal human breast tissues than in normal breast tissues. Together, this study elucidated a novel mechanism for the acquisition of invasive phenotype of non-neoplastic breast cells induced by CAFs, suggesting that targeting IL-8 and S100A8 may be an effective strategy against breast cancer.
Collapse
Affiliation(s)
- Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hao Jin
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Mijeong Bae
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Seung-Yeon Lee
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Kyoung Mee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hyun Jeong Kim
- Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Sejin Hwang
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| |
Collapse
|
9
|
Yi M, Peng C, Xia B, Gan L. CXCL8 Facilitates the Survival and Paclitaxel-Resistance of Triple-Negative Breast Cancers. Clin Breast Cancer 2021; 22:e191-e198. [PMID: 34284965 DOI: 10.1016/j.clbc.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study aimed to demonstrate CXCL8 expression in TNBC tissues and cells, and elucidate the functional mechanism of CXCL8 in paclitaxel (PTX)-resistant TNBC. METHODS Bioinformatics analysis was performed to identify differentially expressed genes (DEGs) in PTX-resistant TNBC using publicly available data from the GEO, TCGA and METABRIC databases. STRING was used to identify the interacting partners of CXCL8. Kaplan-Meier software was used to analyze the relationship between CXCL8 expression and patient survival rate. The protein expression and distribution of CXCL8 were examined by immunohistochemistry, MTT assay and colony formation assay were performed to determine cell viability of TNBC cells treated with PTX. Western blotting was used to assess the levels of drug resistance and apoptosis-related proteins. GO-KEGG analysis was conducted on the DEGs to identify enriched signaling pathways. RESULTS The results of bioinformatics analysis demonstrated a high expression of CXCL8 in TNBC tissues and cells. Kaplan-Meier analysis revealed that the expression of CXCL8 is associated with poor prognosis. CXCL8 was upregulated in PTX-resistant TNBC cells. Knockdown of CXCL8 increased the sensitivity of TNBC cells to PTX. Mechanically, CXCL8 deficiency regulated PTX resistance in TNBC cells via cell apoptosis signaling pathway. CONCLUSION Our work demonstrated that CXCL8 may be a potential molecule to be targeted for the treatment of PTX-resistant TNBC.
Collapse
Affiliation(s)
- Maolin Yi
- Department of Breast and Thyroid Surgery, Huanggang Central Hospital of Hubei Province, Huanggang City, Hubei Province, China
| | - Chengcheng Peng
- Department of Breast and Thyroid Surgery, Huanggang Central Hospital of Hubei Province, Huanggang City, Hubei Province, China
| | - Bingxiang Xia
- Department of Breast and Thyroid Surgery, Huanggang Central Hospital of Hubei Province, Huanggang City, Hubei Province, China
| | - Lin Gan
- Department of Breast and Thyroid Surgery,Chongqing Hospital of Traditional Chinese Medicine, Chongqing City, China.
| |
Collapse
|
10
|
Entelon ® ( Vitis vinifera Seed Extract) Prevents Cancer Metastasis via the Downregulation of Interleukin-1 Alpha in Triple-Negative Breast Cancer Cells. Molecules 2021; 26:molecules26123644. [PMID: 34203721 PMCID: PMC8232270 DOI: 10.3390/molecules26123644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/03/2022] Open
Abstract
Interleukin-1 (IL1) is a proinflammatory cytokine and promotes cancer cell proliferation and invasiveness in a diversity of cancers, such as breast and colon cancer. Here, we focused on the pharmacological effect of Entelon® (ETL) on the tumorigenesis of triple-negative breast cancer (TNBC) cells by IL1-alpha (IL1A). IL1A enhanced the cell growth and invasiveness of TNBC cells. We observed that abnormal IL1A induction is related with the poor prognosis of TNBC patients. IL1A also increased a variety of chemokines such as CCL2 and IL8. Interestingly, IL1A expression was reduced by the ETL treatment. Here, we found that ETL significantly decreased the MEK/ERK signaling pathway in TNBC cells. IL1A expression was reduced by UO126. Lastly, we studied the effect of ETL on the metastatic potential of TNBC cells. Our results showed that ETL significantly reduced the lung metastasis of TNBC cells. Our results showed that IL1A expression was regulated by the MEK/ERK- and PI3K/AKT-dependent pathway. Taken together, ETL inhibited the MEK/ERK and PI3K/AKT signaling pathway and suppressing the lung metastasis of TNBC cells through downregulation of IL1A. Therefore, we propose the possibility of ETL as an effective adjuvant for treating TNBC.
Collapse
|
11
|
You D, Jeong Y, Yoon SY, A Kim S, Kim SW, Nam SJ, Lee JE, Kim S. Celastrol attenuates the inflammatory response by inhibiting IL‑1β expression in triple‑negative breast cancer cells. Oncol Rep 2021; 45:89. [PMID: 33846813 PMCID: PMC8042664 DOI: 10.3892/or.2021.8040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
IL-1 promotes cancer cell proliferation and invasiveness in various malignancies, such as breast and colorectal cancer. In the present study, the functional roles of IL-1β (IL1B) and the inhibitory effect of celastrol on IL1B expression were investigated in triple-negative breast cancer (TNBC) cells. The data revealed that celastrol markedly decreased IL1B expression and suppressed TNBC cell proliferation in a dose-dependent manner. The levels of IL1B and IL8 mRNA were significantly increased in TNBC cells compared with non-TNBC cells. In addition, IL1B augmented the expression levels of IL8 as well as matrix metalloproteinases (MMPs), including MMP-1 and MMP-9, in TNBC cells. Furthermore, IL1B expression was decreased by a specific MEK1/2 inhibitor, MEK162. Celastrol also promoted IL1B downregulation through the suppression of the MEK/ERK-dependent pathway. Furthermore, the results also revealed a decrease in IL1B-induced IL8, MMP-1, and MMP-9 expression in response to celastrol treatment. The induction of cellular invasion by IL1B was also markedly decreased by celastrol. Collectively, the present study results suggested celastrol as an effective drug for the treatment of TNBC, involving a reduction in IL1B expression, activity or signaling pathways.
Collapse
Affiliation(s)
- Daeun You
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Yisun Jeong
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Sun Young Yoon
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Sung A Kim
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Seok Won Kim
- Department of Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Seok Jin Nam
- Department of Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
12
|
Ospina-Muñoz N, Vernot JP. Partial acquisition of stemness properties in tumorspheres obtained from interleukin-8-treated MCF-7 cells. Tumour Biol 2020; 42:1010428320979438. [PMID: 33325322 DOI: 10.1177/1010428320979438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interleukin-8 is an important regulator of the tumor microenvironment, promoting the epithelial-mesenchymal transition and the acquisition of stem-like cell properties in cancer cells. The tumorsphere-formation assay has been used for the identification of cancer stem cell. Interleukin-8 induces the formation of larger tumorspheres in Michigan Cancer Foundation-7 (MCF-7) cells, suggesting cancer stem cell enrichment. In this work, we aimed to study the phenotypic and functional characteristics of the cells present within the tumorspheres of MCF-7 cells previously treated with interleukin-8. MCF-7 cells treated for 5 days or not with this cytokine were further cultivated in ultralow attachment plates for another 5 days to allow tumorspheres formation. We showed that the enhanced sphere formation by MCF-7 cells was not a consequence of higher cell proliferation by interleukin-8 stimulation. Despite maintaining an epithelial-mesenchymal transition phenotype with the presence of epithelial and mesenchymal markers, basic stemness properties were impaired in tumorspheres and in those treated with interleukin-8, while others were increased. Self-renewal capacity was increased in interleukin-8-treated cells only in the first generation of tumorspheres but was not sustained in consecutive assays. Accordingly, self-renewal and reprogramming gene expression, differentiation capacity to adipocytes, and clonogenicity were also impaired. We showed also that tumorspheres were enriched in differentiated luminal cells (EpCAM+/CD49f-). Nevertheless, cells were more quiescent and maintain a partial epithelial-mesenchymal transition, consistent with their increased resistance to Paclitaxel and Doxorubicin. They also presented higher migration and interleukin-8-directed invasion. Therefore, the breast cancer cell line MCF-7, having a low stemness index, might partially acquire some stem-like cell attributes after interleukin-8 stimulation, increasing its aggressiveness.
Collapse
Affiliation(s)
- Natalia Ospina-Muñoz
- Cellular and Molecular Physiology Group, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Jean-Paul Vernot
- Cellular and Molecular Physiology Group, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia.,Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| |
Collapse
|
13
|
Kim S, You D, Jeong Y, Yoon SY, Kim SA, Kim SW, Nam SJ, Lee JE. WNT5A augments cell invasiveness by inducing CXCL8 in HER2-positive breast cancer cells. Cytokine 2020; 135:155213. [DOI: 10.1016/j.cyto.2020.155213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
14
|
Akbaribazm M, Khazaei MR, Khazaei F, Khazaei M. Doxorubicin and Trifolium pratense L. (Red clover) extract synergistically inhibits brain and lung metastases in 4T1 tumor-bearing BALB/c mice. Food Sci Nutr 2020; 8:5557-5570. [PMID: 33133558 PMCID: PMC7590334 DOI: 10.1002/fsn3.1820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Trifolium pratense L. (Red clover-T. pratense) commonly consumed as a healthy beverage has been demonstrated to have various biological activities including antioxidant and anticancer effects. The aim of this study was to investigate the antimetastasis effects of doxorubicin (DOX) and T. pratense extract in 4T1 tumor-bearing BALB/c mice. In this study, 56 female BALB/c mice were randomly divided into seven groups (n = 8/group) to receive DOX and T. pratense extract in three different doses (100, 200, and 400 mg/kg/day) for 35 days. On day 36 after starting treatments, serum cytokines (IL-8 and IL-6) were measured. Immunohistochemical (IHC) staining was performed for GATA-3 in the brain and lung, and for CK5/6 in tumor tissues. Metastasis-related gene (matrix metalloproteinase-2 [MMP-2] and sirtuin-1 [SIRT-1]) expressions were also measured by real-time PCR. Our results showed that cotreatment with DOX and T. pratense extract improved stereological parameters (i.e., reduction in the volume of metastatic tumors) in the lung and brain and decreased the serum levels of inflammatory cytokines (IL-8 and IL-6). DOX and T. pratense extract synergistically down-regulated MMP-2 and up-regulated SIRT-1 genes, decreased the number of CK5/6-positive cells in tumor tissues, and inhibited metastasis of GATA-3-positive cells into the lung and brain. The combination of T. pratense extract and DOX synergistically inhibited the metastasis of 4T1 xenograft cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Mohsen Akbaribazm
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Rasoul Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Fatemeh Khazaei
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Mozafar Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
15
|
Infiltration of T cells promotes the metastasis of ovarian cancer cells via the modulation of metastasis-related genes and PD-L1 expression. Cancer Immunol Immunother 2020; 69:2275-2289. [PMID: 32504248 DOI: 10.1007/s00262-020-02621-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/21/2020] [Indexed: 01/21/2023]
Abstract
Due to its high ability to disseminate, ovarian cancer remains one of the largest threats to women's health, worldwide. Evidence showed that the immune cells infiltrating the tumor microenvironment are crucial in mediating metastasis. Therefore, it is necessary to understand which types of immune cells are involved in metastasis, and to determine the mechanisms by which they influence the process. By immunohistochemistry, we found that higher concentrations of intratumoral CD8+ T cells were found to be correlated with an advanced grade and stage of ovarian cancer. Additionally, the infiltration of stromal CD8+ T cells was also significantly higher in tissues with advanced stages and metastatic tumors. A positive correlation between the infiltration of FoxP3+ Treg cells and histological grade was also observed, regardless of location. PD-L1 expression in metastatic tumors was also higher than that in paired primary ovarian tumors. Transwell migration and invasion assays revealed the increased migration and invasion of ovarian cancer cell lines (A2780CP and ES2) and ascites-derived ovarian cancer cells following co-culturing with CD8+ T cells. Enhanced expression of MMP-9, uPA, VEGF, bFGF, IL-8, IL-10, and PD-L1 by cancer cells following co-culturing with CD8+ T cells were also detected by qPCR, ELISA or flow cytometry. In conclusion, our findings suggest that the infiltrated T cells could promote the development of ovarian cancer, and provide another mechanism of immune evasion mediated by T cells.
Collapse
|
16
|
Hou J, Yun Y, Xue J, Jeon B, Kim S. Doxorubicin-induced normal breast epithelial cellular aging and its related breast cancer growth through mitochondrial autophagy and oxidative stress mitigated by ginsenoside Rh2. Phytother Res 2020; 34:1659-1669. [PMID: 32100342 DOI: 10.1002/ptr.6636] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Clinical dose of doxorubicin (100 nM) induced cellular senescence and various secretory phenotypes in breast cancer and normal epithelial cells. Herein, we reported the detailed mechanism underlying ginsenoside Rh2-mediated NF-κB inhibition, and mitophagy promotion were evaluated by antibody array assay, western blotting analysis, and immunocytostaining. Ginsenoside Rh2 suppressed the protein levels of TRAF6, p62, phosphorylated IKK, and IκB, which consequently inactivated NF-κB activity. Rh2-mediated secretory phenotype was delineated by the suppressed IL-8 secretion. Senescent epithelial cells showed increased level of reactive oxygen species (ROS), which was significantly abrogated by Rh2, with upregulation on SIRT 3 and SIRT 5 and subsequent increase in SOD1 and SOD2. Rh2 remarkably favored mitophagy by the increased expressions of PINK1 and Parkin and decreased level of PGC-1α. A decreased secretion of IL-8 challenged by mitophagy inhibitor Mdivi-1 with an NF-κB luciferase system was confirmed. Importantly, secretory senescent epithelial cells promoted the breast cancer (MCF-7) proliferation while decreased the survival of normal epithelial cells demonstrated by co-culture system, which was remarkably alleviated by ginsenoside Rh2 treatment. These data included ginsenoside Rh2 regulated ROS and mitochondrial autophagy, which were in large part attributed to secretory phenotype of senescent breast epithelial cells induced by doxorubicin. These findings also suggested that ginsenoside Rh2 is a potential treatment candidate for the attenuation of aging related disease.
Collapse
Affiliation(s)
- Jingang Hou
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
| | - Yeejin Yun
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Jianjie Xue
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China.,Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Byeongmin Jeon
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Sunchang Kim
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea.,Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019; 38:430. [PMID: 31661003 PMCID: PMC6819447 DOI: 10.1186/s13046-019-1443-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most complex and aggressive type of breast cancer encountered world widely in women. Absence of hormonal receptors on breast cancer cells necessitates the chemotherapy as the only treatment regime. High propensity to metastasize and relapse in addition to poor prognosis and survival motivated the oncologist, nano-medical scientist to develop novel and efficient nanotherapies to solve such a big TNBC challenge. Recently, the focus for enhanced availability, targeted cellular uptake with minimal toxicity is achieved by nano-carriers. These smart nano-carriers carrying all the necessary arsenals (drugs, tracking probe, and ligand) designed in such a way that specifically targets the TNBC cells at site. Articulating the targeted delivery system with multifunctional molecules for high specificity, tracking, diagnosis, and treatment emerged as theranostic approach. In this review, in addition to classical treatment modalities, recent advances in nanotheranostics for early and effective diagnostic and treatment is discussed. This review highlighted the recently FDA approved immunotherapy and all the ongoing clinical trials for TNBC, in addition to nanoparticle assisted immunotherapy. Futuristic but realistic advancements in artificial intelligence (AI) and machine learning not only improve early diagnosis but also assist clinicians for their workup in TNBC. The novel concept of Nanoparticles induced endothelial leakiness (NanoEL) as a way of tumor invasion is also discussed in addition to classical EPR effect. This review intends to provide basic insight and understanding of the novel nano-therapeutic modalities in TNBC diagnosis and treatment and to sensitize the readers for continue designing the novel nanomedicine. This is the first time that designing nanoparticles with stoichiometric definable number of antibodies per nanoparticle now represents the next level of precision by design in nanomedicine.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Virology, Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, 160012 India
| | - Rajaletchumy Veloo Kutty
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology,University Malaysia Pahang, Tun Razak Highway, 26300 Kuantan, Pahang Malaysia
- Center of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, 26300, Kuantan, Pahang Malaysia
| |
Collapse
|
18
|
Ignacio RMC, Gibbs CR, Kim S, Lee ES, Adunyah SE, Son DS. Serum amyloid A predisposes inflammatory tumor microenvironment in triple negative breast cancer. Oncotarget 2019; 10:511-526. [PMID: 30728901 PMCID: PMC6355188 DOI: 10.18632/oncotarget.26566] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
Acute-phase proteins (APPs) are associated with a variety of disorders such as infection, inflammatory diseases, and cancers. The signature profile of APPs in breast cancer (BC) is poorly understood. Here, we identified serum amyloid A (SAA) for proinflammatory predisposition in BC through the signature profiles of APPs, interleukin (IL) and tumor necrosis factor (TNF) superfamily using publicly available datasets of tumor samples and cell lines. Triple-negative breast cancer (TNBC) subtype highly expressed SAA1/2 compared to HER2, luminal A (LA) and luminal B (LB) subtypes. IL1A, IL1B, IL8/CXCL8, IL32 and IL27RA in IL superfamily and CD70, TNFSF9 and TNFRSF21 in TNF superfamily were highly expressed in TNBC compared to other subtypes. SAA is restrictedly regulated by nuclear factor (NF)-κB and IL-1β, an NF-κB activator highly expressed in TNBC, increased the promoter activity of SAA1 in human TNBC MDA-MB231 cells. Interestingly, two κB-sites contained in SAA1 promoter were involved, and the proximal region (-96/-87) was more critical than the distal site (-288/-279) in regulating IL-1β-induced SAA1. Among the SAA receptors, TLR1 and TLR2 were highly expressed in TNBC. Cu-CPT22, TLR1/2 antagonist, abrogated IL-1β-induced SAA1 promoter activity. In addition, SAA1 induced IL8/CXCL8 promoter activity, which was partially reduced by Cu-CPT22. Notably, SAA1/2, TLR2 and IL8/CXCL8 were associated with a poor overall survival in mesenchymal-like TNBC. Taken together, IL-1-induced SAA via NF-κB-mediated signaling could potentiate an inflammatory burden, leading to cancer progression and high mortality in TNBC patients.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Carla R Gibbs
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Soohyun Kim
- Department of Veterinary Sciences, College of Veterinary Medicine, Kon-Kuk University, Seoul, Republic of Korea
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
19
|
Qi F, Qin WX, Zang YS. Molecular mechanism of triple-negative breast cancer-associated BRCA1 and the identification of signaling pathways. Oncol Lett 2019; 17:2905-2914. [PMID: 30854067 DOI: 10.3892/ol.2019.9884] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
BRAC1 has multiple important interactions with triple-negative breast cancer, the specific molecular characteristics of this interaction, however, have not yet been completely elucidated. By examining cell signaling pathways, important information for comprehending the potential mechanisms of this cancer may become known. The aim of the present study was to identify the effects of BRAC1 and to find the signaling pathway(s) involved in the pathogenic mechanism of triple-negative breast cancer. In this study, GSE27447 microarray data were obtained from the Gene Expression Omnibus (GEO) database of the National Center for Biotechnology Information, and differentially expressed genes (DEGs) from GSE27447 were distinguished by Significant Analysis of Microarray. Gene ontology (GO) analysis was carried out on 132 upregulated and 198 downregulated genes with DAVID. The signaling was forecast by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Transcription factors were recognized by TFatS. The BRAC1 relevant protein-protein interaction networks (PPI) were fixed by STRING and visualized by CytoScape. Overall, the upregulated DEGs, which included CR2, IGHM, PRKCB, CARD11, PLCG2, CD79A, IGKC and CD27, were primarily enriched in the terms associated with immune responses, and the downregulated DEGs, which included STARD3, ALDH8A1, SRD5A3, CACNA1H, UGT2B4, SDR16C5 and MED1, were primarily enriched in the hormone metabolic process. In addition, 13 pathways, such as the B-cell receptor-signaling pathway, the hormone synthesis signaling pathway and the oxytocin-signaling pathway, were chosen. MYC, SP1 and CTNNB1 were determined to be enriched in triple-negative breast cancer. A total of 8 genes were identified to be downregulated in the BRAC1-related PPI network. The results of the present study show a fresh angle on the molecular mechanism of triple-negative breast cancer and indicate a possible target for its treatment.
Collapse
Affiliation(s)
- Feng Qi
- Department of Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Wen-Xing Qin
- Department of Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yuan-Sheng Zang
- Department of Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
20
|
Kim S, You D, Jeong Y, Yu J, Kim SW, Nam SJ, Lee JE. Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:43-49. [PMID: 30466991 DOI: 10.1016/j.phymed.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/08/2018] [Accepted: 08/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Interleukin-8 (IL-8) expression is associated with metastasis in a variety of cancer cells. PURPOSE Here, we investigated the regulatory mechanism of IL-8 expression as well as the pharmacological effect of berberine (BBR) on IL-8 expression in triple-negative breast cancer (TNBC) cells. METHODS The clinical value of IL-8 was analyzed by from a public database [Kaplan‑Meier plotter database. IL-8 mRNA and protein expression was analyzed by real-time PCR and ELISA, respectively. Cell invasion was analyzed by Boyden chamber assay. Tumor cell growth was analyzed by colony forming assay. RESULTS Clinically, we observed that breast cancer patients with highly expressed IL-8 are associated with poor outcomes in areas such as relapse-free, overall, and distant metastasis-free survival. We showed that IL-8 expression is higher in TNBC cells than in non-TNBC cells. In addition, the rates of cell invasion were significantly increased by IL-8 treatment. These IL-8 levels were decreased by EGFR (Neratinib and Afatinib) and MEK (PD98059) inhibitors in TNBC cells. Finally, we observed that BBR dramatically suppresses IL-8 expression. In addition, BBR also inhibited cell invasiveness and anchorage-independent growth. Interestingly, our results showed that BBR down-regulates EGFR protein expression and dose-dependently inhibits MEK and ERK phosphorylation. CONCLUSION Here, we demonstrate that BBR may be a promising drug to suppress cell invasiveness and growth of TNBC through IL-8-related mechanisms.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea.
| | - Daeun You
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea
| | - Yisun Jeong
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea
| | - Jonghan Yu
- Department of Breast Cancer Center, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea; Department of Surgery, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea
| | - Seok Won Kim
- Department of Breast Cancer Center, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea; Department of Surgery, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea
| | - Seok Jin Nam
- Department of Breast Cancer Center, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea; Department of Surgery, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea
| | - Jeong Eon Lee
- Department of Breast Cancer Center, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea; Department of Surgery, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea.
| |
Collapse
|
21
|
Sanguinete MMM, Oliveira PHD, Martins-Filho A, Micheli DC, Tavares-Murta BM, Murta EFC, Nomelini RS. Serum IL-6 and IL-8 Correlate with Prognostic Factors in Ovarian Cancer. Immunol Invest 2018; 46:677-688. [PMID: 28872976 DOI: 10.1080/08820139.2017.1360342] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the study was to correlate serum levels of IL-2, IL-5, IL-6, IL-8, IL-10, and TNF-α with clinical, laboratory, and pathological prognostic factors in patients with primary ovarian malignancy. Patients treated at the Pelvic Mass Ambulatory of the Discipline of Gynecology and Obstetrics/Oncology Research Institute (IPON) of the UFTM with confirmed diagnosis of malignant ovarian neoplasia (n = 26) were evaluated. Serum collection was performed preoperatively for the determination of tumor markers. The cytokines IL-2, IL-5, IL-6, IL-8, IL-10, and TNF-α were assayed by enzyme-linked immunosorbent assay (ELISA). The prognostic factors were compared using the Mann-Whitney test, with significance level lower than 0.05. When evaluating IL6, it was observed that higher serum levels were associated with overall survival less than 60 months (p = 0.0382). In the evaluation of IL8, higher serum levels were associated with neutrophil-to-lymphocyte ratio (NLR) ≥ 4 and platelet-to-lymphocyte ratio (PLR) ≥ 200 (p = 0.0198 and p = 0.0072, respectively), altered values of serum CA125 (p = 0.0457), and stage IIIC (p = 0.0486). Therefore, increased levels of IL-6 and IL-8 are associated with factors of worse prognosis in ovarian cancer. Additional studies with a larger sample of patients are needed to confirm the role of cytokines as prognostic factors, in the definition of treatment, and in the development of future target therapies.
Collapse
Affiliation(s)
- Marcela Moisés Maluf Sanguinete
- a Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| | - Paula Honório De Oliveira
- a Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| | - Agrimaldo Martins-Filho
- a Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| | - Douglas Côbo Micheli
- b Discipline of Pharmacology , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| | | | - Eddie Fernando Candido Murta
- a Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| | - Rosekeila Simões Nomelini
- a Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| |
Collapse
|
22
|
Cho BH, Jung YH, Kim DJ, Woo BH, Jung JE, Lee JH, Choi YW, Park HR. Acetylshikonin suppresses invasion of Porphyromonas gingivalis‑infected YD10B oral cancer cells by modulating the interleukin-8/matrix metalloproteinase axis. Mol Med Rep 2018; 17:2327-2334. [PMID: 29207110 PMCID: PMC5783479 DOI: 10.3892/mmr.2017.8151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
The development of pharmaceutical agents possessing anti‑invasive and anti‑metastatic abilities, as well as apoptotic activity, is important in decreasing the incidence and recurrence of oral cancer. Cancer cells are known to acquire invasiveness not only through epigenetic changes, but also from inflammatory stimuli within the tumor microenvironment. Accordingly, the identification of agents that can suppress the inflammation‑promoted invasiveness of cancer cells may be important in treating cancer and improving the prognosis of patients with cancer. Acetylshikonin, a flavonoid with anti‑inflammatory activity, inhibits proliferation and induces apoptosis of oral cancer cells. In the present study, the anti‑invasive effect of acetylshikonin on YD10B oral cancer cells infected with Porphyromonas gingivalis, a major pathogen of chronic periodontitis, and the mechanisms involved were investigated. Firstly, we examined whether P. gingivalis infection increased the invasiveness of YD10B cells. Results suggested that YD10B oral cancer cells become more aggressive when they are infected with P. gingivalis. Secondly, acetylshikonin significantly inhibited the invasion of P. gingivalis‑infected YD10B cells by suppressing IL‑8 release and IL‑8‑dependent MMP release. These data suggest that acetylshikonin may be a useful preventive and therapeutic candidate for oral cancer that is chronically infected with periodontal pathogens.
Collapse
Affiliation(s)
- Bong-Hae Cho
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Miryang, Gyeongsangnam-do 50463, Republic of Korea
- Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Yun-Hoa Jung
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Miryang, Gyeongsangnam-do 50463, Republic of Korea
- Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Da Jeong Kim
- Department of Oral Pathology and BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Bok Hee Woo
- Department of Oral Pathology and BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Ji Eun Jung
- Department of Oral Pathology and BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Institute of Translational Dental Sciences, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Ji Hye Lee
- Department of Oral Pathology and BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Institute of Translational Dental Sciences, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang, Gyeongsangnam-do 50463, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology and BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Institute of Translational Dental Sciences, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|
23
|
Lee A, Djamgoz MBA. Triple negative breast cancer: Emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev 2017; 62:110-122. [PMID: 29202431 DOI: 10.1016/j.ctrv.2017.11.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
Abstract
Triple negative breast cancer (TNBC) is a complex and aggressive subtype of breast cancer which lacks oestrogen receptors, progesterone receptors and HER2 amplification, thereby making it difficult to target therapeutically. In addition, TNBC has the highest rates of metastatic disease and the poorest overall survival of all breast cancer subtypes. Resultantly, development of targeted therapies for TNBC is urgently needed. Recent efforts aimed at molecular characterisation of TNBCs have revealed various emerging therapeutic targets including PARP1, receptor and non-receptor tyrosine kinases, immune-checkpoints, androgen receptor and epigenetic proteins. Key successes include that of the PARP inhibitor, olaparib, which prolonged progression-free survival in a trial of BRCA-mutated breast cancer and for which clinical approval (in this setting) appears imminent. Nevertheless, the heterogeneity of TNBC has limited the clinical benefits of many trialled therapies in 'unselected' patients. Further, drug resistance develops following use of many targeted monotherapies due to upregulation of compensatory signalling pathways. In this review, we evaluate the current status of investigational targeted treatments and present evidence for the role of novel biomarkers and combination therapies in increasing response rates and circumventing drug-induced resistance. Additionally, we discuss promising novel targets in metastatic TNBC identified through preclinical and/or epidemiological studies.
Collapse
Affiliation(s)
- Alice Lee
- Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Neuroscience Solution to Cancer Research Group, Department of Life Sciences, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
24
|
Dominguez C, McCampbell KK, David JM, Palena C. Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight 2017; 2:94296. [PMID: 29093275 PMCID: PMC5752275 DOI: 10.1172/jci.insight.94296] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
The complex signaling networks of the tumor microenvironment that facilitate tumor growth and progression toward metastatic disease are becoming a focus of potential therapeutic options. The chemokine IL-8 is overexpressed in multiple cancer types, including triple-negative breast cancer (TNBC), where it promotes the acquisition of mesenchymal features, stemness, resistance to therapies, and the recruitment of immune-suppressive cells to the tumor site. The present study explores the utility of a clinical-stage monoclonal antibody that neutralizes IL-8 (HuMax-IL8) as a potential therapeutic option for TNBC. HuMax-IL8 was shown to revert mesenchymalization in claudin-low TNBC models both in vitro and in vivo as well as to significantly decrease the recruitment of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) at the tumor site, an effect substantiated when used in combination with docetaxel. In addition, HuMax-IL8 enhanced the susceptibility of claudin-low breast cancer cells to immune-mediated lysis with NK and antigen-specific T cells in vitro. These results demonstrate the multifaceted way in which neutralizing this single chemokine reverts mesenchymalization, decreases recruitment of MDSCs at the tumor site, assists in immune-mediated killing, and forms the rationale for using HuMax-IL8 in combination with chemotherapy or immune-based therapies for the treatment of TNBC.
Collapse
|
25
|
The Role of Interleukin-8 and Its Mechanism in Patients with Breast Cancer: Its Relation with Oxidative Stress and Estrogen Receptor. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Caccuri F, Giordano F, Barone I, Mazzuca P, Giagulli C, Andò S, Caruso A, Marsico S. HIV-1 matrix protein p17 and its variants promote human triple negative breast cancer cell aggressiveness. Infect Agent Cancer 2017; 12:49. [PMID: 29021819 PMCID: PMC5613317 DOI: 10.1186/s13027-017-0160-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Background The introduction of cART has changed the morbidity and mortality patterns affecting HIV-infected (HIV+) individuals. The risk of breast cancer in HIV+ patients has now approached the general population risk. However, breast cancer has a more aggressive clinical course and poorer outcome in HIV+ patients than in general population, without correlation with the CD4 or virus particles count. These findings suggest a likely influence of HIV-1 proteins on breast cancer aggressiveness and progression. The HIV-1 matrix protein (p17) is expressed in different tissues and organs of successfully cART-treated patients and promotes migration of different cells. Variants of p17 (vp17s), characterized by mutations and amino acid insertions, differently from the prototype p17 (refp17), also promote B-cell proliferation and transformation. Methods Wound-healing assay, matrigel-based invasion assay, and anchorage-independent proliferation assay were employed to compare the biological activity exerted by refp17 and three different vp17s on the triple-negative human breast cancer cell line MDA-MB 231. Intracellular signaling was investigated by western blot analysis. Results Motility and invasiveness increased in cells treated with both refp17 and vp17s compared to untreated cells. The effects of the viral proteins were mediated by binding to the chemokine receptor CXCR2 and activation of the ERK1/2 signaling pathway. However, vp17s promoted MDA-MB 231 cell growth and proliferation in contrast to refp17-treated or not treated cells. Conclusions In the context of the emerging role of the microenvironment in promoting and supporting cancer cell growth and metastatic spreading, here we provide the first evidence that exogenous p17 may play a crucial role in sustaining breast cancer cell migration and invasiveness, whereas some p17 variants may also be involved in cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Pietro Mazzuca
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
27
|
Garrido P, Shalaby A, Walsh EM, Keane N, Webber M, Keane MM, Sullivan FJ, Kerin MJ, Callagy G, Ryan AE, Glynn SA. Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget 2017; 8:80568-80588. [PMID: 29113326 PMCID: PMC5655221 DOI: 10.18632/oncotarget.19631] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022] Open
Abstract
Inflammation is implicated in triple negative breast cancer (TNBC) progression. TNBC carries a worse prognosis than other breast cancer subtypes, and with the clinical and molecular heterogeneity of TNBC, there is a lack of effective therapeutic targets available. Identification of molecular targets for TNBC subtypes is crucial towards personalized patient stratification. Inducible nitric oxide synthase (iNOS) has been shown to induce p53 mutation accumulation, basal-like gene signature enrichment and transactivation of the epidermal growth factor receptor (EGFR) via s-nitrosylation. Herein we report that iNOS is associated with disease recurrence, distant metastasis and decreased breast cancer specific survival in 209 cases of TNBC. Employing TNBC cell lines representing normal basal breast, and basal-like 1 and basal-like 2 tumors, we demonstrate that nitric oxide (NO) induces EGFR-dependent ERK phosphorylation in basal-like TNBC cell lines. Moreover NO mediated cell migration and cell invasion was found to be dependent on EGFR and ERK activation particularly in basal-like 2 TBNC cells. This occurred in conjunction with NF-κB activation and increased secretion of pro-inflammatory cytokines IL-8, IL-1β and TNF-α. This provides substantial evidence for EGFR as a therapeutic target to be taken into consideration in the treatment of a specific subset of basal-like TNBC overexpressing iNOS.
Collapse
Affiliation(s)
- Pablo Garrido
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland.,Apoptosis Research Centre, National University of Ireland Galway, Galway, Republic of Ireland
| | - Aliaa Shalaby
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Elaine M Walsh
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Nessa Keane
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Mark Webber
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Maccon M Keane
- Medical Oncology, Galway University Hospital, Galway, Republic of Ireland
| | - Francis J Sullivan
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Republic of Ireland
| | - Michael J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Grace Callagy
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland.,Regenerative Medicine Institute (REMEDI), Biomedical Sciences, National University of Ireland Galway, Galway, Republic of Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland.,Prostate Cancer Institute, National University of Ireland Galway, Galway, Republic of Ireland.,Apoptosis Research Centre, National University of Ireland Galway, Galway, Republic of Ireland
| |
Collapse
|
28
|
Custódio-Santos T, Videira M, Brito MA. Brain metastasization of breast cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:132-147. [PMID: 28341420 DOI: 10.1016/j.bbcan.2017.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 01/15/2023]
Abstract
Central nervous system metastases have been reported in 15-25% of breast cancer patients, and the incidence is increasing. Moreover, the survival of these patients is generally poor, with reports of a 1-year survival rate of 20%. Therefore, a better knowledge about the determinants of brain metastasization is essential for the improvement of the clinical outcomes. Here, we summarize the current data about the metastatic cascade, ranging from the output of cancer cells from the primary tumour to their colonization in the brain, which involves the epithelial-mesenchymal transition, invasion of mammary tissue, intravasation into circulation, and homing into and extravasation towards the brain. The phenotypic change in malignant cells, and the importance of the microenvironment in the formation of brain metastases are also inspected. Finally, the importance of genetic and epigenetic changes, and the recently disclosed effects of microRNAs in brain metastasization of breast cancer are highlighted.
Collapse
Affiliation(s)
- Tânia Custódio-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Department of Galenic Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|