1
|
Dortez S, Pacheco M, Gasull T, Crevillen AG, Escarpa A. A dual colorimetric-electrochemical microfluidic paper-based analytical device for point-of-care testing of ischemic strokes. LAB ON A CHIP 2024; 24:4253-4263. [PMID: 39118539 DOI: 10.1039/d4lc00398e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A novel microfluidic paper-based analytical device with dual colorimetric and electrochemical detection (dual μPAD) was developed for the assessment of transferrin saturation (TSAT) in samples from ischemic stroke patients. TSAT was calculated from the ratio between transferrin-bound iron, which was colorimetrically measured, and the total iron-binding capacity, which was electrochemically measured. To this end, a μPAD was smartly designed, which integrated both colorimetric and electrochemical detection reservoirs, communicating via a microchannel acting as a chemical reactor, and with preloading/storing capabilities (reagent-free device). This approach allowed the dual and simultaneous determination of both parameters, providing an improvement in the reliability of the results due to an independent signal principle and processing. The μPADs were validated by analyzing a certified reference material, showing excellent accuracy (Er ≤ 5%) and precision (RSD ≤ 2%). Then they were applied to the analysis of diagnosed serum samples from ischemic stroke patients. The results were compared to those provided by a free-interference method (urea-PAGE). Impressively, both methods exhibited a good correlation (r = 0.96, p < 0.05) and no significant differences were found between them (slope 1.0 ± 0.1 and the intercept 1 ± 4, p < 0.05), demonstrating the excellent accuracy of our approach during the analysis of complex samples from ischemic stroke patients, using just 90 μL of clinical samples and taking less than 90 min in comparison with the 18 hours required by the urea-PAGE approach. The developed fully integrated colorimetric-electrochemical μPAD is a promising ready to use reagent-free device for the point-of-care testing of TSAT, which can be used to assist physicians in the fast diagnosis and prognosis of ischemic strokes, where the decision-time is crucial for the patient's survival.
Collapse
Affiliation(s)
- Silvia Dortez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, 28802, Alcala de Henares, Madrid, Spain.
| | - Marta Pacheco
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Teresa Gasull
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute (IGTP), 08916, Badalona, Barcelona, Spain
| | - Agustín G Crevillen
- Department of Analytical Sciences, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), 28040, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, 28802, Alcala de Henares, Madrid, Spain.
- Chemical Research Institute "Andrés M. Del Río" (IQAR), University of Alcala, 28802, Alcala de Henares, Madrid, Spain
| |
Collapse
|
2
|
Loggini A, Hornik J, Hornik A. The role of microRNAs as super-early biomarkers in acute ischemic stroke: A systematic review. Clin Neurol Neurosurg 2024; 244:108416. [PMID: 38959787 DOI: 10.1016/j.clineuro.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/08/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND To date, no biomarkers have been validated in acute ischemic stroke, and its diagnosis currently relies on clinical judgement and radiographic findings. The presence of circulating microRNAs in the setting AIS has grown significant attention in recent years. This study aims to summarize the evidence of microRNAs as super-early biomarkers (within 12 hours from last known well) and determine their temporal expression in AIS. METHODS This review was conducted in accordance with the PRISMA statement recommendations. Three databases were searched (Pubmed, Scopus, and Cochrane) for case-control studies comparing the expression of microRNAs in AIS patients and healthy controls. Risk of bias was computed using the QUADAS-2 Scale tool. The review protocol was registered in PROSPERO (CRD42023454012). RESULTS A total of 186 articles were screened and 6 full-text articles were included in this review, involving 441 AIS and 307 controls. Samples were obtained from blood in three studies, plasma in two studies, and serum in one study. All studies utilized RT-qPCR as quantification method. One study included only patients with large artery atherosclerosis. Eleven microRNAs were found to be overexpressed and seven underexpressed in AIS. No single microRNA was validated in two separate studies. The misexpressed microRNAs were associated with inflammation, platelet activation, angiogenesis, and apoptosis. Two studies followed the temporal expression of microRNAs. miR-125b-5p and miR-143-3p (inflammation, angiogenesis, and apoptosis) normalized at 90 days. miR-125a-5p (angiogenesis) remained elevated. The heterogeneity in temporal sampling and microRNAs detected did not allow to perform a quantitative analysis. Qualitative analysis of each study revealed an overall moderate risk of bias. CONCLUSIONS This review suggests the promising potential role of microRNAs as adjuvant tool in the early diagnosis of AIS. Further larger studies are needed to corroborate these findings and discover a reliable and reproducible biomarker.
Collapse
Affiliation(s)
- Andrea Loggini
- Brain and Spine Institute. Southern Illinois Healthcare, Carbondale, IL, 62901, United States; Southern Illinois University, Carbondale, IL, 62901, United States.
| | - Jonatan Hornik
- Brain and Spine Institute. Southern Illinois Healthcare, Carbondale, IL, 62901, United States; Southern Illinois University, Carbondale, IL, 62901, United States
| | - Alejandro Hornik
- Brain and Spine Institute. Southern Illinois Healthcare, Carbondale, IL, 62901, United States; Southern Illinois University, Carbondale, IL, 62901, United States
| |
Collapse
|
3
|
Choudhary P, Singh VK, Dixit A. 2D-Bio-FETs for sensitive detection of cardiovascular diseases. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:413004. [PMID: 38959912 DOI: 10.1088/1361-648x/ad5ee9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The biosensing industry has seen exponential growth in the past decade. Impact of biosensors in the current scenario cannot be overlooked. Cardiovascular diseases (CvDs) have been recognized as one of the major causes for millions of deaths globally. This mortality can be minimized by early and accurate detection/diagnosis of CvDs with the help of biosensing devices. This also presents a global market opportunity for the development of biosensors for CvDs. A vast variety of biosensing methods and devices have been developed for this problem. Most of commercially available platforms for CvD detection rely on optical (fluorometric and colorimetric analysis) techniques using serum biomarkers since optical testing is the gold standard in medical diagnosis. Field effect transistors-based biosensors, termed as Bio-FETs, are the upcoming devices for blood or serum analyte detection due to excellent sensitivity, low operational voltage, handheld device structure and simple chip-based operation. Further, the discovery of two dimensional (2D) materials and their integration with conventional FETs has improved the overvoltage problem, sensitivity and strict operating conditions as compared to conventional FETs. Graphene-FETs based biosensing devices have been proven as promising candidates due to their attractive properties. Despite the severe threat of CvDs which has further increased in post-covid era, the Bio-FET sensor studies in literature are still rare. In this review, we aim to provide a comprehensive view of all the multidisciplinary concepts related to 2D-BioFETs for CvDs. A critical review of the different platforms has been covered with detailed discussions of related studies to provide a clear concept and present status of 2D-BioFETs based CvD biosensors.
Collapse
Affiliation(s)
- Piyush Choudhary
- Advanced Material and Device (AMAD) Laboratory, Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342030, India
| | - Vijay K Singh
- Advanced Material and Device (AMAD) Laboratory, Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342030, India
| | - Ambesh Dixit
- Advanced Material and Device (AMAD) Laboratory, Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
4
|
Mortelmans T, Marty B, Kazazis D, Padeste C, Li X, Ekinci Y. Three-Dimensional Microfluidic Capillary Device for Rapid and Multiplexed Immunoassays in Whole Blood. ACS Sens 2024; 9:2455-2464. [PMID: 38687557 PMCID: PMC11129352 DOI: 10.1021/acssensors.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
In this study, we demonstrate whole blood immunoassays using a microfluidic device optimized for conducting rapid and multiplexed fluorescence-linked immunoassays. The device is capable of handling whole blood samples without any preparatory treatment. The three-dimensional channels in poly(methyl methacrylate) are designed to passively load bodily fluids and, due to their linearly tapered profile, facilitate size-dependent immobilization of biofunctionalized particles. The channel geometry is optimized to allow for the unimpeded flow of cellular constituents such as red blood cells (RBCs). Additionally, to make the device easier to operate, the biofunctionalized particles are pretrapped in a first step, and the channel is dried under vacuum, after which it can be loaded with the biological sample. This novel approach and design eliminated the need for traditionally laborious steps such as filtering, incubation, and washing steps, thereby substantially simplifying the immunoassay procedures. Moreover, by leveraging the shallow device dimensions, we show that sample loading to read-out is possible within 5 min. Our results also show that the presence of RBCs does not compromise the sensitivity of the assays when compared to those performed in a pure buffer solution. This highlights the practical adaptability of the device for simple and rapid whole-blood assays. Lastly, we demonstrate the device's multiplexing capability by pretrapping particles of different sizes, each functionalized with a different antigen, thus enabling the performance of multiplexed on-chip whole-blood immunoassays, showcasing the device's versatility and effectiveness toward low-cost, simple, and multiplexed sensing of biomarkers and pathogens directly in whole blood.
Collapse
Affiliation(s)
- Thomas Mortelmans
- Laboratory for X-ray Nanoscience and Technologies, 5232 Villigen, Switzerland
- Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Balz Marty
- Laboratory for X-ray Nanoscience and Technologies, 5232 Villigen, Switzerland
| | - Dimitrios Kazazis
- Laboratory for X-ray Nanoscience and Technologies, 5232 Villigen, Switzerland
| | - Celestino Padeste
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Yasin Ekinci
- Laboratory for X-ray Nanoscience and Technologies, 5232 Villigen, Switzerland
| |
Collapse
|
5
|
Erdoğan MŞ, Arpak ES, Keles CSK, Villagra F, Işık EÖ, Afşar N, Yucesoy CA, Mur LAJ, Akanyeti O, Saybaşılı H. Biochemical, biomechanical and imaging biomarkers of ischemic stroke: Time for integrative thinking. Eur J Neurosci 2024; 59:1789-1818. [PMID: 38221768 DOI: 10.1111/ejn.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
Stroke is one of the leading causes of adult disability affecting millions of people worldwide. Post-stroke cognitive and motor impairments diminish quality of life and functional independence. There is an increased risk of having a second stroke and developing secondary conditions with long-term social and economic impacts. With increasing number of stroke incidents, shortage of medical professionals and limited budgets, health services are struggling to provide a care that can break the vicious cycle of stroke. Effective post-stroke recovery hinges on holistic, integrative and personalized care starting from improved diagnosis and treatment in clinics to continuous rehabilitation and support in the community. To improve stroke care pathways, there have been growing efforts in discovering biomarkers that can provide valuable insights into the neural, physiological and biomechanical consequences of stroke and how patients respond to new interventions. In this review paper, we aim to summarize recent biomarker discovery research focusing on three modalities (brain imaging, blood sampling and gait assessments), look at some established and forthcoming biomarkers, and discuss their usefulness and complementarity within the context of comprehensive stroke care. We also emphasize the importance of biomarker guided personalized interventions to enhance stroke treatment and post-stroke recovery.
Collapse
Affiliation(s)
| | - Esra Sümer Arpak
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Cemre Su Kaya Keles
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Stuttgart, Germany
| | - Federico Villagra
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | - Esin Öztürk Işık
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Nazire Afşar
- Neurology, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Can A Yucesoy
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Luis A J Mur
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | - Otar Akanyeti
- Department of Computer Science, Llandinam Building, Aberystwyth University, Aberystwyth, UK
| | - Hale Saybaşılı
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
6
|
Bayat M, Hooshmandi E, Karimi N, Rahimi M, Tabrizi R, Asadabadi T, Salehi MS, Zafarmand SS, Owjfard M, Garcia Esperon C, Spratt N, Levi C, Borhani-Haghighi A. Sequential changes in expression of long non-coding RNAs THRIL and MALAT1 after ischemic stroke. CURRENT JOURNAL OF NEUROLOGY 2024; 23:74-82. [PMID: 39431230 PMCID: PMC11489629 DOI: 10.18502/cjn.v23i1.16437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/07/2023] [Indexed: 10/22/2024]
Abstract
Background: Inflammation is the major contributor to the pathophysiology of ischemic stroke (IS). Long non-coding ribonucleic acids (lncRNAs) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and tumor necrosis factor and heterogeneous nuclear ribonucleoprotein L-related immunoregulatory (THRIL) have been demonstrated to be up-regulated in inflammation and atherosclerosis. Therefore, we aimed to study the expression profile of these lncRNAs after IS. Methods: This observational case-control study was conducted in Namazi Hospital, Shiraz, Iran. The real-time polymerase chain reaction (RT-PCR) measured the sequential changes in circulating levels of MALAT1 and THRIL on days 1, 3, and 5 after IS. The receiver operating characteristic (ROC) curve analysis was used to estimate the diagnostic and prognostic potential of lncRNAs with the area under the curve (AUC). Results: In patients with IS, the relative MALAT1 and THRIL expressions were significantly higher than the controls (P < 0.001 and P < 0.01, respectively), on days 1, 3, and 5 after stroke. We showed a significantly increase in lncRNAs expression on day five compared to days 1 and 3 after stroke. Moreover, a positive correlation was detected between MALAT1 expression and time within the first 24 hours after stroke (r = 0.27, P = 0.03). Logistic regression analysis showed a significant positive association between MALAT1 and THRIL and the risk of stroke evolution. We found a potential diagnostic marker for MALAT1 with an AUC of 0.78. Conclusion: We demonstrated the significant sequential upregulation in MALAT1 and THRIL expression on days 1, 3, and 5 after IS with a significant positive association with the risk of stroke. MALAT1 also significantly correlated with time within the first 24 hours after stroke.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Karimi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moosa Rahimi
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Tahereh Asadabadi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Neil Spratt
- Department of Neurology, John Hunter Hospital, Newcastle, Newcastle, Australia
| | - Christopher Levi
- Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | | |
Collapse
|
7
|
Sienel RI, Mamrak U, Biller J, Roth S, Zellner A, Parakaw T, Khambata RS, Liesz A, Haffner C, Ahluwalia A, Seker BF, Plesnila N. Inhaled nitric oxide suppresses neuroinflammation in experimental ischemic stroke. J Neuroinflammation 2023; 20:301. [PMID: 38102677 PMCID: PMC10725028 DOI: 10.1186/s12974-023-02988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Ischemic stroke is a major global health issue and characterized by acute vascular dysfunction and subsequent neuroinflammation. However, the relationship between these processes remains elusive. In the current study, we investigated whether alleviating vascular dysfunction by restoring vascular nitric oxide (NO) reduces post-stroke inflammation. Mice were subjected to experimental stroke and received inhaled NO (iNO; 50 ppm) after reperfusion. iNO normalized vascular cyclic guanosine monophosphate (cGMP) levels, reduced the elevated expression of intercellular adhesion molecule-1 (ICAM-1), and returned leukocyte adhesion to baseline levels. Reduction of vascular pathology significantly reduced the inflammatory cytokines interleukin-1β (Il-1β), interleukin-6 (Il-6), and tumor necrosis factor-α (TNF-α), within the brain parenchyma. These findings suggest that vascular dysfunction is responsible for leukocyte adhesion and that these processes drive parenchymal inflammation. Reversing vascular dysfunction may therefore emerge as a novel approach to diminish neuroinflammation after ischemic stroke and possibly other ischemic disorders.
Collapse
Affiliation(s)
- Rebecca I Sienel
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Janina Biller
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Andreas Zellner
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Tipparat Parakaw
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Burcu F Seker
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
8
|
Huwyler F, Eden J, Binz J, Cunningham L, Sousa Da Silva RX, Clavien P, Dutkowski P, Tibbitt MW, Hefti M. A Spectrofluorometric Method for Real-Time Graft Assessment and Patient Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301537. [PMID: 37265001 PMCID: PMC10427358 DOI: 10.1002/advs.202301537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Biomarkers are powerful clinical diagnostics and predictors of patient outcome. However, robust measurements often require time and expensive laboratory equipment, which is insufficient to track rapid changes and limits direct use in the operating room. Here, this study presents a portable spectrophotometric device for continuous real-time measurements of fluorescent and non-fluorescent biomarkers at the point of care. This study measures the mitochondrial damage biomarker flavin mononucleotide (FMN) in 26 extended criteria human liver grafts undergoing hypothermic oxygenated perfusion to guide clinical graft assessment. Real-time data identified seven organs unsuitable for transplant that are discarded. The remaining grafts are transplanted and FMN values correlated with post-transplant indicators of liver function and patient recovery. Further, this study shows how this device can be used to monitor dialysis patients by measuring creatinine in real-time. Our approach provides a simple method to monitor biomarkers directly within biological fluids to improve organ assessment, patient care, and biomarker discovery.
Collapse
Affiliation(s)
- Florian Huwyler
- Macromolecular Engineering Lab, Department of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
- Department of Surgery and Transplantation, Swiss Hepato‐Pancreato‐Biliary (HPB) and Transplant CenterUniversity Hospital ZurichZurich8091Switzerland
- Wyss Zurich Translational CenterETH Zurich and University of ZurichZurich8092Switzerland
| | - Janina Eden
- Department of Surgery and Transplantation, Swiss Hepato‐Pancreato‐Biliary (HPB) and Transplant CenterUniversity Hospital ZurichZurich8091Switzerland
| | - Jonas Binz
- Macromolecular Engineering Lab, Department of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Leslie Cunningham
- Macromolecular Engineering Lab, Department of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
- Department of Surgery and Transplantation, Swiss Hepato‐Pancreato‐Biliary (HPB) and Transplant CenterUniversity Hospital ZurichZurich8091Switzerland
- Wyss Zurich Translational CenterETH Zurich and University of ZurichZurich8092Switzerland
| | - Richard X. Sousa Da Silva
- Department of Surgery and Transplantation, Swiss Hepato‐Pancreato‐Biliary (HPB) and Transplant CenterUniversity Hospital ZurichZurich8091Switzerland
- Wyss Zurich Translational CenterETH Zurich and University of ZurichZurich8092Switzerland
| | - Pierre‐Alain Clavien
- Department of Surgery and Transplantation, Swiss Hepato‐Pancreato‐Biliary (HPB) and Transplant CenterUniversity Hospital ZurichZurich8091Switzerland
- Wyss Zurich Translational CenterETH Zurich and University of ZurichZurich8092Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss Hepato‐Pancreato‐Biliary (HPB) and Transplant CenterUniversity Hospital ZurichZurich8091Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering Lab, Department of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
- Wyss Zurich Translational CenterETH Zurich and University of ZurichZurich8092Switzerland
| | - Max Hefti
- Wyss Zurich Translational CenterETH Zurich and University of ZurichZurich8092Switzerland
| |
Collapse
|
9
|
Rada CC, Yuki K, Ding J, Kuo CJ. Regulation of the Blood-Brain Barrier in Health and Disease. Cold Spring Harb Perspect Med 2023; 13:a041191. [PMID: 36987582 PMCID: PMC10691497 DOI: 10.1101/cshperspect.a041191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The neurovascular unit is a dynamic microenvironment with tightly controlled signaling and transport coordinated by the blood-brain barrier (BBB). A properly functioning BBB allows sufficient movement of ions and macromolecules to meet the high metabolic demand of the central nervous system (CNS), while protecting the brain from pathogenic and noxious insults. This review describes the main cell types comprising the BBB and unique molecular signatures of these cells. Additionally, major signaling pathways for BBB development and maintenance are highlighted. Finally, we describe the pathophysiology of BBB diseases, their relationship to barrier dysfunction, and identify avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Cara C Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
10
|
Amini H, Knepp B, Rodriguez F, Jickling GC, Hull H, Carmona-Mora P, Bushnell C, Ander BP, Sharp FR, Stamova B. Early peripheral blood gene expression associated with good and poor 90-day ischemic stroke outcomes. J Neuroinflammation 2023; 20:13. [PMID: 36691064 PMCID: PMC9869610 DOI: 10.1186/s12974-022-02680-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND This study identified early immune gene responses in peripheral blood associated with 90-day ischemic stroke (IS) outcomes. METHODS Peripheral blood samples from the CLEAR trial IS patients at ≤ 3 h, 5 h, and 24 h after stroke were compared to vascular risk factor matched controls. Whole-transcriptome analyses identified genes and networks associated with 90-day IS outcome assessed using the modified Rankin Scale (mRS) and the NIH Stroke Scale (NIHSS). RESULTS The expression of 467, 526, and 571 genes measured at ≤ 3, 5 and 24 h after IS, respectively, were associated with poor 90-day mRS outcome (mRS ≥ 3), while 49, 100 and 35 genes at ≤ 3, 5 and 24 h after IS were associated with good mRS 90-day outcome (mRS ≤ 2). Poor outcomes were associated with up-regulated genes or pathways such as IL-6, IL-7, IL-1, STAT3, S100A12, acute phase response, P38/MAPK, FGF, TGFA, MMP9, NF-kB, Toll-like receptor, iNOS, and PI3K/AKT. There were 94 probe sets shared for poor outcomes vs. controls at all three time-points that correlated with 90-day mRS; 13 probe sets were shared for good outcomes vs. controls at all three time-points; and 46 probe sets were shared for poor vs. good outcomes at all three time-points that correlated with 90-day mRS. Weighted Gene Co-Expression Network Analysis (WGCNA) revealed modules significantly associated with 90-day outcome for mRS and NIHSS. Poor outcome modules were enriched with up-regulated neutrophil genes and with down-regulated T cell, B cell and monocyte-specific genes; and good outcome modules were associated with erythroblasts and megakaryocytes. Finally, genes identified by genome-wide association studies (GWAS) to contain significant stroke risk loci or loci associated with stroke outcome including ATP2B, GRK5, SH3PXD2A, CENPQ, HOXC4, HDAC9, BNC2, PTPN11, PIK3CG, CDK6, and PDE4DIP were significantly differentially expressed as a function of stroke outcome in the current study. CONCLUSIONS This study suggests the immune response after stroke may impact functional outcomes and that some of the early post-stroke gene expression markers associated with outcome could be useful for predicting outcomes and could be targets for improving outcomes.
Collapse
Affiliation(s)
- Hajar Amini
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Bodie Knepp
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Fernando Rodriguez
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Glen C. Jickling
- grid.17089.370000 0001 2190 316XDivision of Neurology, University of Alberta, Edmonton, AB Canada
| | - Heather Hull
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Paulina Carmona-Mora
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Cheryl Bushnell
- grid.241167.70000 0001 2185 3318Wake Forest University School of Medicine, Winston Salem, NC USA
| | - Bradley P. Ander
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Frank R. Sharp
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Boryana Stamova
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| |
Collapse
|
11
|
Zhang S, Huang S, Hu D, Jiang F, Lv Y, Liu G. Biological Properties and Clinical Significance of Lipoprotein-Associated Phospholipase A 2 in Ischemic Stroke. Cardiovasc Ther 2022; 2022:3328574. [PMID: 36313479 PMCID: PMC9586817 DOI: 10.1155/2022/3328574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022] Open
Abstract
Ischemic stroke, which occurs following blockage of the blood supply to the brain, is a leading cause of death worldwide. Its main cause is atherosclerosis, a disease of the arteries characterized by the deposition of plaques of fatty material on the inner artery walls. Multiple proteins involved in the inflammation response have been identified as diagnosing biomarkers of ischemic stroke. One of these is lipoprotein-associated phospholipase A2 (Lp-PLA2), an enzyme that can hydrolyze circulating oxidized phospholipids, generating proinflammatory lysophosphatidylcholine and promoting the development of atherosclerosis. In the last two decades, a number of studies have revealed that both the concentration and the activity of Lp-PLA2 are independent biomarkers of ischemic stroke. The US Food and Drug Administration (FDA) has approved two tests to determine Lp-PLA2 mass and activity for predicting stroke. In this review, we summarize the biological properties of Lp-PLA2, the detection sensitivity and limitations of Lp-PLA2 measurement, the clinical significance and association of Lp-PLA2 in ischemic stroke, and the prospects of therapeutic inhibition of Lp-PLA2 as an intervention and treatment.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Laboratory, Hospital 3201, Hanzhong, 723000 Shaanxi, China
| | - Shuchun Huang
- Department of Neurology, Hospital 302 Attached to Guizhou Aviation Group, Anshun, 561000 Guizhou, China
| | - Dingju Hu
- Department of Neurology, Hospital 302 Attached to Guizhou Aviation Group, Anshun, 561000 Guizhou, China
| | | | - Yanli Lv
- Biotecnovo (Beijing) Co. Ltd., Beijing 100176, China
| | - Guoqi Liu
- Biotecnovo (Beijing) Co. Ltd., Beijing 100176, China
| |
Collapse
|
12
|
Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J, Sykes G, Jickling G. Association of Thrombin Generation With Leukocyte Inflammatory Profile in Patients With Acute Ischemic Stroke. Neurology 2022; 99:e1356-e1363. [PMID: 35790427 PMCID: PMC9576286 DOI: 10.1212/wnl.0000000000200909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Thrombosis is central to the pathogenesis of acute ischemic stroke, with higher thrombin generation being associated with increased stroke risk. The immune system may contribute to thrombin generation in stroke and thus may offer novel strategies for stroke prevention. This study addresses the research question regarding the relationship of thrombin generation to leukocyte gene expression in patients with acute ischemic stroke. METHODS We isolated RNA from whole blood and examined the relationship to thrombin generation capacity in patients with acute ischemic stroke. Due to its effects on thrombin generation, patients on anticoagulants were excluded from the study. The relationship of gene expression with peak thrombin was evaluated by analysis of covariance across peak thrombin quartiles adjusted for sex and age. RESULTS In 97 patients with acute ischemic stroke, peak thrombin was variable, ranging from 252.0 to 752.4 nM. Increased peak thrombin was associated with differences in thromboinflammatory leukocyte gene expression, including a decrease in ADAM metallopeptidase with thrombospondin type 1 motif 13 and an increase in nuclear factor κB (NF-κB)-activating protein, protein disulfide isomerase family A member 5, and tissue factor pathway inhibitor 2. Pathways associated with peak thrombin included interleukin 6 signaling, thrombin signaling, and NF-κB signaling. A linear discriminant analysis model summarizing the immune activation associated with peak thrombin in a first cohort of stroke could distinguish patients with low peak thrombin from high peak thrombin in a second cohort of 112 patients with acute ischemic stroke. DISCUSSION The identified genes and pathways support a role of the immune system contributing to thrombus formation in patients with stroke. These may have relevance to antithrombotic strategies for stroke prevention.
Collapse
Affiliation(s)
- Sarina Falcione
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| | - Danielle Munsterman
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Twinkle Joy
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Joseph Kamtchum-Tatuene
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Gina Sykes
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Glen Jickling
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
13
|
Fathima N, Manorenj S, Vishwakarma SK, Khan AA. Role of cell-free DNA for predicting incidence and outcome of patients with ischemic stroke. World J Neurol 2022; 8:1-9. [DOI: 10.5316/wjn.v8.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 02/08/2023] Open
Abstract
Early diagnosis and prognosis of ischemic stroke remains a critical challenge in clinical settings. A blood biomarker can be a promising quantitative tool to represent the clinical manifestations in ischemic stroke. Cell-free DNA (cfDNA) has recently turned out to be a popular circulating biomarker due to its potential relevance for diagnostic applications in a variety of disorders. Despite bright outlook of cfDNA in clinical applications, very less is known about its origin, composition, or function. Several recent studies have identified cell-derived mitochondrial components including mitochondrial DNA (mtDNA) in the extracellular spaces including blood and cerebrospinal fluid. However, the time course of alterations in plasma mtDNA concentrations in patients after an ischemic stroke is poorly understood. DNA is thought to be freed into the plasma shortly after the commencement of an ischemic stroke and then gradually decreased. However, the importance of cell-free mtDNA (cf-mtDNA) in ischemic stroke is still unknown. This review summarizes about the utility of biomarkers which has been standardized in clinical settings and role of cfDNA including cf-mtDNA as a non-invasive potential biomarker of ischemic stroke.
Collapse
Affiliation(s)
- Nusrath Fathima
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Sandhya Manorenj
- Department of Neurology, Princess Esra Hospital, Deccan College of Medical Sciences, Hyderabad 500002, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| |
Collapse
|
14
|
Zhang J, Yuan T, Wei S, Feng Z, Li B, Huang H. New strategy for clinical etiologic diagnosis of acute ischemic stroke and blood biomarker discovery based on machine learning. RSC Adv 2022; 12:14716-14723. [PMID: 35702238 PMCID: PMC9109259 DOI: 10.1039/d2ra02022j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Acute ischemic stroke (AIS) is a syndrome characterized by high morbidity, prevalence, mortality, recurrence and disability. The longer the delay before proper treatment of a stroke, the greater the likelihood of brain damage and disability. Computed tomography and nuclear magnetic resonance are the primary choices for fast diagnosis of AIS in the early stage, which can provide certain information about infarction location and degree, and even the vascular distribution of lesions responsible for strokes. However, this is quite difficult to achieve in small clinics or at-home diagnoses. Hematology tests could quickly obtain a large number of pathology-related indicators, and offer an effective method for rapid AIS diagnosis when combined with the machine learning technique. To explore a reliable, predictable method for early clinical etiologic diagnosis of AIS, a retrospective study was deployed on 456 AIS patients at the early stage and 28 reference subjects without the symptoms of AIS, by means of the selected significant traits amongst 64 clinical and blood traits in conjunction with powerful machine learning strategies. Five representative biomarkers were closely related to cardioembolic (CE), 22 to large artery atherosclerosis (LAA), and 15 to small vessel occlusion (SVO) strokes, respectively. With these biomarkers, different etiologic subtypes of stroke patients were determined with high accuracy of >0.73, sensitivity of >0.73, and specificity of >0.70, which was comparable to the accuracy obtained in the emergency department by clinical diagnosis. The proposed method may offer an alternative strategy for the etiologic diagnosis of AIS at the early stage when integrating significant blood traits into machine learning. A rapid and safe strategy was proposed for clinical etiologic diagnosis of acute ischemic stroke at the early stage using clinical hematology traits and machine learning. Blood biomarkers were effectively identified.![]()
Collapse
Affiliation(s)
- Jin Zhang
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University Guiyang 550025 China
| | - Ting Yuan
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University Guiyang 550014 China.,School of Clinical Laboratory Science, Guizhou Medical University Guiyang 550025 China
| | - Sixi Wei
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University Guiyang 550014 China.,School of Clinical Laboratory Science, Guizhou Medical University Guiyang 550025 China
| | - Zhanhui Feng
- Neurological Department, The Affiliated Hospital of Guizhou Medical University Guiyang 550014 China
| | - Boyan Li
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University Guiyang 550025 China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University Guiyang 550014 China.,School of Clinical Laboratory Science, Guizhou Medical University Guiyang 550025 China
| |
Collapse
|
15
|
Abstract
Ischemic heart disease and stroke are the number 1 and number 2 causes of death worldwide, respectively. A lifelong commitment to exercise reduces the risk of these adverse events and is also associated with several cardiometabolic improvements, including reductions in blood pressure, cholesterol, and inflammatory markers, as well as improved glucose control. Routine exercise also reduces the risk of developing comorbidities that increase the risk of cardiovascular or cerebrovascular disease. While the benefits of a lifelong commitment to exercise are well documented, there is a complex interaction between exercise and stroke risk, such that the risk of ischemic or hemorrhagic stroke may increase acutely during or immediately following exercise. In this article, we discuss the physiological responses to different types of exercise, as well as the determinants of resting and exertional cerebrovascular perfusion, and explore the complex interaction between atrial fibrillation, exercise, and stroke risk. Finally, we highlight the increased risk of stroke during different types of exercise, as well as factors that may alleviate this risk.
Collapse
Affiliation(s)
- Justin A Edward
- Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora. (J.A.E., W.K.C.)
| | - William K Cornwell
- Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora. (J.A.E., W.K.C.).,Clinical Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora. (W.K.C.)
| |
Collapse
|
16
|
Gupta S, Mazumder P. Exosomes as diagnostic tools. Adv Clin Chem 2022; 110:117-144. [DOI: 10.1016/bs.acc.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Patel D, Wairkar S. Biotechnology-based therapeutics for management of cerebral stroke. Eur J Pharmacol 2021; 913:174638. [PMID: 34801531 DOI: 10.1016/j.ejphar.2021.174638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Cerebral stroke, commonly caused due to hindrance in blood flow, is broadly classified into two categories-ischemic and haemorrhagic strokes. The onset of stroke triggers multiple mechanisms causing inflammation, generation of free radicals and protein damage leading to apoptosis of neuronal cells. The current therapies available for cerebral strokes involve use of complex surgical treatments and tissue plasminogen activator which increases the risk of internal bleeding, brain edema and cerebral damage, thereby restricting their use in clinical setting. The alarming need to develop safe, effective, target specific systems which, promote neuronal growth and reduce cerebral inflammation can be accomplished with use of biotechnological approaches. The article gives an insight to biotechnology-based advancements for tissue plasminogen activators, cell penetrating peptides, growth factors, ribonucleic acid systems and monoclonal antibodies for cerebral stroke. We also emphasis on challenges and future perspective of biotechnology-based therapeutics for better management of stroke.
Collapse
Affiliation(s)
- Dhrumi Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
18
|
Gong W, Sun M, Guo X, Liu Y, Li H, Xie L, Li X. Nanowired dual-electrodes surface to monitor cerebral ischemia by current-volt measurements. 3 Biotech 2021; 11:502. [PMID: 34881165 PMCID: PMC8599545 DOI: 10.1007/s13205-021-03048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022] Open
Abstract
The level of clotting protein 'factor IX' (FIX) is highly associated with cerebral ischemia, and this research work has developed a sensitive detection of FIX on dielectrode sensor by current-volt measurement. Sensing area was grown with zinc oxide nanowire to attach more probe for FIX interaction. Aptamer was utilized as the detection probe and attached on the sensing electrode surface through amine-aldehyde chemical linkage. In addition, biotin-streptavidin interaction was utilized to attach the higher number aptamers on the electrode surface connected with dual-probe station. FIX detection limit was found as 10 fM in the phosphate buffer saline spiked samples and 1:320 dilution of human serum. The linear ranges were as 10 fM to 100 pM and 1:320 to 1:80, respectively. With a good determination co-efficient [y = 2.6813x - 3.8467; R 2 = 0.9479] this biosensing strategy helps to quantify FIX and monitor the condition of cerebral ischemia.
Collapse
Affiliation(s)
- Wei Gong
- Department of Neurology 2, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Meilin Sun
- Department of Neurology 4, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Xiaoling Guo
- Department of Neurology, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Yalin Liu
- Department of Neurology 2, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Hongsheng Li
- Department of Neurology 2, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Lanlan Xie
- Department of Neurology 2, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| | - Xipeng Li
- Department of Neurology 2, Xingtai People’s Hospital, Xingtai, 054001 Hebei China
| |
Collapse
|
19
|
Kuryata OV, Kushnir YS, Nedzvetsky VS, Korsa VV, Tykhomyrov AA. Serum Levels of the Biomarkers Associated with Astrocytosis, Neurodegeneration, and Demyelination: Neurological Benefits of Citicoline Treatment of Patients with Ischemic Stroke and Atrial Fibrillation. NEUROPHYSIOLOGY+ 2021; 53:2-12. [PMID: 34866692 PMCID: PMC8630515 DOI: 10.1007/s11062-021-09907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 01/31/2023]
Abstract
Ischemic stroke is a main complication of atrial fibrillation (cardiac arrhythmia). The aim of our study was to estimate the effects of citicoline (CDP-choline) therapy on the levels of circulating neurospecific protein markers in serum of the patients with ischemic stroke and atrial fibrillation. Fiftyfour patients (mean age 76 years) treated with citicoline in a dose of 2.0 g daily intravenously for 12 to 14 days in addition to basic treatment formed the examined group. Thirty-two patients (mean age 68.5 years) obtained only standard therapy and formed the control group. Serum levels of neuronal and glial protein markers, including glial fibrillary acidic protein (GFAP), a neurofilament light subunit (NF-L), myelin basic protein (MBP), and ionized calcium-binding adaptor molecule 1 (Iba1), were measured in patients of both groups before and after treatment; an immunoblotting technique followed by densitometry analysis were used. Supplementary citicoline treatment provided significant reductions of the levels of GFAP (33%, P = 0.034), NF-L (27%, P = 0.019), and MBP (32%, P = 0.018), as compared to the initial values, while there were no marked changes in the studied parameters in the control group. The results obtained allow us to hypothesize that therapeutic benefit of citicoline in patients with ischemic stroke and atrial fibrillation can be mediated through increasing neuronal viability, protecting against axonal injury, decreasing the level of reactive astrogliosis, preventing deficiencies in the blood-brain integrity, and reducing the intensity of demyelination. However, citicoline administration exerted no effect on the blood content of microglial marker Iba-1, thus possibly preserving an important functional significance of microglia, which is needed to resolve local inflammation and clear cellular debris, and also provide protective factors to reduce cell injury in the ischemic brain. The obtained results indicate that serum levels of neurospecific biomarkers are significant and clinically relevant indices of the efficiency of treatment of the above-mentioned pathologies and can be used for further investigations of the stroke pathophysiology and molecular mechanisms of nootropic-mediated neuroprotection.
Collapse
Affiliation(s)
| | | | - V. S. Nedzvetsky
- Bingöl University, Bingöl, Turkey
- Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - V. V. Korsa
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - A. A. Tykhomyrov
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
20
|
Manufacturing Process of Polymeric Microneedle Sensors for Mass Production. MICROMACHINES 2021; 12:mi12111364. [PMID: 34832776 PMCID: PMC8624934 DOI: 10.3390/mi12111364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
In this work, we present a fabrication process for microneedle sensors made of polylactic acid (PLA), which can be utilized for the electrochemical detection of various biomarkers in interstitial fluid. Microneedles were fabricated by the thermal compression molding of PLA into a laser machined polytetrafluoroethylene (PTFE) mold. Sensor fabrication was completed by forming working, counter, and reference electrodes on each sensor surface by Au sputtering through a stencil mask, followed by laser dicing to separate individual sensors from the substrate. The devised series of processes was designed to be suitable for mass production, where multiple microneedle sensors can be produced at once on a 4-inch wafer. The operational stability of the fabricated sensors was confirmed by linear sweep voltammetry and cyclic voltammetry at the range of working potentials of various biochemical molecules in interstitial fluid.
Collapse
|
21
|
Abstract
Emerging research in biosensors has attracted much attention worldwide, particularly in response to the recent pandemic outbreak of coronavirus disease 2019 (COVID-19). Nevertheless, initiating research in biosensing applied to the diagnosis of diseases is still challenging for researchers, be it in the preferences of biosensor platforms, selection of biomarkers, detection strategies, or other aspects (e.g., cutoff values) to fulfill the clinical purpose. There are two sides to the development of a diagnostic tool: the biosensor development side and the clinical side. From the development side, the research engineers seek the typical characteristics of a biosensor: sensitivity, selectivity, linearity, stability, and reproducibility. On the other side are the physicians that expect a diagnostic tool that provides fast acquisition of patient information to obtain an early diagnosis or an efficient patient stratification, which consequently allows for making assertive and efficient clinical decisions. The development of diagnostic devices always involves assay developer researchers working as pivots to bridge both sides whose role is to find detection strategies suitable to the clinical needs by understanding (1) the intended use of the technology and its basic principle and (2) the preferable type of test: qualitative or quantitative, sample matrix challenges, biomarker(s) threshold (cutoff value), and if the system requires a mono- or multiplex assay format. This review highlights the challenges for the development of biosensors for clinical assessment and its broad application in multidisciplinary fields. This review paper highlights the following biosensor technologies: magnetoresistive (MR)-based, transistor-based, quartz crystal microbalance (QCM), and optical-based biosensors. Its working mechanisms are discussed with their pros and cons. The article also gives an overview of the most critical parameters that are optimized by developing a diagnostic tool.
Collapse
|
22
|
Poupore N, Chosed R, Arce S, Rainer R, Goodwin RL, Nathaniel TI. Metabolomic Profiles of Men and Women Ischemic Stroke Patients. Diagnostics (Basel) 2021; 11:diagnostics11101786. [PMID: 34679483 PMCID: PMC8534835 DOI: 10.3390/diagnostics11101786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Stroke is known to affect both men and women; however, incidence and outcomes differ between them. Therefore, the discovery of novel, sex-specific, blood-based biomarkers for acute ischemic stroke (AIS) patients has the potential to enhance the understanding of the etiology of this deadly disease in the content of sex. The objective of this study was to identify serum metabolites associated with male and female AIS patients. Methods: Metabolites were measured with the use of untargeted, reverse-phase ultra-performance liquid chromatography-tandem mass spectrometry quantification from blood specimens collected from AIS patients. Samples were collected from 36 patients comprising each of 18 men and women with matched controls. Metabolic pathway analysis and principal component analysis (PCA) was used to differentiate metabolite profiles for male and female AIS patients from the control, while logistic regression was used to determine differences in metabolites between male and female AIS patients. Results: In female AIS patients, 14 distinct altered metabolic pathways and 49 corresponding metabolites were identified, while 39 metabolites and 5 metabolic pathways were identified in male patients. Metabolites that are predictive of ischemic stroke in female patients were 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) (AUC = 0.914, 0.765–1.000), 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) (AUC = 0.840, 0.656–1.000), and 5,6-dihydrouracil (P-16:0/20:2) (AUC = 0.815, 0.601–1.000). Significant metabolites that were predictive of stroke in male patients were 5alpha-androstan-3alpha,17beta-diol disulfate (AUC = 0.951, 0.857–1.000), alpha-hydroxyisocaproate (AUC = 0.938, 0.832–1.000), threonate (AUC = 0.877, 0.716–1.000), and bilirubin (AUC = 0.817, 0.746–1.000). Conclusions: In the current study, the untargeted serum metabolomics platform identified multiple pathways and metabolites associated with male and female AIS patients. Further research is necessary to characterize how these metabolites are associated with the pathophysiology in male and female AIS patients.
Collapse
Affiliation(s)
- Nicolas Poupore
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Renee Chosed
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Sergio Arce
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | | | - Richard L. Goodwin
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Thomas I. Nathaniel
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
- Correspondence: ; Tel.: +1-8644559846; Fax: +1-8644558404
| |
Collapse
|
23
|
Li S, Huang Y, Liu Y, Rocha M, Li X, Wei P, Misilimu D, Luo Y, Zhao J, Gao Y. Change and predictive ability of circulating immunoregulatory lymphocytes in long-term outcomes of acute ischemic stroke. J Cereb Blood Flow Metab 2021; 41:2280-2294. [PMID: 33641517 PMCID: PMC8393304 DOI: 10.1177/0271678x21995694] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lymphocytes play an important role in the immune response after stroke. However, our knowledge of the circulating lymphocytes in ischemic stroke is limited. Herein, we collected the blood samples of clinical ischemic stroke patients to detect the change of lymphocytes from admission to 3 months after ischemic stroke by flow cytometry. A total of 87 healthy controls and 210 patients were enrolled, and the percentages of circulating T cells, CD4+ T cells, CD8+ T cells, double negative T cells (DNTs), CD4+ regulatory T cells (Tregs), CD8+ Tregs, B cells and regulatory B cells (Bregs) were measured. Among patients, B cells, Bregs and CD8+ Tregs increased significantly, while CD4+ Tregs dropped and soon reversed after ischemic stroke. CD4+ Tregs, CD8+ Tregs, and DNTs also showed high correlations with the infarct volume and neurological scores of patients. Moreover, these lymphocytes enhanced the predictive ability of long-term prognosis of neurological scores when added to basic clinical information. The percentage of CD4+ Tregs within lymphocytes showed high correlations with both acute and long-term neurological outcomes, which exhibited a great independent predictive ability. These findings suggest that CD4+ Tregs can be a biomarker to predict stroke outcomes and improve existing therapeutic strategies of immunoregulatory lymphocytes.
Collapse
Affiliation(s)
- Sicheng Li
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yang Liu
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Marcelo Rocha
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaofan Li
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Dilidaer Misilimu
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yunhe Luo
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Dias A, Silva I, Pinto IM, Maia LF. Timely and Blood-Based Multiplex Molecular Profiling of Acute Stroke. Life (Basel) 2021; 11:816. [PMID: 34440560 PMCID: PMC8398526 DOI: 10.3390/life11080816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of death and disability in the world. To address such a problem, early diagnosis and tailored acute treatment represent one of the major priorities in acute stroke care. Since the efficacy of reperfusion treatments is highly time-dependent, there is a critical need to optimize procedures for faster and more precise diagnosis. We provide a concise review of the most relevant and well-documented blood-protein biomarkers that exhibit greater potential for translational to clinical practice in stroke differential diagnosis and to differentiate ischemic stroke from hemorrhagic stroke, followed by an overview of the most recent point-of-care technological approaches to address this problem. The integration of fluid-based biomarker profiling, using point-of-care biosensors with demographic, clinical, and neuroimaging parameters in multi-dimensional clinical decision-making algorithms, will be the next step in personalized stroke care.
Collapse
Affiliation(s)
- Alexandre Dias
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel Silva
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Molecular Neurobiology, IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Luís F. Maia
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Molecular Neurobiology, IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| |
Collapse
|
25
|
Ching SC, Wen LJ, Ismail NIM, Looi I, Kooi CW, Peng LS, Mui LS, Tamibmaniam J, Muninathan P, Hooi OB, Ali SMM, Hassan MRA, Mohamad MS, Griffiths LR, Wei LK. SLC17A3 rs9379800 and Ischemic Stroke Susceptibility at the Northern Region of Malaysia. J Stroke Cerebrovasc Dis 2021; 30:105908. [PMID: 34384670 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES The relationships of Paired Like Homeodomain 2 (PITX2), Ninjurin 2 (NINJ2), TWIST-Related Protein 1 (TWIST1), Ras Interacting Protein 1 (Rasip1), Solute Carrier Family 17 Member 3 (SLC17A3), Methylmalonyl Co-A Mutase (MUT) and Fer3 Like BHLH Transcription Factor (FERD3L) polymorphisms and gene expression with ischemic stroke have yet to be determined in Malaysia. Hence, this study aimed to explore the associations of single nucleotide polymorphisms (SNPs) and gene expression with ischemic stroke risk among population who resided at the Northern region of Malaysia. MATERIALS AND METHODS Study subjects including 216 ischemic stroke patients and 203 healthy controls were recruited upon obtaining ethical clearance. SNP genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism assays. Gene expression levels were quantified by real-time polymerase chain reaction assays. Statistical and genetic analyses were conducted with SPSS version 22.2, PLINK version 1.07 and multifactor dimensionality reduction software. RESULTS Study subjects with G allele, CG or GG genotypes of SLC17A3 rs9379800 demonstrated increased risk of ischemic stroke with the odds ratios ranging from 1.76-fold to 3.14-fold (p<0.05). When stratified study subjects according to the ethnicity, SLC17A3 rs9379800 G allele and CG genotype contributed to 2.14- and 2.96-fold of ischemic stroke risk among Malay population significantly, in the multivariate analysis (p<0.05). However, no significant associations were observed for PITX2, NINJ2, TWIST1, Rasip1, and MUT polymorphisms with ischemic stroke risk in the multivariate analysis for the pooled cases and controls as well as when stratified them according to the ethnicity. Lower mRNA expression levels of Rasip1, SLC17A3, MUT and FERD3L were observed among cases (p<0.05). After FDR adjustment, the mRNA level of SLC17A3 remained significantly associated with ischemic stroke among Malay population (q=0.034). CONCLUSION In conclusion, this study suggests that SLC17A3 rs9379800 polymorphism and its gene expression contribute to significant ischemic stroke risk among Malaysian population, particularly the Malay who resided at the Northern Region of the country. Our findings can provide useful information for the future diagnosis, management and treatment of ischemic stroke patients.
Collapse
Affiliation(s)
- Shu Chai Ching
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Lim Jing Wen
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Nor Ismaliza Mohd Ismail
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Irene Looi
- Clinical Research Centre, Seberang Jaya Hospital, Ministry of Health, Penang, Malaysia
| | - Cheah Wee Kooi
- Clinical Research Centre, Taiping Hospital, Jalan Tamingsari, Taiping, Perak, Malaysia
| | - Long Soo Peng
- Clinical Research Centre, Seberang Jaya Hospital, Ministry of Health, Penang, Malaysia
| | - Lee Soon Mui
- Clinical Research Centre, Seberang Jaya Hospital, Ministry of Health, Penang, Malaysia
| | | | - Prema Muninathan
- Clinical Research Centre, Taiping Hospital, Jalan Tamingsari, Taiping, Perak, Malaysia
| | - Ong Beng Hooi
- Clinical Research Centre, Hospital Sultanah Bahiyah, Kedah, Malaysia
| | | | | | - Mohd Saberi Mohamad
- Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia.
| |
Collapse
|
26
|
Expression of miR-200c corresponds with increased reactive oxygen species and hypoxia markers after transient focal ischemia in mice. Neurochem Int 2021; 149:105146. [PMID: 34343653 DOI: 10.1016/j.neuint.2021.105146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022]
Abstract
Embolic stroke results in a necrotic core of cells destined to die, but also a peri-ischemic, watershed penumbral region of potentially salvageable brain tissue. Approaches to effectively differentiate between the ischemic and peri-ischemic zones is critical for novel therapeutic discovery to improve outcomes in survivors of stroke. MicroRNAs are a class of small non-coding RNAs regulating gene translation that have region- and cell-specific expression and responses to ischemia. We have previously reported that global inhibition of cerebral microRNA-200c after experimental stroke in mice is protective, however delineating the post-stroke sub-regional and cell-type specific patterns of post-stroke miR-200c expression are necessary to minimize off-target effects and advance translational application. Here, we detail a novel protocol to visualize regional miR-200c expression after experimental stroke, complexed with visualization of regional ischemia and markers of oxidative stress in an experimental stroke model in mice. In the present study we demonstrate that the fluorescent hypoxia indicator pimonidazole hydrochloride, the reactive-oxygen-species marker 8-hydroxy-deoxyguanosine, neuronal marker MAP2 and NeuN, and the reactive astrocyte marker GFAP can be effectively complexed to determine regional differences in ischemic injury as early as 30 min post-reperfusion after experimental stroke, and can be effectively used to distinguish ischemic core from surrounding penumbral and unaffected regions for targeted therapy. This multi-dimensional post-stroke immunofluorescent imaging protocol enables a greater degree of sub-regional mechanistic investigation, with the ultimate goal of developing more effective post-stroke pharmaceutical therapy.
Collapse
|
27
|
Characterization of a Temporal Profile of Biomarkers as an Index for Ischemic Stroke Onset Definition. J Clin Med 2021; 10:jcm10143136. [PMID: 34300300 PMCID: PMC8307571 DOI: 10.3390/jcm10143136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
Background and purpose: Stroke is a dynamic process in terms of molecular mechanisms, with prominent glutamate-mediated excitotoxicity at the onset of symptoms followed by IL-6-mediated inflammation. Our aim was to study a serum glutamate/IL-6 ratio as an index for stroke onset definition. Methods: A total of 4408 ischemic stroke patients were recruited and then subdivided into four quartiles according to latency time in minutes (0–121, 121–185, 185–277 and >277). Latency time is defined as the time between stroke onset and treatment at the neurological unit. The primary endpoint of the study was the association of early latency times with different clinical aspects and serum markers. Serum glutamate and interleukin-6 (IL-6) levels at admission were selected as the main markers for excitotoxicity and inflammation, respectively. Results: Glutamate serum levels were significantly higher in the earlier latency time compared with the higher latency times (p < 0.0001). IL-6 levels were lower in early latency times (p < 0.0001). Patients with a glutamate/IL-6 index on admission of >5 were associated with a latency time of <121 min from the onset of symptoms with a sensitivity of 88% and a specificity of 80%. Conclusions: The glutamate/IL-6 index allows the development of a ratio for an easy, non-invasive early identification of the onset of ischemic stroke symptoms, thus offering a new tool for selecting early stroke patient candidates for reperfusion therapies.
Collapse
|
28
|
Zhang Y, Warden AR, Ahmad KZ, Liu Y, He X, Zheng M, Huo X, Zhi X, Ke Y, Li H, Yan S, Su W, Cai D, Ding X. Single-Cell Microwell Platform Reveals Circulating Neural Cells as a Clinical Indicator for Patients with Blood-Brain Barrier Breakdown. RESEARCH 2021; 2021:9873545. [PMID: 34327332 PMCID: PMC8285994 DOI: 10.34133/2021/9873545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
Central nervous system diseases commonly occur with the destruction of the blood-brain barrier. As a primary cause of morbidity and mortality, stroke remains unpredictable and lacks cellular biomarkers that accurately quantify its occurrence and development. Here, we identify NeuN+/CD45−/DAPI+ phenotype nonblood cells in the peripheral blood of mice subjected to middle cerebral artery occlusion (MCAO) and stroke patients. Since NeuN is a specific marker of neural cells, we term these newly identified cells as circulating neural cells (CNCs). We find that the enumeration of CNCs in the blood is significantly associated with the severity of brain damage in MCAO mice (p < 0.05). Meanwhile, the number of CNCs is significantly higher in stroke patients than in negative subjects (p < 0.0001). These findings suggest that the amount of CNCs in circulation may serve as a clinical indicator for the real-time prognosis and progression monitor of the occurrence and development of ischemic stroke and other nervous system disease.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Antony R Warden
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Khan Zara Ahmad
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yanlei Liu
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xijun He
- Department of Neurosurgery, Wenling Hospital Affiliated to Wenzhou Medical University, Chuan'an Nan Road, Chengxi Subdistrict, Wenling, 317500 Zhejiang, China
| | - Minqiao Zheng
- Central Laboratory, Wenling Hospital Affiliated to Wenzhou Medical University, Chuan'an Nan Road, Chengxi Subdistrict, Wenling, 317500 Zhejiang, China
| | - Xinlong Huo
- Department of Neurology, Wenling Hospital Affiliated to Wenzhou Medical University, Chuan'an Nan Road, Chengxi Subdistrict, Wenling, 317500 Zhejiang, China
| | - Xiao Zhi
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yuqing Ke
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hongxia Li
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Sijia Yan
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Wenqiong Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Deng Cai
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
29
|
Zhang P, Wang C, Wu J, Zhang S. A Systematic Review of the Predictive Value of Plasma D-Dimer Levels for Predicting Stroke Outcome. Front Neurol 2021; 12:693524. [PMID: 34295302 PMCID: PMC8289899 DOI: 10.3389/fneur.2021.693524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Stroke is a leading cause of morbidity and mortality. Over the past decade, plasma D-dimer levels have emerged as a biomarker for predicting stroke outcome. However, no consensus in the literature currently exists concerning its utility for predicting post-stroke functional outcome and mortality. Objective: To systematically review the effectiveness of plasma D-dimer levels for predicting functional outcome and mortality following stroke. Methods: Five academic databases were screened according to PRISMA guidelines for eligible studies. With these studies, we conducted a random-effect meta-analysis to evaluate the impact of plasma D-dimer levels for predicting functional outcome and mortality post-stroke. We also conducted subgroup analyses to evaluate differences in predictive capacity for different stroke subtypes. Results: Nineteen studies were included, containing data on 5,781 stroke patients (mean age: 65.26 ± 6.4 years). Overall methodological quality for the included studies was high. Meta-analysis showed that increased D-dimer levels were predictive of worsened functional outcomes (Hazard ratio: 2.19, 95% CI: 1.63-2.93) and elevated overall mortality (2.29, 1.35-3.88). Subgroup analysis showed that plasma D-dimer levels were more predictive of poorer functional outcomes for ischemic (2.08, 1.36-3.18) stroke as compared to intracerebral hemorrhage (2.62, 1.65-4.17). We also noted that predictive capacity was similar when it came to mortality in patients with cryptogenic ischemic stroke (2.65, 0.87-8.08) and intracerebral hemorrhage (2.63, 1.50-4.59). Conclusion: The study provides preliminary evidence concerning the capacity of plasma D-dimer levels for predicting functional outcomes and mortality following stroke and reports that higher D-dimer levels of are associated with poorer functional outcomes and higher mortality.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurology, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Chun Wang
- Department of Cardiology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, China
| | - Junhua Wu
- Department of Cardiovascular and Cerebrovascular, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, China
| | - Shiliang Zhang
- Department of Neurology, Zaozhuang Municipal Hospital, Zaozhuang, China
| |
Collapse
|
30
|
Tutino VM, Zebraski HR, Rajabzadeh-Oghaz H, Waqas M, Jarvis JN, Bach K, Mokin M, Snyder KV, Siddiqui AH, Poppenberg KE. Identification of Circulating Gene Expression Signatures of Intracranial Aneurysm in Peripheral Blood Mononuclear Cells. Diagnostics (Basel) 2021; 11:1092. [PMID: 34203780 PMCID: PMC8232768 DOI: 10.3390/diagnostics11061092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) play an important role in the inflammation that accompanies intracranial aneurysm (IA) pathophysiology. We hypothesized that PBMCs have different transcriptional profiles in patients harboring IAs as compared to IA-free controls, which could be the basis for potential blood-based biomarkers for the disease. To test this, we isolated PBMC RNA from whole blood of 52 subjects (24 with IA, 28 without) and performed next-generation RNA sequencing to obtain their transcriptomes. In a randomly assigned discovery cohort of n = 39 patients, we performed differential expression analysis to define an IA-associated signature of 54 genes (q < 0.05 and an absolute fold-change ≥ 1.3). In the withheld validation dataset, these genes could delineate patients with IAs from controls, as the majority of them still had the same direction of expression difference. Bioinformatics analyses by gene ontology enrichment analysis and Ingenuity Pathway Analysis (IPA) demonstrated enrichment of structural regulation processes, intracellular signaling function, regulation of ion transport, and cell adhesion. IPA analysis showed that these processes were likely coordinated through NF-kB, cytokine signaling, growth factors, and TNF activity. Correlation analysis with aneurysm size and risk assessment metrics showed that 4/54 genes were associated with rupture risk. These findings highlight the potential to develop predictive biomarkers from PBMCs to identify patients harboring IAs.
Collapse
Affiliation(s)
- Vincent M. Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Haley R. Zebraski
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA;
| | - Hamidreza Rajabzadeh-Oghaz
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Muhammad Waqas
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - James N. Jarvis
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA;
| | - Konrad Bach
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33620, USA; (K.B.); (M.M.)
| | - Maxim Mokin
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33620, USA; (K.B.); (M.M.)
| | - Kenneth V. Snyder
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adnan H. Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Kerry E. Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
31
|
Dettori I, Fusco I, Bulli I, Gaviano L, Coppi E, Cherchi F, Venturini M, Di Cesare Mannelli L, Ghelardini C, Nocentini A, Supuran CT, Pugliese AM, Pedata F. Protective effects of carbonic anhydrase inhibition in brain ischaemia in vitro and in vivo models. J Enzyme Inhib Med Chem 2021; 36:964-976. [PMID: 34056989 PMCID: PMC8168743 DOI: 10.1080/14756366.2021.1907575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ischaemic stroke is a leading cause of death and disability. One of the major pathogenic mechanisms after ischaemia includes the switch to the glycolytic pathway, leading to tissue acidification. Carbonic anhydrase (CA) contributes to pH regulation. A new generation of CA inhibitors, AN11-740 and AN6-277 and the reference compound acetazolamide (ACTZ) were investigated in two models of brain ischaemia: in rat hippocampal acute slices exposed to severe oxygen, glucose deprivation (OGD) and in an in vivo model of focal cerebral ischaemia induced by permanent occlusion of the middle cerebral artery (pMCAo) in the rat. In vitro, the application of selective CAIs significantly delayed the appearance of anoxic depolarisation induced by OGD. In vivo, sub-chronic systemic treatment with AN11-740 and ACTZ significantly reduced the neurological deficit and decreased the infarct volume after pMCAo. CAIs counteracted neuronal loss, reduced microglia activation and partially counteracted astrocytes degeneration inducing protection from functional and tissue damage.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Irene Fusco
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
32
|
Shaw L, Graziadio S, Lendrem C, Dale N, Ford GA, Roffe C, Smith CJ, White PM, Price CI. Purines for Rapid Identification of Stroke Mimics (PRISM): study protocol for a diagnostic accuracy study. Diagn Progn Res 2021; 5:11. [PMID: 34016192 PMCID: PMC8134819 DOI: 10.1186/s41512-021-00098-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Rapid treatment of stroke improves outcomes, but accurate early recognition can be challenging. Between 20 and 40% of patients suspected to have stroke by ambulance and emergency department staff later receive a non-stroke 'mimic' diagnosis after stroke specialist investigation. This early diagnostic uncertainty results in displacement of mimic patients from more appropriate services, inappropriate demands on stroke specialist resources and delayed access to specialist therapies for stroke patients. Blood purine concentrations rise rapidly during hypoxic tissue injury, which is a key mechanism of damage during acute stroke but is not typical in mimic conditions. A portable point of care fingerprick test has been developed to measure blood purine concentration which could be used to triage patients experiencing suspected stroke symptoms into those likely to have a non-stroke mimic condition and those likely to have true stroke. This study is evaluating test performance for identification of stroke mimic conditions. METHODS Design: prospective observational cohort study Setting: regional UK ambulance and acute stroke services Participants: a convenience series of two populations will be tested: adults with a label of suspected stroke assigned (and tested) by attending ambulance personnel and adults with a label of suspected stroke assigned at hospital (who have not been tested by ambulance staff). INDEX TEST SMARTChip Purine assay Reference standard tests: expert clinician opinion informed by brain imaging and/or other investigations will assign the following diagnoses which constitute the suspected stroke population: ischaemic stroke, haemorrhagic stroke, TIA and stroke mimic conditions. SAMPLE SIZE ambulance population (powered for mimic sensitivity) 935 participants; hospital population (powered for mimic specificity) 377 participants. ANALYSES area under the receiver operating curve (ROC) and optimal sensitivity, specificity, and negative and positive predictive values for identification of mimic conditions. Optimal threshold for the ambulance population will maximise sensitivity, minimum 80%, and aim to keep specificity above 70%. Optimal threshold for the hospital population will maximise specificity, minimum 80%, and aim to keep sensitivity above 70%. DISCUSSION The results from this study will determine how accurately the SMARTChip purine assay test can identify stroke mimic conditions within the suspected stroke population. If acceptable performance is confirmed, deployment of the test in ambulances or emergency departments could enable more appropriate direction of patients to stroke or non-stroke services. TRIAL REGISTRATION Registered with ISRCTN (identifier: ISRCTN22323981) on 13/02/2019 http://www.isrctn.com/ISRCTN22323981.
Collapse
Affiliation(s)
- Lisa Shaw
- Stroke Research Group, Population Health Sciences Institute, Newcastle University, Henry Wellcome Building, Newcastle Upon Tyne, NE2 4HH UK
| | - Sara Graziadio
- NIHR Newcastle In Vitro Diagnostics Co-operative, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Clare Lendrem
- NIHR Newcastle In Vitro Diagnostics Co-operative, Translational and Clinical Research Institute, Newcastle University, William Leech Building, Newcastle Upon Tyne, NE2 4HH UK
| | - Nicholas Dale
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL UK
| | - Gary A. Ford
- Medical Sciences Division, University of Oxford, Level 3, John Radcliffe Hospital, Oxford, OX3 9DU UK
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU UK
| | - Christine Roffe
- School of Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB UK
| | - Craig J. Smith
- Division of Cardiovascular Sciences, Manchester University, Oxford Road, Manchester, M13 9PL UK
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, M6 8HD UK
| | - Philip M. White
- Stroke Research Group, Population Health Sciences Institute, Newcastle University, Henry Wellcome Building, Newcastle Upon Tyne, NE2 4HH UK
| | - Christopher I. Price
- Stroke Research Group, Population Health Sciences Institute, Newcastle University, Henry Wellcome Building, Newcastle Upon Tyne, NE2 4HH UK
| |
Collapse
|
33
|
Serum Interleukin-37 Increases in Patients after Ischemic Stroke and Is Associated with Stroke Recurrence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5546991. [PMID: 33953828 PMCID: PMC8057878 DOI: 10.1155/2021/5546991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 01/11/2023]
Abstract
Background This study seeks to assess interleukin-37 (IL-37) serum level in acute ischemic stroke and the value of predicting 3-month stroke recurrence and functional outcome in acute ischemic stroke. Methods From January 1, 2018, to June 30, 2019, all consecutive first-ever acute ischemic stroke patients from our hospital, China, were included. Serum samples, clinical information, and stroke severity (defined by the National Institute of Health stroke scale (NIHSS) score) were collected at baseline. Serum IL-37 level was measured by the enzyme-linked immunosorbent assay (ELISA) method. Functional impairment (defined by the modified Rankin scale (mRS)) and recurrent stroke were assessed 3 months after admission. The relation of IL-37 with either clinical severity at baseline, unfavorable functional outcome, or stroke recurrence at follow-up was evaluated by logistic regression analysis, and the results were presented as odds ratios (OR) with 95% confidence intervals (CI). Results Three hundred and ten stroke patients were included. The median IL-37 serum level in those patients was 344.1 pg/ml (interquartile range (IQR), 284.4-405.3 vs. control cases: 122.3 pg/ml (IQR, 104.4-1444.0); P < 0.001). At 3 months, a total of 36 (11.6%) patients had a stroke recurrence. IL-37 serum levels in those patients were higher than in those patients without stroke recurrence (417.0 pg/ml (IQR, 359.3-436.1) vs. 333.3 pg/ml (279.0-391.0)). In a logistic model adjusted for other factors, IL-37 in the highest quartile (>405.3 pg/ml) was still associated with recurrent stroke (OR = 3.32; 95%CI = 2.03–6.13; P < 0.001). IL-37 could promote the NIHSS score (area under the curve (AUC) of the IL-37/NIHSS, 0.75; 95% CI, 0.67–0.83; P < 0.001), corresponding to a difference of 0.085 (0.005). Serum IL-37 increases in patients with poor outcome, and an IL-37 in the highest quartile is related to poor outcome (OR = 4.85; 95%CI = 3.11 − 8.22; P < 0.001). Conclusion Serum IL-37 increased in patients after ischemic stroke and was associated with stroke recurrence events and poor stroke outcomes. Large randomized controlled trials should be carried out to confirm whether IL-37 lowering treatment improves stroke prognosis.
Collapse
|
34
|
Cardiac Testing in Search for Occult Atrial Fibrillation after Ischemic Stroke. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2021. [DOI: 10.1007/s11936-021-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Dettori I, Gaviano L, Ugolini F, Lana D, Bulli I, Magni G, Rossi F, Giovannini MG, Pedata F. Protective Effect of Adenosine A 2B Receptor Agonist, BAY60-6583, Against Transient Focal Brain Ischemia in Rat. Front Pharmacol 2021; 11:588757. [PMID: 33643036 PMCID: PMC7905306 DOI: 10.3389/fphar.2020.588757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is a multifactorial pathology characterized first by an acute injury, due to excitotoxicity, followed by a secondary brain injury that develops hours to days after ischemia. During ischemia, adenosine acts as an endogenous neuroprotectant. Few studies have investigated the role of A2B receptor in brain ischemia because of the low potency of adenosine for it and the few selective ligands developed so far. A2B receptors are scarcely but widely distributed in the brain on neurons, glial and endothelial cells and on hematopoietic cells, lymphocytes and neutrophils, where they exert mainly anti-inflammatory effects, inhibiting vascular adhesion and inflammatory cells migration. Aim of this work was to verify whether chronic administration of the A2B agonist, BAY60-6583 (0.1 mg/kg i.p., twice/day), starting 4 h after focal ischemia induced by transient (1 h) Middle Cerebral Artery occlusion (tMCAo) in the rat, was protective after the ischemic insult. BAY60-6583 improved the neurological deficit up to 7 days after tMCAo. Seven days after ischemia BAY60-6583 reduced significantly the ischemic brain damage in cortex and striatum, counteracted ischemia-induced neuronal death, reduced microglia activation and astrocytes alteration. Moreover, it decreased the expression of TNF-α and increased that of IL-10 in peripheral plasma. Two days after ischemia BAY60-6583 reduced blood cell infiltration in the ischemic cortex. The present study indicates that A2B receptors stimulation can attenuate the neuroinflammation that develops after ischemia, suggesting that A2B receptors may represent a new interesting pharmacological target to protect from degeneration after brain ischemia.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Francesca Rossi
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
36
|
Janigro D, Bailey DM, Lehmann S, Badaut J, O'Flynn R, Hirtz C, Marchi N. Peripheral Blood and Salivary Biomarkers of Blood-Brain Barrier Permeability and Neuronal Damage: Clinical and Applied Concepts. Front Neurol 2021; 11:577312. [PMID: 33613412 PMCID: PMC7890078 DOI: 10.3389/fneur.2020.577312] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Within the neurovascular unit (NVU), the blood–brain barrier (BBB) operates as a key cerebrovascular interface, dynamically insulating the brain parenchyma from peripheral blood and compartments. Increased BBB permeability is clinically relevant for at least two reasons: it actively participates to the etiology of central nervous system (CNS) diseases, and it enables the diagnosis of neurological disorders based on the detection of CNS molecules in peripheral body fluids. In pathological conditions, a suite of glial, neuronal, and pericyte biomarkers can exit the brain reaching the peripheral blood and, after a process of filtration, may also appear in saliva or urine according to varying temporal trajectories. Here, we specifically examine the evidence in favor of or against the use of protein biomarkers of NVU damage and BBB permeability in traumatic head injury, including sport (sub)concussive impacts, seizure disorders, and neurodegenerative processes such as Alzheimer's disease. We further extend this analysis by focusing on the correlates of human extreme physiology applied to the NVU and its biomarkers. To this end, we report NVU changes after prolonged exercise, freediving, and gravitational stress, focusing on the presence of peripheral biomarkers in these conditions. The development of a biomarker toolkit will enable minimally invasive routines for the assessment of brain health in a broad spectrum of clinical, emergency, and sport settings.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology Case Western Reserve University, Cleveland, OH, United States.,FloTBI Inc., Cleveland, OH, United States
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, United Kingdom
| | - Sylvain Lehmann
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Jerome Badaut
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| | - Robin O'Flynn
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM, University of Montpellier), Montpellier, France
| |
Collapse
|
37
|
Coppi E, Dettori I, Cherchi F, Bulli I, Venturini M, Pedata F, Pugliese AM. New Insight into the Role of Adenosine in Demyelination, Stroke and Neuropathic Pain. Front Pharmacol 2021; 11:625662. [PMID: 33584309 PMCID: PMC7878385 DOI: 10.3389/fphar.2020.625662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Diagnosis of stroke and understanding the mechanism of stroke is critical to implement optimal treatment. RNA expressed in peripheral blood cells is emerging as a precision biomarker to aid in stroke diagnosis and prediction of stroke cause. In this review, we summarize available data regarding the role of RNA to predict stroke, the rationale for these changes, and a discussion of novel mechanistic insight and clinical applications. RECENT FINDINGS Differences in RNA gene expression in blood have been identified in patients with stroke, including differences to distinguish ischemic from hemorrhagic stroke, and differences between cardioembolic, large vessel atherosclerotic, and small vessel lacunar stroke cause. Gene expression differences show promise as novel stroke biomarkers to predict stroke of unclear cause (cryptogenic stroke). The differences in RNA expression provide novel insight to stroke mechanism, including the role of immune response and thrombosis in human stroke. Important insight to regulation of gene expression in stroke and its causes are being acquired, including alternative splicing, noncoding RNA, and microRNA. SUMMARY Improved diagnosis of stroke and determination of stroke cause will improve stroke treatment and prevention. RNA biomarkers show promise to aid in the diagnosis of stroke and cause determination, as well as providing novel insight to mechanism of stroke in patients. While further study is required, an RNA profile may one day be part of the stroke armamentarium with utility to guide acute stroke therapy and prevention strategies and refine stroke phenotype.
Collapse
|
39
|
Lee J, Lee J, Lee M, Lim JS, Kim JH, Yu KH, Oh MS, Lee BC. Association between Serum Insulin-Like Growth Factor-1 and Neurological Severity in Acute Ischemic Stroke. J Clin Neurol 2021; 17:206-212. [PMID: 33835740 PMCID: PMC8053552 DOI: 10.3988/jcn.2021.17.2.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose Serum insulin-like growth factor-1 (IGF-1) is known to have a neuroprotective effect. This study aimed to determine the effects of serum IGF-1 on the severity and clinical outcome of acute ischemic stroke (AIS). Methods This study included 446 patients with AIS who were admitted to Hallym University Sacred Heart Hospital within 7 days of stroke onset from February 2014 to June 2017. Serum IGF-1 levels were measured within 24 hours of admission. Stroke severity was measured using the National Institutes of Health Stroke Scale (NIHSS) score at admission, and the functional outcome at 3 months after symptom onset was assessed using the modified Rankin Scale score. The effects of serum IGF-1 levels on stroke severity and 3-month functional outcomes were analyzed using multivariate logistic regression analysis. Results This study evaluated 379 patients with AIS (age 67.2±12.6 years, mean±standard deviation; 59.9% males) after excluding 67 patients who had a history of previous stroke (n=25) or were lost to follow-up at 3 months (n=42). After adjusting for clinically relevant covariates, a higher serum IGF-1 level was associated with a lower NIHSS score at admission (adjusted odds ratio=0.44, 95% confidence interval=0.24–0.80, p=0.01), while there was no significant association at 3 months. Conclusions This study showed that a higher serum IGF-1 level is associated with a lower NIHSS score at admission but not at 3 months. Further studies are required to clarify the usefulness of the serum IGF-1 level as a prognostic marker for ischemic stroke.
Collapse
Affiliation(s)
- Jeeun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Jeongjae Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Minwoo Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Jae Sung Lim
- Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Jin Hyouk Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Kyung Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Mi Sun Oh
- Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea.
| | - Byung Chul Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea.
| |
Collapse
|
40
|
Coppi E, Dettori I, Cherchi F, Bulli I, Venturini M, Lana D, Giovannini MG, Pedata F, Pugliese AM. A 2B Adenosine Receptors: When Outsiders May Become an Attractive Target to Treat Brain Ischemia or Demyelination. Int J Mol Sci 2020; 21:E9697. [PMID: 33353217 PMCID: PMC7766015 DOI: 10.3390/ijms21249697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is a signaling molecule, which, by activating its receptors, acts as an important player after cerebral ischemia. Here, we review data in the literature describing A2BR-mediated effects in models of cerebral ischemia obtained in vivo by the occlusion of the middle cerebral artery (MCAo) or in vitro by oxygen-glucose deprivation (OGD) in hippocampal slices. Adenosine plays an apparently contradictory role in this receptor subtype depending on whether it is activated on neuro-glial cells or peripheral blood vessels and/or inflammatory cells after ischemia. Indeed, A2BRs participate in the early glutamate-mediated excitotoxicity responsible for neuronal and synaptic loss in the CA1 hippocampus. On the contrary, later after ischemia, the same receptors have a protective role in tissue damage and functional impairments, reducing inflammatory cell infiltration and neuroinflammation by central and/or peripheral mechanisms. Of note, demyelination following brain ischemia, or autoimmune neuroinflammatory reactions, are also profoundly affected by A2BRs since they are expressed by oligodendroglia where their activation inhibits cell maturation and expression of myelin-related proteins. In conclusion, data in the literature indicate the A2BRs as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| |
Collapse
|
41
|
Li W, Qi Z, Kang H, Qin X, Song H, Sui X, Ren Y, Ji X, Ma Q, Jian Liu K. Serum Occludin as a Biomarker to Predict the Severity of Acute Ischemic Stroke, Hemorrhagic Transformation, and Patient Prognosis. Aging Dis 2020; 11:1395-1406. [PMID: 33269096 PMCID: PMC7673856 DOI: 10.14336/ad.2020.0119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/19/2020] [Indexed: 12/27/2022] Open
Abstract
Blood-brain barrier (BBB) damage plays an important role in overall brain injury following acute ischemic stroke (AIS). We investigated the potential utility of serum occludin, a BBB damage biomarker, in predicting the severity of AIS, hemorrhagic transformation (HT) and patient prognosis. A total of 243 patients, suspected of suffering an AIS and admitted to the emergency room at Xuanwu Hospital between November 2018 to March 2019, were enrolled in this study. Serum occludin levels were measured by enzyme linked immunosorbent assay and clinical data were collected from each patient. Receiver operating characteristic curves (ROC) were used to analyze the relationship between serum occludin and AIS. Multiple logistic regression analysis was used to analyze the relationship between serum occludin and stroke prognosis. Serum occludin levels were significantly elevated in acute stroke cases compared with those with stroke-like symptoms (P<0.001). In the moderate and severe cerebral infarction (CI) groups, serum occludin levels were significantly higher than those in the mild CI group (P<0.001). Patients with HT had higher occludin levels than non-HT patients (P<0.05). In addition, serum occludin level of patients with poor prognosis was significantly higher than that of the patients with good prognosis for non-reperfusion therapy. The ROC curve showed that serum occludin could reasonably predict HT and poor prognosis. Moreover, serum occludin were independently associated with 90-day poor prognosis. These findings suggest that the serum occludin levels could be used to identify early acute stroke cases and may predict the severity of AIS and HT as well as the prognosis at 90 days.
Collapse
Affiliation(s)
- Weili Li
- 1Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhifeng Qi
- 1Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Huining Kang
- 2Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xuzhen Qin
- 3Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Haiqing Song
- 4Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xueqin Sui
- 5Department of General Medicine, Affiliated Hospital of Weifang Medical College, Shandong province, China
| | - Yi Ren
- 4Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xunming Ji
- 1Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qingfeng Ma
- 4Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ke Jian Liu
- 6Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
42
|
Koroleva ES, Brazovskaya NG, Levchuk LA, Kazakov SD, Romadina NY, Alifirova VM. [Assessment of the levels of neuron-specific enolase and BDNF at the stages of rehabilitation in the acute and early recovery periods of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:30-36. [PMID: 33016674 DOI: 10.17116/jnevro202012008230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The issue of the diagnostic significance and clinical value of neuron-specific enolase (NSE) and brain-derived neurotropic factor (BDNF) in the acute period of stroke remains controversial. Therefore, it is advisable to study the correlation of biomarkers with the clinical characteristics of stroke in the time period of early recovery. OBJECTIVE To monitor NSE and BDNF levels in peripheral blood, to analyze the clinical and laboratory correlations in patients with ischemic stroke at the stages of medical rehabilitation in the early recovery period. MATERIAL AND METHODS Forty-nine patients with ischemic stroke in the middle cerebral artery were examined. The observation period is 90 days. Observation Points are Day 1; Day 14; Day 45; Day 90. The National Institute of Health Stroke Scale (NIHSS), the Fugle-Meyer Scale (FMA), the Modified Rankin Scale (mRS) were administered. NSE was determined in blood serum by enzyme-linked immunosorbent assay, BDNF was analyzed on a multiplex analyzer. RESULTS AND CONCLUSION NSEDay1 in patients was significantly higher than in the comparison group (pDay1-comparison group<0.001) with a trend to a maximum decrease on the 90th day of stroke (pDay1-90<0.001). BDNFDay1 turned out to be lower than in the comparison group (pDay1-comparison group=0.006) and significantly increased by the 14th day of the stroke (pDay1-14<0.001; pDay14-comparison group=0.637). A negative correlation was found between a decrease in NSEDay14 and an increase in BDNFDay14 (r= -0.349; p=0.05). A positive correlation was found between an increase in BDNFDay14 and a decrease in mRS scores Day90 (r=0.499, p=0.035). Outcomes in patients in group 1 (after stages I and II of rehabilitation) on the assessment scales were significantly better than in patients discharged after stage I for outpatient monitoring - group 2 (p<0.05). In group 1, BDNFDay90 did not differ from BDNFDay14 (pDay14-90-Group1=0.17), and in group 2 it was significantly lower by the end of the early recovery period (pDay14-90-Group2=0.002).
Collapse
Affiliation(s)
- E S Koroleva
- Siberian State Medical University, Tomsk, Russia
| | | | - L A Levchuk
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S D Kazakov
- Siberian State Medical University, Tomsk, Russia
| | | | | |
Collapse
|
43
|
Steliga A, Kowiański P, Czuba E, Waśkow M, Moryś J, Lietzau G. Neurovascular Unit as a Source of Ischemic Stroke Biomarkers-Limitations of Experimental Studies and Perspectives for Clinical Application. Transl Stroke Res 2020; 11:553-579. [PMID: 31701356 PMCID: PMC7340668 DOI: 10.1007/s12975-019-00744-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023]
Abstract
Cerebral stroke, which is one of the most frequent causes of mortality and leading cause of disability in developed countries, often leads to devastating and irreversible brain damage. Neurological and neuroradiological diagnosis of stroke, especially in its acute phase, is frequently uncertain or inconclusive. This results in difficulties in identification of patients with poor prognosis or being at high risk for complications. It also makes difficult identification of these stroke patients who could benefit from more aggressive therapies. In contrary to the cardiovascular disease, no single biomarker is available for the ischemic stroke, addressing the abovementioned issues. This justifies the need for identifying of effective diagnostic measures characterized by high specificity and sensitivity. One of the promising avenues in this area is studies on the panels of biomarkers characteristic for processes which occur in different types and phases of ischemic stroke and represent all morphological constituents of the brains' neurovascular unit (NVU). In this review, we present the current state of knowledge concerning already-used or potentially applicable biomarkers of the ischemic stroke. We also discuss the perspectives for identification of biomarkers representative for different types and phases of the ischemic stroke, as well as for different constituents of NVU, which concentration levels correlate with extent of brain damage and patients' neurological status. Finally, a critical analysis of perspectives on further improvement of the ischemic stroke diagnosis is presented.
Collapse
Affiliation(s)
- Aleksandra Steliga
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Przemysław Kowiański
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland.
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland.
| | - Ewelina Czuba
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Monika Waśkow
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Grażyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Mourão AM, Vicente LCC, Abreu MNS, Sant'anna RV, DE Meira FCA, Xavier RMDB, Tanure MTDA, Vieira ELM, DE Souza LC, Miranda ASD, Rachid MA, Teixeira AL. Clinical and molecular correlates of the ASPECTS in the acute phase of stroke. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:262-268. [PMID: 32490969 DOI: 10.1590/0004-282x20200001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/08/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND The Alberta Stroke Program Early CT Score (ASPECTS) scale was developed for monitoring early ischemic changes on CT, being associated with clinical outcomes. The ASPECTS can also associate with peripheral biomarkers that reflect the pathophysiological response of the brain to the ischemic stroke. OBJECTIVE To investigate the association between peripheral biomarkers with the Alberta Stroke Program Early CT Score (ASPECTS) in individuals after ischemic stroke. METHODS Patients over 18 years old with acute ischemic stroke were enrolled in this study. No patient was eligible for thrombolysis. The patients were submitted to non-contrast CT in the first 24 hours of admission, being the Alberta Stroke Program Early CT Score and clinical and molecular evaluations applied on the same day. The National Institutes of Health Stroke Scale (NIHSS), modified Rankin scale and the Mini-Mental State Examination for clinical evaluation were also applied to all subjects. Plasma levels of BDNF, VCAM-1, VEGF, IL-1β, sTNFRs and adiponectin were determined by ELISA. RESULTS Worse neurological impairment (NIHSS), cognitive (MEEM) and functional (Rankin) performance was observed in the group with changes in the NCTT. Patients with NCTT changes also exhibited higher levels of IL-1β and adiponectin. In the linear multivariate regression, an adjusted R coefficient of 0.515 was found, indicating adiponectin and NIHSS as independent predictors of ASPECTS. CONCLUSION Plasma levels of adiponectin are associated with the ASPECTS scores.
Collapse
Affiliation(s)
- Aline Mansueto Mourão
- Unidade de Acidente Vascular Cerebral, Hospital Risoleta Tolentino Neves, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Departamento de Fonoaudiologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Mery Natali Silva Abreu
- Departamento de Enfermagem Aplicada, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Romeu Vale Sant'anna
- Unidade de Acidente Vascular Cerebral, Hospital Risoleta Tolentino Neves, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fidel Castro Alves DE Meira
- Unidade de Acidente Vascular Cerebral, Hospital Risoleta Tolentino Neves, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Menezes de Brito Xavier
- Unidade de Acidente Vascular Cerebral, Hospital Risoleta Tolentino Neves, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco Túlio de Azevedo Tanure
- Unidade de Acidente Vascular Cerebral, Hospital Risoleta Tolentino Neves, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Erica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Cruz DE Souza
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milene Alvarenga Rachid
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lucio Teixeira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
45
|
Li L, Lou W, Li H, Zhu Y, Huang X. Upregulated C-C Motif Chemokine Ligand 2 Promotes Ischemic Stroke via Chemokine Signaling Pathway. Ann Vasc Surg 2020; 68:476-486. [PMID: 32422289 DOI: 10.1016/j.avsg.2020.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND This study aims to evaluate the potential effect and the underlying mechanism of C-C motif chemokine ligand 2 (CCL2) in ischemic stroke. METHODS An integrated bioinformatics analysis was performed to identify the differentially expressed (DE) genes and their related pathways in ischemic stroke. In vivo study of a rat model of middle cerebral artery occlusion (MCAO) was further established to assess the effect of CCL2 on severity of neurologic impairments. The expression levels of proinflammatory cytokines were also evaluated using the ELISA assay, and Western blot was also used to determine the expression of CCL2 and other DE proteins in the related pathways. RESULTS A total of 88 DE genes were identified from the microarray dataset of ischemic stroke. The bioinformatics analysis revealed that CCL2 was highly expressed in ischemic stroke tissue and promoted the ischemic stroke progression via activation of the chemokine signaling pathway and cytokine-cytokine receptor interaction pathway. The in vivo study of the ischemic stroke rat model also showed that the CCL2 expression was elevated in the MCAO/R rats, with significant neurological impairments and ischemic infarct area in the brain tissue being observed. The administration of CCL2 inhibitors significantly inhibited the inflammatory response, attenuated the neurological impairments, and decreased the ischemic infarct area in the MCAO/R rats. Furthermore, the downregulation of CCL2 also inhibited the expression of the pathway-related proteins including CCL7, CCR2, CXCL16, and TNF-α. CONCLUSIONS These results indicate that the CCL2/chemokine signaling pathway is responsible for ischemic stroke progression and might represent a potential therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Lin Li
- Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou, People's Republic of China
| | - Weimin Lou
- Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou, People's Republic of China
| | - Hailong Li
- Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou, People's Republic of China
| | - Yuehong Zhu
- Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou, People's Republic of China
| | - Xiong'ang Huang
- Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou, People's Republic of China.
| |
Collapse
|
46
|
Pletsch-Borba L, Grafetstätter M, Hüsing A, Johnson T, González Maldonado S, Groß ML, Kloss M, Hoffmeister M, Bugert P, Kaaks R, Kühn T. Vascular injury biomarkers and stroke risk. Neurology 2020; 94:e2337-e2345. [DOI: 10.1212/wnl.0000000000009391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023] Open
Abstract
ObjectiveBecause little is known about associations between biomarkers of vascular injury and stroke risk, we evaluated associations between plasma concentrations of 6 novel biomarkers of vascular injury and stroke risk in a population-based study.MethodsA case–cohort subset of EPIC-Heidelberg (European Prospective Investigation for Cancer and Nutrition–Heidelberg) including incident stroke cases (n = 335) and a random subcohort (n = 2,418) was selected. Concentrations of intercellular adhesion molecule 3 (ICAM3), soluble E-selectin and P-selectin, soluble thrombomodulin (sTM), thrombopoietin, and glycoprotein IIb/IIIa were measured in baseline plasma samples. Weighted Cox regression analyses were used to assess associations between biomarker levels and stroke risk.ResultsMedian follow-up in the subcohort and among cases was 9.8 (range, 0.1–12.5) years and 6.2 (range, 0.01–12.1) years, respectively. ICAM3 levels were associated with increased risk of incident stroke after multivariable adjustment (hazard ratio, highest vs lowest quartile: 1.64 [95% confidence interval, 1.15–2.32]; plinear trend < 0.001). This association was more apparent for ischemic (1.65 [1.12–2.45]; plinear trend < 0.01) than for hemorrhagic stroke (1.29 [0.60–2.78]; plinear trend = 0.3). We further observed a borderline significant trend for a positive association between sTM and overall stroke risk (1.47 [0.99–2.19]; plinear trend = 0.05).ConclusionsIn this population-based study, circulating levels of ICAM3, an adhesion molecule shed by leukocytes, were associated with increased risk of incident stroke. Further mechanistic studies are needed to elucidate the pathophysiology underlying this association.Classification of evidenceThis study provides Class II evidence that plasma levels of ICAM3 are associated with increased stroke risk.
Collapse
|
47
|
Changes in Whole-Blood microRNA Profiles during the Onset and Treatment Process of Cerebral Infarction: A Human Study. Int J Mol Sci 2020; 21:ijms21093107. [PMID: 32354168 PMCID: PMC7246837 DOI: 10.3390/ijms21093107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022] Open
Abstract
Circulating miRNA species are promising symptom markers for various diseases, including cardiovascular disease. However, studies regarding their role in the treatment process are limited, especially concerning cerebral infarction. This study aimed to extract miRNA markers to investigate whether they reflect both onset and treatment process of cerebral infarction. A total of 22 patients (P-group) and 22 control subjects (C-group) were examined for their whole-blood miRNA profiles using DNA GeneChip™ miRNA 4.0 Array, with six patients examined after treatment (T-group). A total of 64 miRNAs were found to be differentially expressed between the C- and P-groups. Out of 64 miRNAs, the expression levels of two miRNAs correlated with hypertension. A total of 155 miRNAs were differentially expressed between the P- and T-groups. Five common miRNAs were found among the 64 and 155 miRNAs identified. Importantly, these common miRNAs were inversely regulated in each comparison (e.g., C < P > T), including miR-505-5p, which was previously reported to be upregulated in aortic stenosis patients. Our previous study using rat cerebral infarction models detected the downregulation of an apoptosis repressor, WDR26, which was repressed by one of the five miRNAs. Our results provide novel information regarding the miRNA-based diagnosis of cerebral infarction in humans. In particular, the five common miRNAs could be useful makers for the onset and the treatment process. Trial registration: This study was registered in the UMIN Clinical Trials Registry (UMIN000038321).
Collapse
|
48
|
Lumley HA, Flynn D, Shaw L, McClelland G, Ford GA, White PM, Price CI. A scoping review of pre-hospital technology to assist ambulance personnel with patient diagnosis or stratification during the emergency assessment of suspected stroke. BMC Emerg Med 2020; 20:30. [PMID: 32336270 PMCID: PMC7183583 DOI: 10.1186/s12873-020-00323-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pre-hospital identification of key subgroups within the suspected stroke population could reduce delays to emergency treatment. We aimed to identify and describe technology with existing proof of concept for diagnosis or stratification of patients in the pre-hospital setting. METHODS A systematic electronic search of published literature (from 01/01/2000 to 06/06/2019) was conducted in five bibliographic databases. Two reviewers independently assessed eligibility of studies or study protocols describing diagnostic/stratification tests (portable imaging/biomarkers) or technology facilitating diagnosis/stratification (telemedicine) used by ambulance personnel during the assessment of suspected stroke. Eligible descriptions required use of tests or technology during the actual assessment of suspected stroke to provide information directly to ambulance personnel in the pre-hospital setting. Due to study, intervention and setting heterogeneity there was no attempt at meta-analysis. RESULTS 2887 articles were screened for eligibility, 19 of which were retained. Blood biomarker studies (n = 2) were protocols of prospective diagnostic accuracy studies, one examining purines and the other a panel of known and novel biomarkers for identifying stroke sub-types (versus mimic). No data were yet available on diagnostic accuracy or patient health outcomes. Portable imaging studies (n = 2) reported that an infrared screening device for detecting haemorrhages yielded moderate sensitivity and poor specificity in a small study, whilst a dry-EEG study to detect large vessel occlusion in ischaemic stroke has not yet reported results. Fifteen evaluations of pre-hospital telemedicine were identified (12 observational and 3 controlled comparisons) which all involved transmission of stroke assessment data from the pre-hospital setting to the hospital. Diagnosis was generally comparable with hospital diagnosis and most telemedicine systems reduced time-to-treatment; however, it is unknown whether this time saving translated into more favourable clinical outcomes. Telemedicine systems were deemed acceptable by clinicians. CONCLUSIONS Pre-hospital technologies to identify clinically important subgroups amongst the suspected stroke population are in development but insufficient evidence precludes recommendations about routine use in the pre-hospital setting. Multi-centre diagnostic accuracy studies and clinical utility trials combining promising technologies are warranted.
Collapse
Affiliation(s)
- Hannah A Lumley
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Darren Flynn
- School of Health and Social Care, Teesside University, Tees Valley, UK
| | - Lisa Shaw
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Graham McClelland
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- North East Ambulance Service NHS Foundation Trust, Newcastle upon Tyne, England
| | - Gary A Ford
- Medical Sciences Division, Oxford Academic Health Science Network, University of Oxford, and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Phil M White
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, England
| | - Christopher I Price
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Northumbria Healthcare NHS Foundation Trust, Newcastle upon Tyne, England
| |
Collapse
|
49
|
Makovec M, Kerin K, Skitek M, Jerin A, Klokočovnik T. Association of biomarker S100B and cerebral oximetry with neurological changes during carotid endarterectomy performed in awake patients. VASA 2020; 49:285-293. [PMID: 32323633 DOI: 10.1024/0301-1526/a000861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: This study attempted to correlate neurological symptoms in awake patients undergoing carotid endarterectomy (CEA) under local anaesthesia (LA) with serum concentration of S100B protein and measurement of cerebral oximetry with near-infrared spectroscopy (NIRS). Patients and methods: A total of 64 consecutive CEAs in 60 patients operated under LA during an 18-month period were prospectively evaluated. A cerebral oximeter was used to measure cerebral oxygen saturation (rSO2) before and after cross-clamping along with serum concentration of the S100B protein. Selective shunting was performed when neurological changes occurred, regardless of NIRS. Neurological deterioration occurred (neurological symptoms group) in 7 (10.9 %) operations. In 57 (89.1 %) operations, the patients were neurologically stable (no neurological symptoms group). Results: The neurological symptoms that occurred after clamping correlated with an increase in the serum level of S100B (P = .040). The cut-off of 22.5 % of S100B increase was determined to be optimal for identifying patients with neurological symptoms. There was no correlation between rSO2 decline and neurological symptoms (P = .675). Two (3.1 %) perioperative strokes occurred. Conclusions: We found a correlation between neurological symptoms and serum S100B protein increase. However, because of the long evaluation time of serum S100B, this monitoring technique cannot be performed during CEA.
Collapse
Affiliation(s)
- Matej Makovec
- Department of Vascular Surgery, Novo Mesto General Hospital, Novo Mesto, University of Ljubljana, Slovenia
| | - Klemen Kerin
- Department of Cardiothoracic and Vascular Surgery, Klagenfurt Clinic, Klagenfurt, Austria
| | - Milan Skitek
- Department of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Slovenia
| | - Aleš Jerin
- Department of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Slovenia
| | - Tomislav Klokočovnik
- Department of Cardiac Surgery, Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia
| |
Collapse
|
50
|
Das S, Mondal GP, Bhattacharya R, Ghosh KC, Das S, Pattem HK, Paul SA, Patra C. Predictors of Postthrombolysis Outcome and Symptomatic Postthrombolysis Hemorrhage following Intravenous Thrombolysis with Alteplase for Acute Ischemic Stroke. J Neurosci Rural Pract 2020; 11:315-324. [PMID: 32367987 PMCID: PMC7195957 DOI: 10.1055/s-0040-1709946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Thrombolysis improves the outcome in acute ischemic stroke (AIS), albeit with an increased risk of symptomatic intracranial hemorrhage (sICH). Biomarkers to find patients at risk of sICH, and guide treatment and prognosis would be valuable. Methods Consecutive patients of AIS thrombolysed between February 2017 and September 2019 at Calcutta National Medical College were studied prospectively for sICH and outcome at 6-month follow-up. We identified the independent risk factors for unfavorable outcomes, mortality, and sICH using multivariate analysis. Prethrombolysis and 24-hour postthrombolysis fibrinogen levels were estimated to evaluate its biomarker role. Results Out of 180 AIS patients admitted during the study period, 60 patients were thrombolysed. Door to needle time was <3 hours among 24 patients and 3 to 4.5 hours among 36 patients. Favorable outcomes occurred among 76.67% and sICH occurred among 13.33% patients. Upper tertile of National Institute of Health Stroke Scale (NIHSS) had the highest adjusted odds for sICH (17.5 [95% confidence intervals=1.7-178.44]). Total anterior circulation stroke had the highest adjusted odds for unfavorable outcome (19.11 [3.9-92.6]). Following thrombolysis, the mean (standard deviation) fibrinogen level of 449.27 (32.87) decreased 7% to postthrombolysis level of 420 (20.5; p< 0.0001). Higher tertiles of fibrinogen levels had progressively increasing odds for morbidity and sICH. Conclusion Congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke (double weight), i.e., CHADS2 score >2, low ejection fraction, the occurrence of total anterior circulation stroke and higher mean arterial blood pressure, blood glucose level, NIHSS score, and fibrinogen at admission were the common risk factors significantly predicting postthrombolysis sICH and morbidity. Antiplatelet and anticoagulant therapy, lower ASPECT (Alberta Stroke Program Early CT Score), and higher SEDAN scores also predicted sICH . Fibrinogen levels were significantly higher among those developing sICH and having unfavorable outcome. The performance of thrombolysis within 3 hours or between 3 and 4.5 hours after symptom onset did not affect morbidity, mortality, or the occurrence of sICH.
Collapse
Affiliation(s)
- Suman Das
- Department of Neurology, Calcutta National Medical College, Kolkata, India
| | | | | | | | - Sarbajit Das
- Department of Neurology, Calcutta National Medical College, Kolkata, India
| | | | - Shabir Ahmed Paul
- Department of Neurology, Calcutta National Medical College, Kolkata, India
| | - Chandrakanta Patra
- Department of Neurology, Calcutta National Medical College, Kolkata, India
| |
Collapse
|