1
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Neuroinflammation and Mitochondrial Dysfunction in Parkinson's Disease: Connecting Neuroimaging with Pathophysiology. Antioxidants (Basel) 2023; 12:1411. [PMID: 37507950 PMCID: PMC10375976 DOI: 10.3390/antiox12071411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
There is a pressing need for disease-modifying therapies in patients suffering from neurodegenerative diseases, including Parkinson's disease (PD). However, these disorders face unique challenges in clinical trial designs to assess the neuroprotective properties of potential drug candidates. One of these challenges relates to the often unknown individual disease mechanisms that would, however, be relevant for targeted treatment strategies. Neuroinflammation and mitochondrial dysfunction are two proposed pathophysiological hallmarks and are considered to be highly interconnected in PD. Innovative neuroimaging methods can potentially help to gain deeper insights into one's predominant disease mechanisms, can facilitate patient stratification in clinical trials, and could potentially map treatment responses. This review aims to highlight the role of neuroinflammation and mitochondrial dysfunction in patients with PD (PwPD). We will specifically introduce different neuroimaging modalities, their respective technical hurdles and challenges, and their implementation into clinical practice. We will gather preliminary evidence for their potential use in PD research and discuss opportunities for future clinical trials.
Collapse
Affiliation(s)
- Benjamin Matís Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022; 11:cells11010164. [PMID: 35011727 PMCID: PMC8750749 DOI: 10.3390/cells11010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Polyamines, spermidine and spermine, are synthesized in every living cell and are therefore contained in foods, especially in those that are thought to contribute to health and longevity. They have many physiological activities similar to those of antioxidant and anti-inflammatory substances such as polyphenols. These include antioxidant and anti-inflammatory properties, cell and gene protection, and autophagy activation. We have first reported that increased polyamine intake (spermidine much more so than spermine) over a long period increased blood spermine levels and inhibited aging-associated pathologies and pro-inflammatory status in humans and mice and extended life span of mice. However, it is unlikely that the life-extending effect of polyamines is exerted by the same bioactivity as polyphenols because most studies using polyphenols and antioxidants have failed to demonstrate their life-extending effects. Recent investigations revealed that aging-associated pathologies and lifespan are closely associated with DNA methylation, a regulatory mechanism of gene expression. There is a close relationship between polyamine metabolism and DNA methylation. We have shown that the changes in polyamine metabolism affect the concentrations of substances and enzyme activities involved in DNA methylation. I consider that the increased capability of regulation of DNA methylation by spermine is a key of healthy long life of humans.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City 330-0834, Saitama, Japan
| |
Collapse
|
3
|
Oghabian MA, Fatemidokht A, Haririchian MH. Quantification of Blood-Brain-Barrier Permeability Dysregulation and Inflammatory Activity in MS Lesions by Dynamic-Contrast Enhanced MR Imaging. Basic Clin Neurosci 2022; 13:117-128. [PMID: 36589018 PMCID: PMC9790105 DOI: 10.32598/bcn.2022.575.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Introduction: blood-brain-barrier perfusion characterization impaired in MS as some studies have shown recently but a comparison between perfusion parameters in contrast-enhanced and non-enhanced lesions not have been well documented. Pharmacokinetic quantitative parameters have obtained from dynamic contrast-enhanced in magnetic resonance imaging is a useful way to quantify blood-brain barrier permeability leakage. Methods MR examination was performed on 28 patients with Relapsing-remitted Multiple Sclerosis (RRMS) with (Mean±SD age: 34.7±9.28) which had multiple lesions in the brain.3D dynamic T1-weighted spoiled gradient echo was obtained and Perfusion parameters and its map assessed in enhanced and non-enhanced lesions after intravascular injection differences in parameters and map obtained by analyzing ROI in Extended Toft model. Results permeability as measured Krtans was a significantly higher value in CE to compare NE lesions. Ktrans and Kep have significant differences in NAWM and CE and NE lesions. Vb was slightly different in NE and CE lesions. Conclusion Permeability measured as Ktrans was the good parameter to show permeability impairment of BBB in CE lesions. Dysregulation in BBB is an acceptable sign to indicate existence inflammation in CE lesions. Highlights Multiple Sclerosis,Inflammation,Blood-brain-barrier dysregulation. Plain Language Summary Inflammation activity in MS patients has an important role to cause BBB dysfunction.in this article to achieve results to confirm the inflammation importance in MS patients with acute lesions. MRI modality have been used and with comparison between acute and chronic lesions and NAWM of MS patient's presence of inflammation have been proved.
Collapse
Affiliation(s)
- Mohammad Ali Oghabian
- Department of Neuroimaging and Analysis, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Fatemidokht
- Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Haririchian
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Esmael A, Talaat M, Egila H, Eltoukhy K. Mitochondrial dysfunction and serum lactate as a biomarker for the progression and disability in MS and its correlation with the radiological findings. Neurol Res 2021; 43:582-590. [PMID: 33657991 DOI: 10.1080/01616412.2021.1893567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: To study the serum lactate level in MS and to explore its correlation with the progression and disability in multiple sclerosis (MS), and the important role of mitochondrial dysfunction in the pathogenesis of MS.Methods: This case-control study included 80 participants, involved 50 MS patients and 30 normal healthy controls. Detailed history taking, complete neurological examination, and clinical evaluation of the disability using the Expanded Disability Status Scale (EDSS) were done for all patients. Level of serum lactate was measured in both groups and was correlated with EDSS, MS subtypes, MRI brain, and MRS findings.Results: Serum lactate in MS patients was about three and half times higher than serum lactate levels of healthy controls (22.87 ± 5.92 mg/dl versus 6.39 ± 0.9 6.39 ± 0.91, p < 0.001). Importantly, serum lactate values were increased in MS cases with a progressive course compared with MS cases with RR course. Also, there were linearly correlations linking serum lactate levels and the duration of MS (r = 0.342, P = 0.015), relapses numbers (r = 0.335, P = 0.022), and EDSS (r = 0.483, P < 0.001). Also, there were strong positive correlations between serum lactate and Lipid/Lactate (r = 0.461, P = 0.001), periventricular lesion (r = 0.453, P = 0.005), and moderate positive correlations between serum lactate and juxtacortical lesion (r = 0.351, P = 0.02), and infratentorial lesion (r = 0.355, P = 0.02).Conclusion: Measurement of serum lactate may be helpful in MS and this supports the hypothesis of the critical role of mitochondrial dysfunction and axonal damage in MS.Registration of Clinical Trial Research: ClinicalTrials.gov ID: NCT04210960.
Collapse
Affiliation(s)
- Ahmed Esmael
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Mona Talaat
- Diagnostic Radiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr Ash Shaykh, Egypt
| | - Hosam Egila
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Khaled Eltoukhy
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| |
Collapse
|
5
|
Zhang Q, Dai X, Zhang H, Zeng Y, Luo K, Li W. Recent advances in development of nanomedicines for multiple sclerosis diagnosis. Biomed Mater 2021; 16:024101. [PMID: 33472182 DOI: 10.1088/1748-605x/abddf4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease with a high morbidity and disease burden. It is characterized by the loss of the myelin sheath, resulting in the disruption of neuron electrical signal transmissions and sensory and motor ability deficits. The diagnosis of MS is crucial to its management, but the diagnostic sensitivity and specificity are always a challenge. To overcome this challenge, nanomedicines have recently been employed to aid the diagnosis of MS with an improved diagnostic efficacy. Advances in nanomedicine-based contrast agents in magnetic resonance imaging scanning of MS lesions, and nanomedicine-derived sensors for detecting biomarkers in the cerebrospinal fluid biopsy, or analyzing the composition of exhaled breath gas, have demonstrated the potential of using nanomedicines in the accurate diagnosis of MS. This review aims to provide an overview of recent advances in the application of nanomedicines for the diagnosis of MS and concludes with perspectives of using nanomedicines for the development of safe and effective MS diagnostic nanotools.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Radiology, Department of Postgraduate Students, and Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China. West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
6
|
Kapadia A, Dmytriw AA. Multiple sclerosis is a systemic venous vasculopathy: A single unifying mechanism. Med Hypotheses 2020; 140:109645. [PMID: 32135448 DOI: 10.1016/j.mehy.2020.109645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a potentially debilitating disease affecting the central nervous system (CNS) clinically characterized by progressive neurological deterioration. It is the most common condition under the umbrella of demyelinating disease, thought to occur as a result of a primary autoimmune insult. Various genetic and environmental risk factors have been implicated as potential triggers and/or predisposing factors; however, the exact mechanism of disease remains elusive. Diagnosis and management are based on clinical presentation, with adjunct imaging and biochemical assessment. Since the 19th century anatomical distribution of lesions in MS have been observed to demonstrate a characteristic periventricular, perivenular distribution; spinal cord and cortical lesions also demonstrate this perivenous preponderance. Venous abnormalities have long been observed on pathology characterized by irregular narrowing and dilatation with associated venous wall and perivenous infiltrates. Active CNS lesions are characterized by perivenular inflammatory infiltrates. There is accompanying global dysfunction of the blood-brain barrier, even within normal appearing tissue, with low levels of inflammatory change and tissue injury seen at pathology. Although several CNS antigens have been identified as potential candidates, including myelin related antigens, a specific pathogenic antigen remains elusive. Evaluation of the cerebrospinal fluid reveals characteristic oligoclonal bands, indicating a broad inflammatory response against a variety of CNS antigens. Antibodies have been identified against endothelial elements in sera of patients with MS, their role is not yet clearly elucidated. Emerging evidence suggests there may be a more systemic inflammatory process, heralded by a systemic preclinical prodrome. In light of such seemingly-discrepant clinical, anatomic, immunologic and pathologic findings we propose a unifying theory; specifically we propose that MS is a primary autoimmune vasculopathy, with a predilection of CNS venous structures. Characteristic CNS lesions are a secondary manifestation resulting from an inflammatory response to the uncovering of usually privileged CNS antigens.
Collapse
Affiliation(s)
- Anish Kapadia
- Sunnybrook Health Sciences Centre, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
| | - Adam A Dmytriw
- Sunnybrook Health Sciences Centre, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Jafari-Khouzani K, Paynabar K, Hajighasemi F, Rosen B. Effect of Region of Interest Size on the Repeatability of Quantitative Brain Imaging Biomarkers. IEEE Trans Biomed Eng 2018; 66:864-872. [PMID: 30059291 DOI: 10.1109/tbme.2018.2860928] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the repeatability analysis, when the measurement is the mean value of a parametric map within a region of interest (ROI), the ROI size becomes important as by increasing the size, the measurement will have a smaller variance. This is important in decision-making in prospective clinical studies of brain when the ROI size is variable, e.g., in monitoring the effect of treatment on lesions by quantitative MRI, and in particular when the ROI is small, e.g., in the case of brain lesions in multiple sclerosis. Thus, methods to estimate repeatability measures for arbitrary sizes of ROI are desired. We propose a statistical model of the values of parametric map within the ROI and a method to approximate the model parameters, based on which we estimate a number of repeatability measures including repeatability coefficient, coefficient of variation, and intraclass correlation coefficient for an ROI with an arbitrary size. We also show how this gives an insight into related problems such as spatial smoothing in voxel-wise analysis. Experiments are conducted on simulated data as well as on scan-rescan brain MRI of healthy subjects. The main application of this study is the adjustment of the decision threshold based on the lesion size in treatment monitoring.
Collapse
|
8
|
Kerbrat A, Combès B, Commowick O, Maarouf A, Bannier E, Ferré JC, Tourbah A, Ranjeva JP, Barillot C, Edan G. USPIO-positive MS lesions are associated with greater tissue damage than gadolinium-positive-only lesions during 3-year follow-up. Mult Scler 2017; 24:1852-1861. [DOI: 10.1177/1352458517736148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Identifying in vivo the processes that determine lesion severity in multiple sclerosis (MS) remains a challenge. Objectives: To describe the dynamics of ultrasmall superparamagnetic iron oxide (USPIO) enhancement in MS lesions and the relationship between USPIO enhancement and microstructural changes over 3 years. Methods: Lesion development was assessed at baseline, Months 3, 6, and 9, using magnetic resonance imaging (MRI) with gadolinium and USPIO. Microstructural changes were assessed at baseline, Months 3, 6, 9, 12, 18, 24, and 36, using relaxometry, magnetization transfer, and diffusion-weighted imaging. Results: We included 15 patients with clinically isolated syndrome. In the 52 MRI scans acquired with USPIO, 22 lesions were USPIO and gadolinium positive, and 44 were USPIO negative but gadolinium positive. Lesions no longer exhibited sustained USPIO enhancement 3 months later. At baseline, lesions that were both USPIO and gadolinium positive had lower magnetization transfer ratio values (common language effect size = 0.84, p = 0.0005) and lower fractional anisotropy values (0.83, p = 0.001) than gadolinium-positive-only lesions. USPIO-positive lesions remained associated with greater damage than gadolinium-positive-only lesions throughout the 3-year follow-up. Conclusion: USPIO enhancement, mainly reflecting monocyte infiltration, is transient and is associated with persistent tissue damage after 3 years.
Collapse
Affiliation(s)
- Anne Kerbrat
- Department of Neurology, Rennes University Hospital, Rennes, France/VisAGeS team, INRIA (INSERM, CNRS, Rennes 1 University), Rennes, France/CHU Hôpital Pontchaillou, Rennes, France
| | - Benoit Combès
- VisAGeS team, INRIA (INSERM, CNRS, Rennes 1 University), Rennes, France
| | - Olivier Commowick
- VisAGeS team, INRIA (INSERM, CNRS, Rennes 1 University), Rennes, France
| | - Adil Maarouf
- CEMEREM, Timone University Hospital, Marseille, France/CNRS and Center for Magnetic Resonance in Biology and Medicine (CRMBM—UMR 7339), Aix-Marseille University and CNRS, Marseille, France
| | - Elise Bannier
- VisAGeS team, INRIA (INSERM, CNRS, Rennes 1 University), Rennes, France/Department of Radiology, Rennes University Hospital, Rennes, France
| | - Jean Christophe Ferré
- VisAGeS team, INRIA (INSERM, CNRS, Rennes 1 University), Rennes, France/Department of Radiology, Rennes University Hospital, Rennes, France
| | - Ayman Tourbah
- Department of Neurology, Reims University Hospital, Reims, France
| | - Jean-Philippe Ranjeva
- CNRS and Center for Magnetic Resonance in Biology and Medicine (CRMBM—UMR 7339), Aix-Marseille University, Marseille, France
| | | | - Gilles Edan
- Department of Neurology, Rennes University Hospital, Rennes, France/VisAGeS team, INRIA (INSERM, CNRS, Rennes 1 University), Rennes, France/Plurithematic Clinical Investigation Center (CIC-P 1414), INSERM, Rennes, France
| |
Collapse
|
9
|
Nantes JC, Proulx S, Zhong J, Holmes SA, Narayanan S, Brown RA, Hoge RD, Koski L. GABA and glutamate levels correlate with MTR and clinical disability: Insights from multiple sclerosis. Neuroimage 2017; 157:705-715. [DOI: 10.1016/j.neuroimage.2017.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 01/04/2023] Open
|
10
|
Rovira A, Auger C, Huerga E, Corral JF, Mitjana R, Sastre-Garriga J, Tintoré M, Montalban X. Cumulative Dose of Macrocyclic Gadolinium-Based Contrast Agent Improves Detection of Enhancing Lesions in Patients with Multiple Sclerosis. AJNR Am J Neuroradiol 2017; 38:1486-1493. [PMID: 28619842 DOI: 10.3174/ajnr.a5253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/02/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Gadolinium-enhanced MR imaging is currently the reference standard for detecting active inflammatory lesions in patients with multiple sclerosis. The sensitivity of MR imaging for this purpose may vary according to the physicochemical characteristics of the contrast agent used and the acquisition strategy. The purpose of this study was to compare detection of gadolinium-enhancing lesions or active disease following a single or cumulative dose of a macrocyclic gadolinium-based contrast agent with different image acquisition delays in patients with clinically isolated syndrome or relapsing multiple sclerosis. MATERIALS AND METHODS All patients received a first dose (0.1 mmol/kg) of gadobutrol and, 20 minutes later, a second dose (0.1 mmol/kg), with a cumulative dose of 0.2 mmol/kg. Two contrast-enhanced T1-weighted sequences were performed at 5 and 15 minutes after the first contrast administration, and 2 additional T1-weighted sequences at 5 and 15 minutes after the second contrast administration with a 3T magnet. RESULTS One hundred fifteen patients were considered evaluable. A significantly larger number of lesions were detected in scans obtained at 5 and 15 minutes after the second contrast injection compared with scans obtained at 5 and 15 minutes after the first injection (P < .001). The number of patients with active lesions on MR imaging was significantly higher after the second dose administration (52.0%, first dose versus 59.2%, second dose; P < .001). CONCLUSIONS Cumulative dosing of a macrocyclic gadolinium-based contrast agent increases detection of enhancing lesions and patients with active lesions. These data could be considered in the design of MR imaging protocols aimed at detecting active multiple sclerosis lesions.
Collapse
Affiliation(s)
- A Rovira
- From the Neuroradiology and Magnetic Resonance Units (A.R., C.A., E.H., J.F.C., R.M.), Department of Radiology
| | - C Auger
- From the Neuroradiology and Magnetic Resonance Units (A.R., C.A., E.H., J.F.C., R.M.), Department of Radiology
| | - E Huerga
- From the Neuroradiology and Magnetic Resonance Units (A.R., C.A., E.H., J.F.C., R.M.), Department of Radiology
| | - J F Corral
- From the Neuroradiology and Magnetic Resonance Units (A.R., C.A., E.H., J.F.C., R.M.), Department of Radiology
| | - R Mitjana
- From the Neuroradiology and Magnetic Resonance Units (A.R., C.A., E.H., J.F.C., R.M.), Department of Radiology
| | - J Sastre-Garriga
- Centre d'Esclerosi Múltiple de Catalunya (J.S.-G., M.T., X.M.), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Tintoré
- Centre d'Esclerosi Múltiple de Catalunya (J.S.-G., M.T., X.M.), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - X Montalban
- Centre d'Esclerosi Múltiple de Catalunya (J.S.-G., M.T., X.M.), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Mulero P, Córdova C, Hernández M, Martín R, Gutiérrez B, Muñoz JC, Redondo N, Gallardo I, Téllez N, Nieto ML. Netrin-1 and multiple sclerosis: a new biomarker for neuroinflammation? Eur J Neurol 2017; 24:1108-1115. [PMID: 28677863 DOI: 10.1111/ene.13340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/15/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Netrin-1, an axon guidance protein, reduces serum levels of pro-inflammatory mediators and stabilizes the blood-brain barrier limiting the entrance of immune cells into the central nervous system. The aim was to investigate its presence in the experimental autoimmune encephalomyelitis (EAE) model and in multiple sclerosis (MS) patients with and without clinical activity. METHODS Netrin-1 levels were evaluated in EAE mouse tissues. Afterwards, serum netrin-1 was cross-sectionally quantified in 90 patients with different MS phenotypes and 30 control subjects. An additional group of 10 relapsing-remitting MS (RRMS) patients was longitudinally evaluated throughout a relapse (RRMSr) with an interval of 60 days. Tumour necrosis factor α (TNFα), a reference inflammatory cytokine, and netrin-1 were quantified by enzyme-linked immunosorbent assay. RESULTS Experimental autoimmune encephalomyelitis mice showed significantly lower netrin-1 levels and higher TNFα amounts in sera, spinal cord and cerebella than healthy control mice. MS patients showed significantly lower serum netrin-1 levels than controls (511.62 ± 209.30 and 748.32 ± 103.24 pg/ml, respectively; P ≤ 0.005). The lowest protein levels were found in RRMSr, remaining significantly lower throughout the relapse. TNFα serum concentrations were higher in MS patients compared to controls, and negatively correlated with netrin-1 levels (r = -0.3734, P ≤ 0.0001). CONCLUSIONS Netrin-1 decreased in EAE and in MS patients, mainly during relapse, suggesting an anti-inflammatory role of netrin-1. Further research should be performed in a larger cohort of patients to validate netrin-1 as a biomarker of MS inflammatory activity.
Collapse
Affiliation(s)
- P Mulero
- Servicio de Neurología, Hospital Clínico Universitario, Valladolid, Spain
| | - C Córdova
- Instituto de Biología y Genética Molecular, CSIC - Universidad de Valladolid, Valladolid, Spain
| | - M Hernández
- Instituto de Biología y Genética Molecular, CSIC - Universidad de Valladolid, Valladolid, Spain
| | - R Martín
- Instituto de Biología y Genética Molecular, CSIC - Universidad de Valladolid, Valladolid, Spain
| | - B Gutiérrez
- Instituto de Biología y Genética Molecular, CSIC - Universidad de Valladolid, Valladolid, Spain
| | - J C Muñoz
- Servicio de Cardiología, Hospital Universitario Río Hortega, Valladolid, Spain
| | - N Redondo
- Servicio de Neurología, Hospital Clínico Universitario, Valladolid, Spain
| | - I Gallardo
- Instituto de Biología y Genética Molecular, CSIC - Universidad de Valladolid, Valladolid, Spain
| | - N Téllez
- Servicio de Neurología, Hospital Clínico Universitario, Valladolid, Spain
| | - M L Nieto
- Instituto de Biología y Genética Molecular, CSIC - Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
12
|
The blood brain barrier and neuropsychiatric lupus: new perspectives in light of advances in understanding the neuroimmune interface. Autoimmun Rev 2017; 16:612-619. [PMID: 28428121 DOI: 10.1016/j.autrev.2017.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
Experts have previously postulated a linkage between lupus associated vascular pathology and abnormal brain barriers in the immunopathogenesis of neuropsychiatric lupus. Nevertheless, there are some discrepancies between the experimental evidence, or its interpretation, and the working hypotheses prevalent in this field; specifically, that a primary contributor to neuropsychiatric disease in lupus is permeabilization of the blood brain barrier. In this commonly held view, any contribution of the other known brain barriers, including the blood-cerebrospinal fluid and meningeal barriers, is mostly excluded from the discussion. In this review we will shed light on some of the blood brain barrier hypotheses and try to trace their roots. In addition, we will suggest new research directions to allow for confirmation of alternative interpretations of the experimental evidence linking the pathology of intra-cerebral vasculature to the pathogenesis of neuropsychiatric lupus.
Collapse
|
13
|
Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173:200-212. [PMID: 26048294 PMCID: PMC4668243 DOI: 10.1016/j.schres.2015.05.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; VA Boston Healthcare System, Brockton, MA, USA
| |
Collapse
|
14
|
Derada Troletti C, de Goede P, Kamermans A, de Vries HE. Molecular alterations of the blood-brain barrier under inflammatory conditions: The role of endothelial to mesenchymal transition. Biochim Biophys Acta Mol Basis Dis 2015; 1862:452-60. [PMID: 26493443 DOI: 10.1016/j.bbadis.2015.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022]
Abstract
Impairment of the protective properties of the blood-brain barrier (BBB) is a key event during numerous neurological diseases, including multiple sclerosis (MS). Under these pathological conditions, the specialized brain endothelial cells (BECs) lose their protective function leading to neuroinflammation and neurodegeneration. To date, underlying mechanisms for this loss of function remain unclear. Endothelial to mesenchymal transition (EndoMT) is a dynamic process by which endothelial cells (ECs) dedifferentiate into mesenchymal cells and as a result lose their specific phenotype and function. As yet, little is known about the involvement of this process in the impaired function of the BECs under pathological conditions such as MS. Interestingly, several signaling pathways that can induce EndoMT are also involved in different central nervous system (CNS) pathologies associated with BBB dysfunction. In this review, we first discuss the structure and function of the BBB highlighting the changes that occur during MS. Next, we will summarize recent findings on the pathways underlying EndoMT, and finally, we will discuss the potential role of EndoMT during BBB dysfunction in neurological disorders. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Claudio Derada Troletti
- Blood-Brain Barrier Research Group, Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Centre, P.O. Box 7057, 1007, MB, Amsterdam, The Netherlands.
| | - Paul de Goede
- Blood-Brain Barrier Research Group, Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Centre, P.O. Box 7057, 1007, MB, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Blood-Brain Barrier Research Group, Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Centre, P.O. Box 7057, 1007, MB, Amsterdam, The Netherlands
| | - Helga E de Vries
- Blood-Brain Barrier Research Group, Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Centre, P.O. Box 7057, 1007, MB, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Maarouf A, Ferré JC, Zaaraoui W, Le Troter A, Bannier E, Berry I, Guye M, Pierot L, Barillot C, Pelletier J, Tourbah A, Edan G, Audoin B, Ranjeva JP. Ultra-small superparamagnetic iron oxide enhancement is associated with higher loss of brain tissue structure in clinically isolated syndrome. Mult Scler 2015; 22:1032-9. [PMID: 26453679 DOI: 10.1177/1352458515607649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 08/25/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Macrophages are important components of inflammatory processes in multiple sclerosis, closely linked to axonal loss, and can now be observed in vivo using ultra-small superparamagnetic iron oxide (USPIO). In the present 1-year longitudinal study, we aimed to determine the prevalence and the impact on tissue injury of macrophage infiltration in patients after the first clinical event of multiple sclerosis. METHODS Thirty-five patients, 32 years mean age, were imaged in a mean of 66 days after their first event using conventional magnetic resonance imaging, gadolinium (Gd) to probe blood-brain barrier integrity, USPIO to study macrophage infiltration and magnetization transfer ratio (MTR) to assess tissue structure integrity. Statistics were performed using two-group repeated-measures ANOVA. Any patient received treatment at baseline. RESULTS At baseline, patients showed 17 USPIO-positive lesions reflecting infiltration of macrophages present from the onset. This infiltration was associated with local higher loss of tissue structure as emphasized by significant lower MTRnorm values (p<0.03) in USPIO(+)/Gd(+) lesions (n=16; MTRnormUSPIO(+)/Gd(+)=0.78 at baseline, MTRnormUSPIO(+)/Gd(+)=0.81 at M12) relative to USPIO(-)/Gd(+) lesions (n=67; MTRnormUSPIO(-)/Gd(+)=0.82 at baseline, MTRnormUSPIO(-)/Gd(+)=0.85 at M12). No interaction in MTR values was observed during the 12 months follow-up (lesion type × time). CONCLUSION Infiltration of activated macrophages evidenced by USPIO enhancement, is present at the onset of multiple sclerosis and is associated with higher and persistent local loss of tissue structure. Macrophage infiltration affects more tissue structure while tissue recovery during the following year has a similar pattern for USPIO and Gd-enhanced lesions, leading to relative higher persistent local loss of tissue structure in lesions showing USPIO enhancement at baseline.
Collapse
Affiliation(s)
- Adil Maarouf
- Centre Hospitalier Universitaire de Reims, Université de Reims Champagne Ardennes, Service de Neurologie, Reims, France/Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France/APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Jean-Christophe Ferré
- CHU Rennes, Hôpital Pontchaillou, Service de Radiologie, Rennes, France/INRIA Rennes - VisAGeS Team, Rennes, France
| | - Wafaa Zaaraoui
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France
| | | | | | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France/APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Laurent Pierot
- Centre Hospitalier Universitaire de Reims, Université de Reims Champagne Ardennes, Service de Radiologie, Reims, France
| | | | - Jean Pelletier
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Ayman Tourbah
- Centre Hospitalier Universitaire de Reims, Université de Reims Champagne Ardennes, Service de Neurologie, Reims, France/Laboratoire de Psychopathologie et de Neuropsychologie, EA 2027 Université Paris VIII, Saint-Denis Cedex, France
| | - Gilles Edan
- CHU Rennes, Hôpital Pontchaillou, Service de Neurologie, Rennes, France
| | - Bertrand Audoin
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | | |
Collapse
|
16
|
Su YY, Yang GF, Lu GM, Wu S, Zhang LJ. PET and MR imaging of neuroinflammation in hepatic encephalopathy. Metab Brain Dis 2015; 30:31-45. [PMID: 25514861 DOI: 10.1007/s11011-014-9633-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022]
Abstract
Neurological or psychiatric abnormalities associated with hepatic encephalopathy (HE) range from subclinical findings to coma. HE is commonly accompanied with the accumulation of toxic substances in bloodstream. The toxicity effect of hyperammonemia on astrocyte, such as the alteration in neurotransmission, oxidative stress, astrocyte swelling, is considered as an important factor in the pathogenesis of HE. Besides, neuroinflammation has captured more attention in the process of HE, but the mechanism of neuroinflammation leading to HE remains unclear. Molecular imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) targeting activated microglia and/ or other mediators appear to be promising noninvasive approaches to assess HE. This review focuses on novel imaging and therapy strategies of neuroinflammation in HE.
Collapse
Affiliation(s)
- Yun Yan Su
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nangjing, Jiangsu Province, 210002, China
| | | | | | | | | |
Collapse
|
17
|
Raphael I, Webb J, Stuve O, Haskins W, Forsthuber T. Body fluid biomarkers in multiple sclerosis: how far we have come and how they could affect the clinic now and in the future. Expert Rev Clin Immunol 2014; 11:69-91. [PMID: 25523168 DOI: 10.1586/1744666x.2015.991315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system, which affects over 2.5 million people worldwide. Although MS has been extensively studied, many challenges still remain in regards to treatment, diagnosis and prognosis. Typically, prognosis and individual responses to treatment are evaluated by clinical tests such as the expanded disability status scale, MRI and presence of oligoclonal bands in the cerebrospinal fluid. However, none of these measures correlates strongly with treatment efficacy or disease progression across heterogeneous patient populations and subtypes of MS. Numerous studies over the past decades have attempted to identify sensitive and specific biomarkers for diagnosis, prognosis and treatment efficacy of MS. The objective of this article is to review and discuss the current literature on body fluid biomarkers in MS, including research on potential biomarker candidates in the areas of miRNA, mRNA, lipids and proteins.
Collapse
Affiliation(s)
- Itay Raphael
- University of Texas San Antonio - Biology, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
18
|
Crombé A, Saranathan M, Ruet A, Durieux M, de Roquefeuil E, Ouallet JC, Brochet B, Dousset V, Tourdias T. MS lesions are better detected with 3D T1 gradient-echo than with 2D T1 spin-echo gadolinium-enhanced imaging at 3T. AJNR Am J Neuroradiol 2014; 36:501-7. [PMID: 25376810 DOI: 10.3174/ajnr.a4152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE In multiple sclerosis, gadolinium enhancement is used to classify lesions as active. Regarding the need for a standardized and accurate method for detection of multiple sclerosis activity, we compared 2D-spin-echo with 3D-gradient-echo T1WI for the detection of gadolinium-enhancing MS lesions. MATERIALS AND METHODS Fifty-eight patients with MS were prospectively imaged at 3T by using both 2D-spin-echo and 3D-gradient recalled-echo T1WI in random order after the injection of gadolinium. Blinded and independent evaluation was performed by a junior and a senior reader to count gadolinium-enhancing lesions and to characterize their location, size, pattern of enhancement, and the relative contrast between enhancing lesions and the adjacent white matter. Finally, the SNR and relative contrast of gadolinium-enhancing lesions were computed for both sequences by using simulations. RESULTS Significantly more gadolinium-enhancing lesions were reported on 3D-gradient recalled-echo than on 2D-spin-echo (n = 59 versus n = 30 for the junior reader, P = .021; n = 77 versus n = 61 for the senior reader, P = .017). The difference between the 2 readers was significant on 2D-spin-echo (P = .044), for which images were less reproducible (κ = 0.51) than for 3D-gradient recalled-echo (κ = 0.65). Further comparisons showed that there were statistically more small lesions (<5 mm) on 3D-gradient recalled-echo than on 2D-spin-echo (P = .04), while other features were similar. Theoretic results from simulations predicted SNR and lesion contrast for 3D-gradient recalled-echo to be better than for 2D-spin-echo for visualization of small enhancing lesions and were, therefore, consistent with clinical observations. CONCLUSIONS At 3T, 3D-gradient recalled-echo provides a higher detection rate of gadolinium-enhancing lesions, especially those with smaller size, with a better reproducibility; this finding suggests using 3D-gradient recalled-echo to detect MS activity, with potential impact in initiation, monitoring, and optimization of therapy.
Collapse
Affiliation(s)
- A Crombé
- From the Service de NeuroImagerie Diagnostique et Thérapeutique (A.C., M.D., E.d.R., V.D., T.T.)
| | - M Saranathan
- Department of Radiology (M.S.), Stanford University, Stanford, California
| | - A Ruet
- Pôle de Neurosciences Cliniques (A.R., J.C.O., B.B.), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France INSERM U862 (A.R., B.B., V.D., T.T.), Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - M Durieux
- From the Service de NeuroImagerie Diagnostique et Thérapeutique (A.C., M.D., E.d.R., V.D., T.T.)
| | - E de Roquefeuil
- From the Service de NeuroImagerie Diagnostique et Thérapeutique (A.C., M.D., E.d.R., V.D., T.T.)
| | - J C Ouallet
- Pôle de Neurosciences Cliniques (A.R., J.C.O., B.B.), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - B Brochet
- Pôle de Neurosciences Cliniques (A.R., J.C.O., B.B.), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France INSERM U862 (A.R., B.B., V.D., T.T.), Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - V Dousset
- From the Service de NeuroImagerie Diagnostique et Thérapeutique (A.C., M.D., E.d.R., V.D., T.T.) INSERM U862 (A.R., B.B., V.D., T.T.), Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - T Tourdias
- From the Service de NeuroImagerie Diagnostique et Thérapeutique (A.C., M.D., E.d.R., V.D., T.T.) INSERM U862 (A.R., B.B., V.D., T.T.), Neurocentre Magendie, Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
19
|
Microwave & magnetic (M2) proteomics reveals CNS-specific protein expression waves that precede clinical symptoms of experimental autoimmune encephalomyelitis. Sci Rep 2014; 4:6210. [PMID: 25182730 PMCID: PMC4152753 DOI: 10.1038/srep06210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/28/2014] [Indexed: 11/09/2022] Open
Abstract
Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave &magnetic (M(2)) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M(2) proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M(2) proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M(2) proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.
Collapse
|
20
|
Cudaback E, Yang Y, Montine TJ, Keene CD. APOE genotype-dependent modulation of astrocyte chemokine CCL3 production. Glia 2014; 63:51-65. [PMID: 25092803 DOI: 10.1002/glia.22732] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Apolipoprotein E (apoE) is well known as a regulator of cholesterol homeostasis, and is increasingly recognized to play a prominent role in the modulation of innate immune response, including cell-to-cell communication and migration. Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder characterized by neuroinflammation that appears to be an important component of the pathophysiology of the disease. Astrocytes are the majority cell type in brain, exerting significant influence over a range of central nervous system activities, including microglial-mediated neuroinflammatory responses. As the resident innate immune effector cells of the brain, microglia respond to soluble chemical signals released from tissue during injury and disease by mobilizing to lesion sites, clearing toxic molecules, and releasing chemical signals of their own. While microglial-mediated neuroinflammation in the AD brain remains an area of intense investigation, the mechanisms underlying reinforcement and regulation of these aberrant microglial responses by astrocytes are largely unstudied. Moreover, although inheritance of APOE ɛ4 represents the greatest genetic risk factor for sporadic AD, the mechanism by which apoE isoforms differentially influence AD pathophysiology is unknown. Here we show that APOE ɛ4 genotype specifically modulates astrocyte secretion of potent microglial chemotactic agents, including CCL3, thus providing evidence that APOE modulation of central nervous system (CNS) innate immune response is mediated through astrocytes.
Collapse
Affiliation(s)
- Eiron Cudaback
- Department of Pathology, University of Washington, Seattle, Washington
| | | | | | | |
Collapse
|
21
|
Takeda S, Sato N, Morishita R. Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front Aging Neurosci 2014; 6:171. [PMID: 25120476 PMCID: PMC4114193 DOI: 10.3389/fnagi.2014.00171] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/01/2014] [Indexed: 11/25/2022] Open
Abstract
The incidence of dementia is increasing at an alarming rate, and has become a major public health concern. Alzheimer disease (AD) is the most common form of dementia and is characterized by progressive cognitive impairment. In addition to classical neuropathological features such as amyloid plaques and neurofibrillary tangles (NFT), accumulation of activated immune cells has been documented in the AD brain, suggesting a contribution of neuroinflammation in the pathogenesis of AD. Besides cognitive deterioration, non-cognitive symptoms, such as agitation, aggression, depression and psychosis, are often observed in demented patients, including those with AD, and these neuropsychological symptoms place a heavy burden on caregivers. These symptoms often exhibit sudden onset and tend to fluctuate over time, and in many cases, they are triggered by an infection in peripheral organs, suggesting that inflammation plays an important role in the pathogenesis of these non-cognitive symptoms. However, there is no mechanistic explanation for the relationship between inflammation and neuropsychiatric symptoms. Observations from experimental mouse models indicate that alteration of brain blood vessels, especially blood-brain barrier (BBB) dysfunction, may contribute to the relationship. The current review summarizes the results from recent studies on the relationship between inflammation and AD, while focusing on cerebrovascular alterations, which might provide an insight into the pathogenesis of cognitive/non-cognitive symptoms in AD patients and suggest a basis for the development of new therapeutic treatments for these conditions.
Collapse
Affiliation(s)
- Shuko Takeda
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Yamadaoka Suita, Osaka, Japan ; Department of Geriatric Medicine, Graduate School of Medicine, Osaka University, Yamada-oka Suita, Osaka, Japan
| | - Naoyuki Sato
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Yamadaoka Suita, Osaka, Japan ; Department of Geriatric Medicine, Graduate School of Medicine, Osaka University, Yamada-oka Suita, Osaka, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Yamadaoka Suita, Osaka, Japan
| |
Collapse
|
22
|
Amorini AM, Nociti V, Petzold A, Gasperini C, Quartuccio E, Lazzarino G, Di Pietro V, Belli A, Signoretti S, Vagnozzi R, Lazzarino G, Tavazzi B. Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1137-43. [DOI: 10.1016/j.bbadis.2014.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/13/2014] [Accepted: 04/04/2014] [Indexed: 12/26/2022]
|