1
|
Wehn AC, Khalin I, Hu S, Harapan BN, Mao X, Cheng S, Plesnila N, Terpolilli NA. Bradykinin 2 Receptors Mediate Long-Term Neurocognitive Deficits After Experimental Traumatic Brain Injury. J Neurotrauma 2024; 41:2442-2454. [PMID: 38818807 DOI: 10.1089/neu.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The kallikrein-kinin system is one of the first inflammatory pathways to be activated following traumatic brain injury (TBI) and has been shown to exacerbate brain edema formation in the acute phase through activation of bradykinin 2 receptors (B2R). However, the influence of B2R on chronic post-traumatic damage and outcome is unclear. In the current study, we assessed long-term effects of B2R-knockout (KO) after experimental TBI. B2R KO mice (heterozygous, homozygous) and wild-type (WT) littermates (n = 10/group) were subjected to controlled cortical impact (CCI) TBI. Lesion size was evaluated by magnetic resonance imaging up to 90 days after CCI. Motor and memory function were regularly assessed by Neurological Severity Score, Beam Walk, and Barnes maze test. Ninety days after TBI, brains were harvested for immunohistochemical analysis. There was no difference in cortical lesion size between B2R-deficient and WT animals 3 months after injury; however, hippocampal damage was reduced in B2R KO mice (p = 0.03). Protection of hippocampal tissue was accompanied by a significant improvement of learning and memory function 3 months after TBI (p = 0.02 WT vs. KO), whereas motor function was not influenced. Scar formation and astrogliosis were unaffected, but B2R deficiency led to a gene-dose-dependent attenuation of microglial activation and a reduction of CD45+ cells 3 months after TBI in cortex (p = 0.0003) and hippocampus (p < 0.0001). These results suggest that chronic hippocampal neurodegeneration and subsequent cognitive impairment are mediated by prolonged neuroinflammation and B2R. Inhibition of B2R may therefore represent a novel strategy to reduce long-term neurocognitive deficits after TBI.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Rouen, France
| | - Senbin Hu
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Xiang Mao
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Neurotrauma Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shiqi Cheng
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, The Second affiliated Hospital of Nanchang University, Nanchang, China
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Wang H, Liu Y, Yuan J, Wang Y, Yuan Y, Liu Y, Ren X, Zhou J. Development and validation of a nomogram for predicting mortality in patients with acute severe traumatic brain injury: A retrospective analysis. Neurol Sci 2024; 45:4931-4956. [PMID: 38722502 DOI: 10.1007/s10072-024-07572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Recent evidence links the prognosis of traumatic brain injury (TBI) to various factors, including baseline clinical characteristics, TBI specifics, and neuroimaging outcomes. This study focuses on identifying risk factors for short-term survival in severe traumatic brain injury (sTBI) cases and developing a prognostic model. METHODS Analyzing 430 acute sTBI patients from January 2018 to December 2023 at the 904th Hospital's Neurosurgery Department, this retrospective case-control study separated patients into survival outcomes: 288 deceased and 142 survivors. It evaluated baseline, clinical, hematological, and radiological data to identify risk and protective factors through univariate and Lasso regression. A multivariate model was then formulated to pinpoint independent prognostic factors, assessing their relationships via Spearman's correlation. The model's accuracy was gauged using the Receiver Operating Characteristic (ROC) curve, with additional statistical analyses for quantitative factors and model effectiveness. Internal validation employed ROC, calibration curves, Decision Curve Analysis (DCA), and Clinical Impact Curves (CIC) to assess model discrimination, utility, and accuracy. The International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) and Corticosteroid Randomization After Significant Head injury (CRASH) models were also compared through multivariate regression. RESULTS Factors like unilateral and bilateral pupillary non-reactivity at admission, the derived neutrophil to lymphocyte ratio (dNLR), platelet to lymphocyte ratio (PLR), D-dimer to fibrinogen ratio (DFR), infratentorial hematoma, and Helsinki CT score were identified as independent risk factors (OR > 1), whereas serum albumin emerged as a protective factor (OR < 1). The model showed superior predictive performance with an AUC of 0.955 and surpassed both IMPACT and CRASH models in predictive accuracy. Internal validation confirmed the model's high discriminative capability, clinical relevance, and effectiveness. CONCLUSIONS Short-term survival in sTBI is significantly influenced by factors such as pupillary response, dNLR, PLR, DFR, serum albumin levels, infratentorial hematoma occurrence, and Helsinki CT scores at admission. The developed nomogram accurately predicts sTBI outcomes, offering significant clinical utility.
Collapse
Affiliation(s)
- Haosheng Wang
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China
| | - Yehong Liu
- Department of Cardiology, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China
| | - Jun Yuan
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China
| | - Yuhai Wang
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China
| | - Ying Yuan
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
| | - Yuanyuan Liu
- Department of Neurosurgery, The Lu' an Hospital Affiliated to Anhui Medical University, Lu'an, Anhui Province, 237000, China
| | - Xu Ren
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China
| | - Jinxu Zhou
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China.
- The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214000, China.
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, 214000, China.
| |
Collapse
|
3
|
Cieri MB, Villarreal A, Gomez-Cuautle DD, Mailing I, Ramos AJ. Progression of reactive gliosis and astroglial phenotypic changes following stab wound-induced traumatic brain injury in mice. J Neurochem 2023; 167:183-203. [PMID: 37592830 DOI: 10.1111/jnc.15941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Astrocytes are the main homeostatic cells in the central nervous system (CNS) and they have an essential role in preserving neuronal physiology. After brain injury, astrocytes become reactive, and that involves a profound change in the astroglial gene expression program as well as intense cytoskeleton remodeling that has been classically shown by the up-regulation of glial fibrillary acidic protein (GFAP), a pan-reactive gene over-expressed in reactive astrocytes, independently of the type of injury. Using the stab wound rodent model of penetrating traumatic injury in the cortex, we here studied the reactive astroglial morphology and reactive microgliosis in detail at 1, 3, 7, 14, and 28 days post-injury (dpi). By combining immunohistochemistry, morphometrical parameters, and Sholl analysis, we segmented the astroglial cell population into clusters of reactive astrocytes that were localized in the core, penumbra, and distal regions of the stab wound. Specifically, highly reactive clusters with more complex morphology, increased C3, decreased aquaporin-4 (AQP4), and glutamine synthetase (GS) expression, were enriched at 7 dpi when behavioral alterations, microgliosis, and neuronal alterations in injured mice were most significant. While pro-inflammatory gain of function with peripheral lipopolysaccharide (LPS) administration immediately after a stab wound expanded these highly reactive astroglial clusters, the treatment with the NF-κB inhibitor sulfasalazine reduced the abundance of this highly reactive cluster. Increased neuronal loss and exacerbated reactive microgliosis at 7 dpi were associated with the expansion of the highly reactive astroglial cluster. We conclude that highly reactive astrocytes found in stab wound injury, but expanded in pro-inflammatory conditions, are a population of astrocytes that become engaged in pathological remodeling with a pro-inflammatory gain of function and loss of homeostatic capacity. Controlling this astroglial population may be a tempting strategy to reduce neuronal loss and neuroinflammation in the injured brain.
Collapse
Affiliation(s)
- Maria Belen Cieri
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dante Daniel Gomez-Cuautle
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ingrid Mailing
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Budgett RF, Bakker G, Sergeev E, Bennett KA, Bradley SJ. Targeting the Type 5 Metabotropic Glutamate Receptor: A Potential Therapeutic Strategy for Neurodegenerative Diseases? Front Pharmacol 2022; 13:893422. [PMID: 35645791 PMCID: PMC9130574 DOI: 10.3389/fphar.2022.893422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/13/2023] Open
Abstract
The type 5 metabotropic glutamate receptor, mGlu5, has been proposed as a potential therapeutic target for the treatment of several neurodegenerative diseases. In preclinical neurodegenerative disease models, novel allosteric modulators have been shown to improve cognitive performance and reduce disease-related pathology. A common pathological hallmark of neurodegenerative diseases is a chronic neuroinflammatory response, involving glial cells such as astrocytes and microglia. Since mGlu5 is expressed in astrocytes, targeting this receptor could provide a potential mechanism by which neuroinflammatory processes in neurodegenerative disease may be modulated. This review will discuss current evidence that highlights the potential of mGlu5 allosteric modulators to treat neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, this review will explore the role of mGlu5 in neuroinflammatory responses, and the potential for this G protein-coupled receptor to modulate neuroinflammation.
Collapse
Affiliation(s)
- Rebecca F Budgett
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | - Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Sosei Heptares, Cambridge, United Kingdom
| |
Collapse
|
5
|
Xu P, Huang X, Niu W, Yu D, Zhou M, Wang H. Metabotropic glutamate receptor 5 upregulation of γ-aminobutyric acid transporter 3 expression ameliorates cognitive impairment after traumatic brain injury in mice. Brain Res Bull 2022; 183:104-115. [DOI: 10.1016/j.brainresbull.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
|
6
|
Löscher W, Howe CL. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Front Mol Neurosci 2022; 15:870868. [PMID: 35615063 PMCID: PMC9125338 DOI: 10.3389/fnmol.2022.870868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
Seizures are a common presenting symptom during viral infections of the central nervous system (CNS) and can occur during the initial phase of infection ("early" or acute symptomatic seizures), after recovery ("late" or spontaneous seizures, indicating the development of acquired epilepsy), or both. The development of acute and delayed seizures may have shared as well as unique pathogenic mechanisms and prognostic implications. Based on an extensive review of the literature, we present an overview of viruses that are associated with early and late seizures in humans. We then describe potential pathophysiologic mechanisms underlying ictogenesis and epileptogenesis, including routes of neuroinvasion, viral control and clearance, systemic inflammation, alterations of the blood-brain barrier, neuroinflammation, and inflammation-induced molecular reorganization of synapses and neural circuits. We provide clinical and animal model findings to highlight commonalities and differences in these processes across various neurotropic or neuropathogenic viruses, including herpesviruses, SARS-CoV-2, flaviviruses, and picornaviruses. In addition, we extensively review the literature regarding Theiler's murine encephalomyelitis virus (TMEV). This picornavirus, although not pathogenic for humans, is possibly the best-characterized model for understanding the molecular mechanisms that drive seizures, epilepsy, and hippocampal damage during viral infection. An enhanced understanding of these mechanisms derived from the TMEV model may lead to novel therapeutic interventions that interfere with ictogenesis and epileptogenesis, even within non-infectious contexts.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Charles L. Howe
- Division of Experimental Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Zhou X, Venigalla M, Raju R, Münch G. Pharmacological considerations for treating neuroinflammation with curcumin in Alzheimer's disease. J Neural Transm (Vienna) 2022; 129:755-771. [PMID: 35294663 DOI: 10.1007/s00702-022-02480-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
Prof. Dr. Peter Riederer, the former Head of the Neurochemistry Department of the Psychiatry and Psychotherapy Clinic at the University of Würzburg (Germany), has been one of the pioneers of research into oxidative stress in Parkinson's and Alzheimer's disease (AD). This review will outline how his scientific contribution to the field has opened a new direction for AD treatment beyond "plaques and tangles". In the 1990s, Prof. Riederer was one of the first scientists who proposed oxidative stress and neuroinflammation as one of the major contributors to Alzheimer's disease, despite the overwhelming support for the "amyloid-only" hypothesis at the time, which postulated that the sole and only cause of AD is β-amyloid. His group also highlighted the role of advanced glycation end products, sugar and dicarbonyl-derived protein modifications, which crosslink proteins into insoluble aggregates and potent pro-inflammatory activators of microglia. For the treatment of chronic neuroinflammation, he and his group suggested that the most appropriate drug class would be cytokine-suppressive anti-inflammatory drugs (CSAIDs) which have a broader anti-inflammatory action range than conventional non-steroidal anti-inflammatory drugs. One of the most potent CSAIDs is curcumin, but it suffers from a variety of pharmacokinetic disadvantages including low bioavailability, which might have tainted many human clinical trials. Although a variety of oral formulations with increased bioavailability have been developed, curcumin's absorption after oral delivery is too low to reach therapeutic concentrations in the micromolar range in the systemic circulation and the brain. This review will conclude with evidence that rectally applied suppositories might be the best alternatives to oral medications, as this route will be able to evade first-pass metabolism in the liver and achieve high concentrations of curcumin in plasma and tissues, including the brain.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, 158-160 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Madhuri Venigalla
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.
| |
Collapse
|
8
|
Prevention of L-Dopa-Induced Dyskinesias by MPEP Blockade of Metabotropic Glutamate Receptor 5 Is Associated with Reduced Inflammation in the Brain of Parkinsonian Monkeys. Cells 2022; 11:cells11040691. [PMID: 35203338 PMCID: PMC8870609 DOI: 10.3390/cells11040691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Proinflammatory markers were found in brains of Parkinson’s disease (PD) patients. After years of L-Dopa symptomatic treatment, most PD patients develop dyskinesias. The relationship between inflammation and L-Dopa-induced dyskinesias (LID) is still unclear. We previously reported that MPEP (a metabotropic glutamate receptor 5 antagonist) reduced the development of LID in de novo MPTP-lesioned monkeys. We thus investigated if MPEP reduced the brain inflammatory response in these MPTP-lesioned monkeys and the relationship to LID. The panmacrophage/microglia marker Iba1, the phagocytosis-related receptor CD68, and the astroglial protein GFAP were measured by Western blots. The L-Dopa-treated dyskinetic MPTP monkeys had increased Iba1 content in the putamen, substantia nigra, and globus pallidus, which was prevented by MPEP cotreatment; similar findings were observed for CD68 contents in the putamen and globus pallidus. There was a strong positive correlation between dyskinesia scores and microglial markers in these regions. GFAP contents were elevated in MPTP + L-Dopa-treated monkeys among these brain regions and prevented by MPEP in the putamen and subthalamic nucleus. In conclusion, these results showed increased inflammatory markers in the basal ganglia associated with LID and revealed that MPEP inhibition of glutamate activity reduced LID and levels of inflammatory markers.
Collapse
|
9
|
Srinivasan G, Brafman DA. The Emergence of Model Systems to Investigate the Link Between Traumatic Brain Injury and Alzheimer's Disease. Front Aging Neurosci 2022; 13:813544. [PMID: 35211003 PMCID: PMC8862182 DOI: 10.3389/fnagi.2021.813544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous epidemiological studies have demonstrated that individuals who have sustained a traumatic brain injury (TBI) have an elevated risk for developing Alzheimer's disease and Alzheimer's-related dementias (AD/ADRD). Despite these connections, the underlying mechanisms by which TBI induces AD-related pathology, neuronal dysfunction, and cognitive decline have yet to be elucidated. In this review, we will discuss the various in vivo and in vitro models that are being employed to provide more definite mechanistic relationships between TBI-induced mechanical injury and AD-related phenotypes. In particular, we will highlight the strengths and weaknesses of each of these model systems as it relates to advancing the understanding of the mechanisms that lead to TBI-induced AD onset and progression as well as providing platforms to evaluate potential therapies. Finally, we will discuss how emerging methods including the use of human induced pluripotent stem cell (hiPSC)-derived cultures and genome engineering technologies can be employed to generate better models of TBI-induced AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
10
|
Schroeder ME, Bassett DS, Meaney DF. A multilayer network model of neuron-astrocyte populations in vitro reveals mGluR5 inhibition is protective following traumatic injury. Netw Neurosci 2022; 6:499-527. [PMID: 35733423 PMCID: PMC9208011 DOI: 10.1162/netn_a_00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
Astrocytes communicate bidirectionally with neurons, enhancing synaptic plasticity and promoting the synchronization of neuronal microcircuits. Despite recent advances in understanding neuron-astrocyte signaling, little is known about astrocytic modulation of neuronal activity at the population level, particularly in disease or following injury. We used high-speed calcium imaging of mixed cortical cultures in vitro to determine how population activity changes after disruption of glutamatergic signaling and mechanical injury. We constructed a multilayer network model of neuron-astrocyte connectivity, which captured distinct topology and response behavior from single-cell-type networks. mGluR5 inhibition decreased neuronal activity, but did not on its own disrupt functional connectivity or network topology. In contrast, injury increased the strength, clustering, and efficiency of neuronal but not astrocytic networks, an effect that was not observed in networks pretreated with mGluR5 inhibition. Comparison of spatial and functional connectivity revealed that functional connectivity is largely independent of spatial proximity at the microscale, but mechanical injury increased the spatial-functional correlation. Finally, we found that astrocyte segments of the same cell often belong to separate functional communities based on neuronal connectivity, suggesting that astrocyte segments function as independent entities. Our findings demonstrate the utility of multilayer network models for characterizing the multiscale connectivity of two distinct but functionally dependent cell populations. Astrocytes communicate bidirectionally with neurons, enhancing synaptic plasticity and promoting the synchronization of neuronal microcircuits. We constructed a multilayer network model of neuron-astrocyte connectivity based on calcium activity in mixed cortical cultures, and used this model to evaluate the effect of glutamatergic inhibition and mechanical injury on network topology. We found that injury increased the strength, clustering, and efficiency of neuronal but not astrocytic networks, an effect that was not observed in injured networks pretreated with a glutamate receptor antagonist. Our findings demonstrate the utility of multilayer network models for characterizing the multiscale connectivity of two distinct but functionally dependent cell populations.
Collapse
Affiliation(s)
- Margaret E. Schroeder
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S. Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David F. Meaney
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Sood A, Preeti K, Fernandes V, Khatri DK, Singh SB. Glia: A major player in glutamate-GABA dysregulation-mediated neurodegeneration. J Neurosci Res 2021; 99:3148-3189. [PMID: 34748682 DOI: 10.1002/jnr.24977] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
The imbalance between glutamate and γ-aminobutyric acid (GABA) results in the loss of synaptic strength leading to neurodegeneration. The dogma on the field considered neurons as the main players in this excitation-inhibition (E/I) balance. However, current strategies focusing only on neurons have failed to completely understand this condition, bringing up the importance of glia as an alternative modulator for neuroinflammation as glia alter the activity of neurons and is a source of both neurotrophic and neurotoxic factors. This review's primary goal is to illustrate the role of glia over E/I balance in the central nervous system and its interaction with neurons. Rather than focusing only on the neuronal targets, we take a deeper look at glial receptors and proteins that could also be explored as drug targets, as they are early responders to neurotoxic insults. This review summarizes the neuron-glia interaction concerning GABA and glutamate, possible targets, and its involvement in the E/I imbalance in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
12
|
Abstract
Traumatic brain injury (TBI) involves structural damage to the brain regions causing death or disability in patients with lifelong sufferings. Accidental injuries to the brain, besides structural damage, if any, cause activation of various deleterious pathways leading to subsequent neuronal death and permanent dysfunction. However, immediate medical management/treatments could reduce the chances of disability and suffering to the patients. The objective of the current review is to review triggered molecular pathways following TBI and discuss possible targets that could restore brain functions. Understanding the pathologic process is always useful to device novel treatment strategies and may rescue the patient with TBI from death or associated co-morbidities. The current review significantly contributes to improve our understanding about the molecular pathways and neuronal death following TBI and helps us to provide possible targets that could be useful in the management/treatment of TBI.
Collapse
Affiliation(s)
- Kajal Bagri
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| |
Collapse
|
13
|
Nikam RM, Yue X, Kandula VV, Paudyal B, Langhans SA, Averill LW, Choudhary AK. Unravelling neuroinflammation in abusive head trauma with radiotracer imaging. Pediatr Radiol 2021; 51:966-970. [PMID: 33999238 DOI: 10.1007/s00247-021-04995-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023]
Abstract
Abusive head trauma (AHT) is a leading cause of mortality and morbidity in child abuse, with a mortality rate of approximately 25%. In survivors, the prognosis remains dismal, with high prevalence of cerebral palsy, epilepsy and neuropsychiatric disorders. Early and accurate diagnosis of AHT is challenging, both clinically and radiologically, with up to one-third of cases missed on initial examination. Moreover, most of the management in AHT is supportive, reflective of the lack of clear understanding of specific pathogenic mechanisms underlying secondary insult, with approaches targeted toward decreasing intracranial hypertension and reducing cerebral metabolism, cell death and excitotoxicity. Multiple studies have elucidated the role of pro- and anti-inflammatory cytokines and chemokines with upregulation/recruitment of microglia/macrophages, oligodendrocytes and astrocytes in severe traumatic brain injury (TBI). In addition, recent studies in animal models of AHT have demonstrated significant upregulation of microglia, with a potential role of inflammatory cascade contributing to secondary insult. Despite the histological and biochemical evidence, there is a significant dearth of specific imaging approaches to identify this neuroinflammation in AHT. The primary motivation for development of such imaging approaches stems from the need to therapeutically target neuroinflammation and establish its utility in monitoring and prognostication. In the present paper, we discuss the available data suggesting the potential role of neuroinflammation in AHT and role of radiotracer imaging in aiding diagnosis and patient management.
Collapse
Affiliation(s)
- Rahul M Nikam
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA. .,Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
| | - Xuyi Yue
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Vinay V Kandula
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Bishnuhari Paudyal
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Sigrid A Langhans
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Lauren W Averill
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Arabinda K Choudhary
- Department of Radiology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| |
Collapse
|
14
|
El-Ansary A, Zayed N, Al-Ayadhi L, Qasem H, Anwar M, Meguid NA, Bhat RS, Doşa MD, Chirumbolo S, Bjørklund G. GABA synaptopathy promotes the elevation of caspases 3 and 9 as pro-apoptotic markers in Egyptian patients with autism spectrum disorder. Acta Neurol Belg 2021; 121:489-501. [PMID: 31673995 DOI: 10.1007/s13760-019-01226-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is classified as a neurodevelopmental disorder characterized by reduced social communication as well as repetitive behaviors. Many studies have proved that defective synapses in ASD influence how neurons in the brain connect and communicate with each other. Synaptopathies arise from alterations that affecting the integrity and/or functionality of synapses and can contribute to synaptic pathologies. This study investigated the GABA levels in plasma being an inhibitory neurotransmitter, caspase 3 and 9 as pro-apoptotic proteins in 20 ASD children and 20 neurotypical controls using the ELISA technique. Analysis of receiver-operating characteristic (ROC) of the data that was obtained to evaluate the diagnostic value of the aforementioned evaluated biomarkers. Pearson's correlations and multiple regressions between the measured variables were also done. While GABA level was reduced in ASD patients, levels of caspases 3 and 9 were significantly higher when compared to neurotypical control participants. ROC and predictiveness curves showed that caspases 3, caspases 9, and GABA might be utilized as predictive markers in autism diagnosis. The present study indicates that the presence of GABAergic dysfunction promotes apoptosis in Egyptian ASD children. The obtained GABA synaptopathies and their connection with apoptosis can both relate to neuronal excitation, and imbalance of the inhibition system, which can be used as reliable predictive biomarkers for ASD.
Collapse
|
15
|
Tarudji AW, Gee CC, Romereim SM, Convertine AJ, Kievit FM. Antioxidant thioether core-crosslinked nanoparticles prevent the bilateral spread of secondary injury to protect spatial learning and memory in a controlled cortical impact mouse model of traumatic brain injury. Biomaterials 2021; 272:120766. [PMID: 33819812 DOI: 10.1016/j.biomaterials.2021.120766] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 01/19/2023]
Abstract
The secondary phase of traumatic brain injury (TBI) is partly caused by the release of excess reactive oxygen species (ROS) from the primary injury. However, there are currently no therapies that have been shown to reduce the secondary spread of injury beyond the primary insult. Nanoparticles offer the ability to rapidly accumulate and be retained in injured brain for improved target engagement. Here, we utilized systemically administered antioxidant thioether core-cross-linked nanoparticles (NP1) that scavenge and inactivate ROS to reduce this secondary spread of injury in a mild controlled cortical impact (CCI) mouse model of TBI. We found that NP1 treatment protected CCI mice from injury induced learning and memory deficits observed in the Morris water maze (MWM) test at 1-month post-CCI. This protection was likely a result of NP1-mediated reduction in oxidative stress in the ipsilateral hemisphere as determined by immunofluorescence imaging of markers of oxidative stress and the spread of neuroinflammation into the contralateral hippocampus as determined by immunofluorescence imaging of activated microglia and neuron-astrocyte-microglia triad formation. These data suggest NP1-mediated reduction in post-traumatic oxidative stress correlates with the reduction in the spread of injury to the contralateral hippocampus to protect spatial memory and learning in CCI mice. Therefore, these materials may offer an improved treatment strategy to reduce the secondary spread of TBI.
Collapse
Affiliation(s)
- Aria W Tarudji
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Connor C Gee
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Sarah M Romereim
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Anthony J Convertine
- Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, Rolla, MO, 65409, USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA.
| |
Collapse
|
16
|
Wang Y, Gu L, Yang HM, Zhang H. Cystic fibrosis transmembrane conductance regulator-associated ligand protects dopaminergic neurons by differentially regulating metabotropic glutamate receptor 5 in the progression of neurotoxin 6-hydroxydopamine-induced Parkinson's disease model. Neurotoxicology 2021; 84:14-29. [PMID: 33571554 DOI: 10.1016/j.neuro.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Due to limitations in early diagnosis and treatments of Parkinson's disease (PD), it is necessary to explore the neuropathological changes that occur early in PD progression and to design neuroprotective therapies to prevent or delay the ongoing degeneration process. Metabotropic glutamate receptor 5 (mGlu5) has shown both diagnostic and therapeutic potential in preclinical studies on PD. Clinical trials using mGlu5 negative allosteric modulators to treat PD have, however, raised limitations about the neuroprotective role of mGlu5. It is likely that mGlu5 has different regulatory roles in different stages of PD. Here, we investigated a protective role of cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) in the progression of PD by differential regulation of mGlu5 expression and activity to protect against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Following treatment with 6-OHDA, mGlu5 and CAL expressions were elevated in the early stage and reduced in the late stage, both in vitro and in vivo. Activation of mGlu5 in the early stage by (RS)-2-chloro-5-hydroxyphenylglycine, or blocking mGlu5 in the late stage by 2-methyl-6-(phenylethynyl) pyridine, increased cell survival and inhibited apoptosis, but these effects were significantly weakened by knockdown of CAL. CAL alleviated 6-OHDA-induced neurotoxicity by regulating mGlu5-mediated signaling pathways, thereby maintaining the physiological function of mGlu5 in different disease stages. In PD rat model, CAL deficiency aggravated 6-OHDA toxicity on dopaminergic neurons and increased motor dysfunction because of lack of regulation of mGlu5 activity. These data reveal a potential mechanism by which CAL specifically regulates the opposite activity of mGlu5 in progression of PD to protect against neurotoxicity, suggesting that CAL is a favorable endogenous target for the treatment of PD.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Hui Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
17
|
Shi AC, Rohlwink U, Scafidi S, Kannan S. Microglial Metabolism After Pediatric Traumatic Brain Injury - Overlooked Bystanders or Active Participants? Front Neurol 2021; 11:626999. [PMID: 33569038 PMCID: PMC7868439 DOI: 10.3389/fneur.2020.626999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Microglia play an integral role in brain development but are also crucial for repair and recovery after traumatic brain injury (TBI). TBI induces an intense innate immune response in the immature, developing brain that is associated with acute and chronic changes in microglial function. These changes contribute to long-lasting consequences on development, neurologic function, and behavior. Although alterations in glucose metabolism are well-described after TBI, the bulk of the data is focused on metabolic alterations in astrocytes and neurons. To date, the interplay between alterations in intracellular metabolic pathways in microglia and the innate immune response in the brain following an injury is not well-studied. In this review, we broadly discuss the microglial responses after TBI. In addition, we highlight reported metabolic alterations in microglia and macrophages, and provide perspective on how changes in glucose, fatty acid, and amino acid metabolism can influence and modulate the microglial phenotype and response to injury.
Collapse
Affiliation(s)
- Aria C Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula Rohlwink
- Neuroscience Institute and Division of Neurosurgery, University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, United Kingdom
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Iliopoulou SM, Tsartsalis S, Kaiser S, Millet P, Tournier BB. Dopamine and Neuroinflammation in Schizophrenia - Interpreting the Findings from Translocator Protein (18kDa) PET Imaging. Neuropsychiatr Dis Treat 2021; 17:3345-3357. [PMID: 34819729 PMCID: PMC8608287 DOI: 10.2147/ndt.s334027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a complex disease whose pathophysiology is not yet fully understood. In addition to the long prevailing dopaminergic hypothesis, the evidence suggests that neuroinflammation plays a role in the pathophysiology of the disease. Recent studies using positron emission tomography (PET) that target a 18kDa translocator protein (TSPO) in activated microglial cells in an attempt to measure neuroinflammation in patients have shown a decrease or a lack of an increase in TSPO binding. Many biological and methodological considerations have been formulated to explain these findings. Although dopamine has been described as an immunomodulatory molecule, its potential role in neuroinflammation has not been explored in the aforementioned studies. In this review, we discuss the interactions between dopamine and neuroinflammation in psychotic states. Dopamine may inhibit neuroinflammation in activated microglia. Proinflammatory molecules released from microglia may decrease dopaminergic transmission. This could potentially explain why the levels of neuroinflammation in the brain of patients with schizophrenia seem to be unchanged or decreased compared to those in healthy subjects. However, most data are indirect and are derived from animal studies or from studies performed outside the field of schizophrenia. Further studies are needed to combine TSPO and dopamine imaging to study the association between microglial activation and dopamine system function.
Collapse
Affiliation(s)
- Sotiria Maria Iliopoulou
- Adult Psychiatry Division, Department of Psychiatry, Geneva University Hospitals (HUG), Geneva, 1225, Switzerland
| | | | - Stefan Kaiser
- Adult Psychiatry Division, Department of Psychiatry, Geneva University Hospitals (HUG), Geneva, 1225, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, 1204, Switzerland
| | - Philippe Millet
- Adult Psychiatry Division, Department of Psychiatry, Geneva University Hospitals (HUG), Geneva, 1225, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, 1204, Switzerland
| | - Benjamin B Tournier
- Adult Psychiatry Division, Department of Psychiatry, Geneva University Hospitals (HUG), Geneva, 1225, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, 1204, Switzerland
| |
Collapse
|
19
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
20
|
Popiolek-Barczyk K, Ciechanowska A, Ciapała K, Pawlik K, Oggioni M, Mercurio D, De Simoni MG, Mika J. The CCL2/CCL7/CCL12/CCR2 pathway is substantially and persistently upregulated in mice after traumatic brain injury, and CCL2 modulates the complement system in microglia. Mol Cell Probes 2020; 54:101671. [PMID: 33160071 DOI: 10.1016/j.mcp.2020.101671] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/15/2020] [Accepted: 11/01/2020] [Indexed: 12/28/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in the global population. Disturbed inflammatory processes after TBI exacerbate secondary brain injury and contribute to unfavorable outcomes. Multiple inflammatory events that accompany brain trauma, such as glial activation, chemokine release, or the initiation of the complement system cascade, have been identified as potential targets for TBI treatment. However, the participation of chemokines in the complement activation remains unknown. Our studies sought to determine the changes in the expression of the molecules involved in the CCL2/CCL7/CCL12/CCR2 pathway in the injured brain and the effect of CCL2, CCL7, and CCL12 (10, 100, and 500 ng/mL) on the classic and lectin complement pathways and inflammatory factors in microglial cell cultures. Brain injury in mice was modeled by controlled cortical impact (CCI). Our findings indicate a time-dependent upregulation of CCL2, CCL7, and CCL12 at the mRNA and protein levels within the cortex, striatum, and/or thalamus beginning 24 h after the trauma. The analysis of the expression of the receptor of the tested chemokines, CCR2, revealed its substantial upregulation within the injured brain areas mainly on the mRNA level. Using primary cortical microglial cell cultures, we observed a substantial increase in the expression of CCL2, CCL7, and CCL12 after 24 h of LPS (100 ng/mL) treatment. CCL2 stimulation of microglia increased the level of IL-1β mRNA but did not influence the expression of IL-18, IL-6, and IL-10. Moreover, CCL2 significantly increased the expression of Iba1, a marker of microglia activation. CCL2 and CCL12 upregulated the expression of C1qa but did not influence the expression of C1ra and C1s1 (classical pathway); moreover, CCL2 increased ficolin A expression and reduced collectin 11 expression (lectin pathway). Additionally, we observed the downregulation of pentraxin 3, a modulator of the complement cascade, after CCL2 and CCL12 treatment. We did not detect the expression of ficolin B, Mbl1, and Mbl2 in microglial cells. Our data identify CCL2 as a modulator of the classical and lectin complement pathways suggesting that CCL2 may be a promising target for pharmacological intervention after brain injury. Moreover, our study provides evidence that CCL2 and two other CCR2 ligands may play a role in the development of changes in TBI.
Collapse
Affiliation(s)
- Katarzyna Popiolek-Barczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Marco Oggioni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Domenico Mercurio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland.
| |
Collapse
|
21
|
Formyl Peptide Receptor 1 Signaling in Acute Inflammation and Neural Differentiation Induced by Traumatic Brain Injury. BIOLOGY 2020; 9:biology9090238. [PMID: 32825368 PMCID: PMC7563302 DOI: 10.3390/biology9090238] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI) is a shocking disease frequently followed by behavioral disabilities, including risk of cerebral atrophy and dementia. N-formylpeptide receptor 1 (FPR1) is expressed in cells and neurons in the central nervous system. It is involved in inflammatory processes and during the differentiation process in the neural stem cells. We investigate the effect of the absence of Fpr1 gene expression in mice subjected to TBI from the early stage of acute inflammation to neurogenesis and systematic behavioral testing four weeks after injury. C57BL/6 animals and Fpr1 KO mice were subjected to TBI and sacrificed 24 h or four weeks after injury. Twenty-four hours after injury, TBI Fpr1 KO mice showed reduced histological impairment, tissue damage and acute inflammation (MAPK activation, NF-κB signaling induction, NRLP3 inflammasome pathway activation and oxidative stress increase). Conversely, four weeks after TBI, the Fpr1 KO mice showed reduced survival of the proliferated cells in the Dentate Gyrus compared to the WT group. Behavioral analysis confirmed this trend. Moreover, TBI Fpr1 KO animals displayed reduced neural differentiation (evaluated by beta-III tubulin expression) and upregulation of astrocyte differentiation (evaluated by GFAP expression). Collectively, our study reports that, immediately after TBI, Fpr1 increased acute inflammation, while after four weeks, Fpr1 promoted neurogenesis.
Collapse
|
22
|
Abulwerdi G, Stoica BA, Loane DJ, Faden AI. Putative mGluR4 positive allosteric modulators activate G i-independent anti-inflammatory mechanisms in microglia. Neurochem Int 2020; 138:104770. [PMID: 32454165 DOI: 10.1016/j.neuint.2020.104770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/23/2023]
Abstract
Chronic dysregulated microglial activation may lead to persistent inflammation and progressive neurodegeneration. A previous study reported that ADX88178, a putative metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulator (PAM), exerts anti-inflammatory effects in microglia by activating mGluR4. We employed in vitro models of immortalized microglia cell lines and primary microglia to elucidate the molecular mechanisms responsible for the regulation of inflammatory pathways by ADX88178 and other mGluR4 PAMs. ADX88178 downregulated lipopolysaccharide (LPS)-induced expression of pro-inflammatory mediators, including TNF-α, IL-1β, CCL-2, IL-6, NOS2, and miR-155, as well as NO levels, in BV2 cells and primary microglia. Other mGluR4 modulators had divergent activities; VU0361737 (PAM) showed anti-inflammatory effects, whereas the orthosteric group III agonist, L-AP4, and VU0155041 (PAM) displayed no anti-inflammatory actions. In contrast to the earlier report, ADX88178 anti-inflammatory effects appeared to be mGluR4-independent as mGluR4 expression in our in vitro models was very low and its actions were not altered by pharmacological or molecular inhibition of mGluR4. Moreover, we showed that ADX88178 activated Gi-independent, alternative signaling pathways as indicated by the absence of pertussis toxin-mediated inhibition and by increased phosphorylation of cAMP-response element binding protein (CREB), an inhibitor of the NFkB pro-inflammatory pathway. ADX88178 also attenuated NFkB activation by reducing the degradation of IkB and the associated translocation of NFkB-p65 to the nucleus. ADX88178 did not exert its anti-inflammatory effects through adenosine receptors, reported as mGluR4 heteromerization partners. Thus, our results indicate that in microglia, putative mGluR4 PAMs activate mGluR4/Gi-independent mechanisms to attenuate pro-inflammatory pathways.
Collapse
Affiliation(s)
- Gelareh Abulwerdi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Rahman MS, Yang J, Luan Y, Qiu Z, Zhang J, Lu H, Chen X, Liu Y. Attenuation of Acute Intracerebral Hemorrhage-Induced Microglial Activation and Neuronal Death Mediated by the Blockade of Metabotropic Glutamate Receptor 5 In Vivo. Neurochem Res 2020; 45:1230-1243. [PMID: 32140955 DOI: 10.1007/s11064-020-03006-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/21/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022]
Abstract
The activation of microglia in response to intracerebral hemorrhagic stroke is one of the principal components of the progression of this disease. It results in the formation of pro-inflammatory cytokines that lead to neuronal death, a structural deterioration that, in turn interferes with functional recovery. Metabotropic glutamate receptor 5 (mGluR5) is highly expressed in reactive microglia and is involved in the pathological processes of brain disorders, but its role in intracerebral hemorrhage (ICH) remains unknown. We hypothesized that mGluR5 regulates microglial activation and ICH maintenance. In this study, collagenase-induced ICH mice received a single intraperitoneal injection of the mGluR5 antagonist-, MTEP, or vehicle 2 h after injury. We found that acute ICH upregulated mGluR5 and microglial activation. mGluR5 was highly localized in reactive microglia in the peri-hematomal cortex and striatum on days 3 and 7 post-ICH. The MTEP-mediated pharmacological inhibition of mGluR5 in vivo resulted in the substantial attenuation of acute microglial activation and IL-6, and TNF-α release. We also showed that the blockade of mGluR5 markedly reduced cell apoptosis, and neurodegeneration and markedly elevated neuroprotection. Furthermore, the MTEP-mediated inhibition of mGluR5 significantly reduced the lesion volume and improved functional recovery. Taken together, our results demonstrate that ICH injury enhances mGluR5 expression in the acute and subacute stages and that mGluR5 is highly localized in reactive microglia. The blockade of mGluR5 reduces ICH-induced acute microglial activation, provides neuroprotection and promotes neurofunctional recovery after ICH. The inhibition of mGluR5 may be a relevant therapeutic target for intracerebral hemorrhagic stroke.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.,Department of Anatomy and Histology, Patuakhali Science and Technology University, Dhaka, Bangladesh
| | - Jianbo Yang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi, People's Republic of China
| | - Jianshui Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
24
|
Gao C, Wang H, Wang T, Luo C, Wang Z, Zhang M, Chen X, Tao L. Platelet regulates neuroinflammation and restores blood-brain barrier integrity in a mouse model of traumatic brain injury. J Neurochem 2020; 154:190-204. [PMID: 32048302 DOI: 10.1111/jnc.14983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/14/2020] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
Abstract
Neuroinflammation accompanied by microglial activation triggers multiple cell death after traumatic brain injury (TBI). The secondary injury caused by inflammation may persist for a long time. Recently, platelet C-type lectin-like 2 receptor (CLEC-2) has been shown to regulate inflammation in certain diseases. However, its possible effects on TBI remain poorly understood. Here, we aimed to investigate the role of platelet CLEC-2 in the pathological process of neuroinflammation after TBI. In this study, mice were subjected to sham or controlled cortical impact injury, and arbitrarily received recombinant platelet CLEC-2. In parallel, BV2 cells were treated with lipopolysaccharide (LPS) to mimic microglial activation after TBI. Primary endothelial cells were also subjected to LPS in order to replicate the inflammatory damage caused by TBI. We used western blot analysis, reverse transcription polymerase chain reaction (RT-PCR), and immunostaining to evaluate the role of platelet CLEC-2 in TBI. In conditional knock out platelet CLEC-2 mice, trauma worsened the integrity of the blood-brain barrier and amplified the release of inflammatory cytokines. In wild type mice subjected to controlled cortical impact injury, recombinant platelet CLEC-2 administration altered the secretion of inflammatory cytokines, reduced brain edema, and improved neurological function. In vitro, the polarization phenotype of microglia induced by LPS was transformed by recombinant platelet CLEC-2, and this conversion depended on the mammalian target of rapamycin (mTOR) pathway. Endothelial cell injury by LPS was ameliorated when microglia expressed mostly M2 phenotype markers. In conclusion, platelet CLEC-2 regulates trauma-induced neuroinflammation and restores blood-brain barrier integrity.
Collapse
Affiliation(s)
- Cheng Gao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Haochen Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Zufeng Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Bhat SA, Henry RJ, Blanchard AC, Stoica BA, Loane DJ, Faden AI. Enhanced Akt/GSK-3β/CREB signaling mediates the anti-inflammatory actions of mGluR5 positive allosteric modulators in microglia and following traumatic brain injury in male mice. J Neurochem 2020; 156:225-248. [PMID: 31926033 DOI: 10.1111/jnc.14954] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
We have previously shown that treatment with a mGluR5 positive allosteric modulator (PAM) is neuroprotective after experimental traumatic brain injury (TBI), limiting post-traumatic neuroinflammation by reducing pro-inflammatory microglial activation and promoting anti-inflammatory and neuroprotective responses. However, the specific molecular mechanisms governing this anti-inflammatory shift in microglia remain unknown. Here we show that the mGluR5 PAM, VU0360172 (VuPAM), regulates microglial inflammatory responses through activation of Akt, resulting in the inhibition of GSK-3β. GSK-3β regulates the phosphorylation of CREB, thereby controlling the expression of inflammation-related genes and microglial plasticity. The anti-inflammatory action of VuPAM in microglia is reversed by inhibiting Akt/GSK-3β/CREB signaling. Using a well-characterized TBI model and CX3CR1gfp/+ mice to visualize microglia in vivo, we demonstrate that VuPAM enhances Akt/GSK-3β/CREB signaling in the injured cortex, as well as anti-inflammatory microglial markers. Furthermore, in situ analysis revealed that GFP + microglia in the cortex of VuPAM-treated TBI mice co-express pCREB and the anti-inflammatory microglial phenotype marker YM1. Taken together, our data show that VuPAM decreases pro-inflammatory microglial activation by modulating Akt/GSK-3β/CREB signaling. These findings serve to clarify the potential neuroprotective mechanisms of mGluR5 PAM treatment after TBI, and suggest novel therapeutic targets for post-traumatic neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15048.
Collapse
Affiliation(s)
- Shahnawaz A Bhat
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexa C Blanchard
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Bondy SC. Aspects of the immune system that impact brain function. J Neuroimmunol 2020; 340:577167. [PMID: 32000018 DOI: 10.1016/j.jneuroim.2020.577167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
The conditions required for effective immune responses to viral or bacterial organisms and chemicals of exogenous origin and to intrinsic molecules of abnormal configuration, are briefly outlined. This is followed by a discussion of endocrine and environmental factors that can lead to excessive continuation of immune activity and persistent elevation of inflammatory responses. Such disproportionate activity becomes increasingly pronounced with aging and some possible reasons for this are considered. The specific vulnerability of the nervous system to prolonged immune events is involved in several disorders frequently found in the aging brain. In addition of being a target for inflammation associated with neurodegenerative disease, the nervous system is also seriously impacted by systemically widespread immune disturbances since there are several means by which immune information can access the CNS. The activation of glial cells and cells of non-nervous origin that form the basis of immune responses within the brain, can occur in differing modes resulting in widely differing consequences. The events underlying the relatively frequent occurrence of derangement and hyperreactivity of the immune system are considered, and a few potential ways of addressing this common condition are described.
Collapse
Affiliation(s)
- Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, School of Medicine, University of California, Irvine, CA 92617-1830, USA.
| |
Collapse
|
27
|
Therajaran P, Hamilton JA, O'Brien TJ, Jones NC, Ali I. Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia 2020; 61:203-215. [PMID: 31943156 DOI: 10.1111/epi.16424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Owing to the complexity of the pathophysiological mechanisms driving epileptogenesis following traumatic brain injury (TBI), effective preventive treatment approaches are not yet available for posttraumatic epilepsy (PTE). Neuroinflammation appears to play a critical role in the pathogenesis of the acquired epilepsies, including PTE, but despite a large preclinical literature demonstrating the ability of anti-inflammatory treatments to suppress epileptogenesis and chronic seizures, no anti-inflammatory treatment approaches have been clinically proven to date. TBI triggers robust inflammatory cascades, suggesting that they may be relevant for the pathogenesis of PTE. A major cell type involved in such cascades is the microglial cells-brain-resident immune cells that become activated after brain injury. When activated, these cells can oscillate between different phenotypes, and such polarization states are associated with the release of various pro- and anti-inflammatory mediators that may influence brain repair processes, and also differentially contribute to the development of PTE. As the molecular mechanisms and key signaling molecules associated with microglial polarization in brain are discovered, strategies are now emerging that can modulate this polarization, promoting this as a potential therapeutic strategy for PTE. In this review, we discuss the relevant literature regarding the polarization of brain-resident immune cells following TBI and attempt to put into perspective a role in epilepsy pathogenesis. Finally, we explore potential strategies that could polarize microglia/macrophages toward a neuroprotective phenotype to mitigate PTE development.
Collapse
Affiliation(s)
- Peravina Therajaran
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - John A Hamilton
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Idrish Ali
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Chen M, Chen Q, Tao T. Tanshinone IIA Promotes M2 Microglia by ERβ/IL-10 Pathway and Attenuates Neuronal Loss in Mouse TBI Model. Neuropsychiatr Dis Treat 2020; 16:3239-3250. [PMID: 33408474 PMCID: PMC7781361 DOI: 10.2147/ndt.s265478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Increasing evidence indicates that activated microglia play an important role in the inflammatory response in TBI. Inhibiting M1 and stimulating M2 activated microglia have protective effects in several animal models of central nervous system (CNS) disorders. In the present study, we investigated whether tanshinone IIA (TNA) protects neurons by shifting microglia polarization in a mouse TBI model and further investigated the mechanism in vitro. MATERIALS AND METHODS Forty C57BL/6 mice were used to investigate the effect of TNA on microglia polarization in TBI. BV-2 cells were used to examine the mechanism of TNA in regulating microglia polarization. RESULTS Normal saline (NS), TNA and the combination of TNA with ICI 182,780 (ICI, an estrogen receptor antagonist) were used to treat the TBI mice. After TBI, mice from each group demonstrated functional improvement. The improvement rate in mice treated with TNA was faster than other groups. ICI partially reversed the benefits from TNA treatment. TNA treatment significantly reduced TBI-induced neuronal loss. The number of microglia after TBI was not significantly changed by TNA treatment. However, TNA treatment significantly decreased M1 macrophage markers (iNOS, TNFα and IL-1β) and increased M2 macrophage markers (CD206, arginase 1 and Ym1). This effect was partially abolished by ICI. TNA treatment downregulated M1 macrophage markers and upregulated M2 macrophage markers in BV-2 cells under LPS stimulation. IL-10 was significantly increased by TNA treatment without a significantly change of IL-4 and IL-13 expression. IL-10 knockdown completely abolished the effect of TNA on microglial M2 polarization. CONCLUSION Taken together, our data demonstrated that TNA attenuates neuronal loss in mouse TBI model and promotes M2 microglia by ERβ/IL-10 pathway. Thus, TNA could be a potential drug for TBI and/or the disorders that caused by microglial over-activation in CNS.
Collapse
Affiliation(s)
- Mingrui Chen
- Department of Neurosurgery, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Jiangbei, Chongqing 400020, People's Republic of China
| | - Qiulin Chen
- Department of Neurosurgery, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Jiangbei, Chongqing 400020, People's Republic of China
| | - Tao Tao
- Department of Rehabilitation Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, People's Republic of China
| |
Collapse
|
29
|
Cavallo D, Landucci E, Gerace E, Lana D, Ugolini F, Henley JM, Giovannini MG, Pellegrini-Giampietro DE. Neuroprotective effects of mGluR5 activation through the PI3K/Akt pathway and the molecular switch of AMPA receptors. Neuropharmacology 2020; 162:107810. [PMID: 31600563 DOI: 10.1016/j.neuropharm.2019.107810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Previous studies have demonstrated that antagonists of mGluR1, but not mGluR5, are neuroprotective in models of cerebral ischemia. To investigate the individual roles of mGlu1 and mGlu5 receptors in in vitro model of cerebral ischemia we used low doses of the non-selective group I agonist DHPG and mGlu1 and mGlu5 selective positive allosteric modulators (PAMs). In hippocampal slices subjected to 30 min oxygen-glucose deprivation (OGD), DHPG (1 μM) and the mGluR5 PAM (VU0092273) significantly reduced OGD-induced CA1 injury monitored by propidium iodide staining of the slices and quantitative analysis of CA1 neurons. In contrast, the mGluR1 PAM (VU0483605) showed no neuroprotection. These protective effects of DHPG and VU0092273 were prevented by inhibition of PI3K/Akt pathway by LY294002. The mGluR5 PAM (VU0092273) also prevented GluA2 down-regulation triggered by ischemic injury, via PI3K/Akt pathway, revealing a further contribution to its neuroprotective effects by reducing the excitotoxic effects of increased Ca2+ influx through GluA2-lacking AMPA receptors. Furthermore, immunohistochemical assays confirmed the neuroprotective effect of VU0092273 and revealed activation of glia, indicating the involvement reactive astrogliosis in the mechanisms of neuroprotection. Our data suggest that selective activation/potentiation of mGluR5 signalling represents a promising strategy for the development of new interventions to reduce or prevent ischemia-induced neuronal death.
Collapse
Affiliation(s)
- Damiana Cavallo
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy; School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | - Elisa Landucci
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Elisabetta Gerace
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Maria Grazia Giovannini
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Domenico E Pellegrini-Giampietro
- Department of Health Sciences, Unit of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
30
|
Bellozi PMQ, Gomes GF, da Silva MCM, Lima IVDA, Batista CRÁ, Carneiro Junior WDO, Dória JG, Vieira ÉLM, Vieira RP, de Freitas RP, Ferreira CN, Candelario-Jalil E, Wyss-Coray T, Ribeiro FM, de Oliveira ACP. A positive allosteric modulator of mGluR5 promotes neuroprotective effects in mouse models of Alzheimer's disease. Neuropharmacology 2019; 160:107785. [PMID: 31541651 DOI: 10.1016/j.neuropharm.2019.107785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-β (Aβ) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aβ induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aβ injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aβ accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB is protective against Aβ stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.
Collapse
Affiliation(s)
| | - Giovanni Freitas Gomes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | | | | | | | - Juliana Guimarães Dória
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Rafael Pinto Vieira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Claudia Natália Ferreira
- Clinical Pathology Sector of COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | |
Collapse
|
31
|
The Neutrophil/Lymphocyte Count Ratio Predicts Mortality in Severe Traumatic Brain Injury Patients. J Clin Med 2019; 8:jcm8091453. [PMID: 31547411 PMCID: PMC6780814 DOI: 10.3390/jcm8091453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
Introduction: Neutrophil-lymphocyte count ratio (NLCR) is a simple and low-cost marker of inflammatory response. NLCR has shown to be a sensitive marker of clinical severity in inflammatory-related tissue injury, and high value of NLCR is associated with poor outcome in traumatic brain injured (TBI) patients. The purpose of this study was to retrospectively analyze NLCR and its association with outcome in a cohort of TBI patients in relation to the type of brain injury. Methods: Adult patients admitted for isolated TBI with Glasgow Coma Score lower than eight were included in the study. NLCR was calculated as the ratio between the absolute neutrophil and lymphocyte count immediately after admission to the hospital, and for six consecutive days after admission to the intensive care unit (ICU). Brain injuries were classified according to neuroradiological findings at the admission computed tomography (CT) as DAI—patients with severe diffuse axonal injury; CE—patients with hemispheric or focal cerebral edema; ICH—patients with intracerebral hemorrhage; S-EH/SAH—patients with subdural and/or epidural hematoma/subarachnoid hemorrhage. Results: NLCR was calculated in 144 patients. Admission NLCR was significantly higher in the non-survivors than in those who survived at 28 days (p < 0.05) from admission. Persisting high NLCR value was associated with poor outcome, and admission NLCR higher than 15.63 was a predictor of 28-day mortality. The highest NLCR value at admission was observed in patients with DAI compared with other brain injuries (p < 0.001). Concussions: NLCR can be a useful marker for predicting outcome in TBI patients. Further studies are warranted to confirm these results.
Collapse
|
32
|
Liu YW, Zhao L, Zhou M, Wang H, Yang N, Dai SS. Transplantation with mGluR5 deficiency bone marrow displays antidepressant-like effect in C57BL/6J mice. Brain Behav Immun 2019; 79:114-124. [PMID: 30682501 DOI: 10.1016/j.bbi.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Antidepressant-like effects of metabotropic glutamate receptor 5 (mGluR5) have been verified by specific antagonists or whole body knock-out (KO) mice. Previous experiments indicate that blocking mGluR5 exerts antidepressant-like effects through neuronal mechanisms, like modulating NMDA receptor activity or 5-HT system. Here we found that transplanting bone marrow from mGluR5 KO mice to WT mice could also show antidepressant-like effects, which were confirmed by sucrose preference test and tail suspension test. Furthermore, mGluR5 deficiency dramatically inhibits cytokines release from bone marrow cells, such as IL-1β, TNF-α and IL-6, alleviating proinflammatory responses in LPS-induced depression model. In addition, inhibited cytokines could decrease the activation of brain endothelial cells in ERK-dependent manner. These data provide the evidence that blocking mGluR5 could improve depression through inhibiting peripheral immune responses, confirming the causal relationship between peripheral immune phenotype and brain behavior.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, PR China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, PR China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, PR China
| | - Hao Wang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Nan Yang
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, PR China; Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
33
|
Schober ME, Requena DF, Casper TC, Velhorst AK, Lolofie A, McFarlane KE, Otto TE, Terry C, Gensel JC. Docosahexaenoic acid decreased neuroinflammation in rat pups after controlled cortical impact. Exp Neurol 2019; 320:112971. [PMID: 31247195 DOI: 10.1016/j.expneurol.2019.112971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children, yet specific therapies to treat TBI are lacking. Therapies that decrease the inflammatory response and enhance a reparative immune action may decrease oxidative damage and improve outcomes after TBI. Docosahexaenoic acid (DHA) modulates the immune response to injury in many organs. DHA given in the diet before injury decreased rat pup cognitive impairment, oxidative stress and white matter injury in our developmental TBI model using controlled cortical impact (CCI). Little is known about DHA effects on neuroinflammation in the developing brain. Further, it is not known if DHA given after developmental TBI exerts neuroprotective effects. We hypothesized that acute DHA treatment would decrease oxidative stress and improve cognitive outcome, associated with decreased pro-inflammatory activation of microglia, the brain's resident macrophages. METHODS 17-day-old rat pups received intraperitoneal DHA or vehicle after CCI or SHAM surgery followed by DHA diet or continuation of REG diet to create DHACCI, REGCCI, SHAMDHA and SHAMREG groups. We measured brain nitrates/nitrites (NOx) at post injury day (PID) 1 to assess oxidative stress. We tested memory using Novel Object Recognition (NOR) at PID14. At PID 3 and 7, we measured reactivity of microglial activation markers Iba1, CD68 and CD206 and astrocyte marker GFAP in the injured cortex. At PID3, 7 and 30 we measured mRNA levels of inflammation-related genes and transcription factors in flow-sorted brain cells. RESULTS DHA decreased oxidative stress at PID1 and pro-inflammatory microglial activation at PID3. CCI increased mRNA levels of two interferon regulatory family transcription factors, blunted by DHA, particularly in microglia-enriched cell populations at PID7. CCI increased mRNA levels of genes associated with "pro- " and "anti-" inflammatory activity at PID3, 7 and 30. Most notably within the microglia-enriched population, DHA blunted increased mRNA levels of pro-inflammatory genes at PID 3 and 7 and of anti-inflammatory genes at PID 30. Particularly in microglia, we observed parallel activation of pro-inflammatory and anti-inflammatory genes. DHA improved performance on NOR at PID14 after CCI. CONCLUSIONS DHA decreased oxidative stress and histologic and mRNA markers of microglial pro-inflammatory activation in rat pup brain acutely after CCI associated with improved short term cognitive function. DHA administration after CCI has neuroprotective effects, which may result in part from modulation of microglial activation toward a less inflammatory profile in the first week after CCI. Future and ongoing studies will focus on phagocytic function and reactive oxygen species production in microglia and macrophages to test functional effects of DHA on neuroinflammation in our model. Given its favorable safety profile in children, DHA is a promising candidate therapy for pediatric TBI.
Collapse
Affiliation(s)
- Michelle E Schober
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - Daniela F Requena
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States
| | - T Charles Casper
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - Amy K Velhorst
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Alyssa Lolofie
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - Katelyn E McFarlane
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| | - Taylor E Otto
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Cynthia Terry
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - John C Gensel
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
34
|
Kumar A, Henry RJ, Stoica BA, Loane DJ, Abulwerdi G, Bhat SA, Faden AI. Neutral Sphingomyelinase Inhibition Alleviates LPS-Induced Microglia Activation and Neuroinflammation after Experimental Traumatic Brain Injury. J Pharmacol Exp Ther 2019; 368:338-352. [PMID: 30563941 PMCID: PMC6367691 DOI: 10.1124/jpet.118.253955] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation is one of the key secondary injury mechanisms triggered by traumatic brain injury (TBI). Microglial activation, a hallmark of brain neuroinflammation, plays a critical role in regulating immune responses after TBI and contributes to progressive neurodegeneration and neurologic deficits following brain trauma. Here we evaluated the role of neutral sphingomyelinase (nSMase) in microglial activation by examining the effects of the nSMase inhibitors altenusin and GW4869 in vitro (using BV2 microglia cells and primary microglia), as well as in a controlled cortical injury (CCI) model in adult male C57BL/6 mice. Pretreatment of altenusin or GW4869 prior to lipopolysaccharide (LPS) stimulation for 4 or 24 hours, significantly downregulated gene expression of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, iNOS, and CCL2 in microglia and reduced the release of nitric oxide and TNF-α These nSMase inhibitors also attenuated the release of microparticles and phosphorylation of p38 MAPK and ERK1/2. In addition, altenusin pretreatment also reduced the gene expression of multiple inflammatory markers associated with microglial activation after experimental TBI, including TNF-α, IL-1β, IL-6, iNOS, CCL2, CD68, NOX2, and p22phox Overall, our data demonstrate that nSMase inhibitors attenuate multiple inflammatory pathways associated with microglial activation in vitro and after experimental TBI. Thus, nSMase inhibitors may represent promising therapeutics agents targeting neuroinflammation.
Collapse
Affiliation(s)
- Asit Kumar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gelareh Abulwerdi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shahnawaz A Bhat
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [PMID: 30554385 DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
36
|
Madathil SK, Wilfred BS, Urankar SE, Yang W, Leung LY, Gilsdorf JS, Shear DA. Early Microglial Activation Following Closed-Head Concussive Injury Is Dominated by Pro-Inflammatory M-1 Type. Front Neurol 2018; 9:964. [PMID: 30498469 PMCID: PMC6249371 DOI: 10.3389/fneur.2018.00964] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Microglial activation is a pathological hallmark of traumatic brain injury (TBI). Following brain injury, activated microglia/macrophages adopt different phenotypes, generally categorized as M-1, or classically activated, and M-2, or alternatively activated. While the M-1, or pro-inflammatory phenotype is detrimental to recovery, M-2, or the anti-inflammatory phenotype, aids in brain repair. Recent findings also suggest the existence of mixed phenotype following brain injury, where activated microglia simultaneously express both M-1 and M-2 markers. The present study sought to determine microglial activation states at early time points (6-72 h) following single or repeated concussive injury in rats. Closed-head concussive injury was modeled in rats using projectile concussive impact injury, with either single or repeated impacts (4 impacts, 1 h apart). Brain samples were examined using immunohistochemical staining, inflammatory gene profiling and real-time polymerase chain reaction analyses to detect concussive injury induced changes in microglial activation and phenotype in cortex and hippocampal regions. Our findings demonstrate robust microglial activation following concussive brain injury. Moreover, we show that multiple concussions induced a unique rod-shaped microglial morphology that was also observed in other diffuse brain injury models. Histological studies revealed a predominance of MHC-II positive M-1 phenotype in the post-concussive microglial milieu following multiple impacts. Although there was simultaneous expression of M-1 and M-2 markers, gene expression results indicate a clear dominance in M-1 pro-inflammatory markers following both single and repeated concussions. While the increase in M-1 markers quickly resolved after a single concussion, they persisted following repeated concussions, indicating a pro-inflammatory environment induced by multiple concussions that may delay recovery and contribute to long-lasting consequences of concussion.
Collapse
Affiliation(s)
- Sindhu K Madathil
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard S Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sarah E Urankar
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Weihong Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
37
|
Spampinato SF, Copani A, Nicoletti F, Sortino MA, Caraci F. Metabotropic Glutamate Receptors in Glial Cells: A New Potential Target for Neuroprotection? Front Mol Neurosci 2018; 11:414. [PMID: 30483053 PMCID: PMC6243036 DOI: 10.3389/fnmol.2018.00414] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders are characterized by excitotoxicity and neuroinflammation that finally lead to slow neuronal degeneration and death. Although neurons are the principal target, glial cells are important players as they contribute by either exacerbating or dampening the events that lead to neuroinflammation and neuronal damage. A dysfunction of the glutamatergic system is a common event in the pathophysiology of these diseases. Metabotropic glutamate (mGlu) receptors belong to a large family of G protein-coupled receptors largely expressed in neurons as well as in glial cells. They often appear overexpressed in areas involved in neurodegeneration, where they can modulate glutamatergic transmission. Of note, mGlu receptor upregulation may involve microglia or, even more frequently, astrocytes, where their activation causes release of factors potentially able to influence neuronal death. The expression of mGlu receptors has been also reported on oligodendrocytes, a glial cell type specifically involved in the development of multiple sclerosis. Here we will provide a general overview on the possible involvement of mGlu receptors expressed on glial cells in the pathogenesis of different neurodegenerative disorders and the potential use of subtype-selective mGlu receptor ligands as candidate drugs for the treatment of neurodegenerative disorders. Negative allosteric modulators (NAM) of mGlu5 receptors might represent a relevant pharmacological tool to develop new neuroprotective strategies in these diseases. Recent evidence suggests that targeting astrocytes and microglia with positive allosteric modulators (PAM) of mGlu3 receptor or oligodendrocytes with mGlu4 PAMS might represent novel pharmacological approaches for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Agata Copani
- Department of Drug Sciences, University of Catania, Catania, Italy.,Institute of Biostructure and Bioimaging, National Research Council, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neuromed, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Troina, Italy
| |
Collapse
|
38
|
Hanak TJ, Libbey JE, Doty DJ, Sim JT, DePaula-Silva AB, Fujinami RS. Positive modulation of mGluR5 attenuates seizures and reduces TNF-α + macrophages and microglia in the brain in a murine model of virus-induced temporal lobe epilepsy. Exp Neurol 2018; 311:194-204. [PMID: 30316834 DOI: 10.1016/j.expneurol.2018.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/12/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
Abstract
Viral encephalitis markedly increases the risk for the development of epilepsy. The Theiler's murine encephalomyelitis virus (TMEV)-induced model of seizures/epilepsy is a murine model of both viral-induced seizures/epilepsy and human Temporal Lobe Epilepsy. The inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α have been shown to play a role in seizure development in the TMEV-induced model of seizures/epilepsy, and infiltrating macrophages along with microglia have been shown to be major producers of these cytokines. The metabotropic glutamate receptor 5 (mGluR5) is a G-protein coupled receptor that has been shown to reduce IL-6 and TNF-α and to provide neuroprotection in other disease models. Therefore, we hypothesized that stimulation of mGluR5 would not only reduce seizures but attenuate IL-6 and TNF-α production in microglia and macrophages in the TMEV model. We found that pharmacological stimulation of mGluR5 with the selective positive allosteric modulator VU0360172 not only reduced acute seizure outcomes, but also reduced the percent of microglia and macrophages producing TNF-α 3 days post infection. Furthermore, treatment with VU0360172 did not alter the level of viral antigen, compared to controls, showing that this treatment does not compromise viral clearance. These results establish that mGluR5 may represent a therapeutic target in the TMEV-induced model of seizures/epilepsy.
Collapse
Affiliation(s)
- Tyler J Hanak
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA; Interdepartmental Program in Neuroscience, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Daniel J Doty
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Jordan T Sim
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Ana Beatriz DePaula-Silva
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA.
| |
Collapse
|
39
|
Inflammatory response of microglia to prions is controlled by sialylation of PrP Sc. Sci Rep 2018; 8:11326. [PMID: 30054538 PMCID: PMC6063910 DOI: 10.1038/s41598-018-29720-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Neuroinflammation is recognized as one of the obligatory pathogenic features of neurodegenerative diseases including Alzheimer’s, Parkinson’s or prion diseases. In prion diseases, space and time correlations between deposition of disease-associated, pathogenic form of the prion protein or PrPSc and microglial-mediated neuroinflammation has been established. Yet, it remains unclear whether activation of microglia is triggered directly by a contact with PrPSc, and what molecular features of PrPSc microglia sense and respond to that drive microglia to inflammatory states. The current study asked the questions whether PrPSc can directly trigger activation of microglia and whether the degree of microglia response depends on the nature of terminal carbohydrate groups on the surface of PrPSc particles. PrPSc was purified from brains of mice infected with mouse-adapted prion strain 22L or neuroblastoma N2a cells stably infected with 22L. BV2 microglial cells or primary microglia were cultured in the presence of purified 22L. We found that exposure of BV2 cells or primary microglia to purified PrPSc triggered proinflammatory responses characterized by an increase in the levels of TNFα, IL6, nitric oxide (NO) and expression of inducible Nitric Oxide Synthase (iNOS). Very similar patterns of inflammatory response were induced by PrPSc purified from mouse brains and neuroblastoma cells arguing that microglia response is independent of the source of PrPSc. To test whether the microglial response is mediated by carbohydrate epitopes on PrPSc surface, the levels of sialylation of PrPSc N-linked glycans was altered by treatment of purified PrPSc with neuraminidase. Partial cleavage of sialic acid residues was found to boost the inflammatory response of microglia to PrPSc. Moreover, transient degradation of Iκβα observed upon treatment with partially desialylated PrPSc suggests that canonical NFκB activation pathway is involved in inflammatory response. The current study is the first to demonstrate that PrPSc can directly trigger inflammatory response in microglia. In addition, this work provides direct evidence that the chemical nature of the carbohydrate groups on PrPSc surface is important for microglial activation.
Collapse
|
40
|
Wang W, Zinsmaier AK, Firestone E, Lin R, Yatskievych TA, Yang S, Zhang J, Bao S. Blocking Tumor Necrosis Factor-Alpha Expression Prevents Blast-Induced Excitatory/Inhibitory Synaptic Imbalance and Parvalbumin-Positive Interneuron Loss in the Hippocampus. J Neurotrauma 2018; 35:2306-2316. [PMID: 29649942 DOI: 10.1089/neu.2018.5688] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of neurological disorder and death in civilian and military populations. It comprises two components-direct injury from the traumatic impact and secondary injury from ensuing neural inflammatory responses. Blocking tumor necrosis factor-alpha (TNF-α), a central regulator of neural inflammation, has been shown to improve functional recovery after TBI. However, the mechanisms underlying those therapeutic effects are still poorly understood. Here, we examined effects of 3,6'-dithiothalidomide (dTT), a potentially therapeutic TNF-α inhibitor, in mice with blast-induced TBI. We found that blast exposure resulted in elevated expression of TNF-α, activation of microglial cells, enhanced excitatory synaptic transmission, reduced inhibitory synaptic transmission, and a loss of parvalbumin-positive (PV+) inhibitory interneurons. Administration of dTT for 5 days after the blast exposure completely suppressed blast-induced increases in TNF-α transcription, largely reversed blasted-induced synaptic changes, and prevented PV+ neuron loss. However, blocking TNF-α expression by dTT failed to mitigate blast-induced microglial activation in the hippocampus, as evidenced by their non-ramified morphology. These results indicate that TNF-α plays a major role in modulating neuronal functions in blast-induced TBI and that it is a potential target for treatment of TBI-related brain disorders.
Collapse
Affiliation(s)
- Weihua Wang
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Alexander K Zinsmaier
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Ethan Firestone
- 2 Department of Otolaryngology-Head and Neck Surgery and Department of Communication Sciences and Disorders, School of Medicine, Wayne State University , Detroit, Michigan
| | - Ruizhu Lin
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona.,3 Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China
| | - Tatiana A Yatskievych
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Sungchil Yang
- 4 Department of Biomedical Sciences, City University of Hong Kong , Kowloon, Hong Kong, China
| | - Jinsheng Zhang
- 2 Department of Otolaryngology-Head and Neck Surgery and Department of Communication Sciences and Disorders, School of Medicine, Wayne State University , Detroit, Michigan
| | - Shaowen Bao
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
41
|
Fazio F, Ulivieri M, Volpi C, Gargaro M, Fallarino F. Targeting metabotropic glutamate receptors for the treatment of neuroinflammation. Curr Opin Pharmacol 2018; 38:16-23. [PMID: 29471184 DOI: 10.1016/j.coph.2018.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
Abstract
A large body of evidence suggests that neuroinflammation lies at the core of nearly all CNS disorders, including psychiatric disorders. Invading and local immune cells orchestrate the series of events that lead to either tissue repair or damage in response to neuroinflammation. Both lymphocytes and microglia express metabotropic glutamate (mGlu) receptors, which respond to glutamate or other endogenous activators (e.g. some kynurenine metabolites of tryptophan metabolism) influencing immune phenotype and the balance between pro-inflammatory and anti-inflammatory cytokines. Here, we offer an up-to-date on the role of individual mGlu receptor subtypes in the regulation of innate and adaptive immune response, highlighting the relevance of this information in the development of subtype-selective mGlu receptor ligands for treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Martina Ulivieri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| |
Collapse
|
42
|
Madathil SK, Wilfred BS, Urankar SE, Yang W, Leung LY, Gilsdorf JS, Shear DA. Early Microglial Activation Following Closed-Head Concussive Injury Is Dominated by Pro-Inflammatory M-1 Type. Front Neurol 2018. [PMID: 30498469 DOI: 10.3389/fneur.2018.00964/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Microglial activation is a pathological hallmark of traumatic brain injury (TBI). Following brain injury, activated microglia/macrophages adopt different phenotypes, generally categorized as M-1, or classically activated, and M-2, or alternatively activated. While the M-1, or pro-inflammatory phenotype is detrimental to recovery, M-2, or the anti-inflammatory phenotype, aids in brain repair. Recent findings also suggest the existence of mixed phenotype following brain injury, where activated microglia simultaneously express both M-1 and M-2 markers. The present study sought to determine microglial activation states at early time points (6-72 h) following single or repeated concussive injury in rats. Closed-head concussive injury was modeled in rats using projectile concussive impact injury, with either single or repeated impacts (4 impacts, 1 h apart). Brain samples were examined using immunohistochemical staining, inflammatory gene profiling and real-time polymerase chain reaction analyses to detect concussive injury induced changes in microglial activation and phenotype in cortex and hippocampal regions. Our findings demonstrate robust microglial activation following concussive brain injury. Moreover, we show that multiple concussions induced a unique rod-shaped microglial morphology that was also observed in other diffuse brain injury models. Histological studies revealed a predominance of MHC-II positive M-1 phenotype in the post-concussive microglial milieu following multiple impacts. Although there was simultaneous expression of M-1 and M-2 markers, gene expression results indicate a clear dominance in M-1 pro-inflammatory markers following both single and repeated concussions. While the increase in M-1 markers quickly resolved after a single concussion, they persisted following repeated concussions, indicating a pro-inflammatory environment induced by multiple concussions that may delay recovery and contribute to long-lasting consequences of concussion.
Collapse
Affiliation(s)
- Sindhu K Madathil
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard S Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sarah E Urankar
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Weihong Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
43
|
York EM, Bernier LP, MacVicar BA. Microglial modulation of neuronal activity in the healthy brain. Dev Neurobiol 2017; 78:593-603. [PMID: 29271125 DOI: 10.1002/dneu.22571] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/06/2023]
Abstract
Investigations on the role of microglia in the brain have traditionally been focused on their contributions to disease states. However, recent observations have now convincingly shown that microglia in the healthy brain are not passive bystanders, but instead play a critical role in both central nervous system development and homeostasis of synaptic circuits in the adult. Here, we review the various mechanisms by which microglia impact neuronal communication in the healthy adult brain, both by sensing nearby synaptic responses and by actively modulating neuronal function. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 593-603, 2018.
Collapse
Affiliation(s)
- Elisa M York
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Louis-Philippe Bernier
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Brian A MacVicar
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Beneventano M, Spampinato SF, Merlo S, Chisari M, Platania P, Ragusa M, Purrello M, Nicoletti F, Sortino MA. Shedding of Microvesicles from Microglia Contributes to the Effects Induced by Metabotropic Glutamate Receptor 5 Activation on Neuronal Death. Front Pharmacol 2017; 8:812. [PMID: 29170640 PMCID: PMC5684115 DOI: 10.3389/fphar.2017.00812] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 01/08/2023] Open
Abstract
Metabotropic glutamate (mGlu) receptor 5 is involved in neuroinflammation and has been shown to mediate reduced inflammation and neurotoxicity and to modify microglia polarization. On the other hand, blockade of mGlu5 receptor results in inhibition of microglia activation. To dissect this controversy, we investigated whether microvesicles (MVs) released from microglia BV2 cells could contribute to the communication between microglia and neurons and whether this interaction was modulated by mGlu5 receptor. Activation of purinergic ionotropic P2X7 receptor with the stable ATP analog benzoyl-ATP (100 μM) caused rapid MVs shedding from BV2 cells. Ionic currents through P2X7 receptor increased in BV2 cells pretreated for 24 h with the mGlu5 receptor agonist CHPG (200 μM) as by patch-clamp recording. This increase was blunted when microglia cells were activated by exposure to lipopolysaccharide (LPS; 0.1 μg/ml for 6 h). Accordingly, a greater amount of MVs formed after CHPG treatment, an effect prevented by the mGlu5 receptor antagonist MTEP (100 μM), as measured by expression of flotillin, a membrane protein enriched in MVs. Transferred MVs were internalized by SH-SY5Y neurons where they did not modify neuronal death induced by a low concentration of rotenone (0.1 μM for 24 h), but significantly increased rotenone neurotoxicity when shed from CHPG-treated BV2 cells. miR146a was increased in CHPG-treated MVs, an effect concealed in MVs from LPS-activated BV2 cells that showed per se an increase in miRNA146a levels. The present data support a role for microglia-shed MVs in mGlu5-mediated modulation of neuronal death and identify miRNAs as potential critical mediators of this interaction.
Collapse
Affiliation(s)
- Martina Beneventano
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona F Spampinato
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sara Merlo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariangela Chisari
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Paola Platania
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Michele Purrello
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.,I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Maria Angela Sortino
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
45
|
Ma EL, Smith AD, Desai N, Cheung L, Hanscom M, Stoica BA, Loane DJ, Shea-Donohue T, Faden AI. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav Immun 2017; 66:56-69. [PMID: 28676351 PMCID: PMC5909811 DOI: 10.1016/j.bbi.2017.06.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/02/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. METHODS Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. RESULTS Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. CONCLUSION These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury.
Collapse
Affiliation(s)
- Elise L Ma
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allen D Smith
- Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, United States Department of Agriculture (USDA), Beltsville, MD, USA
| | - Neemesh Desai
- Department of Radiation Oncology and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lumei Cheung
- Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, United States Department of Agriculture (USDA), Beltsville, MD, USA
| | - Marie Hanscom
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terez Shea-Donohue
- Department of Radiation Oncology and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
46
|
Metabotropic glutamate receptor 5 deficiency inhibits neutrophil infiltration after traumatic brain injury in mice. Sci Rep 2017; 7:9998. [PMID: 28855570 PMCID: PMC5577182 DOI: 10.1038/s41598-017-10201-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/07/2017] [Indexed: 11/08/2022] Open
Abstract
Both brain native inflammatory cells and infiltrated peripheral white blood cells (WBCs) are primary participants in the brain inflammatory damage post-TBI. Metabotropic glutamate receptor 5 (mGluR5) has been reported to regulate microglias and astrocytes to affect inflammation after TBI, but its effect on modulating infiltrated peripheral WBCs remains unclear. In a mouse moderate TBI model, we found that mGluR5 knockout (KO) significantly reduced neutrophil infiltration and inflammatory cytokine expression in the brain at 24 hours post TBI, which was accompanied by improved neurological dysfunction. Further investigation indicated that mGluR5 KO reduced the permeability of blood-brain barrier (BBB), the entrance for neutrophils to enter brain, and markedly decreased the mRNA levels of neutrophil-associated chemokines in brain tissue, including CXCL1, CXCL2, CCL2, CCL4 and CCL5. Using brain microvascular endothelial cells (BMECs), neutrophils and a BBB model in vitro, we confirmed the inhibitory effect of mGluR5 deficiency on neutrophil infiltration and demonstrated that blockade of protein kinase C (PKC) signaling was involved in it. These results provide insight into the role of mGluR5 in the regulation of inflammation in the acute phase of TBI, which may provide novel clues for TBI therapy.
Collapse
|
47
|
Donat CK, Scott G, Gentleman SM, Sastre M. Microglial Activation in Traumatic Brain Injury. Front Aging Neurosci 2017; 9:208. [PMID: 28701948 PMCID: PMC5487478 DOI: 10.3389/fnagi.2017.00208] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Microglia have a variety of functions in the brain, including synaptic pruning, CNS repair and mediating the immune response against peripheral infection. Microglia rapidly become activated in response to CNS damage. Depending on the nature of the stimulus, microglia can take a number of activation states, which correspond to altered microglia morphology, gene expression and function. It has been reported that early microglia activation following traumatic brain injury (TBI) may contribute to the restoration of homeostasis in the brain. On the other hand, if they remain chronically activated, such cells display a classically activated phenotype, releasing pro-inflammatory molecules, resulting in further tissue damage and contributing potentially to neurodegeneration. However, new evidence suggests that this classification is over-simplistic and the balance of activation states can vary at different points. In this article, we review the role of microglia in TBI, analyzing their distribution, morphology and functional phenotype over time in animal models and in humans. Animal studies have allowed genetic and pharmacological manipulations of microglia activation, in order to define their role. In addition, we describe investigations on the in vivo imaging of microglia using translocator protein (TSPO) PET and autoradiography, showing that microglial activation can occur in regions far remote from sites of focal injuries, in humans and animal models of TBI. Finally, we outline some novel potential therapeutic approaches that prime microglia/macrophages toward the beneficial restorative microglial phenotype after TBI.
Collapse
Affiliation(s)
| | | | | | - Magdalena Sastre
- Division of Brain Sciences, Department of Medicine, Imperial College LondonLondon, United Kingdom
| |
Collapse
|
48
|
Vilhardt F, Haslund‐Vinding J, Jaquet V, McBean G. Microglia antioxidant systems and redox signalling. Br J Pharmacol 2017; 174:1719-1732. [PMID: 26754582 PMCID: PMC5446583 DOI: 10.1111/bph.13426] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022] Open
Abstract
For many years, microglia, the resident CNS macrophages, have been considered only in the context of pathology, but microglia are also glial cells with important physiological functions. Microglia-derived oxidant production by NADPH oxidase (NOX2) is implicated in many CNS disorders. Oxidants do not stand alone, however, and are not always pernicious. We discuss in general terms, and where available in microglia, GSH synthesis and relation to cystine import and glutamate export, and the thioredoxin system as the most important antioxidative defence mechanism, and further, we discuss in the context of protein thiolation of target redox proteins the necessity for tightly localized, timed and confined oxidant production to work in concert with antioxidant proteins to promote redox signalling. NOX2-mediated redox signalling modulates the acquisition of the classical or alternative microglia activation phenotypes by regulating major transcriptional programs mediated through NF-κB and Nrf2, major regulators of the inflammatory and antioxidant response respectively. As both antioxidants and NOX-derived oxidants are co-secreted, in some instances redox signalling may extend to neighboring cells through modification of surface or cytosolic target proteins. We consider a role for microglia NOX-derived oxidants in paracrine modification of synaptic function through long term depression and in the communication with the adaptive immune system. There is little doubt that a continued foray into the functions of the antioxidant response in microglia will reveal antioxidant proteins as dynamic players in redox signalling, which in concert with NOX-derived oxidants fulfil important roles in the autocrine or paracrine regulation of essential enzymes or transcriptional programs. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
| | - J Haslund‐Vinding
- Institute of Cellular and Molecular MedicineCopenhagen UniversityCopenhagenDenmark
- Department of Pathology and ImmunologyCentre Médical UniversitaireGenevaSwitzerland
| | - V Jaquet
- Department of Pathology and ImmunologyCentre Médical UniversitaireGenevaSwitzerland
| | - G McBean
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
49
|
Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-Queralt A, Shah SB, Duckworth JL, Head BP. Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics. Cell Mol Neurobiol 2017; 37:571-585. [PMID: 27383839 DOI: 10.1007/s10571-016-0400-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death of young people in the developed world. In the United States alone, 1.7 million traumatic events occur annually accounting for 50,000 deaths. The etiology of TBI includes traffic accidents, falls, gunshot wounds, sports, and combat-related events. TBI severity ranges from mild to severe. TBI can induce subtle changes in molecular signaling, alterations in cellular structure and function, and/or primary tissue injury, such as contusion, hemorrhage, and diffuse axonal injury. TBI results in blood-brain barrier (BBB) damage and leakage, which allows for increased extravasation of immune cells (i.e., increased neuroinflammation). BBB dysfunction and impaired homeostasis contribute to secondary injury that occurs from hours to days to months after the initial trauma. This delayed nature of the secondary injury suggests a potential therapeutic window. The focus of this article is on the (1) pathophysiology of TBI and (2) potential therapies that include biologics (stem cells, gene therapy, peptides), pharmacological (anti-inflammatory, antiepileptic, progrowth), and noninvasive (exercise, transcranial magnetic stimulation). In final, the review briefly discusses membrane/lipid rafts (MLR) and the MLR-associated protein caveolin (Cav). Interventions that increase Cav-1, MLR formation, and MLR recruitment of growth-promoting signaling components may augment the efficacy of pharmacologic agents or already existing endogenous neurotransmitters and neurotrophins that converge upon progrowth signaling cascades resulting in improved neuronal function after injury.
Collapse
Affiliation(s)
- Matthew L Pearn
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Ingrid R Niesman
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA, 92037, USA
| | - Junji Egawa
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Atsushi Sawada
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA, 92037, USA
| | - Sameer B Shah
- UCSD Departments of Orthopaedic Surgery and Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Josh L Duckworth
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Brian P Head
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA.
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
50
|
Kumar A, Stoica BA, Loane DJ, Yang M, Abulwerdi G, Khan N, Kumar A, Thom SR, Faden AI. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation 2017; 14:47. [PMID: 28292310 PMCID: PMC5351060 DOI: 10.1186/s12974-017-0819-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/18/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Local and systemic inflammatory responses are initiated early after traumatic brain injury (TBI), and may play a key role in the secondary injury processes resulting in neuronal loss and neurological deficits. However, the mechanisms responsible for the rapid expansion of neuroinflammation and its long-term progression have yet to be elucidated. Here, we investigate the role of microparticles (MP), a member of the extracellular vesicle family, in the exchange of pro-inflammatory molecules between brain immune cells, as well as their transfer to the systemic circulation, as key pathways of inflammation propagation following brain trauma. METHODS Adult male C57BL/6 mice were subjected to controlled cortical impact TBI for 24 h, and enriched MP were isolated in the blood, while neuroinflammation was assessed in the TBI cortex. MP were characterized by flow cytometry, and MP content was assayed using gene and protein markers for pro-inflammatory mediators. Enriched MP co-cultured with BV2 or primary microglial cells were used for immune propagation assays. Enriched MP from BV2 microglia or CD11b-positive microglia from the TBI brain were stereotactically injected into the cortex of uninjured mice to evaluate MP-related seeding of neuroinflammation in vivo. RESULTS As the neuroinflammatory response is developing in the brain after TBI, microglial-derived MP are released into the circulation. Circulating enriched MP from the TBI animals can activate microglia in vitro. Lipopolysaccharide stimulation increases MP release from microglia in vitro and enhances their content of pro-inflammatory mediators, interleukin-1β and microRNA-155. Enriched MP from activated microglia in vitro or CD11b-isolated microglia/macrophage from the TBI brain ex vivo are sufficient to initiate neuroinflammation following their injection into the cortex of naïve (uninjured) animals. CONCLUSIONS These data provide further insights into the mechanisms underlying the development and dissemination of neuroinflammation after TBI. MP loaded with pro-inflammatory molecules initially released by microglia following trauma can activate additional microglia that may contribute to progressive neuroinflammatory response in the injured brain, as well as stimulate systemic immune responses. Due to their ability to independently initiate inflammatory responses, MP derived from activated microglia may provide a potential therapeutic target for other neurological disorders in which neuroinflammation may be a contributing factor.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - Bogdan A Stoica
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - David J Loane
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - Ming Yang
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gelareh Abulwerdi
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - Niaz Khan
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - Asit Kumar
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA.
| |
Collapse
|