1
|
Mishra A, Vasanthan M, Malliappan SP. Drug Repurposing: A Leading Strategy for New Threats and Targets. ACS Pharmacol Transl Sci 2024; 7:915-932. [PMID: 38633585 PMCID: PMC11019736 DOI: 10.1021/acsptsci.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Less than 6% of rare illnesses have an appropriate treatment option. Repurposed medications for new indications are a cost-effective and time-saving strategy that results in excellent success rates, which may significantly lower the risk associated with therapeutic development for rare illnesses. It is becoming a realistic alternative to repurposing "conventional" medications to treat joint and rare diseases considering the significant failure rates, high expenses, and sluggish stride of innovative medication advancement. This is due to delisted compounds, cheaper research fees, and faster development time frames. Repurposed drug competitors have been developed using strategic decisions based on data analysis, interpretation, and investigational approaches, but technical and regulatory restrictions must also be considered. Combining experimental and computational methodologies generates innovative new medicinal applications. It is a one-of-a-kind strategy for repurposing human-safe pharmaceuticals to treat uncommon and difficult-to-treat ailments. It is a very effective method for discovering and creating novel medications. Several pharmaceutical firms have developed novel therapies by repositioning old medications. Repurposing drugs is practical, cost-effective, and speedy and generally involves lower risks when compared to developing a new drug from the beginning.
Collapse
Affiliation(s)
- Ashish
Sriram Mishra
- Department
of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603202, Tamil Nadu, India
| | - Manimaran Vasanthan
- Department
of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603202, Tamil Nadu, India
| | - Sivakumar Ponnurengam Malliappan
- School
of Medicine and Pharmacy, Duy Tan University, Da Nang Vietnam, Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
2
|
Munafò A, Cantone AF, Di Benedetto G, Torrisi SA, Burgaletto C, Bellanca CM, Gaudio G, Broggi G, Caltabiano R, Leggio GM, Bernardini R, Cantarella G. Pharmacological enhancement of cholinergic neurotransmission alleviates neuroinflammation and improves functional outcomes in a triple transgenic mouse model of Alzheimer's disease. Front Pharmacol 2024; 15:1386224. [PMID: 38595916 PMCID: PMC11002120 DOI: 10.3389/fphar.2024.1386224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting the elderly population worldwide. Due to the multifactorial nature of the disease, involving impairment of cholinergic neurotransmission and immune system, previous attempts to find effective treatments have faced challenges. Methods: In such scenario, we attempted to investigate the effects of alpha-glyceryl-phosphoryl-choline (α-GPC), a cholinomimetic molecule, on neuroinflammation and memory outcome in the triple transgenic mouse model of AD (3xTg-AD). Mice were enrolled at 4 months of age, treated orally with α-GPC dissolved in drinking water at a concentration resulting in an average daily dose of 100 mg/kg for 8 months and sacrificed at 12 months of age. Thereafter, inflammatory markers, as well as cognitive parameters, were measured. Results: Chronic α-GPC treatment reduced accumulation of amyloid deposits and led to a substantial re-balance of the inflammatory response of resident innate immune cells, astrocytes and microglia. Specifically, fluorescent immunohistochemistry and Western blot analysis showed that α-GPC contributed to reduction of cortical and hippocampal reactive astrocytes and pro-inflammatory microglia, concurrently increasing the expression of anti-inflammatory molecules. Whereas α-GPC beneficially affect the synaptic marker synaptophysin in the hippocampus. Furthermore, we observed that α-GPC was effective in restoring cognitive dysfunction, as measured by the Novel Object Recognition test, wherein 3xTg-AD mice treated with α-GPC significantly spent more time exploring the novel object compared to 3xTg-AD untreated mice. Discussion: In conclusion, chronic treatment with α-GPC exhibited a significant anti-inflammatory activity and sustained the key function of hippocampal synapses, crucial for the maintenance of a regular cognitive status. In light of our results, we suggest that α-GPC could be exploited as a promising therapeutic approach in early phases of AD.
Collapse
Affiliation(s)
- Antonio Munafò
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| | - Sebastiano Alfio Torrisi
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| | - Gabriella Gaudio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Ibrahim A, Ipinloju N, Atasie NH, Babalola RM, Muhammad SA, Oyeneyin OE. Discovery of Small Molecule PARKIN Activator from Antipsychotic/Anti-neuropsychiatric Drugs as Therapeutics for PD: an In Silico Repurposing Approach. Appl Biochem Biotechnol 2023; 195:5980-6002. [PMID: 36735144 DOI: 10.1007/s12010-023-04376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Although there is presently no cure for Parkinson's disease (PD), the available therapies are only able to lessen symptoms and preserve the quality of life. Around 10 million people globally had PD as of 2020. The widely used standard drug has recently been revealed to have several negative effects. Additionally, there is a dearth of innovative compounds entering the market as a result of subpar ADMET characteristics. Drug repurposing provides a chance to reenergize the sluggish drug discovery process by identifying new applications for already-approved medications. As this strategy offers a practical way to speed up the process of developing alternative medications for PD. This study used a computer-aided technique to select therapeutic agent(s) from FDA-approved neuropsychiatric/psychotic drugs that can be adopted in the treatment of Parkinson's disease. In the current work, a computational approach via molecular docking, density functional theory (DFT), and pharmacokinetics were used to identify possible (anti)neuropsychiatric/psychotic medications for the treatment of PD. By using molecular docking, about eight (anti)neuropsychiatric/psychotic medications were tested against PARKIN, a key protein in PD. Based on the docking score, the best ligand in the trial was determined. The top hits were compared to the reference ligand levodopa (L-DOPA). A large proportion of the drugs displayed binding affinity that was relatively higher than L-DOPA. Also, DFT analysis confirms the ligand-receptor interactions and the molecular charge transfer. All the compounds were found to obey Lipinski's rule with acceptable pharmacokinetic properties. The current study has revealed the effectiveness of antineuropsychiatric/antipsychotic drugs against PARKIN in the treatment of PD and lumateperone was revealed to be the most promising candidate interacting with PARKIN.
Collapse
Affiliation(s)
- Abdulwasiu Ibrahim
- Drosophila Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Oyo State, Nigeria.
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria.
- Drosophila Research and Training Centre, Ibadan, Oyo State, Nigeria.
| | - Nureni Ipinloju
- Theoretical and Computational Chemistry Unit, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria.
| | | | | | | | - Oluwatoba Emmanuel Oyeneyin
- Theoretical and Computational Chemistry Unit, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| |
Collapse
|
4
|
Mohi-Ud-Din R, Chawla A, Sharma P, Mir PA, Potoo FH, Reiner Ž, Reiner I, Ateşşahin DA, Sharifi-Rad J, Mir RH, Calina D. Repurposing approved non-oncology drugs for cancer therapy: a comprehensive review of mechanisms, efficacy, and clinical prospects. Eur J Med Res 2023; 28:345. [PMID: 37710280 PMCID: PMC10500791 DOI: 10.1186/s40001-023-01275-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cancer poses a significant global health challenge, with predictions of increasing prevalence in the coming years due to limited prevention, late diagnosis, and inadequate success with current therapies. In addition, the high cost of new anti-cancer drugs creates barriers in meeting the medical needs of cancer patients, especially in developing countries. The lengthy and costly process of developing novel drugs further hinders drug discovery and clinical implementation. Therefore, there has been a growing interest in repurposing approved drugs for other diseases to address the urgent need for effective cancer treatments. The aim of this comprehensive review is to provide an overview of the potential of approved non-oncology drugs as therapeutic options for cancer treatment. These drugs come from various chemotherapeutic classes, including antimalarials, antibiotics, antivirals, anti-inflammatory drugs, and antifungals, and have demonstrated significant antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties. A systematic review of the literature was conducted to identify relevant studies on the repurposing of approved non-oncology drugs for cancer therapy. Various electronic databases, such as PubMed, Scopus, and Google Scholar, were searched using appropriate keywords. Studies focusing on the therapeutic potential, mechanisms of action, efficacy, and clinical prospects of repurposed drugs in cancer treatment were included in the analysis. The review highlights the promising outcomes of repurposing approved non-oncology drugs for cancer therapy. Drugs belonging to different therapeutic classes have demonstrated notable antitumor effects, including inhibiting cell proliferation, promoting apoptosis, modulating the immune response, and suppressing metastasis. These findings suggest the potential of these repurposed drugs as effective therapeutic approaches in cancer treatment. Repurposing approved non-oncology drugs provides a promising strategy for addressing the urgent need for effective and accessible cancer treatments. The diverse classes of repurposed drugs, with their demonstrated antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties, offer new avenues for cancer therapy. Further research and clinical trials are warranted to explore the full potential of these repurposed drugs and optimize their use in treating various cancer types. Repurposing approved drugs can significantly expedite the process of identifying effective treatments and improve patient outcomes in a cost-effective manner.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, 190001, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Pooja Sharma
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Faheem Hyder Potoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 1982, 31441, Dammam, Saudi Arabia
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivan Reiner
- Department of Nursing Sciences, Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | | | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
5
|
Aloke C, Obasi NA, Aja PM, Emelike CU, Egwu CO, Jeje O, Edeogu CO, Onisuru OO, Orji OU, Achilonu I. Combating Lassa Fever in West African Sub-Region: Progress, Challenges, and Future Perspectives. Viruses 2023; 15:146. [PMID: 36680186 PMCID: PMC9864412 DOI: 10.3390/v15010146] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Lassa fever (LF) is a rodent-borne disease that threatens human health in the sub-region of West Africa where the zoonotic host of Lassa virus (LASV) is predominant. Currently, treatment options for LF are limited and since no preventive vaccine is approved for its infectivity, there is a high mortality rate in endemic areas. This narrative review explores the transmission, pathogenicity of LASV, advances, and challenges of different treatment options. Our findings indicate that genetic diversity among the different strains of LASV and their ability to circumvent the immune system poses a critical challenge to the development of LASV vaccines/therapeutics. Thus, understanding the biochemistry, physiology and genetic polymorphism of LASV, mechanism of evading host immunity are essential for development of effective LASV vaccines/therapeutics to combat this lethal viral disease. The LASV nucleoprotein (NP) is a novel target for therapeutics as it functions significantly in several aspects of the viral life cycle. Consequently, LASV NP inhibitors could be employed as effective therapeutics as they will potentially inhibit LASV replication. Effective preventive control measures, vaccine development, target validation, and repurposing of existing drugs, such as ribavirin, using activity or in silico-based and computational bioinformatics, would aid in the development of novel drugs for LF management.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Nwogo Ajuka Obasi
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology (MUST), Mbarara P.O. Box 1410, Uganda
- Department of Medical Biochemistry, Kampala International University, Bushenyi, Ishaka P.O. Box 71, Uganda
| | - Chinedum Uche Emelike
- Department of Physiology, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Chinedu Ogbonnia Egwu
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Olamide Jeje
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Chuks Oswald Edeogu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
| | - Olalekan Olugbenga Onisuru
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Obasi Uche Orji
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| |
Collapse
|
6
|
Rajput S, Malviya R, Bahadur S, Puri D. Recent Updates on the Development of Therapeutics for the Targeted Treatment of Alzheimer's Disease. Curr Pharm Des 2023; 29:2802-2813. [PMID: 38018199 DOI: 10.2174/0113816128274618231105173031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 11/30/2023]
Abstract
Alzheimer's disease (AD) is a complicated, multifaceted, irreversible, and incurable neurotoxic old age illness. Although NMDA (N-methyl D-aspartate)-receptor antagonists, cholinesterase repressors, and their pairings have been approved for the treatment, they are useful for short symptomatic relief. Researchers throughout the globe have been constantly working to uncover the therapy of Alzheimer's disease as new candidates must be determined, and newer treatment medicines must be developed. The aim of this review is to address recent advances in medication research along with new Alzheimer's disease therapy for diverse targets. Information was gathered utilizing a variety of internet resources as well as websites, such as ALZFORUM (alzforum.org) and clinicaltrials.gov. In contrast to other domains, the proposed medicines target amyloids (secretases, A42 generation, neuroinflammation, amyloid precipitation, and immunization), tau proteins (tau phosphorylation/aggregation and immunotherapy), and amyloid deposition. Despite tremendous advancement in our understanding of the underlying pathophysiology of Alzheimer's disease, the FDA (Food and Drug Administration) only approved aducanumab for diagnosis and treatment in 2003. Hence, novel treatment tactics are needed to find and develop therapeutic medicines to combat Alzheimer's disease.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Dinesh Puri
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
7
|
Khan AN, Khan RH. Protein misfolding and related human diseases: A comprehensive review of toxicity, proteins involved, and current therapeutic strategies. Int J Biol Macromol 2022; 223:143-160. [PMID: 36356861 DOI: 10.1016/j.ijbiomac.2022.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Most of the cell's chemical reactions and structural components are facilitated by proteins. But proteins are highly dynamic molecules, where numerous modifications or changes in the cellular environment can affect their native conformational fold leading to protein aggregation. Various stress conditions, such as oxidative stress, mutations and metal toxicity may cause protein misfolding and aggregation by shifting the conformational equilibrium towards more aggregation-prone states. Most of the protein misfolding diseases (PMDs) involve aggregation of protein. We have discussed such proteins like Aβ peptide, α-synuclein, amylin and lysozyme involved in Alzheimer's, Parkinson's, type II diabetes and non-neuropathic systemic amyloidosis respectively. Till date, all advances in PMDs therapeutics help symptomatically but do not prevent the root cause of the disease, i.e., the aggregation of protein involved in the diseases. Current efforts focused on developing therapies for PMDs have employed diverse strategies; repositioning pre-existing drugs as it saves time and money; natural compounds that are touted as potential drug candidates have an advantage of being taken in diet normally and will induce lesser side effects. This review also covers recently developed therapeutic strategies like antisense drugs and disaggregases which has yielded therapeutic agents that have transitioned from preclinical studies into human clinical trials.
Collapse
Affiliation(s)
- Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | | |
Collapse
|
8
|
Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning. Biomolecules 2022; 12:biom12101497. [PMID: 36291706 PMCID: PMC9599692 DOI: 10.3390/biom12101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
Drug repositioning, which involves the identification of new therapeutic indications for approved drugs, considerably reduces the time and cost of developing new drugs. Recent computational drug repositioning methods use heterogeneous networks to identify drug–disease associations. This review reveals existing network-based approaches for predicting drug–disease associations in three major categories: graph mining, matrix factorization or completion, and deep learning. We selected eleven methods from the three categories to compare their predictive performances. The experiment was conducted using two uniform datasets on the drug and disease sides, separately. We constructed heterogeneous networks using drug–drug similarities based on chemical structures and ATC codes, ontology-based disease–disease similarities, and drug–disease associations. An improved evaluation metric was used to reflect data imbalance as positive associations are typically sparse. The prediction results demonstrated that methods in the graph mining and matrix factorization or completion categories performed well in the overall assessment. Furthermore, prediction on the drug side had higher accuracy than on the disease side. Selecting and integrating informative drug features in drug–drug similarity measurement are crucial for improving disease-side prediction.
Collapse
|
9
|
Zhang F, Hu W, Liu Y. GCMM: graph convolution network based on multimodal attention mechanism for drug repurposing. BMC Bioinformatics 2022; 23:372. [PMID: 36100897 PMCID: PMC9469552 DOI: 10.1186/s12859-022-04911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background The main focus of in silico drug repurposing, which is a promising area for using artificial intelligence in drug discovery, is the prediction of drug–disease relationships. Although many computational models have been proposed recently, it is still difficult to reliably predict drug–disease associations from a variety of sources of data. Results In order to identify potential drug–disease associations, this paper introduces a novel end-to-end model called Graph convolution network based on a multimodal attention mechanism (GCMM). In particular, GCMM incorporates known drug–disease relations, drug–drug chemical similarity, drug–drug therapeutic similarity, disease–disease semantic similarity, and disease–disease target-based similarity into a heterogeneous network. A Graph Convolution Network encoder is used to learn how diseases and drugs are embedded in various perspectives. Additionally, GCMM can enhance performance by applying a multimodal attention layer to assign various levels of value to various features and the inputting of multi-source information. Conclusion 5 fold cross-validation evaluations show that the GCMM outperforms four recently proposed deep-learning models on the majority of the criteria. It shows that GCMM can predict drug–disease relationships reliably and suggests improvement in the desired metrics. Hyper-parameter analysis and exploratory ablation experiments are also provided to demonstrate the necessity of each module of the model and the highest possible level of prediction performance. Additionally, a case study on Alzheimer’s disease (AD). Four of the five medications indicated by GCMM to have the highest potential correlation coefficient with AD have been demonstrated through literature or experimental research, demonstrating the viability of GCMM. All of these results imply that GCMM can provide a strong and effective tool for drug development and repositioning.
Collapse
|
10
|
Krishnamurthy N, Grimshaw AA, Axson SA, Choe SH, Miller JE. Drug repurposing: a systematic review on root causes, barriers and facilitators. BMC Health Serv Res 2022; 22:970. [PMID: 35906687 PMCID: PMC9336118 DOI: 10.1186/s12913-022-08272-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Repurposing is a drug development strategy receiving heightened attention after the Food and Drug Administration granted emergency use authorization of several repurposed drugs to treat Covid-19. There remain knowledge gaps on the root causes, facilitators and barriers for repurposing. METHOD This systematic review used controlled vocabulary and free text terms to search ABI/Informa, Academic Search Premier, Business Source Complete, Cochrane Library, EconLit, Google Scholar, Ovid Embase, Ovid Medline, Pubmed, Scopus, and Web of Science Core Collection databases for the characteristics, reasons and example of companies deprioritizing development of promising drugs and barriers, facilitators and examples of successful re-purposing. RESULTS We identified 11,814 articles, screened 5,976 for relevance, found 437 eligible for full text review, 115 of which were included in full analysis. Most articles (66%, 76/115) discussed why promising drugs are abandoned, with lack of efficacy or superiority to other therapies (n = 59), strategic business reasons (n = 35), safety problems (n = 28), research design decisions (n = 12), the complex nature of a studied disease or drug (n = 7) and regulatory bodies requiring more information (n = 2) among top reasons. Key barriers to repurposing include inadequate resources (n = 42), trial data access and transparency around abandoned compounds (n = 20) and expertise (n = 11). Additional barriers include uncertainty about the value of repurposing (n = 13), liability risks (n = 5) and intellectual property (IP) challenges (n = 26). Facilitators include the ability to form multi-partner collaborations (n = 38), access to compound databases and database screening tools (n = 32), regulatory modifications (n = 5) and tax incentives (n = 2). CONCLUSION Promising drugs are commonly shelved due to insufficient efficacy or superiority to alternate therapies, poor market prospects, and industry consolidation. Inadequate resources and data access and challenges negotiating IP are key barriers to repurposing reaching its full potential as a core approach in drug development. Multi-partner collaborations and the availability and use of compound databases and tax incentives are key facilitators for repurposing. More research is needed on the current value of repurposing in drug development and how to better facilitate resources to support it, where valuable, especially financial, staffing for out-licensing shelved products, and legal expertise to negotiate IP agreements in multi-partner collaborations. TRIAL REGISTRATION The protocol was registered on Open Science Framework ( https://osf.io/f634k/ ) as it was not eligible for registration on PROSPERO as the review did not focus on a health-related outcome.
Collapse
Affiliation(s)
- Nithya Krishnamurthy
- Internal Medicine Department, Yale University School of Medicine, 367 Cedar Street, 4th Floor, New Haven, CT, 06520, USA
| | - Alyssa A Grimshaw
- Cushing/Whitney Medical Library, Yale University, 333 Cedar Street, Box 208014, New Haven, CT, 06520, USA
| | - Sydney A Axson
- Internal Medicine Department, Yale University School of Medicine, 367 Cedar Street, 4th Floor, New Haven, CT, 06520, USA
| | - Sung Hee Choe
- Milken Institute Center for Faster Cures, 730 15th Street NW, Washington, DC, 20005, USA
| | - Jennifer E Miller
- Internal Medicine Department, Yale University School of Medicine, 367 Cedar Street, 4th Floor, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Cotrina EY, Santos LM, Rivas J, Blasi D, Leite JP, Liz MA, Busquets MA, Planas A, Prohens R, Gimeno A, Jiménez-Barbero J, Gales L, Llop J, Quintana J, Cardoso I, Arsequell G. Targeting transthyretin in Alzheimer's disease: Drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer's disease. Eur J Med Chem 2021; 226:113847. [PMID: 34555615 DOI: 10.1016/j.ejmech.2021.113847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Transthyretin (TTR) has a well-established role in neuroprotection in Alzheimer's Disease (AD). We have setup a drug discovery program of small-molecule compounds that act as chaperones enhancing TTR/Amyloid-beta peptide (Aβ) interactions. A combination of computational drug repurposing approaches and in vitro biological assays have resulted in a set of molecules which were then screened with our in-house validated high-throughput screening ternary test. A prioritized list of chaperones was obtained and corroborated with ITC studies. Small-molecule chaperones have been discovered, among them our lead compound Iododiflunisal (IDIF), a molecule in the discovery phase; one investigational drug (luteolin); and 3 marketed drugs (sulindac, olsalazine and flufenamic), which could be directly repurposed or repositioned for clinical use. Not all TTR tetramer stabilizers behave as chaperones in vitro. These chemically diverse chaperones will be used for validating TTR as a target in vivo, and to select one repurposed drug as a candidate to enter clinical trials as AD disease-modifying drug.
Collapse
Affiliation(s)
- Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), E-08034, Barcelona, Spain
| | - Luis Miguel Santos
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal
| | - Josep Rivas
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), E-08028, Barcelona, Spain
| | - Daniel Blasi
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), E-08028, Barcelona, Spain
| | - José Pedro Leite
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), PT-4050-013, Porto, Portugal
| | - Márcia A Liz
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal
| | - Maria Antònia Busquets
- Facultat de Farmàcia i Ciències de l'Alimentació, University of Barcelona, E-08028, Barcelona, Spain
| | - Antoni Planas
- Institut Químic de Sarrià, Universitat Ramon Llull, E-08017, Barcelona, Spain
| | - Rafel Prohens
- Centres Científics i Tecnologics, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, E-48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, E-48160, Derio, Spain; Ikerbasque, Basque Foundation for Science, E-48009, Bilbao, Spain
| | - Luis Gales
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), PT-4050-013, Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), E-20014, San Sebastian, Spain
| | - Jordi Quintana
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), E-08028, Barcelona, Spain.
| | - Isabel Cardoso
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), PT-4050-013, Porto, Portugal.
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), E-08034, Barcelona, Spain.
| |
Collapse
|
12
|
Kundu D, Dubey VK. Potential alternatives to current cholinesterase inhibitors: an in silico drug repurposing approach. Drug Dev Ind Pharm 2021; 47:919-930. [PMID: 34219594 DOI: 10.1080/03639045.2021.1952216] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Acetylcholinesterase/Butyrylcholinesterase inhibitors are considered an effective method for treating Alzheimer's disease (AD). In this current work, we have computationally analyzed 11 new small molecule drugs used in various neurological diseases and Donepezil, a known inhibitor of acetylcholinesterase, as a positive control. We investigated these drugs for possible fundamental interactions with acetylcholinesterase and butyrylcholinesterase as both are critical in the pathophysiology of Alzheimer's disease. We have selected FDA approved compounds for repurposing as possible inhibitors of these enzymes and novel therapeutic option for Alzheimer's disease. We selected the top two molecules for each protein for their binding energies, interactions, and Donepezil, the most commonly used drug for AD treatment. Molecular simulation and dynamics studies of the top 2 drugs in each case and free energy analysis helped us reach further conclusions about the best possible drugs for repurposing. Brexipirazole and Deutetrabenazine produce encouraging results as butyrylcholinesterase and acetylcholinesterase inhibitors, respectively.
Collapse
Affiliation(s)
- Debanjan Kundu
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, India
| |
Collapse
|
13
|
Sadeghi SS, Keyvanpour MR. Computational Drug Repurposing: Classification of the Research Opportunities and Challenges. Curr Comput Aided Drug Des 2021; 16:354-364. [PMID: 31198115 DOI: 10.2174/1573409915666190613113822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/13/2019] [Accepted: 05/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug repurposing has grown significantly in recent years. Research and innovation in drug repurposing are extremely popular due to its practical and explicit advantages. However, its adoption into practice is slow because researchers and industries have to face various challenges. OBJECTIVE As this field, there is a lack of a comprehensive platform for systematic identification for removing development limitations. This paper deals with a comprehensive classification of challenges in drug repurposing. METHODS Initially, a classification of various existing repurposing models is propounded. Next, the benefits of drug repurposing are summarized. Further, a categorization for computational drug repurposing shortcomings is presented. Finally, the methods are evaluated based on their strength to addressing the drawbacks. RESULTS This work can offer a desirable platform for comparing the computational repurposing methods by measuring the methods in light of these challenges. CONCLUSION A proper comparison could prepare guidance for a genuine understanding of methods. Accordingly, this comprehension of the methods will help researchers eliminate the barriers thereby developing and improving methods. Furthermore, in this study, we conclude why despite all the benefits of drug repurposing, it is not being done anymore.
Collapse
|
14
|
Singh RK. Recent Trends in the Management of Alzheimer's Disease: Current Therapeutic Options and Drug Repurposing Approaches. Curr Neuropharmacol 2021; 18:868-882. [PMID: 31989900 PMCID: PMC7569317 DOI: 10.2174/1570159x18666200128121920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease is one of the most progressive forms of dementia, ultimately leading to death in aged populations. The major hallmarks of Alzheimer's disease include deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles in brain neuronal cells. Although there are classical therapeutic options available for the treatment of the diseases, however, they provide only a symptomatic relief and do not modify the molecular pathophysiological course of the disease. Recent research advances in Alzheimer's disease have highlighted the potential role of anti-amyloid, anti-tau, and anti-inflammatory therapies. However, these therapies are still in different phases of pre-clinical/clinical development. In addition, drug repositioning/repurposing is another interesting and promising approach to explore rationalized options for the treatment of Alzheimer's disease. This review discusses the different aspects of the pathophysiological mechanism involved in the progression of Alzheimer's disease along with the limitations of current therapies. Furthermore, this review also highlights emerging investigational drugs along with recent drug repurposing approaches for Alzheimer's disease.
Collapse
Affiliation(s)
- Rakesh K Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Manesar, Gurgaon-122413, Haryana, India,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research,
Raebareli. Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India
| |
Collapse
|
15
|
Abstract
Drug repositioning is a strategy to identify new uses for existing, approved, or research drugs that are outside the scope of its original medical indication. Drug repurposing is based on the fact that one drug can act on multiple targets or that two diseases can have molecular similarities, among others. Currently, thanks to the rapid advancement of high-performance technologies, a massive amount of biological and biomedical data is being generated. This allows the use of computational methods and models based on biological networks to develop new possibilities for drug repurposing. Therefore, here, we provide an in-depth review of the main applications of drug repositioning that have been carried out using biological network models. The goal of this review is to show the usefulness of these computational methods to predict associations and to find candidate drugs for repositioning in new indications of certain diseases.
Collapse
|
16
|
Law CSW, Yeong KY. Repurposing Antihypertensive Drugs for the Management of Alzheimer's Disease. Curr Med Chem 2021; 28:1716-1730. [PMID: 32164502 DOI: 10.2174/0929867327666200312114223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that has affected millions of people worldwide. However, currently, there is no treatment to cure the disease. The AD drugs available in the market only manage the disease symptomatically and the effects are usually short-term. Thus, there is a need to look at alternatives AD therapies. This literature review aims to shed some light on the potential of repurposing antihypertensives to treat AD. Mid-life hypertension has not only been recognised as a risk factor for AD, but its relation with AD has also been well established. Hence, antihypertensives were postulated to be beneficial in managing AD. Four classes of antihypertensives, as well as their potential limitations and prospects in being utilised as AD therapeutics, were discussed in this review.
Collapse
Affiliation(s)
- Christine Shing Wei Law
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
17
|
Kumari A, Shrivastava N, Mishra M, Somvanshi P, Grover A. Inhibitory mechanism of an antifungal drug, caspofungin against amyloid β peptide aggregation: Repurposing via neuroinformatics and an experimental approach. Mol Cell Neurosci 2021; 112:103612. [PMID: 33722677 DOI: 10.1016/j.mcn.2021.103612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/01/2022] Open
Abstract
The multifactorial neurological condition called Alzheimer's disease (AD) primarily affects elderly individuals. Despite the calamitous consequences of AD, curative strategies for a regimen to apply remain inadequate as several factors contribute to AD etiology. Drug repurposing is an advance strategy prior to drug discovery as various effective drugs perform through alteration of multiple targets, and the present "poly-pharmacology" can be a curative approach to complex disorders. AD's multifactorial behavior actively encourages the hypothesis for a drug design approach focused on drug repurposing. In this study, we discovered that an antifungal drug, Caspofungin (CAS) is a potent Aβ aggregation inhibitor that displays significantly reduced toxicity associated with AD. Drug reprofiling and REMD simulations demonstrated that CAS interacts with the β-sheet section, known as Aβ amyloid fibrils hotspot. CAS leads to destabilization of β-sheet and, conclusively, in its devaluation. Later, in vitro experiments were acquired in which the fibrillar volume was reduced for CAS-treated Aβ peptide. For the first time ever, this study has determined an antifungal agent as the Aβ amyloid aggregation's potent inhibitor. Several efficient sequence-reliant potent inhibitors can be developed in future against the amyloid aggregation for different amyloid peptide by the processing and conformational optimization of CAS.
Collapse
Affiliation(s)
- Anchala Kumari
- Department of Biotechnology, Teri School of Advanced Studies, New Delhi 110070, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nidhi Shrivastava
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohit Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pallavi Somvanshi
- Department of Biotechnology, Teri School of Advanced Studies, New Delhi 110070, India.
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
18
|
Charvériat M, Lafon V, Mouthon F, Zimmer L. Innovative approaches in CNS drug discovery. Therapie 2021; 76:101-109. [DOI: 10.1016/j.therap.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
|
19
|
Sadeghi SS, Keyvanpour MR. An Analytical Review of Computational Drug Repurposing. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:472-488. [PMID: 31403439 DOI: 10.1109/tcbb.2019.2933825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug repurposing is a vital function in pharmaceutical fields and has gained popularity in recent years in both the pharmaceutical industry and research community. It refers to the process of discovering new uses and indications for existing or failed drugs. It is cost-effective and reliable in contrast to experimental drug discovery, which is a costly, time-consuming, and risky process and limited to a relatively small number of targets. Accordingly, a plethora of computational methodologies have been propounded to repurpose drugs on a large scale by utilizing available high throughput data. The available literature, however, lacks a contemporary and comprehensive analysis of the current computational drug repurposing methodologies. In this paper, we presented a systematic analysis of computational drug repurposing which consists of three main sections: Initially, we categorize the computational drug repurposing methods based on their technical approach and artificial intelligence perspective and discuss the strengths and weaknesses of various methods. Secondly, some general criteria are recommended to analyze our proposed categorization. In the third and final section, a qualitative comparison is made between each approach which is a guide to understanding their preference to one another. Further, this systematic analysis can help in the efficient selection and improvement of drug repurposing techniques based on the nature of computational methods implemented on biological resources.
Collapse
|
20
|
Ayoub BM, Michel HE, Mowaka S, Hendy MS, Tadros MM. Repurposing of Omarigliptin as a Neuroprotective Agent Based on Docking with A 2A Adenosine and AChE Receptors, Brain GLP-1 Response and Its Brain/Plasma Concentration Ratio after 28 Days Multiple Doses in Rats Using LC-MS/MS. Molecules 2021; 26:molecules26040889. [PMID: 33567615 PMCID: PMC7915074 DOI: 10.3390/molecules26040889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022] Open
Abstract
The authors in the current work suggested the potential repurposing of omarigliptin (OMR) for neurodegenerative diseases based on three new findings that support the preliminary finding of crossing BBB after a single dose study in the literature. The first finding is the positive results of the docking study with the crystal structures of A2A adenosine (A2AAR) and acetylcholine esterase (AChE) receptors. A2AAR is a member of non-dopaminergic GPCR superfamily receptor proteins and has essential role in regulation of glutamate and dopamine release in Parkinson’s disease while AChE plays a major role in Alzheimer’s disease as the primary enzyme responsible for the hydrolytic metabolism of the neurotransmitter acetylcholine into choline and acetate. Docking showed that OMR perfectly fits into A2AAR binding pocket forming a distinctive hydrogen bond with Threonine 256. Besides other non-polar interactions inside the pocket suggesting the future of the marketed anti-diabetic drug (that cross BBB) as a potential antiparkinsonian agent while OMR showed perfect fit inside AChE receptor binding site smoothly because of its optimum length and the two fluorine atoms that enables quite lean fitting. Moreover, a computational comparative study of OMR docking, other 12 DPP-4 inhibitors and 11 SGLT-2 inhibitors was carried out. Secondly, glucagon-like peptide-1 (GLP-1) concentration in rats’ brain tissue was determined by the authors using sandwich GLP-1 ELISA kit bio-analysis to ensure the effect of OMR after the multiple doses’ study. Brain GLP-1 concentration was elevated by 1.9-fold following oral multiple doses of OMR (5 mg/kg/day, p.o. for 28 days) as compared to the control group. The third finding is the enhanced BBB crossing of OMR after 28 days of multiple doses that had been studied using LC-MS/MS method with enhanced liquid–liquid extraction. A modified LC-MS/MS method was established for bioassay of OMR in rats’ plasma (10–3100 ng/mL) and rats’ brain tissue (15–2900 ng/mL) using liquid–liquid extraction. Alogliptin (ALP) was chosen as an internal standard (IS) due to its LogP value of 1.1, which is very close to the LogP of OMR. Extraction of OMR from samples of both rats’ plasma and rats’ brain tissue was effectively achieved with ethyl acetate as the extracting solvent after adding 1N sodium carbonate to enhance the drug migration, while choosing acetonitrile to be the diluent solvent for the IS to effectively decrease any emulsion between the layers in the stated method of extraction. Validation results were all pleasing including good stability studies with bias of value below 20%. Concentration of OMR in rats’ plasma were determined after 2 h of the latest dose from 28 days multiple doses, p.o, 5 mg/kg/day. It was found to be 1295.66 ± 684.63 ng/mL estimated from the bio-analysis regression equation. OMR passed through the BBB following oral administration and exhibited concentration of 543.56 ± 344.15 ng/g in brain tissue, taking in consideration the dilution factor of 10. The brain/plasma concentration ratio of 0.42 (543.56/1295.66) was used to illustrate the penetration power through the BBB after the multiple doses for 28 days. Results showed that OMR passed through the BBB more effectively in the multiple dose study as compared to the previously published single dose study by the authors. Thus, the present study suggests potential repositioning of OMR as antiparkinsonian agent that will be of interest for researchers interested in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bassam M. Ayoub
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; (S.M.); (M.S.H.)
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Correspondence: ; Tel.: +20-226-890-000; Fax: +20-226-300-010
| | - Haidy E. Michel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt;
| | - Shereen Mowaka
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; (S.M.); (M.S.H.)
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Moataz S. Hendy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; (S.M.); (M.S.H.)
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Mariam M. Tadros
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt;
| |
Collapse
|
21
|
Recent advances on drug development and emerging therapeutic agents for Alzheimer's disease. Mol Biol Rep 2021; 48:5629-5645. [PMID: 34181171 PMCID: PMC8236749 DOI: 10.1007/s11033-021-06512-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative old age disease that is complex, multifactorial, unalterable, and progressive in nature. The currently approved therapy includes cholinesterase inhibitors, NMDA-receptor antagonists and their combination therapy provides only temporary symptomatic relief. Sincere efforts have been made by the researchers globally to identify new targets, discover, and develop novel therapeutic agents for the treatment of AD. This brief review article is intended to cover the recent advances in drug development and emerging therapeutic agents for AD acting at different targets. The article is compiled using various scientific online databases and by referring to clinicaltrials.gov and ALZFORUM (alzforum.org) websites. The upcoming therapies act on one or more targets including amyloids (secretases, Aβ42 production, amyloid deposition, and immunotherapy), tau proteins (tau phosphorylation/aggregation and immunotherapy) and neuroinflammation in addition to other miscellaneous targets. Despite the tremendous improvement in our understanding of the underlying pathophysiology of AD, only aducanumab was approved by FDA for the treatment of AD in 18 years i.e., since 2003. Hence, it is concluded that novel therapeutic strategies are required to discover and develop therapeutic agents to fight against the century old AD.
Collapse
|
22
|
González-Sanmiguel J, Burgos CF, Bascuñán D, Fernández-Pérez EJ, Riffo-Lepe N, Boopathi S, Fernández-Pérez A, Bobadilla-Azócar C, González W, Figueroa M, Vicente B, Aguayo LG. Gabapentin Inhibits Multiple Steps in the Amyloid Beta Toxicity Cascade. ACS Chem Neurosci 2020; 11:3064-3076. [PMID: 32886489 DOI: 10.1021/acschemneuro.0c00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oligomeric β-amyloid peptide (Aβ) is one of the main neurotoxic agents of Alzheimer's disease (AD). Oligomers associate to neuronal membranes, forming "pore-like" structures that cause intracellular calcium and neurotransmitter dyshomeostasis, leading to synaptic failure and death. Through molecular screening targeting the C terminal region of Aβ, a region involved in the toxic properties of the peptide, we detected an FDA approved compound, gabapentin (GBP), with neuroprotective effects against Aβ toxicity. At micromolar concentrations, GBP antagonized peptide aggregation over time and reduced the Aβ absorbance plateau to 28% of control. In addition, GBP decreased Aβ association to membranes by almost half, and the effects of Aβ on intracellular calcium in hippocampal neurons were antagonized without causing effects on its own. Finally, we found that GBP was able to block the synaptotoxicity induced by Aβ in hippocampal neurons, increasing post-synaptic currents from 1.7 ± 0.9 to 4.2 ± 0.7 fC and mean relative fluorescence intensity values of SV2, a synaptic protein, from 0.7 ± 0.09 to 1.00 ± 0.08. The results show that GBP can interfere with Aβ-induced toxicity by blocking multiple steps, resulting in neuroprotection, which justifies advancing toward additional animal and human studies.
Collapse
Affiliation(s)
- Juliana González-Sanmiguel
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Carlos F. Burgos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Denisse Bascuñán
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Eduardo J. Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Nicolás Riffo-Lepe
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Subramanian Boopathi
- The Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca 3460000, Chile
| | | | - Catalina Bobadilla-Azócar
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Wendy González
- The Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca 3460000, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca 3460000, Chile
| | - Maximiliano Figueroa
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Universidad de Concepción, Concepción 4030000, Chile
| | - Benjamín Vicente
- Department of Psychiatry and Mental Health, Universidad de Concepcion, Concepción 4030000, Chile
- Program on Neuroscience, Psychiatry and Mental Health, Universidad de Concepcion, Concepción 4030000, Chile
| | - Luis G. Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
- Program on Neuroscience, Psychiatry and Mental Health, Universidad de Concepcion, Concepción 4030000, Chile
| |
Collapse
|
23
|
Usha T, Middha SK, Kukanur AA, Shravani RV, Anupama MN, Harshitha N, Rahamath A, Kukanuri SA, Goyal AK. Drug Repurposing Approaches: Existing Leads For Novel Threats And Drug Targets. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-110124. [PMID: 32957901 DOI: 10.2174/1389203721666200921152853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022]
Abstract
Drug Repurposing (DR) is an alternative to the traditional drug discovery process. It is cost and time effective, with high returns and low risk process that can tackle the increasing need for interventions for varied diseases and new outbreaks. Repurposing of old drugs for other diseases has gained a wider attention, as there have been several old drugs approved by FDA for new diseases. In the global emergency of COVID19 pandemic, this is one of the strategies implemented in repurposing of old anti-infective, anti-rheumatic and anti-thrombotic drugs. The goal of the current review is to elaborate the process of DR, its advantages, repurposed drugs for a plethora of disorders, and the evolution of related academic publications. Further, detailed are the computational approaches: literature mining and semantic inference, network-based drug repositioning, signature matching, retrospective clinical analysis, molecular docking and experimental phenotypic screening. We discuss the legal and economical potential barriers in DR, existent collaborative models and recommendations for overcoming these hurdles and leveraging the complete potential of DR in finding new indications.
Collapse
Affiliation(s)
- Talambedu Usha
- Department of Biochemistry, Bangalore University, Bengaluru, Karnataka. India
| | - Sushil K Middha
- DBT-BIF Centre, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women(mLAC), Bengaluru, Karnataka. India
| | | | | | | | | | - Ameena Rahamath
- Department of Biochemistry, mLAC, Bengaluru, Karnataka. India
| | | | - Arvind K Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar783370, BTAD, Assam. India
| |
Collapse
|
24
|
Luo H, Li M, Yang M, Wu FX, Li Y, Wang J. Biomedical data and computational models for drug repositioning: a comprehensive review. Brief Bioinform 2020; 22:1604-1619. [PMID: 32043521 DOI: 10.1093/bib/bbz176] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/07/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
Drug repositioning can drastically decrease the cost and duration taken by traditional drug research and development while avoiding the occurrence of unforeseen adverse events. With the rapid advancement of high-throughput technologies and the explosion of various biological data and medical data, computational drug repositioning methods have been appealing and powerful techniques to systematically identify potential drug-target interactions and drug-disease interactions. In this review, we first summarize the available biomedical data and public databases related to drugs, diseases and targets. Then, we discuss existing drug repositioning approaches and group them based on their underlying computational models consisting of classical machine learning, network propagation, matrix factorization and completion, and deep learning based models. We also comprehensively analyze common standard data sets and evaluation metrics used in drug repositioning, and give a brief comparison of various prediction methods on the gold standard data sets. Finally, we conclude our review with a brief discussion on challenges in computational drug repositioning, which includes the problem of reducing the noise and incompleteness of biomedical data, the ensemble of various computation drug repositioning methods, the importance of designing reliable negative samples selection methods, new techniques dealing with the data sparseness problem, the construction of large-scale and comprehensive benchmark data sets and the analysis and explanation of the underlying mechanisms of predicted interactions.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer Science and Engineering at Central South University
| | - Min Li
- School of Computer Science and Engineering at Central South University
| | - Mengyun Yang
- School of Computer Science and Engineering at Central South University
| | - Fang-Xiang Wu
- College of Engineering and the Department of Computer Science at University of Saskatchewan, Saskatoon, Canada
| | - Yaohang Li
- Department of Computer Science at Old Dominion University, Norfolk, USA
| | - Jianxin Wang
- School of Computer Science and Engineering at Central South University
| |
Collapse
|
25
|
The potential of drug repurposing combined with reperfusion therapy in cerebral ischemic stroke: A supplementary strategy to endovascular thrombectomy. Life Sci 2019; 236:116889. [PMID: 31610199 DOI: 10.1016/j.lfs.2019.116889] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022]
Abstract
Stroke is the major cause of adult disability and the second or third leading cause of death in developed countries. The treatment options for stroke (thrombolysis or thrombectomy) are restricted to a small subset of patients with acute ischemic stroke because of the limited time for an efficacious response and the strict criteria applied to minimize the risk of cerebral hemorrhage. Attempts to develop new treatments, such as neuroprotectants, for acute ischemic stroke have been costly and time-consuming and to date have yielded disappointing results. The repurposing approved drugs known to be relatively safe, such as statins and minocycline, may provide a less costly and more rapid alternative to new drug discovery in this clinical condition. Because adequate perfusion is thought to be vital for a neuroprotectant to be effective, endovascular thrombectomy (EVT) with advanced imaging modalities offers the possibility of documenting reperfusion in occluded large cerebral vessels. An examination of established medications that possess neuroprotective characters using in a large-vessel occlusive disorder with EVT may speed the identification of new and more broadly efficacious medications for the treatment of ischemic stroke. These approaches are highlighted in this review along with a critical assessment of drug repurposing combined with reperfusion therapy as a supplementary means for halting or mitigating stroke-induced brain damage.
Collapse
|
26
|
Di Benedetto G, Burgaletto C, Carta AR, Saccone S, Lempereur L, Mulas G, Loreto C, Bernardini R, Cantarella G. Beneficial effects of curtailing immune susceptibility in an Alzheimer's disease model. J Neuroinflammation 2019; 16:166. [PMID: 31409354 PMCID: PMC6693231 DOI: 10.1186/s12974-019-1554-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Currently, there are no effective therapeutic options for Alzheimer's disease, the most common, multifactorial form of dementia, characterized by anomalous amyloid accumulation in the brain. Growing evidence points to neuroinflammation as a major promoter of AD. We have previously shown that the proinflammatory cytokine TNFSF10 fuels AD neuroinflammation, and that its immunoneutralization results in improved cognition in the 3xTg-AD mouse. METHODS Here, we hypothesize that inflammatory hallmarks of AD might parallel with central and peripheral immune response dysfunction. To verify such hypothesis, we used a triple transgenic mouse model of AD. 3xTg-AD mice were treated for 12 months with an anti-TNFSF10 antibody, and thereafter immune/inflammatory markers including COX2, iNOS, IL-1β and TNF-α, CD3, GITR, and FoxP3 (markers of regulatory T cells) were measured in the spleen as well as in the hippocampus. RESULTS Spleens displayed accumulation of amyloid-β1-42 (Aβ1-42), as well as high expression of Treg cell markers FoxP3 and GITR, in parallel with the increased levels of inflammatory markers COX2, iNOS, IL-1β and TNF-α, and blunted IL-10 expression. Moreover, CD3 expression was increased in the hippocampus, consistently with FoxP3 and GITR. After chronic treatment of 3xTg-AD mice with an anti-TNFSF10 antibody, splenic FoxP3, GITR, and the above-mentioned inflammatory markers expression was restored to basal levels, while expression of IL-10 was increased. A similar picture was observed in the hippocampus. Such improvement of peripheral and CNS inflammatory/immune response was associated with decreased microglial activity in terms of TNFα production, as well as decreased expression of both amyloid and phosphorylated tau protein in the hippocampus of treated 3xTg-AD mice. Interestingly, we also reported an increased expression of both CD3 and FoxP3, in sections from human AD brain. CONCLUSIONS We suggest that neuroinflammation in the brain of 3xTg-AD mice triggered by TNFSF10 might result in a more general overshooting of the immune response. Treatment with an anti-TNFSF10 antibody blunted inflammatory processes both in the spleen and hippocampus. These data confirm the detrimental role of TNFSF10 in neurodegeneration, and corroborate the hypothesis of the anti-TNFSF10 strategy as a potential treatment to improve outcomes in AD.
Collapse
Affiliation(s)
- Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Laurence Lempereur
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Carla Loreto
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy & Histology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy.
| |
Collapse
|
27
|
Paranjpe MD, Taubes A, Sirota M. Insights into Computational Drug Repurposing for Neurodegenerative Disease. Trends Pharmacol Sci 2019; 40:565-576. [PMID: 31326236 PMCID: PMC6771436 DOI: 10.1016/j.tips.2019.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
Computational drug repurposing has the ability to remarkably reduce drug development time and cost in an era where these factors are prohibitively high. Several examples of successful repurposed drugs exist in fields such as oncology, diabetes, leprosy, inflammatory bowel disease, among others, however computational drug repurposing in neurodegenerative disease has presented several unique challenges stemming from the lack of validation methods and difficulty in studying heterogenous diseases of aging. Here, we examine existing approaches to computational drug repurposing, including molecular, clinical, and biophysical methods, and propose data sources and methods to advance computational drug repurposing in neurodegenerative disease using Alzheimer's disease as an example.
Collapse
Affiliation(s)
- Manish D Paranjpe
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94158, USA.
| | - Alice Taubes
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|
28
|
Parvathaneni V, Kulkarni NS, Muth A, Gupta V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today 2019; 24:2076-2085. [PMID: 31238113 DOI: 10.1016/j.drudis.2019.06.014] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/14/2019] [Accepted: 06/20/2019] [Indexed: 02/01/2023]
Abstract
Traditional drug discovery and development involves several stages for the discovery of a new drug and to obtain marketing approval. It is necessary to discover new strategies for reducing the drug discovery time frame. Today, drug repurposing has gained importance in identifying new therapeutic uses for already-available drugs. Typically, repurposing can be achieved serendipitously (unintentional fortunate observations) or through systematic approaches. Numerous strategies to discover new indications for FDA-approved drugs are discussed in this article. Drug repurposing has therefore become a productive approach for drug discovery because it provides a novel way to explore old drugs for new use but encounters several challenges. Some examples of different approaches are reviewed here.
Collapse
Affiliation(s)
- Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| |
Collapse
|
29
|
Peyclit L, Baron SA, Rolain JM. Drug Repurposing to Fight Colistin and Carbapenem-Resistant Bacteria. Front Cell Infect Microbiol 2019; 9:193. [PMID: 31245302 PMCID: PMC6579884 DOI: 10.3389/fcimb.2019.00193] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
The emergence of new resistance mechanisms, the failure of classical antibiotics in clinic, the decrease in the development of antibiotics in the industry are all challenges that lead us to consider new strategies for the treatment of infectious diseases. Indeed, in recent years controversy has intensified over strains resistant to carbapenem and/or colistin. Various therapeutic solutions are used to overcome administration of last line antibiotics. In this context, drug repurposing, which consists of using a non-antibiotic compound to treat multi-drug resistant bacteria (MDR), is encouraged. In this review, we first report what may have led to drug repurposing. Main definitions, advantages and drawbacks are summarized. Three major methods are described: phenotypic, computational and serendipity. In a second time we will focus on the current knowledge in drug repurposing for carbapenem and colistin-resistant bacteria with different studies describing repurposed compounds tested on Gram-negative bacteria. Furthermore, we show that drug combination therapies can increase successful by drug repurposing strategy. In conclusion, we discuss the pharmaceutical industries that have little interest in reprofiling drugs due to lack of profits. We also consider what a clinician might think of the indications of these uncommon biologists to treat MDR bacterial infections and avoid therapeutic impasses.
Collapse
Affiliation(s)
- Lucie Peyclit
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
30
|
Mining heterogeneous network for drug repositioning using phenotypic information extracted from social media and pharmaceutical databases. Artif Intell Med 2019; 96:80-92. [DOI: 10.1016/j.artmed.2019.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 01/09/2023]
|
31
|
Sales TA, Prandi IG, Castro AAD, Leal DHS, Cunha EFFD, Kuca K, Ramalho TC. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. Int J Mol Sci 2019; 20:E1829. [PMID: 31013856 PMCID: PMC6514778 DOI: 10.3390/ijms20081829] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The brain has a unique biological complexity and is responsible for important functions in the human body, such as the command of cognitive and motor functions. Disruptive disorders that affect this organ, e.g. neurodegenerative diseases (NDDs), can lead to permanent damage, impairing the patients' quality of life and even causing death. In spite of their clinical diversity, these NDDs share common characteristics, such as the accumulation of specific proteins in the cells, the compromise of the metal ion homeostasis in the brain, among others. Despite considerable advances in understanding the mechanisms of these diseases and advances in the development of treatments, these disorders remain uncured. Considering the diversity of mechanisms that act in NDDs, a wide range of compounds have been developed to act by different means. Thus, promising compounds with contrasting properties, such as chelating agents and metal-based drugs have been proposed to act on different molecular targets as well as to contribute to the same goal, which is the treatment of NDDs. This review seeks to discuss the different roles and recent developments of metal-based drugs, such as metal complexes and metal chelating agents as a proposal for the treatment of NDDs.
Collapse
Affiliation(s)
- Thais A Sales
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Ingrid G Prandi
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Alexandre A de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Daniel H S Leal
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus/ES, 29932-540, Brazil.
| | - Elaine F F da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 500 03 Czech Republic.
| | - Teodorico C Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
| |
Collapse
|
32
|
Yimer EM, Hishe HZ, Tuem KB. Repurposing of the β-Lactam Antibiotic, Ceftriaxone for Neurological Disorders: A Review. Front Neurosci 2019; 13:236. [PMID: 30971875 PMCID: PMC6444273 DOI: 10.3389/fnins.2019.00236] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
To date, there is no cure or disease-modifying agents available for most well-known neurological disorders. Current therapy is typically focused on relieving symptoms and supportive care in improving the quality of life of affected patients. Furthermore, the traditional de novo drug discovery technique is more challenging, particularly for neurological disorders. Therefore, the repurposing of existing drugs for these conditions is believed to be an efficient and dynamic approach that can substantially reduce the investments spent on drug development. Currently, there is emerging evidence that suggests the potential effect of a beta-lactam antibiotic, ceftriaxone (CEF), to alleviate the symptoms of different experimentally-induced neurological disorders: Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, epileptic-seizure, brain ischemia, traumatic brain injuries, and neuropathic pain. CEF also affects the markers of oxidative status and neuroinflammation, glutamatergic systems as well as various aggregated toxic proteins involved in the pathogenesis of different neurological disorders. Moreover, it was found that CEF administration to drug dependent animal models improved the withdrawal symptoms upon drug discontinuation. Thus, this review aimed to describe the effects of CEF against multiple models of neurological illnesses, drug dependency, and withdrawal. It also emphasizes the possible mechanisms of neuroprotective actions of CEF with respective neurological maladies.
Collapse
Affiliation(s)
- Ebrahim M Yimer
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Hailemichael Zeru Hishe
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Kald Beshir Tuem
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
33
|
Niclosamide alleviates pulmonary fibrosis in vitro and in vivo by attenuation of epithelial-to-mesenchymal transition, matrix proteins & Wnt/β-catenin signaling: A drug repurposing study. Life Sci 2019; 220:8-20. [PMID: 30611787 DOI: 10.1016/j.lfs.2018.12.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023]
Abstract
Drug repurposing off late has been emerging as an inspiring alternative approach to conventional, exhaustive and arduous process of drug discovery. It is a process of identifying new therapeutic values for a drug already established for the treatment of a certain condition. Our current study is aimed at repurposing the old anti-helimenthic drug Niclosamide as an anti-fibrotic drug against pulmonary fibrosis (PF). PF is most common lethal interstitial lung disease hallmarked by deposition of extracelluar matrix and scarring of lung. Heterogenous nature, untimely diagnosis and lack of appropriate treatment options make PF an inexorable lung disorder. Prevailing void in PF treatment and drug repositioning strategy of drugs kindled our interest to demonstrate the anti-fibrotic activity of Niclosamide. Our study is aimed at investigating the anti-fibrotic potential of Niclosamide in TGF-β1 induced in vitro model of PF and 21-day model of Bleomycin induced PF in vivo respectively. Our study results showed that Niclosamide holds the potential to exert anti-fibrotic effect by hampering fibroblast migration, attenuating EMT, inhibiting fibrotic signaling and by regulating WNT/β-catenin signaling as evident from protein expression studies. Our study findings can give new directions to development of Niclosamide as an anti-fibrotic agent for treatment of pulmonary fibrosis.
Collapse
|
34
|
PDE3 Inhibitors Repurposed as Treatments for Age-Related Cognitive Impairment. Mol Neurobiol 2018; 56:4306-4316. [PMID: 30311144 DOI: 10.1007/s12035-018-1374-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
As the population of older individuals grows worldwide, researchers have increasingly focused their attention on identifying key molecular targets of age-related cognitive impairments, with the aim of developing possible therapeutic interventions. Two such molecules are the intracellular cyclic nucleotides, cAMP and cGMP. These second messengers mediate fundamental aspects of brain function relevant to memory, learning, and cognitive function. Consequently, phosphodiesterases (PDEs), which hydrolyze cAMP and cGMP, are promising targets for the development of cognition-enhancing drugs. Inhibitors that target PDEs work by elevating intracellular cAMP. In this review, we provide an overview of different PDE inhibitors, and then we focus on pharmacological and physiological effects of PDE3 inhibitors in the CNS and peripheral tissues. Finally, we discuss findings from experimental and preliminary clinical studies and the potential beneficial effects of the PDE3 inhibitor cilostazol on age-related cognitive impairments. In the innovation pipeline of pharmaceutical development, the antiplatelet agent cilostazol has come into the spotlight as a novel treatment for mild cognitive impairment. Overall, the repurposing of cilostazol may represent a potentially promising way to treat mild cognitive impairment, Alzheimer's disease, and vascular dementia. In this review, we present a brief summary of cAMP signaling and different PDE inhibitors, followed by a discussion of the pharmacological and physiological role of PDE3 inhibitors. In this context, we discuss the repurposing of a PDE3 inhibitor, cilostazol, as a potential treatment for age-related cognitive impairment based on recent research.
Collapse
|
35
|
Ayoub BM, Mowaka S, Safar MM, Ashoush N, Arafa MG, Michel HE, Tadros MM, Elmazar MM, Mousa SA. Repositioning of Omarigliptin as a once-weekly intranasal Anti-parkinsonian Agent. Sci Rep 2018; 8:8959. [PMID: 29895906 PMCID: PMC5997767 DOI: 10.1038/s41598-018-27395-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Drug repositioning is a revolution breakthrough of drug discovery that presents outstanding privilege with already safer agents by scanning the existing candidates as therapeutic switching or repurposing for marketed drugs. Sitagliptin, vildagliptin, saxagliptin & linagliptin showed antioxidant and neurorestorative effects in previous studies linked to DPP-4 inhibition. Literature showed that gliptins did not cross the blood brain barrier (BBB) while omarigliptin was the first gliptin that crossed it successfully in the present work. LC-MS/MS determination of once-weekly anti-diabetic DPP-4 inhibitors; omarigliptin & trelagliptin in plasma and brain tissue was employed after 2 h of oral administration to rats. The brain/plasma concentration ratio was used to deduce the penetration power through the BBB. Results showed that only omarigliptin crossed the BBB due to its low molecular weight & lipophilic properties suggesting its repositioning as antiparkinsonian agent. The results of BBB crossing will be of interest for researchers interested in Parkinson's disease. A novel intranasal formulation was developed using sodium lauryl sulphate surfactant to solubilize the lipophilic omarigliptin with penetration enhancing & antimicrobial properties. Intranasal administration showed enhanced brain/plasma ratio by 3.3 folds compared to the oral group accompanied with 2.6 folds increase in brain glucagon-like peptide-1 concentration compared to the control group.
Collapse
Affiliation(s)
- Bassam M Ayoub
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt.
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt.
| | - Shereen Mowaka
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Marwa M Safar
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmacology & Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini st., Cairo, Egypt
| | - Nermeen Ashoush
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
| | - Mona G Arafa
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmaceutics Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Chemotheraputic Unit, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Haidy E Michel
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, El-Abaseya, Cairo, Egypt
| | - Mariam M Tadros
- Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, El-Abaseya, Cairo, Egypt
| | - Mohamed M Elmazar
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmacology & Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
36
|
Joachim RB, Altschuler GM, Hutchinson JN, Wong HR, Hide WA, Kobzik L. The relative resistance of children to sepsis mortality: from pathways to drug candidates. Mol Syst Biol 2018; 14:e7998. [PMID: 29773677 PMCID: PMC5974511 DOI: 10.15252/msb.20177998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Attempts to develop drugs that address sepsis based on leads developed in animal models have failed. We sought to identify leads based on human data by exploiting a natural experiment: the relative resistance of children to mortality from severe infections and sepsis. Using public datasets, we identified key differences in pathway activity (Pathprint) in blood transcriptome profiles of septic adults and children. To find drugs that could promote beneficial (child) pathways or inhibit harmful (adult) ones, we built an in silico pathway drug network (PDN) using expression correlation between drug, disease, and pathway gene signatures across 58,475 microarrays. Specific pathway clusters from children or adults were assessed for correlation with drug‐based signatures. Validation by literature curation and by direct testing in an endotoxemia model of murine sepsis of the most correlated drug candidates demonstrated that the Pathprint‐PDN methodology is more effective at generating positive drug leads than gene‐level methods (e.g., CMap). Pathway‐centric Pathprint‐PDN is a powerful new way to identify drug candidates for intervention against sepsis and provides direct insight into pathways that may determine survival.
Collapse
Affiliation(s)
- Rose B Joachim
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel M Altschuler
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - John N Hutchinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Winston A Hide
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA .,Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| |
Collapse
|
37
|
Reinhardt S, Stoye N, Luderer M, Kiefer F, Schmitt U, Lieb K, Endres K. Identification of disulfiram as a secretase-modulating compound with beneficial effects on Alzheimer's disease hallmarks. Sci Rep 2018; 8:1329. [PMID: 29358714 PMCID: PMC5778060 DOI: 10.1038/s41598-018-19577-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
ADAM10 is a metalloproteinase acting on the amyloid precursor protein (APP) as an alpha-secretase in neurons. Its enzymatic activity results in secretion of a neuroprotective APP cleavage product (sAPP-alpha) and prevents formation of the amyloidogenic A-beta peptides, major hallmarks of Alzheimer’s disease (AD). Elevated ADAM10 levels appeared to contribute to attenuation of A-beta-plaque formation and learning and memory deficits in AD mouse models. Therefore, it has been assumed that ADAM10 might represent a valuable target in AD therapy. Here we screened a FDA-approved drug library and identified disulfiram as a novel ADAM10 gene expression enhancer. Disulfiram increased ADAM10 production as well as sAPP-alpha in SH-SY5Y human neuronal cells and additionally prevented A-beta aggregation in an in vitro assay in a dose-dependent fashion. In addition, acute disulfiram treatment of Alzheimer model mice induced ADAM10 expression in peripheral blood cells, reduced plaque-burden in the dentate gyrus and ameliorated behavioral deficits. Alcohol-dependent patients are subjected to disulfiram-treatment to discourage alcohol-consumption. In such patients, enhancement of ADAM10 by disulfiram-treatment was demonstrated in peripheral blood cells. Our data suggest that disulfiram could be repurposed as an ADAM10 enhancer and AD therapeutic. However, efficacy and safety has to be analyzed in Alzheimer patients in the future.
Collapse
Affiliation(s)
- Sven Reinhardt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nicolai Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mathias Luderer
- Central Institute of Mental Health (CIMH), Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Falk Kiefer
- Central Institute of Mental Health (CIMH), Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrich Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
38
|
Kumar S, Chowdhury S, Kumar S. In silico repurposing of antipsychotic drugs for Alzheimer's disease. BMC Neurosci 2017; 18:76. [PMID: 29078760 PMCID: PMC5660441 DOI: 10.1186/s12868-017-0394-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most prevalent form of dementia and represents one of the highest unmet requirements in medicine today. There is shortage of novel molecules entering into market because of poor pharmacokinetic properties and safety issues. Drug repurposing offers an opportunity to reinvigorate the slowing drug discovery process by finding new uses for existing drugs. The major advantage of the drug repurposing approach is that the safety issues are already investigated in the clinical trials and the drugs are commercially available in the marketplace. As this approach provides an effective solution to hasten the process of providing new alternative drugs for AD, the current study shows the molecular interaction of already known antipsychotic drugs with the different protein targets implicated in AD using in silico studies. Result A computational method based on ligand–protein interaction was adopted in present study to explore potential antipsychotic drugs for the treatment of AD. The screening of approximately 150 antipsychotic drugs was performed on five major protein targets (AChE, BuChE, BACE 1, MAO and NMDA) by molecular docking. In this study, for each protein target, the best drug was identified on the basis of dock score and glide energy. The top hits were then compared with the already known inhibitor of the respective proteins. Some of the drugs showed relatively better docking score and binding energies as compared to the already known inhibitors of the respective targets. Molecular descriptors like molecular weight, number of hydrogen bond donors, acceptors, predicted octanol/water partition coefficient and percentage human oral absorption were also analysed to determine the in silico ADME properties of these drugs and all were found in the acceptable range and follows Lipinski’s rule. Conclusion The present study have led to unravel the potential of leading antipsychotic drugs such as pimozide, bromperidol, melperone, anisoperidone, benperidol and anisopirol against multiple targets associated with AD. Benperidol was found to be the best candidate drug interacting with different target proteins involved in AD.
Collapse
Affiliation(s)
- Shivani Kumar
- University School of Biotechnology, GGS Indraprastha University, Sector-16C, Dwarka, New Delhi, 110075, India
| | - Suman Chowdhury
- University School of Biotechnology, GGS Indraprastha University, Sector-16C, Dwarka, New Delhi, 110075, India
| | - Suresh Kumar
- University School of Biotechnology, GGS Indraprastha University, Sector-16C, Dwarka, New Delhi, 110075, India.
| |
Collapse
|
39
|
Rampogu S, Son M, Park C, Kim HH, Suh JK, Lee KW. Sulfonanilide Derivatives in Identifying Novel Aromatase Inhibitors by Applying Docking, Virtual Screening, and MD Simulations Studies. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2105610. [PMID: 29312992 PMCID: PMC5664374 DOI: 10.1155/2017/2105610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/31/2017] [Accepted: 08/27/2017] [Indexed: 01/04/2023]
Abstract
Breast cancer is one of the leading causes of death noticed in women across the world. Of late the most successful treatments rendered are the use of aromatase inhibitors (AIs). In the current study, a two-way approach for the identification of novel leads has been adapted. 81 chemical compounds were assessed to understand their potentiality against aromatase along with the four known drugs. Docking was performed employing the CDOCKER protocol available on the Discovery Studio (DS v4.5). Exemestane has displayed a higher dock score among the known drug candidates and is labeled as reference. Out of 81 ligands 14 have exhibited higher dock scores than the reference. In the second approach, these 14 compounds were utilized for the generation of the pharmacophore. The validated four-featured pharmacophore was then allowed to screen Chembridge database and the potential Hits were obtained after subjecting them to Lipinski's rule of five and the ADMET properties. Subsequently, the acquired 3,050 Hits were escalated to molecular docking utilizing GOLD v5.0. Finally, the obtained Hits were consequently represented to be ideal lead candidates that were escalated to the MD simulations and binding free energy calculations. Additionally, the gene-disease association was performed to delineate the associated disease caused by CYP19A1.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Minky Son
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Chanin Park
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Hyong-Ha Kim
- Division of Quality of Life, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jung-Keun Suh
- Bio-Computing Major, Korean German Institute of Technology, Seoul 07582, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
40
|
Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Imboden H, Hamel E. Enalapril Alone or Co-Administered with Losartan Rescues Cerebrovascular Dysfunction, but not Mnemonic Deficits or Amyloidosis in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 51:1183-95. [PMID: 26923013 DOI: 10.3233/jad-150868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The co-administration of angiotensin converting enzyme inhibitors (ACEi) and angiotensin II (AngII) receptor blockers (ARB) that bind angiotensin type 1 receptors (AT1R) may protect from Alzheimer's disease (AD) better than each treatment taken alone. We tested the curative potential of the non brain-penetrant ACEi enalapril (3 mg/kg/day) administered for 3 months either alone or in combination with the brain penetrant ARB losartan (10 mg/kg/day) in aged (∼15 months) transgenic mice overexpressing a mutated form of the human amyloid-β protein precursor (AβPP, thereafter APP mice). We studied cerebrovascular function, protein levels of oxidative stress markers (superoxide dismutases SOD1, SOD2 and the NADPH oxidase subunit p67phox), amyloid-β (Aβ) pathology, astrogliosis, cholinergic innervation, AT1R and angiotensin IV receptor (AT4R) levels, together with cognitive performance. Both treatments normalized cerebrovascular reactivity and p67phox protein levels, but they did not reduce the cerebrovascular levels of SOD1. Combined treatment normalized cerebrovascular SOD2 levels, significantly attenuated astrogliosis, but did not reduce the increased levels of cerebrovascular AT1R. Yet, combined therapy enhanced thioflavin-S labeled Aβ plaque burden, a tendency not significant when Aβ1 - 42 plaque load was considered. None of the treatments rescued cognitive deficits, cortical AT4R or cholinergic innervation. We conclude that both treatments normalized cerebrovascular function by inhibiting the AngII-induced oxidative stress cascade, and that the positive effects of the combined therapy on astrogliosis were likely due to the ability of losartan to enter brain parenchyma. However, enalapril did not potentiate, and may even dampen, the reported cognitive benefits of losartan, raising caution when selecting the most appropriate antihypertensive therapy in AD patients.
Collapse
Affiliation(s)
- Brice Ongali
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Nektaria Nicolakakis
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Xing-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Tahar Aboulkassim
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Hans Imboden
- Institute of Cell Biology, University of Bern, Switzerland
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
41
|
Dacks PA, Fillit HM. Recognizing the Spectrum of Cognitive Impairment to Advance Drug Discovery. J Am Med Dir Assoc 2016; 17:457-8. [DOI: 10.1016/j.jamda.2016.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 11/16/2022]
|
42
|
Hughes RE, Nikolic K, Ramsay RR. One for All? Hitting Multiple Alzheimer's Disease Targets with One Drug. Front Neurosci 2016; 10:177. [PMID: 27199640 PMCID: PMC4842778 DOI: 10.3389/fnins.2016.00177] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/06/2016] [Indexed: 12/12/2022] Open
Abstract
HIGHLIGHTS Many AD target combinations are being explored for multi-target drug design.New databases and models increase the potential of computational drug designLiraglutide and other antidiabetics are strong candidates for repurposing to AD.Donecopride a dual 5-HT/AChE inhibitor shows promise in pre-clinical studies Alzheimer's Disease is a complex and multifactorial disease for which the mechanism is still not fully understood. As new insights into disease progression are discovered, new drugs must be designed to target those aspects of the disease that cause neuronal damage rather than just the symptoms currently addressed by single target drugs. It is becoming possible to target several aspects of the disease pathology at once using multi-target drugs (MTDs). Intended as an introduction for non-experts, this review describes the key MTD design approaches, namely structure-based, in silico, and data-mining, to evaluate what is preventing compounds progressing through the clinic to the market. Repurposing current drugs using their off-target effects reduces the cost of development, time to launch, and the uncertainty associated with safety and pharmacokinetics. The most promising drugs currently being investigated for repurposing to Alzheimer's Disease are rasagiline, originally developed for the treatment of Parkinson's Disease, and liraglutide, an antidiabetic. Rational drug design can combine pharmacophores of multiple drugs, systematically change functional groups, and rank them by virtual screening. Hits confirmed experimentally are rationally modified to generate an effective multi-potent lead compound. Examples from this approach are ASS234 with properties similar to rasagiline, and donecopride, a hybrid of an acetylcholinesterase inhibitor and a 5-HT4 receptor agonist with pro-cognitive effects. Exploiting these interdisciplinary approaches, public-private collaborative lead factories promise faster delivery of new drugs to the clinic.
Collapse
Affiliation(s)
- Rebecca E Hughes
- School of Biology, BMS Building, University of St Andrews St Andrews, UK
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade Belgrade, Serbia
| | - Rona R Ramsay
- School of Biology, BMS Building, University of St Andrews St Andrews, UK
| |
Collapse
|
43
|
The Importance of Drug Repurposing in the Field of Antiepileptic Drug Development. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-6355-3_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Zeng H, Wu X. Alzheimer's disease drug development based on Computer-Aided Drug Design. Eur J Med Chem 2015; 121:851-863. [PMID: 26415837 DOI: 10.1016/j.ejmech.2015.08.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/01/2015] [Accepted: 08/21/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by the excessive deposition of amyloids in the brain. The pathological features mainly include the extracellular amyloid plaques and intracellular neurofibrillary tangles, which are the production of amyloid precursor protein (APP) processed by the α-, β- and γ-secretases. Based on the amyloid cascade hypotheses of AD, a large number of amyloid-β agents and secretase inhibitors against AD have been recently developed by using computational methods. This review article describes pathophysiology of AD and the structure of the Aβ plaques, β- and γ-secretases, and discusses the recent advances in the development of the amyloid agents for AD therapy and diagnosis by using Computer-Aided Drug Design approach.
Collapse
Affiliation(s)
- Huahui Zeng
- Science & Technology Department, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; Department of Nuclear Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Xiangxiang Wu
- Science & Technology Department, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|