1
|
Zhou Y, Cong T, Chen J, Chu Z, Sun Y, Zhao D, Chen X, Li L, Liu Y, Cheng J, Li Q, Yin S, Xiao Z. Protective role of TRPV2 in synaptic plasticity through the ERK1/2-CREB-BDNF pathway in chronic unpredictable mild stress rats. Biochem Biophys Res Commun 2024; 721:150128. [PMID: 38776831 DOI: 10.1016/j.bbrc.2024.150128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Chronic stress is a significant risk factor for mood disorders such as depression, where synaptic plasticity plays a central role in pathogenesis. Transient Receptor Potential Vanilloid Type-2 (TRPV2) Ion Channels are implicated in hypothalamic-pituitary-adrenal axis disorders. Previous proteomic analysis indicated a reduction in TRPV2 levels in the chronic unpredictable mild stress (CUMS) rat model, yet its role in synaptic plasticity during depression remains to be elucidated. This study aims to investigate TRPV2's role in depression and its underlying mechanisms. METHODS In vivo and in vitro experiments were conducted using the TRPV2-specific agonist probenecid and ERK1/2 inhibitors SCH772984. In vivo, rats underwent six weeks of CUMS before probenecid administration. Depressive-like behaviors were assessed through behavioral tests. ELISA kits measured 5-HT, DA, NE levels in rat hippocampal tissues. Hippocampal morphology was examined via Nissl staining. In vitro, rat hippocampal neuron cell lines were treated with ERK1/2 inhibitors SCH772984 and probenecid. Western blot, immunofluorescence, immunohistochemical staining, and RT-qPCR assessed TRPV2 expression, neurogenesis-related proteins, synaptic markers, and ERK1/2-CREB-BDNF signaling proteins. RESULTS Decreased hippocampal TRPV2 levels were observed in CUMS rats. Probenecid treatment mitigated depressive-like behavior and enhanced hippocampal 5-HT, NE, and DA levels in CUMS rats. TRPV2 activation countered CUMS-induced synaptic plasticity inhibition. Probenecid activated the ERK1/2-CREB-BDNF pathway, suggesting TRPV2's involvement in this pathway via ERK1/2. CONCLUSION These findings indicate that TRPV2 activation offers protective effects against depressive-like behaviors and enhances hippocampal synaptic plasticity in CUMS rats via the ERK1/2-CREB-BDNF pathway. TRPV2 emerges as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Yitong Zhou
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Ting Cong
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Jun Chen
- Laboratory Animal Center of Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhenchen Chu
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, 266011, Shandong, China
| | - Ye Sun
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Danmei Zhao
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Xue Chen
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Liya Li
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Yingxin Liu
- Department of Physiology, Basic Medicine College of Dalian Medical University, No. 9, West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Jiani Cheng
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Qiwei Li
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
| | - Shengming Yin
- Department of Physiology, Basic Medicine College of Dalian Medical University, No. 9, West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, Liaoning, China.
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China.
| |
Collapse
|
2
|
Luo Y, Wang H, Chen Z, Deng Y, Zhang Y, Hu W. Sex-specific effects of intermittent fasting on hippocampal neurogenesis via the gut-brain axis. Food Funct 2024; 15:8432-8447. [PMID: 39049753 DOI: 10.1039/d4fo00318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Intermittent fasting (IF) is a widely used dietary strategy that has shown several advantageous impacts on general health and aging. IF has recently been linked to the control of neurogenesis, a crucial process for emotional control, memory, and learning, in the hippocampus. Nevertheless, there is little knowledge about the sex-specific impacts of IF on hippocampal neurogenesis and the related mechanisms, which were investigated in this study among both male and female rats, together with analyzing the involvement of the flora-gut-brain axis in facilitating these effects. Our findings show that IF favorably affects hippocampus neurogenesis in female mice relative to male mice, suggesting a sex-specific mechanism. In addition, IF influenced the diversity of the gut microbiota and decreased the synthesis of fructose-1-phosphate (F-1-P), which is believed together with fructose metabolism to be linked to neurological damage and cognitive decline. Collectively, these data indicate that the connection between the flora-gut-brain axis and hippocampus neurogenesis is significant.
Collapse
Affiliation(s)
- Yimin Luo
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhaomin Chen
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Yuqing Deng
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Yuran Zhang
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Wenjie Hu
- Department of Biological Science, Jining Medical University, Rizhao, China.
| |
Collapse
|
3
|
Sun H, Liu Y, Wang X, Shu L. A network pharmacology-based method to explore the therapeutic effect of honokiol on diabetes with comorbid depression in mice. Eur J Pharmacol 2024; 975:176642. [PMID: 38754538 DOI: 10.1016/j.ejphar.2024.176642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The effective treatment of diabetes with comorbid depression is a big challenge so far. Honokiol, a bioactive compound from the dietary supplement Magnolia officinalis extract, possesses multiple health benefits. The present study aims to propose a network pharmacology-based method to elucidate potential targets of honokiol in treating diabetes with comorbid depression and related mechanisms. The antidepressant-like efficacy of honokiol was evaluated in high-fat diet (HFD) induced diabetic mice using animal behavior testing, immuno-staining and western blotting assay. Through network pharmacology analysis, retinoid X receptor alpha (RXRα) and vitamin D receptor (VDR) were identified as potential targets related to diabetes and depression. The stable binding conformation between honokiol and RXR/VDR was determined by molecular docking simulation. Moreover, hononkiol effectively alleviated depression-like behaviors in HFD diabetic mice, presented anti-diabetic and anti-neuroinflammatory functions, and protected the hippocampal neuroplasticity. Importantly, honokiol could activate RXR/VDR heterodimer in vivo. The beneficial effects of honokiol on HFD mice were significantly suppressed by UVI3003 (a RXR antagonist), while enhanced by calcitriol (a VDR agonist). Additionally, the disruption of autophagy in the hippocampus of HFD mice was ameliorated by honokiol, which was attenuated by UVI3003 but strengthened by calcitriol. Taken together, the data provide new evidence that honokiol exerts the antidepressant-like effect in HFD diabetic mice via activating RXR/VDR heterodimer to restore the balance of autophagy. Our findings indicate that the RXR/VDR-mediated signaling might be a potential target for treating diabetes with comorbid depression.
Collapse
Affiliation(s)
- Haonan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yumin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuedong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Luan Shu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory of Oral Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Ruan Q, Geng Y, Zhao M, Zhang H, Cheng X, Zhao T, Yue X, Jiang X, Jiang X, Hou XY, Zhu LL. Prolyl hydroxylase inhibitor FG-4592 alleviates neuroinflammation via HIF-1/BNIP3 signaling in microglia. Biomed Pharmacother 2024; 173:116342. [PMID: 38430635 DOI: 10.1016/j.biopha.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Neuroinflammation is responsible for neuropsychiatric dysfunction following acute brain injury and neurodegenerative diseases. This study describes how a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor FG-4592 prevents the lipopolysaccharide (LPS)-induced acute neuroinflammation in microglia. METHODS The distribution of FG-4592 in mouse brain tissues was determined by collision-induced dissociation tandem mass spectrometry. Microglial activation in the hippocampus was analyzed by immunofluorescence. Moreover, we determined the activation of HIF-1 and nuclear factor-κB (NF-κB) signaling pathways, proinflammatory responses using molecular biological techniques. Transcriptome sequencing and BNIP3 silencing were conducted to explore signaling pathway and molecular mechanisms underlying FG-4592 anti-inflammatory activity. RESULTS FG-4592 was transported into the brain tissues and LPS increased its transportation. FG-4592 promoted the expression of HIF-1α and induced the downstream gene transcription in the hippocampus. Administration with FG-4592 significantly inhibited microglial hyperactivation and decreased proinflammatory cytokine levels following LPS treatment in the hippocampus. The LPS-induced inflammatory responses and the NF-κB signaling pathway were also downregulated by FG-4592 pretreatment in microglial cells. Mechanistically, Venn diagram analysis of transcriptomic changes of BV2 cells identified that BNIP3 was a shared and common differentially expressed gene among different treatment groups. FG-4592 markedly upregulated the protein levels of BNIP3 in microglia. Importantly, BNIP3 knockdown aggravated the LPS-stimulated inflammatory responses and partially reversed the protection of FG-4592 against microglial inflammatory signaling and microglial activation in the mouse hippocampus. CONCLUSIONS FG-4592 alleviates neuroinflammation through facilitating microglial HIF-1/BNIP3 signaling pathway in mice. Targeting HIF-PHD/HIF-1/BNIP3 axis is a promising strategy for the development of anti-neuroinflammation drugs.
Collapse
Affiliation(s)
- Qianqian Ruan
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanan Geng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tong Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiangpei Yue
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiufang Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiao-Yu Hou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Ling-Ling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
5
|
Zhang H, Xie X, Xu S, Wang C, Sun S, Song X, Li R, Li N, Feng Y, Duan H, Li D, Liu Z. Oligodendrocyte-derived exosomes-containing SIRT2 ameliorates depressive-like behaviors and restores hippocampal neurogenesis and synaptic plasticity via the AKT/GSK-3β pathway in depressed mice. CNS Neurosci Ther 2024; 30:e14661. [PMID: 38439616 PMCID: PMC10912796 DOI: 10.1111/cns.14661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
AIMS To investigate the antidepressant role of oligodendrocyte-derived exosomes (ODEXs)-containing sirtuin 2 (SIRT2) and the underlying mechanism both in vivo and in vitro. METHODS Oligodendrocyte-derived exosomes isolated from mouse serum were administered to mice with chronic unpredictable mild stress (CUMS)-induced depression via the tail vein. The antidepressant effects of ODEXs were assessed through behavioral tests and quantification of alterations in hippocampal neuroplasticity. The role of SIRT2 was confirmed using the selective inhibitor AK-7. Neural stem/progenitor cells (NSPCs) were used to further validate the impact of overexpressed SIRT2 and ODEXs on neurogenesis and synapse formation in vitro. RESULTS Oligodendrocyte-derived exosome treatment alleviated depressive-like behaviors and restored neurogenesis and synaptic plasticity in CUMS mice. SIRT2 was enriched in ODEXs, and blocking SIRT2 with AK-7 reversed the antidepressant effects of ODEXs. SIRT2 overexpression was sufficient to enhance neurogenesis and synaptic protein expression. Mechanistically, ODEXs mediated transcellular delivery of SIRT2, targeting AKT deacetylation and AKT/GSK-3β signaling to regulate neuroplasticity. CONCLUSION This study establishes how ODEXs improve depressive-like behaviors and hippocampal neuroplasticity and might provide a promising therapeutic approach for depression.
Collapse
Affiliation(s)
- Honghan Zhang
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xin‐hui Xie
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Shu‐xian Xu
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Chao Wang
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Siqi Sun
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xinhua Song
- Clinical College of Traditional Chinese MedicineHubei University of Chinese MedicineWuhanChina
| | - Ruiling Li
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Ningyuan Li
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yuqi Feng
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Hao Duan
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Di Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhongchun Liu
- Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
6
|
Zhang Y, Pan YD, Zheng WY, Li HY, Zhu MZ, Ou Yang WJ, Qian Y, Turecki G, Mechawar N, Zhu XH. Enhancing HIF-1α-P2X2 signaling in dorsal raphe serotonergic neurons promotes psychological resilience. Redox Biol 2024; 69:103005. [PMID: 38150991 PMCID: PMC10788260 DOI: 10.1016/j.redox.2023.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023] Open
Abstract
Major depressive disorder (MDD) is a devastating condition. Although progress has been made in the past seven decades, patients with MDD continue to receive an inadequate treatment, primarily due to the late onset of first-line antidepressant drugs and to their acute withdrawal symptoms. Resilience is the ability to rebound from adversity in a healthy manner and many people have psychological resilience. Revealing the mechanisms and identifying methods promoting resilience will hopefully lead to more effective prevention strategies and treatments for depression. In this study, we found that intermittent hypobaric hypoxia training (IHHT), a method for training pilots and mountaineers, enhanced psychological resilience in adult mice. IHHT produced a sustained antidepressant-like effect in mouse models of depression by inducing long-term (up to 3 months after this treatment) overexpression of hypoxia-inducible factor (HIF)-1α in the dorsal raphe nucleus (DRN) of adult mice. Moreover, DRN-infusion of cobalt chloride, which mimics hypoxia increasing HIF-1α expression, triggered a rapid and long-lasting antidepressant-like effect. Down-regulation of HIF-1α in the DRN serotonergic (DRN5-HT) neurons attenuated the effects of IHHT. HIF-1α translationally regulated the expression of P2X2, and conditionally knocking out P2rx2 (encodes P2X2 receptors) in DRN5-HT neurons, in turn, attenuated the sustained antidepressant-like effect of IHHT, but not its acute effect. In line with these results, a single sub-anesthetic dose of ketamine enhanced HIF-1α-P2X2 signaling, which is essential for its rapid and long-lasting antidepressant-like effect. Notably, we found that P2X2 protein levels were significantly lower in the DRN of patients with MDD than that of control subjects. Together, these findings elucidate the molecular mechanism underlying IHHT promoting psychological resilience and highlight enhancing HIF-1α-P2X2 signaling in DRN5-HT neurons as a potential avenue for screening novel therapeutic treatments for MDD.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Psychology, Shenzhen University, Shenzhen, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Yi-da Pan
- Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Wen-Ying Zheng
- School of Psychology, Shenzhen University, Shenzhen, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Huan-Yu Li
- Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Wen-Jie Ou Yang
- School of Psychology, Shenzhen University, Shenzhen, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Yu Qian
- Research Center for Brain Health, Pazhou Lab, Guangzhou, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, McGill Group for Suicide Studies, Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, (Québec), Canada
| | - Naguib Mechawar
- Department of Psychiatry, McGill University, McGill Group for Suicide Studies, Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, (Québec), Canada
| | - Xin-Hong Zhu
- School of Psychology, Shenzhen University, Shenzhen, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
7
|
Liu M, Fan G, Liu H. Integrated bioinformatics and network pharmacology identifying the mechanisms and molecular targets of Guipi Decoction for treatment of comorbidity with depression and gastrointestinal disorders. Metab Brain Dis 2024; 39:183-197. [PMID: 37847347 DOI: 10.1007/s11011-023-01308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Guipi decoction (GPD) not only improves gastrointestinal (GI) function, but also depressive mood. The bioinformatics study aimed to reveal potential crosstalk genes and related pathways between depression and GI disorders. A network pharmacology approach was used to explore the molecular mechanisms and potential targets of GPD for the simultaneous treatment of depression comorbid GI disorders. METHODS Differentially expressed genes (DEGs) of major depressive disorder (MDD) were identified based on GSE98793 and GSE19738, and GI disorders-related genes were screened from the GeneCards database. Overlapping genes between MDD and GI disorders were obtained to identify potential crosstalk genes. Protein-protein interaction (PPI) network was constructed to screen for hub genes, signature genes were identified by LASSO regression analysis, and single sample gene set enrichment analysis (ssGSEA) was performed to analyze immune cell infiltration. In addition, based on the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, we screened the active ingredients and targets of GPD and identified the intersection targets of GPD with MDD and GI disorder-related genes, respectively. A "component-target" network was constructed using Cytoscape, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. RESULTS The MDD-corrected dataset contained 2619 DEGs, and a total of 109 crosstalk genes were obtained. 14 hub genes were screened, namely SOX2, CRP, ACE, LEP, SHH, CDH2, CD34, TNF, EGF, BDNF, FN1, IL10, PPARG, and KIT. These genes were identified by LASSO regression analysis for 3 signature genes, including TNF, EGF, and IL10. Gamma.delta.T.cell was significantly positively correlated with all three signature genes, while Central.memory.CD4.T.cell and Central.memory.CD8.T.cell were significantly negatively correlated with EGF and TNF. GPD contained 134 active ingredients and 248 targets, with 41 and 87 relevant targets for the treatment of depression and GI disorders, respectively. EGF, PPARG, IL10 and CRP overlap with the hub genes of the disease. CONCLUSION We found that GPD may regulate inflammatory and oxidative stress responses through EGF, PPARG, IL10 and CRP targets, and then be involved in the treatment of both depression and GI disorders.
Collapse
Affiliation(s)
- Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Huayi Liu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
8
|
Sharma D, Khan H, Kumar A, Grewal AK, Dua K, Singh TG. Pharmacological modulation of HIF-1 in the treatment of neuropsychiatric disorders. J Neural Transm (Vienna) 2023; 130:1523-1535. [PMID: 37740098 DOI: 10.1007/s00702-023-02698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
Hypoxia-inducible factor 1 has been identified as an important therapeutic target in psychiatric illnesses. Hypoxia is a condition in which tissues do not receive enough oxygen, resulting in less oxidative energy production. HIF-1, the master regulator of molecular response to hypoxia, is destabilized when oxygen levels fall. HIF-1, when activated, increases the gene transcription factors that promote adaptive response and longevity in hypoxia. HIF-regulated genes encode proteins involved in cell survival, energy metabolism, angiogenesis, erythropoiesis, and vasomotor control. Multiple genetic and environmental variables contribute to the pathophysiology of psychiatric disease. This review focuses on the most recent findings indicating the role of oxygen deprivation in CNS damage, with strong attention on HIF-mediated pathways. Several pieces of evidence suggested that, in the case of hypoxia, induction and maintenance of HIF-1 target genes may help reduce nerve damage. Major new insights into the molecular mechanisms that control HIF's sensitivity to oxygen are used to make drugs that can change the way HIF works as a therapeutic target for some CNS diseases.
Collapse
Affiliation(s)
- Diksha Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
9
|
Wang Y, Chen K, Qiao ZX, Bao XR. Chronic Kidney Disease Induces Cognitive Impairment in the Early Stage. Curr Med Sci 2023; 43:988-997. [PMID: 37755634 DOI: 10.1007/s11596-023-2783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/07/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Previous research indicates a link between cognitive impairment and chronic kidney disease (CKD), but the underlying factors are not fully understood. This study aimed to investigate the progression of CKD-induced cognitive impairment and the involvement of cognition-related proteins by developing early- and late-stage CKD models in Sprague-Dawley rats. METHODS The Morris water maze test and the step-down passive avoidance task were performed to evaluate the cognitive abilities of the rats at 24 weeks after surgery. Histopathologic examinations were conducted to examine renal and hippocampal damage. Real-time PCR, Western blotting analysis, and immunohistochemical staining were carried out to determine the hippocampal expression of brain-derived neurotrophic factor (BDNF), choline acetyltransferase (ChAT), and synaptophysin (SYP). RESULTS Compared with the control rats, the rats with early-stage CKD exhibited mild renal damage, while those with late-stage CKD showed significantly increased serum creatinine levels as well as apparent renal and brain damage. The rats with early-stage CKD also demonstrated significantly impaired learning abilities and memory compared with the control rats, with further deterioration observed in the rats with late-stage CKD. Additionally, we observed a significant downregulation of cognition-related proteins in the hippocampus of rats with early-stage CKD, which was further exacerbated with declining renal function as well as worsening brain and renal damage in rats with late-stage CKD. CONCLUSION These results suggest the importance of early screening to identify CKD-induced cognitive dysfunction promptly. In addition, the downregulation of cognition-related proteins may play a role in the progression of cognitive dysfunction.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Kai Chen
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Zi-Xuan Qiao
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xiao-Rong Bao
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
10
|
Zeng T, Li J, Xie L, Dong Z, Chen Q, Huang S, Xie S, Lai Y, Li J, Yan W, Wang Y, Xie Z, Hu C, Zhang J, Kuang S, Song Y, Gao L, Lv Z. Nrf2 regulates iron-dependent hippocampal synapses and functional connectivity damage in depression. J Neuroinflammation 2023; 20:212. [PMID: 37735410 PMCID: PMC10512501 DOI: 10.1186/s12974-023-02875-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Neuronal iron overload contributes to synaptic damage and neuropsychiatric disorders. However, the molecular mechanisms underlying iron deposition in depression remain largely unexplored. Our study aims to investigate how nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) ameliorates hippocampal synaptic dysfunction and reduces brain functional connectivity (FC) associated with excessive iron in depression. We treated mice with chronic unpredictable mild stress (CUMS) with the iron chelator deferoxamine mesylate (DFOM) and a high-iron diet (2.5% carbonyl iron) to examine the role of iron overload in synaptic plasticity. The involvement of Nrf2 in iron metabolism and brain function was assessed using molecular biological techniques and in vivo resting-state functional magnetic resonance imaging (rs-fMRI) through genetic deletion or pharmacologic activation of Nrf2. The results demonstrated a significant correlation between elevated serum iron levels and impaired hippocampal functional connectivity (FC), which contributed to the development of depression-induced CUMS. Iron overload plays a crucial role in CUMS-induced depression and synaptic dysfunction, as evidenced by the therapeutic effects of a high-iron diet and DFOM. The observed iron overload in this study was associated with decreased Nrf2 levels and increased expression of transferrin receptors (TfR). Notably, inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Nrf2-/- mice exhibited compromised FC within the limbic system and the basal ganglia, particularly in the hippocampus, and inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Activation of Nrf2 restored iron homeostasis and reversed vulnerability to depression. Mechanistically, we further identified that Nrf2 deletion promoted iron overload via upregulation of TfR and downregulation of ferritin light chain (FtL), leading to BDNF-mediated synapse damage in the hippocampus. Therefore, our findings unveil a novel role for Nrf2 in regulating iron homeostasis while providing mechanistic insights into poststress susceptibility to depression. Targeting Nrf2-mediated iron metabolism may offer promising strategies for developing more effective antidepressant therapies.
Collapse
Affiliation(s)
- Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
- Department of Brain Diseases, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Lingpeng Xie
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Chen
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Weixin Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - YuHua Wang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Changlei Hu
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Jiayi Zhang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Shanshan Kuang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Yuhong Song
- Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
11
|
Yan P, Li N, Ma M, Liu Z, Yang H, Li J, Wan C, Gao S, Li S, Zheng L, Waddington JL, Xu L, Zhen X. Hypoxia-inducible factor upregulation by roxadustat attenuates drug reward by altering brain iron homoeostasis. Signal Transduct Target Ther 2023; 8:355. [PMID: 37718358 PMCID: PMC10505610 DOI: 10.1038/s41392-023-01578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/16/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Substance use disorder remains a major challenge, with an enduring need to identify and evaluate new, translational targets for effective treatment. Here, we report the upregulation of Hypoxia-inducible factor-1α (HIF-1α) expression by roxadustat (Rox), a drug developed for renal anemia that inhibits HIF prolyl hydroxylase to prevent degradation of HIF-1α, administered either systemically or locally into selected brain regions, suppressed morphine (Mor)-induced conditioned place preference (CPP). A similar effect was observed with methamphetamine (METH). Moreover, Rox also inhibited the expression of both established and reinstated Mor-CPP and promoted the extinction of Mor-CPP. Additionally, the elevation of HIF-1α enhanced hepcidin/ferroportin 1 (FPN1)-mediated iron efflux and resulted in cellular iron deficiency, which led to the functional accumulation of the dopamine transporter (DAT) in plasma membranes due to iron deficiency-impaired ubiquitin degradation. Notably, iron-deficient mice generated via a low iron diet mimicked the effect of Rox on the prevention of Mor- or METH-CPP formation, without affecting other types of memory. These data reveal a novel mechanism for HIF-1α and iron involvement in substance use disorder, which may represent a potential novel therapeutic strategy for the treatment of drug abuse. The findings also repurpose Rox by suggesting a potential new indication for the treatment of substance use disorder.
Collapse
Affiliation(s)
- Pengju Yan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ming Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhaoli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Huicui Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jinnan Li
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
| | - Chunlei Wan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shuliu Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shuai Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Longtai Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
12
|
Correia AS, Marques L, Cardoso A, Vale N. Exploring the Role of Drug Repurposing in Bridging the Hypoxia-Depression Connection. MEMBRANES 2023; 13:800. [PMID: 37755222 PMCID: PMC10537732 DOI: 10.3390/membranes13090800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
High levels of oxidative stress are implicated in hypoxia, a physiological response to low levels of oxygen. Evidence supports a connection between this response and depression. Previous studies indicate that tryptophan hydroxylase can be negatively affected in hypoxia, impairing serotonin synthesis and downstream pathways. Some studies also hypothesize that increasing hypoxia-inducible factor-1 (HIF-1) levels may be a new therapeutic modality for depression. Hence, this study delved into the influence of hypoxia on the cellular response to drugs designed to act in depression. By the induction of hypoxia in SH-SY5Y cells through a hypoxia incubator chamber or Cobalt Chloride treatment, the effect of Mirtazapine, an antidepressant, and other drugs that interact with serotonin receptors (TCB-2, Dextromethorphan, Ketamine, Quetiapine, Scopolamine, Celecoxib, and Lamotrigine) on SH-SY5Y cellular viability and morphology was explored. The selection of drugs was initially conducted by literature search, focusing on compounds with established potential for employment in depression therapy. Subsequently, we employed in silico approaches to forecast their ability to traverse the blood-brain barrier (BBB). This step was particularly pertinent as we aimed to assess their viability for inducing potential antidepressant effects. The effect of these drugs in hypoxia under the inhibition of HIF-1 by Echinomycin was also tested. Our results revealed that all the potential repurposed drugs promoted cell viability, especially when hypoxia was chemically induced. When combined with Echinomycin, all drugs decreased cellular viability, possibly by the inability to interact with HIF-1.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Lara Marques
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
13
|
Aboouf MA, Thiersch M, Soliz J, Gassmann M, Schneider Gasser EM. The Brain at High Altitude: From Molecular Signaling to Cognitive Performance. Int J Mol Sci 2023; 24:10179. [PMID: 37373327 DOI: 10.3390/ijms241210179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The brain requires over one-fifth of the total body oxygen demand for normal functioning. At high altitude (HA), the lower atmospheric oxygen pressure inevitably challenges the brain, affecting voluntary spatial attention, cognitive processing, and attention speed after short-term, long-term, or lifespan exposure. Molecular responses to HA are controlled mainly by hypoxia-inducible factors. This review aims to summarize the cellular, metabolic, and functional alterations in the brain at HA with a focus on the role of hypoxia-inducible factors in controlling the hypoxic ventilatory response, neuronal survival, metabolism, neurogenesis, synaptogenesis, and plasticity.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Steinberger KJ, Eubank TD. The Underexplored Landscape of Hypoxia-Inducible Factor 2 Alpha and Potential Roles in Tumor Macrophages: A Review. OXYGEN (BASEL, SWITZERLAND) 2023; 3:45-76. [PMID: 37124241 PMCID: PMC10137047 DOI: 10.3390/oxygen3010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Low tissue oxygenation, termed hypoxia, is a characteristic of solid tumors with negative consequences. Tumor-associated macrophages (TAMs) accumulate in hypoxic tumor regions and correlate with worse outcomes in cancer patients across several tumor types. Thus, the molecular mechanism in which macrophages respond to low oxygen tension has been increasingly investigated in the last decade. Hypoxia stabilizes a group of hypoxia-inducible transcription factors (HIFs) reported to drive transcriptional programs involved in cell survival, metabolism, and angiogenesis. Though both tumor macrophage HIF-1α and HIF-2α correlate with unfavorable tumor microenvironments, most research focuses on HIF-1α as the master regulator of hypoxia signaling, because HIF-1α expression was originally identified in several cancer types and correlates with worse outcome in cancer patients. The relative contribution of each HIFα subunit to cell phenotypes is poorly understood especially in TAMs. Once thought to have overlapping roles, recent investigation of macrophage HIF-2α has demonstrated a diverse function from HIF-1α. Little work has been published on the differential role of hypoxia-dependent macrophage HIF-2α when compared to HIF-1α in the context of tumor biology. This review highlights cellular HIF-2α functions and emphasizes the gap in research investigating oxygen-dependent functions of tumor macrophage HIF-2α.
Collapse
Affiliation(s)
- Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| |
Collapse
|
15
|
Si L, Xiao L, Xie Y, Xu H, Yuan G, Xu W, Wang G. Social isolation after chronic unpredictable mild stress perpetuates depressive-like behaviors, memory deficits and social withdrawal via inhibiting ERK/KEAP1/NRF2 signaling. J Affect Disord 2023; 324:576-588. [PMID: 36584714 DOI: 10.1016/j.jad.2022.12.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Social withdrawal in patients with depression can aggravate depressive symptoms. However, few studies focus on the behavioral changes of social isolation after CUMS. NRF2 had been reported to be down-regulated after CUMS. But whether NRF2 participates in behavioral changes induced by social isolation after CUMS remains unclear. This study aims to develop a new model combined social isolation with CUMS, and investigate whether such behavioral changes are related to NRF2 signaling. METHODS This study included two stages. In Stage 1, rats were subjected to 4-week CUMS and CUMS-susceptible rats were selected. In Stage 2, the CUMS-susceptible rats received 4-week social isolation or social support. Behavioral tests were carried out to observe behavioral changes, including sucrose preference test, forced swimming test, open field test, novel object recognition and social interaction test. QRT-PCR, western blot and immunofluorescence staining detected the ERK/KEAP1/NRF2 signaling. RESULTS CUMS-susceptible rats exhibited depressive-like behaviors accompanied by the down-regulated ERK/KEAP1/NRF2 signaling in hippocampus. In Stage 2, compared with 4-week social support (group CUMSG), 4-week social isolation (group CUMSI) perpetuated the depressive-like behaviors, memory deficits and social withdrawal in CUMS-susceptible rats, as well as lower levels of p-ERK, NRF2, p-NRF2, HO-1 and NQO1, and the higher levels of KEAP1 in hippocampus. CONCLUSION These findings suggested that social isolation after CUMS perpetuated depressive-like behaviors, memory deficits and social withdrawal via inhibiting ERK/KEAP1/NRF2 signaling. This study provided molecular evidence for the effects of post-stress social isolation on mental health, and the antioxidant stress signaling might be a target to rescue these.
Collapse
Affiliation(s)
- Lujia Si
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China.
| | - Ling Xiao
- Department of Psychiatry and Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Yinping Xie
- Department of Psychiatry and Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China.
| | - Hong Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Guohao Yuan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Wenqian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Gaohua Wang
- Department of Psychiatry and Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China.
| |
Collapse
|
16
|
Xu X, Yang M, Zhang B, Dong J, Zhuang Y, Ge Q, Niu F, Liu B. HIF-1α participates in secondary brain injury through regulating neuroinflammation. Transl Neurosci 2023; 14:20220272. [PMID: 36815939 PMCID: PMC9921917 DOI: 10.1515/tnsci-2022-0272] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
A deeper understanding of the underlying biological mechanisms of secondary brain injury induced by traumatic brain injury (TBI) will greatly advance the development of effective treatments for patients with TBI. Hypoxia-inducible factor-1 alpha (HIF-1α) is a central regulator of cellular response to hypoxia. In addition, growing evidence shows that HIF-1α plays the important role in TBI-induced changes in biological processes; however, detailed functional mechanisms are not completely known. The aim of the present work was to further explore HIF-1α-mediated events after TBI. To this end, next-generation sequencing, coupled with cellular and molecular analysis, was adopted to interrogate vulnerable events in a rat controlled cortical impact model of TBI. The results demonstrated that TBI induced accumulation of HIF-1α at the peri-injury site at 24 h post-injury, which was associated with neuronal loss. Moreover, gene set enrichment analysis unveiled that neuroinflammation, especially an innate inflammatory response, was significantly evoked by TBI, which could be attenuated by the inhibition of HIF-1α. Furthermore, the inhibition of HIF-1α could mitigate the activation of microglia and astrocytes. Taken together, all these data implied that HIF-1α might contribute to secondary brain injury through regulating neuroinflammation.
Collapse
Affiliation(s)
- Xiaojian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Mengshi Yang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury, Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bin Zhang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury, Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Jinqian Dong
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury, Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yuan Zhuang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury, Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Qianqian Ge
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury, Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Baiyun Liu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury, Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China,Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
17
|
Yang DG, Gao YY, Yin ZQ, Wang XR, Meng XS, Zou TF, Duan YJ, Chen YL, Liao CZ, Xie ZL, Fan XD, Sun L, Han JH, Yang XX. Roxadustat alleviates nitroglycerin-induced migraine in mice by regulating HIF-1α/NF-κB/inflammation pathway. Acta Pharmacol Sin 2023; 44:308-320. [PMID: 35948752 PMCID: PMC9889379 DOI: 10.1038/s41401-022-00941-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Sensitization of central pain and inflammatory pathways play essential roles in migraine, a primary neurobiological headache disorder. Since hypoxia-inducible factor-1α (HIF-1α) is implicated in neuroprotection and inflammation inhibition, herein we investigated the role of HIF-1α in migraine. A chronic migraine model was established in mice by repeated injection of nitroglycerin (10 mg/kg, i.p.) every other day for 5 total injections. In the prevention and acute experiments, roxadustat, a HIF-1α stabilizer, was orally administered starting before or after nitroglycerin injection, respectively. Pressure application measurement, and tail flick and light-aversive behaviour tests were performed to determine the pressure pain threshold, thermal nociceptive sensitivity and migraine-related light sensitivity. At the end of experiments, mouse serum samples and brain tissues were collected for analyses. We showed that roxadustat administration significantly attenuated nitroglycerin-induced basal hypersensitivity and acute hyperalgesia by improving central sensitization. Roxadustat administration also decreased inflammatory cytokine levels in serum and trigeminal nucleus caudalis (TNC) through NF-κB pathway. Consistent with the in vivo results showing that roxadustat inhibited microglia activation, roxadustat (2, 10, and 20 μM) dose-dependently reduced ROS generation and inflammation in LPS-stimulated BV-2 cells, a mouse microglia cell line, by inhibiting HIF-1α/NF-κB pathway. Taken together, this study demonstrates that roxadustat administration ameliorates migraine-like behaviours and inhibits central pain sensitization in nitroglycerin-injected mice, which is mainly mediated by HIF-1α/NF-κB/inflammation pathway, suggesting the potential of HIF-1α activators as therapeutics for migraine.
Collapse
Affiliation(s)
- Dai-Gang Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yong-Yao Gao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ze-Qun Yin
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xue-Rui Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xian-She Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ting-Feng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ya-Jun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuan-Li Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chen-Zhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhou-Ling Xie
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiao-Dong Fan
- Department of General Gynecology, Tianjin Central Hospital of Gynecology and Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Lu Sun
- Department of General Gynecology, Tianjin Central Hospital of Gynecology and Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Ji-Hong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Xiao-Xiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
18
|
Zhu X, Jiang L, Wei X, Long M, Du Y. Roxadustat: Not just for anemia. Front Pharmacol 2022; 13:971795. [PMID: 36105189 PMCID: PMC9465375 DOI: 10.3389/fphar.2022.971795] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Roxadustat is a recently approved hypoxia-inducible factor prolyl hydroxylase inhibitor that has demonstrated favorable safety and efficacy in the treatment of renal anemia. Recent studies found it also has potential for the treatment of other hypoxia-related diseases. Although clinical studies have not yet found significant adverse or off-target effects of roxadustat, clinicians must be vigilant about these possible effects. Hypoxia-inducible factor regulates the expression of many genes and physiological processes in response to a decreased level of oxygen, but its role in the pathogenesis of different diseases is complex and controversial. In addition to increasing the expression of hypoxia-inducible factor, roxadustat also has some effects that may be HIF-independent, indicating some potential off-target effects. This article reviews the pharmacological characteristics of roxadustat, its current status in the treatment of renal anemia, and its possible effects on other pathological mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Yujun Du,
| |
Collapse
|
19
|
Hu L, Wang J, Zhao X, Cai D. Mechanism of saikogenin G against major depressive disorder determined by network pharmacology. Medicine (Baltimore) 2022; 101:e30193. [PMID: 36042622 PMCID: PMC9410695 DOI: 10.1097/md.0000000000030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Many classic decoctions of Chinese medicine including Radix Bupleuri are used to treat major depressive disorder (MDD). Saikosaponin D is a representative bioactive ingredient discovered in Radix Bupleuri. The mechanism of saikogenin G (SGG) as a metabolite in MDD remains unclear to date. This study aims to elucidate the mechanism of SGG in treating MDD with network pharmacology. We evaluated the drug likeness of SGG with SwissADME web tool and predicted its targets using the SwissTargetPrediction and PharmMapper. MDD-related targets were identified from the following databases: DisGeNET, DrugBank, Online Mendelian Inheritance in Man, and GeneCards. The common targets of SGG and MDD were imported to the STRING11.0 database, and then a protein-protein interaction network was constructed. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were analyzed with DAVID 6.8 database. The molecular weight of SGG was 472.7 g/mol, the topological polar surface area was 69.92 A2 <140 A2, the octanol/water partition coefficient (Consensus LogP0/W) was 4.80, the rotatable bond was 1, the hydrogen bond donors was 3, and the hydrogen bond acceptors was 4. A total of 322 targets of SGG were obtained and there were 1724 MDD-related targets. A total of 78 overlapping genes were selected as targets of MDD treatment including albumin, insulin-like growth factor I, mitogen-activated protein kinase 1, proto-oncogene tyrosine-protein kinase Src, and epidermal growth factor receptor. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that proteoglycans in cancer, pathways in cancer, prostate cancer, hypoxia-inducible factor-1, central carbon metabolism in cancer, estrogen, PI3K-Akt, ErbB, Rap1, and prolactin signaling pathways played an important role(P < .0001). This study showed that SGG exhibits good drug-like properties and elucidated the potential mechanisms of SGG in treating MDD with regulating inflammation, energy metabolism, monoamine neurotransmitters, neuroplasticity, phosphocreatine-creatine kinase circuits, and so on.
Collapse
Affiliation(s)
- Lili Hu
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- *Correspondence: Lili Hu, College of Basic Medicine, Shanxi University of Chinese Medicine, No. 121 DaXue Street, Jinzhong 030619, China (e-mail: )
| | - Jue Wang
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoge Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Donghui Cai
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
20
|
Fan XX, Sun WY, Li Y, Tang Q, Li LN, Yu X, Wang SY, Fan AR, Xu XQ, Chang HS. Honokiol improves depression-like behaviors in rats by HIF-1α- VEGF signaling pathway activation. Front Pharmacol 2022; 13:968124. [PMID: 36091747 PMCID: PMC9453876 DOI: 10.3389/fphar.2022.968124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that the pathogenesis of depression is closely linked to impairments in neuronal synaptic plasticity. Honokiol, a biologically active substance extracted from Magnolia Officinalis, has been proven to exert significant antidepressant effects. However, the specific mechanism of action remains unclear. In this study, PC12 cells and chronic unpredictable mild stress (CUMS) model rats were used to explore the antidepressant effects and potential mechanisms of honokiol in vitro and in rats. In vitro experiment, a cell viability detection kit was used to screen the concentration and time of honokiol administration. PC12 cells were administered with hypoxia-inducible factor-1α (HIF-1α) blocker, 2-methoxyestradiol (2-ME), and vascular endothelial growth factor receptor 2 (VEGFR-2) blocker, SU5416, to detect the expression of HIF-1α, VEGF, synaptic protein 1 (SYN 1), and postsynaptic density protein 95 (PSD 95) by western blotting. In effect, we investigated whether the synaptic plasticity action of honokiol was dependent on the HIF-1α-VEGF pathway. In vivo, behavioral tests were used to evaluate the reproducibility of the CUMS depression model and depression-like behaviors. Molecular biology techniques were used to examine mRNA and protein expression of the HIF-1α-VEGF signaling pathway and synaptic plasticity-related regulators. Additionally, molecular docking techniques were used to study the interaction between honokiol and target proteins, and predict their binding patterns and affinities. Experimental results showed that honokiol significantly reversed CUMS-induced depression-like behaviors. Mechanically, honokiol exerted a significant antidepressant effect by enhancing synaptic plasticity. At the molecular level, honokiol can activate the HIF-1α-VEGF signaling pathway in vitro and in vivo, as well as promote the protein expression levels of SYN 1 and PSD 95. Taken together, the results do not only provide an experimental basis for honokiol in the clinical treatment of depression but also suggest that the HIF-1α-VEGF pathway may be a potential target for the treatment of depression.
Collapse
Affiliation(s)
- Xiao-Xu Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Yan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Na Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ang-Ran Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Qing Xu
- Experiment Center, Encephalopathy Department, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| | - Hong-Sheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| |
Collapse
|
21
|
Lu C, Wei Z, Wang Y, Li S, Tong L, Liu X, Fan B, Wang F. Soy isoflavones alleviate lipopolysaccharide-induced depressive-like behavior by suppressing neuroinflammation, mediating tryptophan metabolism and promoting synaptic plasticity. Food Funct 2022; 13:9513-9522. [PMID: 35993820 DOI: 10.1039/d2fo01437h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Depression is highly prevalent in patients suffering from chronic inflammatory diseases. Dysregulated neuroinflammation and concomitant-activated microglia play a pivotal role in the pathogenesis of depression. As one of the biologically functional phytochemicals in soybeans, soy isoflavones (SI) have been reported to exhibit anti-inflammatory, antioxidant, estrogen-like and neuroprotective activities. However, there is no research on how SI administration affects the depressive-like behavior induced by neuroinflammation. Therefore, this study was conducted to evaluate the antidepressant-like action of SI in acute lipopolysaccharide (LPS)-treated mice and to explore its underlying mechanisms. An open field test, a sucrose preference experiment, a tail suspension test and a forced swimming task were conducted to assess the influence of SI on the depressive-like behavior induced by LPS injection. Then, the levels of the pro-inflammation cytokines, tryptophan (Trp) metabolism in the cortex and hippocampus, and the synaptic plasticity-related signal pathway in the hippocampus, which are involved in the pathophysiology of depression, were examined. The results showed that SI administration remarkably alleviated LPS-induced depressive-like behavior as indicated by the increased sucrose preference index and the decreased immobility time both in the tail suspension test and the forced swimming task. SI significantly suppressed neuroinflammation in the hippocampus of LPS mice, as indicated by a decrease in the levels of interleukin (IL)-1β, IL-10, tumor necrosis factor (TNF-α) and suppression of the signal pathway of TLR4/NF-κB. Additionally, SI administration regulated tryptophan (Trp) metabolism by increasing 5-hydroxytryptamine (5-HT) levels, inhibiting the release of kynurenine (KYN) in the cortex and hippocampus, and elevating the expressions of synaptic plasticity-related protein markers such as postsynaptic density-95 (PSD-95) and synaptophysin (SYN). The current study demonstrated that soy isoflavones could reverse LPS-induced depressive-like behavior by suppressing neuroinflammation, normalizing the Trp metabolism, up-regulating the expressions of synaptic plasticity-related proteins, and inhibiting the TLR4/NF-κB pathway activation in the hippocampus of mice, exerting their antidepressant-like action.
Collapse
Affiliation(s)
- Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Zhen Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China. .,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350001, China
| | - Yongquan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Xinmin Liu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
22
|
Functional Genomics Analysis to Disentangle the Role of Genetic Variants in Major Depression. Genes (Basel) 2022; 13:genes13071259. [PMID: 35886042 PMCID: PMC9320424 DOI: 10.3390/genes13071259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the molecular basis of major depression is critical for identifying new potential biomarkers and drug targets to alleviate its burden on society. Leveraging available GWAS data and functional genomic tools to assess regulatory variation could help explain the role of major depression-associated genetic variants in disease pathogenesis. We have conducted a fine-mapping analysis of genetic variants associated with major depression and applied a pipeline focused on gene expression regulation by using two complementary approaches: cis-eQTL colocalization analysis and alteration of transcription factor binding sites. The fine-mapping process uncovered putative causally associated variants whose proximal genes were linked with major depression pathophysiology. Four colocalizing genetic variants altered the expression of five genes, highlighting the role of SLC12A5 in neuronal chlorine homeostasis and MYRF in nervous system myelination and oligodendrocyte differentiation. The transcription factor binding analysis revealed the potential role of rs62259947 in modulating P4HTM expression by altering the YY1 binding site, altogether regulating hypoxia response. Overall, our pipeline could prioritize putative causal genetic variants in major depression. More importantly, it can be applied when only index genetic variants are available. Finally, the presented approach enabled the proposal of mechanistic hypotheses of these genetic variants and their role in disease pathogenesis.
Collapse
|
23
|
DFO treatment protects against depression-like behaviors and cognitive impairment in CUMS mice. Brain Res Bull 2022; 187:75-84. [PMID: 35779818 DOI: 10.1016/j.brainresbull.2022.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022]
Abstract
Depression has several negative effects on emotion as well as learning and memory abilities. Previous studies showed that depression could exacerbate inflammation, which in turn further aggravated depression. Deferoxamine (DFO) is a chelating agent binding iron and aluminium, and is clinically applied to treat acute ion poisoning and hemochromatosis. Researches showed that it could reduce inflammation via increasing the expression of hypoxia-inducible factor-1alpha (HIF-1α). Here, we established a chronic unpredictable mild stress (CUMS) model to investigate whether DFO exerted a neuroprotective function in depression. The results demonstrated that CUMS (4 weeks) effectively induced depression-like behaviors in mice based on sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST), open field test (OFT), and elevated plus-maze test (EPT). It also brought cognitive deficits based on Morris water maze (MWM) test and the impairment of synaptic plasticity based on in vivo electrophysiological recordings. Additionally, CUMS exposure significantly decreased the expression of hippocampal synapse related proteins and the spine density of neurons in the DG region, accompanied by increasing the expression of hippocampal inflammatory cytokines, and promoted the activation of microglia in the hippocampus. The expression of HIF-1α was down-regulated as expected. However, DFO distinctly reversed the CUMS-induced impairments. The mechanism is associated with the DFO inhibition of inflammation by upregulating HIF-1 expression, thereby alleviating a series of pathology changes. Together, these findings suggest that DFO likely plays a protective role in cognitive impairments and synaptic plasticity deficits resulting from depression.
Collapse
|
24
|
Chen J, Lin X, Yao C, Bingwa LA, Wang H, Lin Z, Jin K, Zhuge Q, Yang S. Transplantation of Roxadustat-preconditioned bone marrow stromal cells improves neurological function recovery through enhancing grafted cell survival in ischemic stroke rats. CNS Neurosci Ther 2022; 28:1519-1531. [PMID: 35695696 PMCID: PMC9437235 DOI: 10.1111/cns.13890] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
AIMS The therapeutic effect of bone marrow stromal cell (BMSC) transplantation for ischemic stroke is limited by its low survival rate. The purpose of this study was to evaluate whether Roxadustat (FG-4592) pretreatment could promote the survival rate of grafted BMSCs and improve neurological function deficits in ischemia rats. METHODS Oxygen-glucose deprivation (OGD) and permanent middle cerebral artery occlusion (pMCAO) were constructed as stroke models in vitro and in vivo. Flow cytometry analysis and expression of Bax and Bcl-2 were detected to evaluate BMSCs apoptosis. Infarct volume and neurobehavioral score were applied to evaluate functional recovery. Inflammatory cytokine expression, neuronal apoptosis, and microglial M1 polarization were assessed to confirm the enhanced neurological recovery after FG-4592 pretreatment. RESULTS FG-4592 promoted autophagy level to inhibit OGD-induced apoptosis through HIF-1α/BNIP3 pathway. GFP and Ki67 double staining showed an improved survival rate of BMSCs in the FG-4592 group, whereas infarct volume and neurobehavioral score verified its enhanced neurological recovery activity simultaneously. NeuN and Iba-1 fluorescence staining showed improved neural survival and decreased microglial activation, along with decreased IL-1β, IL-6, and TNF-α levels through the TLR-4/NF-kB pathway. CONCLUSIONS FG-4592 pretreated BMSCs improve neurological function recovery after stroke and are likely to be a promising strategy for stroke management.
Collapse
Affiliation(s)
- Jiayu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaojie Yao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lebohang Anesu Bingwa
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongxiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Li Y, Wang ML, Zhang B, Fan XX, Tang Q, Yu X, Li LN, Fan AR, Chang HS, Zhang LZ. Antidepressant-Like Effect and Mechanism of Ginsenoside Rd on Rodent Models of Depression. Drug Des Devel Ther 2022; 16:843-861. [PMID: 35370402 PMCID: PMC8974469 DOI: 10.2147/dddt.s351421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/03/2022] [Indexed: 01/11/2023] Open
Abstract
Background There is growing evidence to suggest that ginsenoside Rd (GRd) has a therapeutic effect on depression, but the specific mechanisms behind its activity require further study. Objective This study is designed to investigate the antidepressant-like effect and underlying mechanisms of GRd. Methods In this study, the behavioral despair mouse model of depression and chronic unpredictable mild stress (CUMS) rat model of depression were established to explore the effects of GRd on depression-like behavior and its underlying mechanisms. Behavioral tests were used to evaluate the replication of animal models and depression-like behaviors. The hypoxia-inducible factor-1α (HIF-1α) blocker 2-methoxyestradiol (2-ME) was injected to determine the role of HIF-1α in the antidepressant-like effect of GRd. In addition, molecular biology techniques were used to determine the mRNA and protein expression of HIF-1ɑ signaling pathway and synaptic plasticity-related regulators, that is synapsin 1 (SYN 1) and postsynaptic density protein 95 (PSD 95). In silico binding interaction studies of GRd with focused target proteins were performed using molecular docking to predict the affinity and optimal binding mode between ligands and receptors. Results Our data show that GRd significantly reversed depression-like behavior and promoted mRNA and protein expression of HIF-1ɑ signaling pathway and synaptic plasticity-related regulators. However, the antidepressant-like effect of GRd disappeared upon inhibition of HIF-1α expression following administration of 2-ME. Furthermore, molecular docking results showed that GRd possessed significant binding affinity for HIF-1α, VEGF, and VEGFR-2. Conclusion Our results show that GRd exhibits significant antidepressant-like effect and that HIF-1α signaling pathway is a promising target for the treatment of depression.
Collapse
Affiliation(s)
- Yu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Mei-Ling Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Bo Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Xiao-Xu Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Xue Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Li-Na Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Ang-Ran Fan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Hong-Sheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Lan-Zhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| |
Collapse
|
26
|
Zhang X, Wang M, Qiao Y, Shan Z, Yang M, Li G, Xiao Y, Wei L, Bi H, Gao T. Exploring the mechanisms of action of Cordyceps sinensis for the treatment of depression using network pharmacology and molecular docking. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:282. [PMID: 35434037 PMCID: PMC9011256 DOI: 10.21037/atm-22-762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022]
Abstract
Background Depression is the most common type of psychological disorder, with continuous, prolonged, and persistent bad moods as the main clinical feature. Cordyceps sinensis is a complex consisting of the ascospores and bodies of insect larvae from the Hepialidae family that have been parasitized by Cordyceps sinensis militaris. Previous studies have reported that this herb has antidepressant activity. The present study used network pharmacology and molecular docking techniques to investigate the potential antidepressant mechanisms of Cordyceps sinensis. Methods The active ingredients of Cordycepssinensis were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the potential targets were predicted using the PharmMapper platform. The GeneCards database was then used to obtain sub-targets for depression. Common targets were screened and enrichment analyses were performed using the Metascape platform. Finally, the relationship between the active ingredients and the core targets were verified by molecular docking. Results Through network pharmacological analysis, 7 active ingredients in Cordyceps sinensis and 41 common targets of drugs and diseases were identified. The active ingredients of Cordyceps sinensis may exert antidepressant effects by acting on important targets such as catalase (CAT), CREB binding protein (CREBBP), epidermal growth factor (EGF), and E1A binding protein P300 (EP300), and by modulating the signaling pathways in which these targets are involved. Subsequently, the core targets were docked to the active ingredients and good binding was observed. Conclusions The active ingredients of Cordycepssinensis may exert antidepressant effects by regulating the CREB binding protein and anti-oxidative stress effects. The foxo signaling pathway (hsa04068), hypoxia-inducible factor 1 (HIF-1) signaling pathway (hsa04066), and Huntington’s disease (hsa05016) may be involved in the underlying mechanisms of Cordycepssinensis. The joint application of network pharmacology and molecular docking provides a new approach to study the mechanisms of action of traditional Chinese medicine. Cordyceps sinensis may play an important role in the future treatment of patients with depression.
Collapse
Affiliation(s)
- Xingfang Zhang
- Department of Psychiatry, The People's Hospital of Jiangmen, Southern Medical University, Jiangmen, China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Medical College, Qinghai University, Xining, China
| | | | - Yajun Qiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhongshu Shan
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Mengmeng Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Medical College, Qinghai University, Xining, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tingting Gao
- Department of Psychiatry, The People's Hospital of Jiangmen, Southern Medical University, Jiangmen, China.,Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Rasheed M, Asghar R, Firdoos S, Ahmad N, Nazir A, Ullah KM, Li N, Zhuang F, Chen Z, Deng Y. A Systematic Review of Circulatory microRNAs in Major Depressive Disorder: Potential Biomarkers for Disease Prognosis. Int J Mol Sci 2022; 23:1294. [PMID: 35163214 PMCID: PMC8835958 DOI: 10.3390/ijms23031294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Major depressive disorder (MDD) is a neuropsychiatric disorder, which remains challenging to diagnose and manage due to its complex endophenotype. In this aspect, circulatory microRNAs (cimiRNAs) offer great potential as biomarkers and may provide new insights for MDD diagnosis. Therefore, we systemically reviewed the literature to explore various cimiRNAs contributing to MDD diagnosis and underlying molecular pathways. A comprehensive literature survey was conducted, employing four databases from 2012 to January 2021. Out of 1004 records, 157 reports were accessed for eligibility criteria, and 32 reports meeting our inclusion criteria were considered for in-silico analysis. This study identified 99 dysregulated cimiRNAs in MDD patients, out of which 20 cimiRNAs found in multiple reports were selected for in-silico analysis. KEGG pathway analysis indicated activation of ALS, MAPK, p53, and P13K-Akt signaling pathways, while gene ontology analysis demonstrated that most protein targets were associated with transcription. In addition, chromosomal location analysis showed clustering of dysregulated cimiRNAs at proximity 3p22-p21, 9q22.32, and 17q11.2, proposing their coregulation with specific transcription factors primarily involved in MDD physiology. Further analysis of transcription factor sites revealed the existence of HIF-1, REST, and TAL1 in most cimiRNAs. These transcription factors are proposed to target genes linked with MDD, hypothesizing that first-wave cimiRNA dysregulation may trigger the second wave of transcription-wide changes, altering the protein expressions of MDD-affected cells. Overall, this systematic review presented a list of dysregulated cimiRNAs in MDD, notably miR-24-3p, let 7a-5p, miR-26a-5p, miR135a, miR-425-3p, miR-132, miR-124 and miR-16-5p as the most prominent cimiRNAs. However, various constraints did not permit us to make firm conclusions on the clinical significance of these cimiRNAs, suggesting the need for more research on single blood compartment to identify the biomarker potential of consistently dysregulated cimiRNAs in MDD, as well as the therapeutic implications of these in-silico insights.
Collapse
Affiliation(s)
- Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Rabia Asghar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Sundas Firdoos
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Nadeem Ahmad
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Amina Nazir
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, Jinan 250100, China;
| | - Kakar Mohib Ullah
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Noumin Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Fengyuan Zhuang
- School of Biology and Medical Engineering, Beihang University, Beijing 100191, China;
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| |
Collapse
|
28
|
Ou G, Jiang X, Deng Y, Dong J, Xu W, Zhang X, Zhang J. Inhibition or Deletion of Hydroxylases-Prolyl-4-Hydroxyases 3 Alleviates Lipopolysaccharide-induced Neuroinflammation and Neurobehavioral Deficiency. Neuroscience 2022; 481:47-59. [PMID: 34801658 DOI: 10.1016/j.neuroscience.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022]
Abstract
It is well known that neuroinflammation plays a key role in neurodegenerative diseases. Hypoxia-inducible factor (HIF) and its hydroxylases-Prolyl-4-hydroxyases (PHDs) have been found to modulate the inflammatory processes. Here, the effects of PHDs enzyme onlipopolysaccharide-induced neuroinflammation and neurocognitive deficits were investigated. BV2 microglia cells were stimulated by LPS (1 μg/ml) as neuroinflammation model in vitro. Dimethyloxalylglycine (DMOG, 100 μM) and PHD3-siRNA were used to suppress the expression of PHD3. In vivo, mice received consecutive intraperitoneal injection of LPS (500 μg/kg) for 7 days, and intraperitoneal injection of DMOG (100 mg/kg) was applied 1 h before LPS at the same days. Several neurobehavioral tests (Open field, Novel object recognition and Morris water maze) were used to measure cognitive function. RT-qPCR and Western blotting were used to investigate the expression of inflammatory cytokines, HIF-PHDs protein. Metabolic reprogramming was measured by seahorse method. The results revealed that LPS induced neuroinflammation and PHD3 expression in vivo and vitro. DMOG and PHD3knockout decreased expression of inflammatory cytokines and improved the metabolic reprogramming caused by LPS treatment. Furthermore, pretreatment of DMOG reversed learning and memory deficits in systemic LPS-exposed mice through anti-neuroinflammation, which is independent of DMOG angiogenesis. These findings suggested that PHD3 may mediate LPS-induced microglial activation and neuroinflammation-associated neurobehavioral deficits.
Collapse
Affiliation(s)
- Guoyao Ou
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xuliang Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jing Dong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Weilong Xu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiang Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China; Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
29
|
Hydroxysafflor yellow A can improve depressive behavior by inhibiting hippocampal inflammation and oxidative stress through regulating HPA axis. J Biosci 2022. [DOI: 10.1007/s12038-021-00246-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Chen A, Chen X, Deng J, Zheng X. Research advances in the role of endogenous neurogenesis on neonatal hypoxic-ischemic brain damage. Front Pediatr 2022; 10:986452. [PMID: 36299701 PMCID: PMC9589272 DOI: 10.3389/fped.2022.986452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxic-ischemic brain damage (HIBD) is the main cause of perinatal mortality and neurologic complications in neonates, but it remains difficult to cure due to scarce treatments and complex molecular mechanisms remaining incompletely explained. Recent, mounting evidence shows that endogenous neurogenesis can improve neonatal neurological dysfunction post-HIBD. However, the capacity for spontaneous endogenous neurogenesis is limited and insufficient for replacing neurons lost to brain damage. Therefore, it is of great clinical value and social significance to seek therapeutic techniques that promote endogenous neurogenesis, to reduce neonatal neurological dysfunction from HIBD. This review summarizes the known neuroprotective effects of, and treatments targeting, endogenous neurogenesis following neonatal HIBD, to provide available targets and directions and a theoretical basis for the treatment of neonatal neurological dysfunction from HIBD.
Collapse
Affiliation(s)
- Andi Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Jianhui Deng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.,Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of "Belt and Road", Fuzhou, China
| |
Collapse
|
31
|
Tang Y, Su H, Wang H, Lu F, Nie K, Wang Z, Huang W, Dong H. The effect and mechanism of Jiao-tai-wan in the treatment of diabetes mellitus with depression based on network pharmacology and experimental analysis. Mol Med 2021; 27:154. [PMID: 34875999 PMCID: PMC8650382 DOI: 10.1186/s10020-021-00414-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) and depression is increasing year by year around the world, bringing a serious burden to patients and their families. Jiao-tai-wan (JTW), a well-known traditional Chinese medicine (TCM), has been approved to have hypoglycemic and antidepressant effects, respectively, but whether JTW has such dual effects and its potential mechanisms is still unknown. This study is to evaluate the dual therapeutic effects of JTW on chronic restraint stress (CRS)-induced DM combined with depression mice, and to explore the underlying mechanisms through network pharmacology. METHODS CRS was used on db/db mice for 21 days to induce depression-like behaviors, so as to obtain the DM combined with depression mouse model. Mice were treated with 0.9% saline (0.1 ml/10 g), JTW (3.2 mg/kg) and Fluoxetine (2.0 mg/kg), respectively. The effect of JTW was accessed by measuring fasting blood glucose (FBG) levels, conducting behavioral tests and observing histopathological change. The ELISA assay was used to evaluate the levels of inflammatory cytokines and the UHPLC-MS/MS method was used to determine the depression-related neurotransmitters levels in serum. The mechanism exploration of JTW against DM and depression were performed via a network pharmacological method. RESULTS The results of blood glucose measurement showed that JTW has a therapeutic effect on db/db mice. Behavioral tests and the levels of depression-related neurotransmitters proved that JTW can effectively ameliorate depression-like symptoms in mice induced by CRS. In addition, JTW can also improve the inflammatory state and reduce the number of apoptotic cells in the hippocampus. According to network pharmacology, 28 active compounds and 484 corresponding targets of JTW, 1407 DM targets and 1842 depression targets were collected by screening the databases, and a total of 117 targets were obtained after taking the intersection. JTW plays a role in reducing blood glucose level and antidepressant mainly through active compounds such as quercetin, styrene, cinnamic acid, ethyl cinnamate, (R)-Canadine, palmatine and berberine, etc., the key targets of its therapeutic effect include INS, AKT1, IL-6, VEGF-A, TNF and so on, mainly involved in HIF-1 signal pathway, pathways in cancer, Hepatitis B, TNF signal pathway, PI3K-Akt signal pathway and MAPK signaling pathway, etc. CONCLUSION: Our experimental study showed that JTW has hypoglycemic and antidepressant effects. The possible mechanism was explored by network pharmacology, reflecting the characteristics of multi-component, multi-target and multi-pathway, which provides a theoretical basis for the experimental research and clinical application of JTW in the future.
Collapse
Affiliation(s)
- Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
32
|
Li G, Liu J, Guan Y, Ji X. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neurosci Ther 2021; 27:1446-1457. [PMID: 34817133 PMCID: PMC8611781 DOI: 10.1111/cns.13754] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is involved in the regulation of various cell functions in the body, including the regulation of stem cells. The hypoxic microenvironment is indispensable from embryonic development to the regeneration and repair of adult cells. In addition to embryonic stem cells, which need to maintain their self-renewal properties and pluripotency in a hypoxic environment, adult stem cells, including neural stem cells (NSCs), also exist in a hypoxic microenvironment. The subventricular zone (SVZ) and hippocampal dentate gyrus (DG) are the main sites of adult neurogenesis in the brain. Hypoxia can promote the proliferation, migration, and maturation of NSCs in these regions. Also, because most neurons in the brain are non-regenerative, stem cell transplantation is considered as a promising strategy for treating central nervous system (CNS) diseases. Hypoxic treatment also increases the effectiveness of stem cell therapy. In this review, we firstly describe the role of hypoxia in different stem cells, such as embryonic stem cells, NSCs, and induced pluripotent stem cells, and discuss the role of hypoxia-treated stem cells in CNS diseases treatment. Furthermore, we highlight the role and mechanisms of hypoxia in regulating adult neurogenesis in the SVZ and DG and adult proliferation of other cells in the CNS.
Collapse
Affiliation(s)
- Gaifen Li
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jia Liu
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| | - Yuying Guan
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
33
|
Achour M, Ferdousi F, Sasaki K, Isoda H. Luteolin Modulates Neural Stem Cells Fate Determination: In vitro Study on Human Neural Stem Cells, and in vivo Study on LPS-Induced Depression Mice Model. Front Cell Dev Biol 2021; 9:753279. [PMID: 34790666 PMCID: PMC8591246 DOI: 10.3389/fcell.2021.753279] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Luteolin is a natural flavone with neurotrophic effects observed on different neuronal cell lines. In the present study, we aimed to assess the effect of luteolin on hNSCs fate determination and the LPS-induced neuroinflammation in a mouse model of depression with astrocytogenesis defect. hNSCs were cultured in basal cell culture medium (control) or medium supplemented with luteolin or AICAR, a known inducer of astrogenesis. A whole-genome transcriptomic analysis showed that luteolin upregulated the expressions of genes related to neurotrophin, dopaminergic, hippo, and Wnt signaling pathways, and downregulated the genes involved in p53, TNF, FOXO, and Notch signaling pathways. We also found that astrocyte-specific gene GFAP, as well as other genes of the key signaling pathways involved in astrogenesis such as Wnt, BMP, and JAK-STAT pathways were upregulated in luteolin-treated hNSCs. On the other hand, neurogenesis and oligodendrogenesis-related genes, TUBB3, NEUROD 1 and 6, and MBP, were downregulated in luteolin-treated hNSCs. Furthermore, immunostaining showed that percentages of GFAP+ cells were significantly higher in luteolin- and AICAR-treated hNSCs compared to control hNSCs. Additionally, RT-qPCR results showed that luteolin upregulated the expressions of GFAP, BMP2, and STAT3, whereas the expression of TUBB3 remained unchanged. Next, we evaluated the effects of luteolin in LPS-induced mice model of depression that represents defects in astrocytogenesis. We found that oral administration of luteolin (10 mg/Kg) for eight consecutive days could decrease the immobility time on tail suspension test, a mouse behavioral test measuring depression-like behavior, and attenuate LPS-induced inflammatory responses by significantly decreasing IL-6 production in mice brain-derived astrocytes and serum, and TNFα and corticosterone levels in serum. Luteolin treatment also significantly increased mature BDNF, dopamine, and noradrenaline levels in the hypothalamus of LPS-induced depression mice. Though the behavioral effects of luteolin did not reach statistical significance, global gene expression analyses of mice hippocampus and brain-derived NSCs highlighted the modulatory effects of luteolin on different signaling pathways involved in the pathophysiology of depression. Altogether, our findings suggest an astrocytogenic potential of luteolin and its possible therapeutic benefits in neuroinflammatory and neurodegenerative diseases. However, further studies are required to identify the specific mechanism of action of luteolin.
Collapse
Affiliation(s)
- Mariem Achour
- Laboratory of Metabolic Biophysics and Applied Pharmacology, Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
34
|
Electroacupuncture Ameliorates Depression-Like Behaviour in Rats by Enhancing Synaptic Plasticity via the GluN2B/CaMKII/CREB Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2146001. [PMID: 34777532 PMCID: PMC8580672 DOI: 10.1155/2021/2146001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Background Hippocampal synaptic plasticity during the pathological process of depression has received increasing attention. Hippocampal neuron atrophy and the reduction in synaptic density induced by chronic stress are important pathological mechanisms of depression. Electroacupuncture (EA) exerts beneficial effects on depression, but the mechanism is unclear. This study explored the effect of EA on synaptic plasticity and the potential mechanism. Methods Forty-eight SD rats were randomly divided into the control, chronic unpredictable mild stress (CUMS), EA, and fluoxetine (FLX) groups, and each group consisted of 12 rats. The sucrose preference test, open field test, and forced swimming test were used for the evaluation of depression-like behaviour, and Golgi and Nissl staining were used for the assessment of synaptic plasticity. Western blotting and immunofluorescence were conducted to detect proteins related to synaptic plasticity and to determine their effects on signalling pathways. Results We found that CUMS led to depression-like behaviours, including a reduced preference for sucrose, a prolonged immobility time, and reduced exploration activity. The dendritic spine densities and neuron numbers and the protein levels of MAP-2, PSD-95, and SYN were decreased in the hippocampi of rats with CUMS-induced depression, and these trends were reversed by EA. The molecular mechanism regulating this plasticity may involve the GluN2B/CaMKII/CREB signalling pathway. Conclusion These results suggest that EA can improve depression-like behaviour and hippocampal plasticity induced by CUMS, and the mechanism may be related to the GluN2B/CaMKII/CREB pathway.
Collapse
|
35
|
Luo K, Xing Y, Wang M. Identifying the effectual-combination ingredients of Zhi-zi-Hou-po decoction based on metabolic difference-oriented network regulation strategy. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1184:122980. [PMID: 34653845 DOI: 10.1016/j.jchromb.2021.122980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022]
Abstract
Zhi-zi-Hou-po decoction (ZZHPD) has been used to treat depression in the clinic for thousand years in China. However, the pharmacodynamic substance of ZZHPD is still not totally clear due to its complex components. The objective of this study was to identify the effectual combination ingredients (ECIs) of ZZHPD, which could represent the antidepressant effect of the original formula. Firstly, differential plasma absorbed components with different variable importance in projection (VIP) value in chronic unpredictable mild stress (CUMS)-induced depression and control rat were revealed by untargeted metabolomics-driven strategy based on HPLC-ESI-TOF/MS, XCMS online and SIMCA-p software. Secondly, network topology scores (NTS) of plasma absorbed components were exposed by protein-protein interaction (PPI) network analysis based on components-related genes and depression-related genes, which were performed by network pharmacology tools. Finally, the ECIs were screened by considered of VIP value and NTS. Then the bioactivity was evaluated by cell viability and expression of glial fibrillary acid protein (GFAP), tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β) of a lipopolysaccharide-induced astrocyte depression model. An effective combination composed with 12 components was filtrated as ECIs of ZZHPD, exposed to which the cell viability effect, the expression of GFAP and IL-1β in astrocytes were essentially equivalent with original ZZHPD (p > 0.05), and that both characteristic constituents and trace compounds of ZZHPD might exert synergistic actions through multi-targets. The result of this study provided useful information for the clinical application and modern development of ZZHPD, and the proposed strategy could be regard as an alternative solution for effective combination screening of herbal medicines.
Collapse
Affiliation(s)
- Kaiwen Luo
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233030, China.
| | - Yadong Xing
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233030, China
| | - Mengdie Wang
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233030, China
| |
Collapse
|
36
|
Therapeutic Targets and Mechanism of Xingpi Jieyu Decoction in Depression: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5516525. [PMID: 34257681 PMCID: PMC8249129 DOI: 10.1155/2021/5516525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
Background Depression is a common mental disease that lacks effective therapeutic drugs with good curative effects and few adverse reactions. Traditional Chinese medicine (TCM) has the advantages of multiple components, multiple channels, and fewer adverse reactions in the treatment of depression. Although Xingpi Jieyu Decoction (XPJYD) demonstrates a good therapeutic effect on depression, the pharmacological mechanism underlying its antidepressant effect is still unclear. Methods We used a network pharmacology strategy, including the construction and analysis of a complex drug-disease network, to explore the complex mechanism of XPJYD treatment of depression. In addition, molecular docking technology was used to preliminarily study the binding ability of the potential active components and core therapeutic targets of XPJYD. Results The network pharmacology results showed 42 targets of XPJYD that are involved in depression. PPI network analysis demonstrated that the top 10 core targets were AKT1, VEGFA, MAPK8, FOS, ESR1, NR3C1, IL6, HIF1A, NOS3, and AR. The molecular docking results showed that the binding energies of beta sitosterol with AR, FOS, AKT1, VEGFA, NR3C1, and NOS3 were less than −7.0 kcal·mol−1, indicating a good docking effect. The GO enrichment analysis results showed that the XPJYD antidepression mechanism mainly involves the following biological processes such as apoptotic signaling pathway, cellular response to lipid, inflammatory response, and others. The KEGG analysis results indicated that XPJYD may regulate 13 pathways such as PI3K-Akt signaling pathway and estrogen signaling pathway in the treatment of depression. Conclusions This study reflects the characteristics of the mechanism of action by which XPJYD treats depression, which includes multiple components, multiple targets, and multiple pathways, and provides a biological basis for further verification and a novel perspective for drug discovery in depression.
Collapse
|
37
|
Gao Y, Mu J, Xu T, Linghu T, Zhao H, Tian J, Qin X. Metabolomic analysis of the hippocampus in a rat model of chronic mild unpredictable stress-induced depression based on a pathway crosstalk and network module approach. J Pharm Biomed Anal 2020; 193:113755. [PMID: 33190083 DOI: 10.1016/j.jpba.2020.113755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The molecular alterations underlying the pathogenesis of depression have not been systematically defined. Increasing evidence suggests that hippocampus metabolism is strongly involved in the pathogenesis of chronic mild unpredictable stress (CUMS)-induced depression. The principal objective of this study was to reveal important information concerning the pathogenesis of depression through a comprehensive analysis of metabolites in the hippocampus in a CUMS rat model. METHODS Metabolites related to metabolic changes in the hippocampus in the CUMS model were collected from a depression-specific database and published literature. Potential metabolite pathways were identified by the Omicsolution tool. Then, crosstalk analysis was carried out to investigate the relationship between different important pathways. In addition, MetaboAnalyst was used to analyze potential metabolites for drug-related metabolite enrichment analysis, which was used to study hippocampus metabolite-related drug pathways in a CUMS model. Then, a metabolite-protein interaction (MPI) network was constructed and analyzed to identify important metabolites and proteins. The functional modules were extracted using the CNM network decomposition algorithm. Finally, neurotransmitters in the hippocampus of rats with CUMS depression were detected to verify the important pathways. RESULTS In the current study, 53 significantly enriched pathways related to the 107 identified metabolites were selected, and the top ranked enriched pathways included arginine and proline metabolism, neuroactive ligand-receptor interaction, phenylalanine metabolism, bile secretion, and glutathione metabolism. Pathway crosstalk analysis showed that the significantly enriched pathways were divided into two interrelated modules, which were mainly involved in metabolism, signal transduction, neurotransmitters, and the endocrine system. Enrichment analysis of drug-related metabolic KEGG pathways identified the antibiotic pathways as the most important pathways. In the MPI network, the hub metabolites were phosphate, arachidonic acid, oxoglutaric acid, l-glutamic acid, and glutathione, and the hub proteins were Got1, Got2, Tat, Ccbl1, Ccbl2, Il4i1. A total of 16 functional modules were extracted from the MPI network by using the CNM algorithm. Finally, metabolites related to serotonergic synapses, dopaminergic synapses, and glutamatergic synapses were found to be involved in the pathology of depression. CONCLUSION We found that neurotransmitter pathways (serotonergic synapses, dopaminergic synapses and glutamatergic synapses) in the hippocampus play a crucial role in the underlying molecular mechanism of depression, which provides useful clues for identifying the detailed depression-associated metabolic profiles.
Collapse
Affiliation(s)
- Yao Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China
| | - Junfang Mu
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Teng Xu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China
| | - Ting Linghu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China
| | - Huiliang Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
38
|
Li F, Geng X, Huber C, Stone C, Ding Y. In Search of a Dose: The Functional and Molecular Effects of Exercise on Post-stroke Rehabilitation in Rats. Front Cell Neurosci 2020; 14:186. [PMID: 32670026 PMCID: PMC7330054 DOI: 10.3389/fncel.2020.00186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Although physical exercise has been demonstrated to augment recovery of the post-stroke brain, the question of what level of exercise intensity optimizes neurological outcomes of post-stroke rehabilitation remains unsettled. In this study, we aim to clarify the mechanisms underlying the intensity-dependent effect of exercise on neurologic function, and thereby to help direct the clinical application of exercise-based neurorehabilitation. To do this, we used a well-established rat model of ischemic stroke consisting of cerebral ischemia induction through middle cerebral artery occlusion (MCAO). Ischemic rats were subsequently assigned either to a control group entailing post-stroke rest or to one of two exercise groups distinguished by the intensity of their accompanying treadmill regimens. After 24 h of reperfusion, exercise was initiated. Infarct volume, apoptotic cell death, and neurological defects were quantified in all groups at 3 days, and motor and cognitive functions were tracked up to day-28. Additionally, Western blotting was used to assess the influence of our interventions on several proteins related to synaptogenesis and neuroplasticity (growth-associated protein 43, a microtubule-associated protein, postsynaptic density-95, synapsin I, hypoxia-inducible factor-1α, brain-derived neurotrophic factor, nerve growth factor, tyrosine kinase B, and cAMP response element-binding protein). Our results were in equal parts encouraging and surprising. Both mild and intense exercise significantly decreased infarct volume, cell death, and neurological deficits. Motor and cognitive function, as determined using an array of tests such as beam balance, forelimb placing, and the Morris water maze, were also significantly improved by both exercise protocols. Interestingly, while an obvious enhancement of neuroplasticity proteins was shown in both exercise groups, mild exercise rats demonstrated a stronger effect on the expressions of Tau (p < 0.01), brain-derived neurotrophic factor (p < 0.01), and tyrosine kinase B (p < 0.05). These findings contribute to the growing body of literature regarding the positive effects of both mild and intense long-term treadmill exercise on brain injury, functional outcome, and neuroplasticity. Additionally, the results may provide a base for our future study regarding the regulation of HIF-1α on the BDNF/TrkB/CREB pathway in the biochemical processes underlying post-stroke synaptic plasticity.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christian Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, MI, United States
| |
Collapse
|