1
|
Song Q, E S, Zhang Z, Liang Y. Neuroplasticity in the transition from acute to chronic pain. Neurotherapeutics 2024:e00464. [PMID: 39438166 DOI: 10.1016/j.neurot.2024.e00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Acute pain is a transient sensation that typically serves as part of the body's defense mechanism. However, in certain patients, acute pain can evolve into chronic pain, which persists for months or even longer. Neuroplasticity refers to the capacity for variation and adaptive alterations in the morphology and functionality of neurons and synapses, and it plays a significant role in the transmission and modulation of pain. In this paper, we explore the molecular mechanisms and signaling pathways underlying neuroplasticity during the transition of pain. We also examine the effects of neurotransmitters, inflammatory mediators, and central sensitization on neuroplasticity, as well as the potential of neuroplasticity as a therapeutic strategy for preventing chronic pain. The aims of this article is to clarify the role of neuroplasticity in the transformation from acute pain to chronic pain, with the hope of providing a novel theoretical basis for unraveling the pathogenesis of chronic pain and offering more effective strategies and approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Qingbiao Song
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Sihan E
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Zhiyu Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, China
| | - Yingxia Liang
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Gao Y, Luo Y, Ji G, Wu T. Functional and pathological roles of adenylyl cyclases in various diseases. Int J Biol Macromol 2024; 281:136198. [PMID: 39366614 DOI: 10.1016/j.ijbiomac.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Adenylyl cyclases (ADCYs) produce the second messengers cAMP, which is crucial for a number of cellular activities. There are ten isoforms in the mammalian ADCY family including nine transmembrane adenylyl cyclases (tmAC) and one soluble adenylyl cyclase (sAC/ADCY10). There have been numerous studies demonstrating the importance of ADCYs in the development of a wide range of diseases, including cardiovascular disease, neurological disease, liver disease, and tumors. The classification, structure and regulation of ADCYs are discussed in this overview, which is followed by an analysis of how ADCYs are involved in various disorders and how they are used as a therapeutic tool. Our objective is to get a more thorough understanding of ADCYs to aid future study and provide novel ideas for the treatment of particular diseases.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Li Y, Li C, Chen QY, Hao S, Mao J, Zhang W, Han X, Dong Z, Liu R, Tang W, Zhuo M, Yu S, Liu Y. Alleviation of migraine related pain and anxiety by inhibiting calcium-stimulating AC1-dependent CGRP in the insula of adult rats. J Headache Pain 2024; 25:81. [PMID: 38760739 PMCID: PMC11100092 DOI: 10.1186/s10194-024-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Recent animal and clinical findings consistently highlight the critical role of calcitonin gene-related peptide (CGRP) in chronic migraine (CM) and related emotional responses. CGRP antibodies and receptor antagonists have been approved for CM treatment. However, the underlying CGRP-related signaling pathways in the pain-related cortex remain poorly understood. METHODS The SD rats were used to establish the CM model by dural infusions of inflammatory soup. Periorbital mechanical thresholds were assessed using von-Frey filaments, and anxiety-like behaviors were observed via open field and elevated plus maze tests. Expression of c-Fos, CGRP and NMDA GluN2B receptors was detected using immunofluorescence and western blotting analyses. The excitatory synaptic transmission was detected by whole-cell patch-clamp recording. A human-used adenylate cyclase 1 (AC1) inhibitor, hNB001, was applied via insula stereotaxic and intraperitoneal injections in CM rats. RESULTS The insular cortex (IC) was activated in the migraine model rats. Glutamate-mediated excitatory transmission and NMDA GluN2B receptors in the IC were potentiated. CGRP levels in the IC significantly increased during nociceptive and anxiety-like activities. Locally applied hNB001 in the IC or intraperitoneally alleviated periorbital mechanical thresholds and anxiety behaviors in migraine rats. Furthermore, CGRP expression in the IC decreased after the hNB001 application. CONCLUSIONS Our study indicated that AC1-dependent IC plasticity contributes to migraine and AC1 may be a promising target for treating migraine in the future.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Chenhao Li
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Qi-Yu Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Zhuomin Institute of Brain Research, Qingdao, Shandong Province, China
| | - Shun Hao
- Zhuomin Institute of Brain Research, Qingdao, Shandong Province, China
| | - Jingrui Mao
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Wenwen Zhang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xun Han
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhao Dong
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ruozhuo Liu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Tang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Min Zhuo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China.
- Zhuomin Institute of Brain Research, Qingdao, Shandong Province, China.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yinglu Liu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Ma Y, Wan J, Hao S, Chen QY, Zhuo M. Recruitment of cortical silent responses by forskolin in the anterior cingulate cortex of adult mice. Mol Pain 2024; 20:17448069241258110. [PMID: 38744422 PMCID: PMC11119478 DOI: 10.1177/17448069241258110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.
Collapse
Affiliation(s)
- Yujie Ma
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
| | - Jinjin Wan
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
| | - Shun Hao
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
| | - Qi-Yu Chen
- Zhuomin Institute for Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Min Zhuo
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
- Zhuomin Institute for Brain Research, Qingdao International Academician Park, Qingdao, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Liu RH, Zhang M, Xue M, Wang T, Lu JS, Li XH, Chen YX, Fan K, Shi W, Zhou SB, Chen QY, Kang L, Song Q, Yu S, Zhuo M. Inhibiting neuronal AC1 for treating anxiety and headache in the animal model of migraine. iScience 2023; 26:106790. [PMID: 37235050 PMCID: PMC10206497 DOI: 10.1016/j.isci.2023.106790] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Migraines are a common medical condition. From a basic science point of view, the central mechanism for migraine and headache is largely unknown. In the present study, we demonstrate that cortical excitatory transmission is significantly enhanced in the anterior cingulate cortex (ACC)-a brain region which is critical for pain perception. Biochemical studies found that the phosphorylation levels of both the NMDA receptor GluN2B and AMPA receptor GluA1 were enhanced in ACC of migraine rats. Both the presynaptic release of glutamate and postsynaptic responses of AMPA receptors and NMDA receptors were enhanced. Synaptic long-term potentiation (LTP) was occluded. Furthermore, behavioral anxiety and nociceptive responses were increased, which were reversed by application of AC1 inhibitor NB001 within ACC. Our results provide strong evidence that cortical LTPs contribute to migraine-related pain and anxiety. Drugs that inhibit cortical excitation such as NB001 may serve as potential medicines for treating migraine in the future.
Collapse
Affiliation(s)
- Ren-Hao Liu
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjie Zhang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Man Xue
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tao Wang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Shan Lu
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xu-Hui Li
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yu-Xin Chen
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Kexin Fan
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wantong Shi
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Si-Bo Zhou
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qi-Yu Chen
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li Kang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Song
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Zhuo
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
6
|
Qiu XT, Guo C, Ma LT, Li XN, Zhang QY, Huang FS, Zhang MM, Bai Y, Liang GB, Li YQ. Transcriptomic and proteomic profiling of the anterior cingulate cortex in neuropathic pain model rats. Front Mol Neurosci 2023; 16:1164426. [PMID: 37396788 PMCID: PMC10311218 DOI: 10.3389/fnmol.2023.1164426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Background Neuropathic pain (NP) takes a heavy toll on individual life quality, yet gaps in its molecular characterization persist and effective therapy is lacking. This study aimed to provide comprehensive knowledge by combining transcriptomic and proteomic data of molecular correlates of NP in the anterior cingulate cortex (ACC), a cortical hub responsible for affective pain processing. Methods The NP model was established by spared nerve injury (SNI) in Sprague-Dawley rats. RNA sequencing and proteomic data from the ACC tissue isolated from sham and SNI rats 2 weeks after surgery were integrated to compare their gene and protein expression profiles. Bioinformatic analyses were performed to figure out the functions and signaling pathways of the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) enriched in. Results Transcriptomic analysis identified a total of 788 DEGs (with 49 genes upregulated) after SNI surgery, while proteomic analysis found 222 DEPs (with 89 proteins upregulated). While Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of the DEGs suggested that most of the altered genes were involved in synaptic transmission and plasticity, bioinformatics analysis of the DEPs revealed novel critical pathways associated with autophagy, mitophagy, and peroxisome. Notably, we noticed functionally important NP-related changes in the protein that occurred in the absence of corresponding changes at the level of transcription. Venn diagram analysis of the transcriptomic and proteomic data identified 10 overlapping targets, among which only three genes (XK-related protein 4, NIPA-like domain-containing 3, and homeodomain-interacting protein kinase 3) showed concordance in the directions of change and strong correlations between mRNA and protein levels. Conclusion The present study identified novel pathways in the ACC in addition to confirming previously reported mechanisms for NP etiology, and provided novel mechanistic insights for future research on NP treatment. These findings also imply that mRNA profiling alone fails to provide a complete landscape of molecular pain in the ACC. Therefore, explorations of changes at the level of protein are necessary to understand NP processes that are not transcriptionally modulated.
Collapse
Affiliation(s)
- Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi’an, China
| | - Chen Guo
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Li-Tian Ma
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xin-Ning Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Qi-Yan Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Fen-Sheng Huang
- Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guo-Biao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi’an, China
- Department of Geriatrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi, China
- Department of Anatomy, College of Basic Medicine, Dali University, Dali, China
| |
Collapse
|
7
|
Pang J, Xin P, Kong Y, Wang Z, Wang X. Resolvin D2 Reduces Chronic Neuropathic Pain and Bone Cancer Pain via Spinal Inhibition of IL-17 Secretion, CXCL1 Release and Astrocyte Activation in Mice. Brain Sci 2023; 13:brainsci13010152. [PMID: 36672133 PMCID: PMC9856778 DOI: 10.3390/brainsci13010152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Chronic pain burdens patients and healthcare systems worldwide. Pain control remains urgently required. IL-17 (interleukin-17)-mediated neuroinflammation is of unique importance in spinal nociceptive transduction in pathological pain development. Recently, resolvin D2 (RvD2), as a bioactive, specialized pro-resolving mediator derived from docosahexaenoic acid, exhibits potent resolution of inflammation in several neurological disorders. This preclinical study evaluates the therapeutic potential and underlying targets of RvD2 in two mouse models of chronic pain, including sciatic nerve ligation-caused neuropathic pain and sarcoma-caused bone cancer pain. Herein, we report that repetitive injections of RvD2 (intrathecal, 500 ng) reduce the initiation of mechanical allodynia and heat hyperalgesia following sciatic nerve damage and bone cancer. Single exposure to RvD2 (intrathecal, 500 ng) attenuates the established neuropathic pain and bone cancer pain. Furthermore, systemic RvD2 (intravenous, 5 μg) therapy is effective in attenuating chronic pain behaviors. Strikingly, RvD2 treatment suppresses spinal IL-17 overexpression, chemokine CXCL1 release and astrocyte activation in mice undergoing sciatic nerve trauma and bone cancer. Pharmacological neutralization of IL-17 ameliorates chronic neuropathic pain and persistent bone cancer pain, as well as reducing spinal CXCL1 release. Recombinant IL-17-evoked acute pain behaviors and spinal CXCL1 release are mitigated after RvD2 administration. In addition, RvD2 treatment dampens exogenous CXCL1-caused transient pain phenotypes. Overall, these current findings identify that RvD2 therapy is effective against the initiation and persistence of long-lasting neuropathic pain and bone cancer pain, which may be through spinal down-modulation of IL-17 secretion, CXCL1 release and astrocyte activation.
Collapse
Affiliation(s)
- Jun Pang
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengfei Xin
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ying Kong
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaopeng Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
8
|
Cortical Synaptic Mechanism for Chronic Pain and Anxiety in Parkinson's Disease. J Transl Int Med 2023; 10:300-303. [PMID: 36860635 PMCID: PMC9969574 DOI: 10.2478/jtim-2022-0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
9
|
Rong Z, Yang L, Chen Y, Qin Y, Cheng CY, Zhao J, Li LF, Ma X, Wu YM, Liu SB, Liang YN, Zhao MG. Sophoridine alleviates hyperalgesia and anxiety-like behavior in an inflammatory pain mouse model induced by complete freund's adjuvant. Mol Pain 2023; 19:17448069231177634. [PMID: 37207346 DOI: 10.1177/17448069231177634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Chronic pain, along with comorbid psychiatric disorders, is a common problem worldwide. A growing number of studies have focused on non-opioid-based medicines, and billions of funds have been put into digging new analgesic mechanisms. Peripheral inflammation is one of the critical causes of chronic pain, and drugs with anti-inflammatory effects usually alleviate pain hypersensitivity. Sophoridine (SRI), one of the most abundant alkaloids in Chinese herbs, has been proved to exert antitumor, antivirus and anti-inflammation effects. Here, we evaluated the analgesic effect of SRI in an inflammatory pain mouse model induced by complete Freund's adjuvant (CFA) injection. SRI treatment significantly decreased pro-inflammatory factors release after LPS stimuli in microglia. Three days of SRI treatment relieved CFA-induced mechanical hypersensitivity and anxiety-like behavior, and recovered abnormal neuroplasticity in the anterior cingulate cortex of mice. Therefore, SRI may be a candidate compound for the treatment of chronic inflammatory pain and may serve as a structural basis for the development of new drugs.
Collapse
Affiliation(s)
- Zheng Rong
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yue Chen
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yan Qin
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Cai-Yan Cheng
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jun Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Long-Fei Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Yan-Ni Liang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ming-Gao Zhao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
10
|
Chen J, Ding Q, An L, Wang H. Ca2+-stimulated adenylyl cyclases as therapeutic targets for psychiatric and neurodevelopmental disorders. Front Pharmacol 2022; 13:949384. [PMID: 36188604 PMCID: PMC9523369 DOI: 10.3389/fphar.2022.949384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
As the main secondary messengers, cyclic AMP (cAMP) and Ca2+ trigger intracellular signal transduction cascade and, in turn, regulate many aspects of cellular function in developing and mature neurons. The group I adenylyl cyclase (ADCY, also known as AC) isoforms, including ADCY1, 3, and 8 (also known as AC1, AC3, and AC8), are stimulated by Ca2+ and thus functionally positioned to integrate cAMP and Ca2+ signaling. Emerging lines of evidence have suggested the association of the Ca2+-stimulated ADCYs with bipolar disorder, schizophrenia, major depressive disorder, post-traumatic stress disorder, and autism. In this review, we discuss the molecular and cellular features as well as the physiological functions of ADCY1, 3, and 8. We further discuss the recent therapeutic development to target the Ca2+-stimulated ADCYs for potential treatments of psychiatric and neurodevelopmental disorders.
Collapse
|
11
|
Johnson K, Doucette A, Edwards A, Verdi A, McFarland R, Hulke S, Fowler A, Watts VJ, Klein AH. Reduced activity of adenylyl cyclase 1 attenuates morphine induced hyperalgesia and inflammatory pain in mice. Front Pharmacol 2022; 13:937741. [PMID: 36120355 PMCID: PMC9479488 DOI: 10.3389/fphar.2022.937741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Opioid tolerance, opioid-induced hyperalgesia during repeated opioid administration, and chronic pain are associated with upregulation of adenylyl cyclase activity. The objective of this study was to test the hypothesis that a reduction in adenylyl cyclase 1 (AC1) activity or expression would attenuate morphine tolerance and hypersensitivity, and inflammatory pain using murine models. To investigate opioid tolerance and opioid-induced hyperalgesia, mice were subjected to twice daily treatments of saline or morphine using either a static (15 mg/kg, 5 days) or an escalating tolerance paradigm (10–40 mg/kg, 4 days). Systemic treatment with an AC1 inhibitor, ST03437 (2.5–10 mg/kg, IP), reduced morphine-induced hyperalgesia in mice. Lumbar intrathecal administration of a viral vector incorporating a short-hairpin RNA targeting Adcy1 reduced morphine-induced hypersensitivity compared to control mice. In contrast, acute morphine antinociception, along with thermal paw withdrawal latencies, motor performance, exploration in an open field test, and burrowing behaviors were not affected by intrathecal Adcy1 knockdown. Knockdown of Adcy1 by intrathecal injection also decreased inflammatory mechanical hyperalgesia and increased burrowing and nesting activity after intraplantar administration of Complete Freund’s Adjuvant (CFA) one-week post-injection.
Collapse
Affiliation(s)
- Kayla Johnson
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Alexis Doucette
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Alexis Edwards
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Aleeya Verdi
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Ryan McFarland
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Shelby Hulke
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Amanda Fowler
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Val J. Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Amanda H. Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
- *Correspondence: Amanda H. Klein,
| |
Collapse
|
12
|
Low-Intensity Focused Ultrasound Alleviates Chronic Neuropathic Pain-Induced Allodynia by Inhibiting Neuroplasticity in the Anterior Cingulate Cortex. Neural Plast 2022; 2022:6472475. [PMID: 35915650 PMCID: PMC9338851 DOI: 10.1155/2022/6472475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Low-intensity focused ultrasound (LIFU) is a potential noninvasive method to alleviate allodynia by modulating the central nervous system. However, the underlying analgesic mechanisms remain unexplored. Here, we assessed how LIFU at the anterior cingulate cortex (ACC) affects behavior response and central plasticity resulting from chronic constrictive injury (CCI). The safety of LIFU stimulation was assessed by hematoxylin and eosin (H&E) and Fluoro-Jade C (FJC) staining. A 21-day ultrasound exposure therapy was conducted from day 91 after CCI surgery in mice. We assessed the 50% mechanical withdrawal threshold (MWT50) using Von Frey filaments (VFFs). The expression levels of microtubule-associated protein 2 (MAP2), growth-associated protein 43 (GAP43), and tau were determined via western blotting (WB) and immunofluorescence (IF) staining to evaluate the central plasticity in ACC. The regions of ACC were activated effectively and safely by LIFU stimulation, which significantly increased the number of c-fos-positive cells (P < 0.05) with no bleeding, coagulative necrosis, and neuronal loss. Under chronic neuropathic pain- (CNP-) induced allodynia, MWT50 decreased significantly (P < 0.05), and overexpression of MAP2, GAP43, and tau was also observed. After 3 weeks of treatment, significant increases in MWT50 were found in the CCI+LIFU group compared with the CCI group (P < 0.05). WB and IF staining both demonstrated a significant reduction in the expression levels of MAP2, GAP43, and tau (P < 0.05). LIFU treatment on ACC can effectively attenuate CNP-evoked mechanical sensitivity to pain and reverse aberrant central plasticity.
Collapse
|
13
|
Wang W, Chen QY, Zhao P, Zhong J, Wang Y, Li X, Zhuo M, Chen X. Human safety study of a selective neuronal adenylate cyclase 1 (AC1) inhibitor NB001 which relieves the neuropathic pain and blocks ACC in adult mice. Mol Pain 2022; 18:17448069221089596. [PMID: 35266830 DOI: 10.1177/17448069221089596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Calcium-dependent, neuronal adenylyl cyclase subtype 1 (AC1) is critical for cortical potentiation and chronic pain. NB001 is a first-in-class drug acting as a selective inhibitor against AC1. The present study delineated the pharmacokinetic (PK) properties of human-used NB001 (hNB001) formulated as immediate-release tablet. This first-in-human study was designed as randomized, double-blind, placebo-controlled trial. hNB001 showed placebo-like safety and good tolerability in healthy volunteers. A linear dose-exposure relationship was demonstrated at doses between 20 mg and 400 mg. The relatively small systemic exposure of hNB001 in human showed low bioavailability of this compound through oral administration, which can be improved through future dosage research. Food intake had minimal impact on the absorption of hNB001 tablet. Animal experiments further confirmed that hNB001 had strong analgesic effect in animal models on neuropathic pain. In brain slice prepared from the anterior cingulate cortex (ACC), bath application of hNB001 blocked the induction of LTP. These results from both rodents and human strongly suggest that hNB001 can be safely used for the future treatment of different types of chronic pain in human patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Zhuo
- Physiology7938University of Toronto
| | | |
Collapse
|
14
|
Wang XS, Jiang YL, Lu L, Feng B, Ma X, Zhang K, Guan SY, Yang L, Fan QY, Zhu XC, Yang F, Qi JY, Yang LK, Li XB, Zhao MG, Jiang W, Tian Z, Liu SB. Activation of GIPR Exerts Analgesic and Anxiolytic-Like Effects in the Anterior Cingulate Cortex of Mice. Front Endocrinol (Lausanne) 2022; 13:887238. [PMID: 35712239 PMCID: PMC9196593 DOI: 10.3389/fendo.2022.887238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Chronic pain is defined as pain that persists typically for a period of over six months. Chronic pain is often accompanied by an anxiety disorder, and these two tend to exacerbate each other. This can make the treatment of these conditions more difficult. Glucose-dependent insulinotropic polypeptide (GIP) is a member of the incretin hormone family and plays a critical role in glucose metabolism. Previous research has demonstrated the multiple roles of GIP in both physiological and pathological processes. In the central nervous system (CNS), studies of GIP are mainly focused on neurodegenerative diseases; hence, little is known about the functions of GIP in chronic pain and pain-related anxiety disorders. METHODS The chronic inflammatory pain model was established by hind paw injection with complete Freund's adjuvant (CFA) in C57BL/6 mice. GIP receptor (GIPR) agonist (D-Ala2-GIP) and antagonist (Pro3-GIP) were given by intraperitoneal injection or anterior cingulate cortex (ACC) local microinjection. Von Frey filaments and radiant heat were employed to assess the mechanical and thermal hypersensitivity. Anxiety-like behaviors were detected by open field and elevated plus maze tests. The underlying mechanisms in the peripheral nervous system and CNS were explored by GIPR shRNA knockdown in the ACC, enzyme-linked immunosorbent assay, western blot analysis, whole-cell patch-clamp recording, immunofluorescence staining and quantitative real-time PCR. RESULTS In the present study, we found that hind paw injection with CFA induced pain sensitization and anxiety-like behaviors in mice. The expression of GIPR in the ACC was significantly higher in CFA-injected mice. D-Ala2-GIP administration by intraperitoneal or ACC local microinjection produced analgesic and anxiolytic effects; these were blocked by Pro3-GIP and GIPR shRNA knockdown in the ACC. Activation of GIPR inhibited neuroinflammation and activation of microglia, reversed the upregulation of NMDA and AMPA receptors, and suppressed the enhancement of excitatory neurotransmission in the ACC of model mice. CONCLUSIONS GIPR activation was found to produce analgesic and anxiolytic effects, which were partially due to attenuation of neuroinflammation and inhibition of excitatory transmission in the ACC. GIPR may be a suitable target for treatment of chronic inflammatory pain and pain-related anxiety.
Collapse
Affiliation(s)
- Xin-shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yong-li Jiang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shao-yu Guan
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Le Yang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Qing-yu Fan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Xiao-chen Zhu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Fan Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Jing-yu Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Liu-kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Xu-bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Ming-gao Zhao
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Shui-bing Liu, ; Zhen Tian, ; Wen Jiang,
| | - Zhen Tian
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Department of Pharmacology, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
- *Correspondence: Shui-bing Liu, ; Zhen Tian, ; Wen Jiang,
| | - Shui-bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
- *Correspondence: Shui-bing Liu, ; Zhen Tian, ; Wen Jiang,
| |
Collapse
|
15
|
Liu RH, Shi W, Zhang YX, Zhuo M, Li XH. Selective inhibition of adenylyl cyclase subtype 1 reduces inflammatory pain in chicken of gouty arthritis. Mol Pain 2021; 17:17448069211047863. [PMID: 34761717 PMCID: PMC8591642 DOI: 10.1177/17448069211047863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lack of uricase leads to the high incidence of gout in humans and poultry, which is different from rodents. Therefore, chicken is considered to be one of the ideal animal models for the study of gout. Gout-related pain caused by the accumulation of urate in joints is one type of inflammatory pain, which causes damage to joint function. Our previous studies have demonstrated the crucial role of calcium-stimulated adenylyl cyclase subtype 1 (AC1) in inflammatory pain in rodents; however, there is no study in poultry. In the present study, we injected mono-sodium urate (MSU) into the left ankle joint of the chicken to establish a gouty arthritis model, and tested the effect of AC1 inhibitor NB001 on gouty arthritis in chickens. We found that MSU successfully induced spontaneous pain behaviors including sitting, standing on one leg, and limping after 1–3 h of injection into the left ankle of chickens. In addition, edema and mechanical pain hypersensitivity also occurred in the left ankle of chickens with gouty arthritis. After peroral administration of NB001 on chickens with gouty arthritis, both the spontaneous pain behaviors and the mechanical pain hypersensitivity were effectively relieved. The MSU-induced edema in the left ankle of chickens was not affected by NB001, suggesting a central effect of NB001. Our results provide a strong evidence that AC1 is involved in the regulation of inflammatory pain in poultry. A selective AC1 inhibitor NB001 produces an analgesic effect (not anti-inflammatory effect) on gouty pain and may be used for future treatment of gouty pain in both humans and poultry.
Collapse
Affiliation(s)
- Ren-Hao Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Yu-Xiang Zhang
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China.,Faculty of Medicine, Department of Physiology, 7938University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| |
Collapse
|
16
|
Miao HH, Miao Z, Pan JG, Li XH, Zhuo M. Brain-derived neurotrophic factor produced long-term synaptic enhancement in the anterior cingulate cortex of adult mice. Mol Brain 2021; 14:140. [PMID: 34526080 PMCID: PMC8442386 DOI: 10.1186/s13041-021-00853-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/04/2021] [Indexed: 12/04/2022] Open
Abstract
Previous studies have demonstrated that brain-derived neurotrophic factor (BDNF) is one of the diffusible messengers for enhancing synaptic transmission in the hippocampus. Less information is available about the possible roles of BDNF in the anterior cingulate cortex (ACC). In the present study, we used 64-electrode array field recording system to investigate the effect of BDNF on ACC excitatory transmission. We found that BDNF enhanced synaptic responses in a dose-dependent manner in the ACC in C57/BL6 mice. The enhancement was long-lasting, and persisted for at least 3 h. In addition to the enhancement, BDNF also recruited inactive synaptic responses in the ACC. Bath application of the tropomyosin receptor kinase B (TrkB) receptor antagonist K252a blocked BDNF-induced enhancement. L-type voltage-gated calcium channels (L-VGCC), metabotropic glutamate receptors (mGluRs), but not NMDA receptors were required for BDNF-produced enhancement. Moreover, calcium-stimulated adenylyl cyclase subtype 1 (AC1) but not AC8 was essential for the enhancement. A selective AC1 inhibitor NB001 completely blocked the enhancement. Furthermore, BDNF-produced enhancement occluded theta burst stimulation (TBS) induced long-term potentiation (LTP), suggesting that they may share similar signaling mechanisms. Finally, the expression of BDNF-induced enhancement depends on postsynaptic incorporation of calcium-permeable AMPA receptors (CP-AMPARs) and protein kinase Mζ (PKMζ). Our results demonstrate that cortical BDNF may contribute to synaptic potentiation in the ACC.
Collapse
Affiliation(s)
- Hui-Hui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Institute for Brain Research, QingDao International Academician Park, Qing Dao, Shandong, People's Republic of China
| | - Zhuang Miao
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Ji-Gang Pan
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Xu-Hui Li
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China. .,Institute for Brain Research, QingDao International Academician Park, Qing Dao, Shandong, People's Republic of China.
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China. .,Institute for Brain Research, QingDao International Academician Park, Qing Dao, Shandong, People's Republic of China.
| |
Collapse
|
17
|
Chen QY, Li XH, Zhuo M. NMDA receptors and synaptic plasticity in the anterior cingulate cortex. Neuropharmacology 2021; 197:108749. [PMID: 34364898 DOI: 10.1016/j.neuropharm.2021.108749] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The anterior cingulate cortex (ACC) plays an important role in pain modulation, and pain-related emotional disorders. In the ACC, two major forms of long-term potentiation (LTP) coexist in excitatory synapses and lay the basis of chronic pain and pain-related emotional disorders. The induction of postsynaptic LTP is dependent on the activation of postsynaptic NMDA receptors (NMDARs), while the presynaptic LTP is NMDAR-independent. Long-term depression (LTD) can also be divided into two types according to the degree of sensitivity to the inhibition of NMDARs. NMDAR heteromers containing GluN2A and GluN2B act as key molecules in both the NMDAR-dependent postsynaptic LTP and LTD. Additionally, NMDARs also exist in presynaptic terminals and modulate the evoked and spontaneous transmitter release. From a translational point of view, inhibiting subtypes of NMDARs and/or downstream signaling proteins may provide potential drug targets for chronic pain and its related emotional disorders.
Collapse
Affiliation(s)
- Qi-Yu Chen
- International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China; Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xu-Hui Li
- International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China; Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Min Zhuo
- International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China; Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China; Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci 2021; 22:458-471. [PMID: 34127843 DOI: 10.1038/s41583-021-00468-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
19
|
O'Brien JB, Roman DL. Novel treatments for chronic pain: moving beyond opioids. Transl Res 2021; 234:1-19. [PMID: 33727192 DOI: 10.1016/j.trsl.2021.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
It is essential that safe and effective treatment options be available to patients suffering from chronic pain. The emergence of an opioid epidemic has shaped public opinions and created stigmas surrounding the use of opioids for the management of pain. This reality, coupled with high risk of adverse effects from chronic opioid use, has led chronic pain patients and their healthcare providers to utilize nonopioid treatment approaches. In this review, we will explore a number of cellular reorganizations that are associated with the development and progression of chronic pain. We will also discuss the safety and efficacy of opioid and nonopioid treatment options for chronic pain. Finally, we will review the evidence for adenylyl cyclase type 1 (AC1) as a novel target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Joseph B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa; Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
20
|
Zhou Z, Shi W, Fan K, Xue M, Zhou S, Chen QY, Lu JS, Li XH, Zhuo M. Inhibition of calcium-stimulated adenylyl cyclase subtype 1 (AC1) for the treatment of neuropathic and inflammatory pain in adult female mice. Mol Pain 2021; 17:17448069211021698. [PMID: 34082635 PMCID: PMC8182195 DOI: 10.1177/17448069211021698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cortical long-term potentiation (LTP) serves as a cellular model for chronic
pain. As an important subtype of adenylyl cyclases (ACs), adenylyl cyclase
subtype 1 (AC1) is critical for the induction of cortical LTP in the anterior
cingulate cortex (ACC). Genetic deletion of AC1 or pharmacological inhibition of
AC1 blocked behavioral allodynia in animal models of neuropathic and
inflammatory pain. Our previous experiments have identified a lead candidate AC1
inhibitor, NB001, which is highly selective for AC1 over other AC isoforms, and
found that NB001 is effective in inhibiting behavioral allodynia in animal
models of chronic neuropathic and inflammatory pain. However, previous
experiments were carried out in adult male animals. Considering the potential
gender difference as an important issue in researches of pain and analgesia, we
investigated the effect of NB001 in female chronic pain animal models. We found
that NB001, when administered orally, has an analgesic effect in female animal
models of neuropathic and inflammatory pain without any observable side effect.
Genetic deletion of AC1 also reduced allodynia responses in models of
neuropathic pain and chronic inflammation pain in adult female mice. In brain
slices of adult female mice, bath application of NB001(20 μM) blocked the
induction of LTP in ACC. Our results indicate that calcium-stimulated AC1 is
required for injury-related cortical LTP and behavioral allodynia in both sexes
of adult animals, and NB001 can be used as a potential therapeutic drug for
treating neuropathic and inflammatory pain in man and woman.
Collapse
Affiliation(s)
- Zhaoxiang Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Kexin Fan
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Man Xue
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sibo Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Xue M, Zhou SB, Liu RH, Chen QY, Zhuo M, Li XH. NMDA Receptor-Dependent Synaptic Depression in Potentiated Synapses of the Anterior Cingulate Cortex of adult Mice. Mol Pain 2021; 17:17448069211018045. [PMID: 34024172 PMCID: PMC8141994 DOI: 10.1177/17448069211018045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Long-term potentiation (LTP) is an important molecular mechanism for chronic pain in the anterior cingulate cortex (ACC), a key cortical region for pain perception and emotional regulation. Inhibiting ACC LTP via various manipulations or pharmacological treatments blocks chronic pain. Long-term depression (LTD) is another form of synaptic plasticity in the ACC, which is also proved to be involved in the mechanisms of chronic pain. However, less is known about the interactive relationship between LTP and LTD in the ACC. Whether the synaptic depression could be induced after synaptic LTP in the ACC is not clear. In the present study, we used multi-channel field potential recording systems to study synaptic depression after LTP in the ACC of adult mice. We found that low frequency stimulus (LFS: 1 Hz, 15 min) inhibited theta burst stimulation (TBS)-induced LTP at 30 min after the induction of LTP. However, LFS failed to induce depression at 90 min after the induction of LTP. Furthermore, NMDA receptor antagonist AP-5 blocked the induction of synaptic depression after potentiation. The GluN2B-selective antagonist Ro25-6981 also inhibited the phenomenon in the ACC, while the GluN2A-selective antagonist NVP-AAM077 and the GluN2C/D-selective antagonist PPDA and UBP145 had no any significant effect. These results suggest that synaptic LTP can be depressed by LTD in a time dependent manner, and GluN2B-containing NMDA receptors play important roles in this form of synaptic depression.
Collapse
Affiliation(s)
- Man Xue
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Si-Bo Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Ren-Hao Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Lu JS, Chen QY, Chen X, Li XH, Zhou Z, Liu Q, Lin Y, Zhou M, Xu PY, Zhuo M. Cellular and synaptic mechanisms for Parkinson's disease-related chronic pain. Mol Pain 2021; 17:1744806921999025. [PMID: 33784837 PMCID: PMC8020085 DOI: 10.1177/1744806921999025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disorder after
Alzheimer’s disease. Chronic pain is experienced by the vast majority of
patients living with Parkinson’s disease. The degeneration of dopaminergic
neuron acts as the essential mechanism of Parkinson’s disease in the midbrain
dopaminergic pathway. The impairment of dopaminergic neurons leads to
dysfunctions of the nociceptive system. Key cortical areas, such as the anterior
cingulate cortex (ACC) and insular cortex (IC) that receive the dopaminergic
projections are involved in pain transmission. Dopamine changes synaptic
transmission via several pathway, for example the D2-adenly cyclase (AC)-cyclic
AMP (cAMP)-protein kinase A (PKA) pathway and D1-G protein-coupled receptor
kinase 2 (GRK2)-fragile X mental retardation protein (FMRP) pathway. The
management of Parkinson’s disease-related pain implicates maintenance of stable
level of dopaminergic drugs and analgesics, however a more selective drug
targeting at key molecules in Parkinson’s disease-related pain remains to be
investigated.
Collapse
Affiliation(s)
- Jing-Shan Lu
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qi-Yu Chen
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Xiang Chen
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu-Hui Li
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Zhaoxiang Zhou
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qin Liu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaomiao Zhou
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping-Yi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhuo
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Sang CN, Schmidt WK. Aligning New Approaches to Accelerate the Development of Non-opioid Analgesic Therapies. Neurotherapeutics 2020; 17:765-769. [PMID: 33058022 PMCID: PMC7609808 DOI: 10.1007/s13311-020-00935-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Christine N Sang
- Translational Pain Research, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | | |
Collapse
|