1
|
Viswanathan S, Oliver KL, Regan BM, Schneider AL, Myers CT, Mehaffey MG, LaCroix AJ, Antony J, Webster R, Cardamone M, Subramanian GM, Chiu ATG, Roza E, Teleanu RI, Malone S, Leventer RJ, Gill D, Berkovic SF, Hildebrand MS, Goad BS, Howell KB, Symonds JD, Brunklaus A, Sadleir LG, Zuberi SM, Mefford HC, Scheffer IE. Solving the Etiology of Developmental and Epileptic Encephalopathy with Spike-Wave Activation in Sleep (D/EE-SWAS). Ann Neurol 2024; 96:932-943. [PMID: 39096015 PMCID: PMC11496008 DOI: 10.1002/ana.27041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/31/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To understand the etiological landscape and phenotypic differences between 2 developmental and epileptic encephalopathy (DEE) syndromes: DEE with spike-wave activation in sleep (DEE-SWAS) and epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS). METHODS All patients fulfilled International League Against Epilepsy (ILAE) DEE-SWAS or EE-SWAS criteria with a Core cohort (n = 91) drawn from our Epilepsy Genetics research program, together with 10 etiologically solved patients referred by collaborators in the Expanded cohort (n = 101). Detailed phenotyping and analysis of molecular genetic results were performed. We compared the phenotypic features of individuals with DEE-SWAS and EE-SWAS. Brain-specific gene co-expression analysis was performed for D/EE-SWAS genes. RESULTS We identified the etiology in 42/91 (46%) patients in our Core cohort, including 29/44 (66%) with DEE-SWAS and 13/47 (28%) with EE-SWAS. A genetic etiology was identified in 31/91 (34%). D/EE-SWAS genes were highly co-expressed in brain, highlighting the importance of channelopathies and transcriptional regulators. Structural etiologies were found in 12/91 (13%) individuals. We identified 10 novel D/EE-SWAS genes with a range of functions: ATP1A2, CACNA1A, FOXP1, GRIN1, KCNMA1, KCNQ3, PPFIA3, PUF60, SETD1B, and ZBTB18, and 2 novel copy number variants, 17p11.2 duplication and 5q22 deletion. Although developmental regression patterns were similar in both syndromes, DEE-SWAS was associated with a longer duration of epilepsy and poorer intellectual outcome than EE-SWAS. INTERPRETATION DEE-SWAS and EE-SWAS have highly heterogeneous genetic and structural etiologies. Phenotypic analysis highlights valuable clinical differences between DEE-SWAS and EE-SWAS which inform clinical care and prognostic counseling. Our etiological findings pave the way for the development of precision therapies. ANN NEUROL 2024;96:932-943.
Collapse
Affiliation(s)
- Sindhu Viswanathan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Paediatrics, Hospital Pulau Pinang, Pulau Pinang, Malaysia
| | - Karen L. Oliver
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Brigid M. Regan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Amy L. Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Candace T. Myers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michele G. Mehaffey
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Amy J. LaCroix
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Jayne Antony
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Richard Webster
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Michael Cardamone
- Sydney Children’s Hospital, Randwick; School of Clinical Medicine, UNSW Sydney, New South Wales, Australia
| | | | - Annie TG Chiu
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Eugenia Roza
- Faculty of Medicine, Clinical Neurosciences Department, Paediatric Neurology, Carol Davila University of Medicine and Pharmacy, Romania
- Pediatric Neurology Department, Dr. Victor Gomoiu Children’s Hospital, Romania
| | - Raluca I. Teleanu
- Faculty of Medicine, Clinical Neurosciences Department, Paediatric Neurology, Carol Davila University of Medicine and Pharmacy, Romania
- Pediatric Neurology Department, Dr. Victor Gomoiu Children’s Hospital, Romania
| | - Stephen Malone
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
- Neurosciences Department, Queensland Children’s Hospital, South Brisbane Queensland, Australia
| | - Richard J. Leventer
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Deepak Gill
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Kids Neuroscience Centre, Kids Research Institute, Sydney, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Beatrice S. Goad
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Katherine B. Howell
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Joseph D. Symonds
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Andreas Brunklaus
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Lynette G. Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Sameer M. Zuberi
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Heather C. Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Centre for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN,USA
| | - Ingrid E. Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- The Florey Institute of Neurosciences and Mental Health, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Kim HW, Kim JH, Chung US, Kim JI, Shim SH, Park TW, Lee MS, Hwang JW, Park EJ, Hwang SK, Joung YS. AST-001 versus placebo for social communication in children with autism spectrum disorder: A randomized clinical trial. Psychiatry Clin Neurosci 2024. [PMID: 39425256 DOI: 10.1111/pcn.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
AIM This study examined the efficacy of AST-001 for the core symptoms of autism spectrum disorder (ASD) in children. METHODS This phase 2 clinical trial consisted of a 12-week placebo-controlled main study, a 12-week extension, and a 12-week follow-up in children aged 2 to 11 years with ASD. The participants were randomized in a 1:1:1 ratio to a high-dose, low-dose, or placebo-to-high-dose control group during the main study. The placebo-to-high-dose control group received placebo during the main study and high-dose AST-001 during the extension. The a priori primary outcome was the mean change in the Adaptive Behavior Composite (ABC) score of the Korean Vineland Adaptive Behavior Scales II (K-VABS-II) from baseline to week 12. RESULTS Among 151 enrolled participants, 144 completed the main study, 140 completed the extension, and 135 completed the follow-up. The mean K-VABS-II ABC score at the 12th week compared with baseline was significantly increased in the high-dose group (P = 0.042) compared with the placebo-to-high-dose control group. The mean CGI-S scores were significantly decreased at the 12th week in the high-dose (P = 0.046) and low-dose (P = 0.017) groups compared with the placebo-to-high-dose control group. During the extension, the K-VABS-II ABC and CGI-S scores of the placebo-to-high-dose control group changed rapidly after administration of high-dose AST-001 and caught up with those of the high-dose group at the 24th week. AST-001 was well tolerated with no safety concern. The most common adverse drug reaction was diarrhea. CONCLUSIONS Our results provide preliminary evidence for the efficacy of AST-001 for the core symptoms of ASD.
Collapse
Affiliation(s)
- Hyo-Won Kim
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ji-Hoon Kim
- Department of Psychiatry, Pusan National University Yangsan Hospital, Pusan, South Korea
| | - Un Sun Chung
- Department of Psychiatry, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, South Korea
| | - Se-Hoon Shim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Soon Chun Hyang University Cheonan Hospital, Cheonan, South Korea
| | - Tae Won Park
- Department of Psychiatry, Jeonbuk National University College of Medicine, Jeonju, South Korea
| | - Moon-Soo Lee
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Jun-Won Hwang
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Jin Park
- Department of Psychiatry, Inje university, Ilsan Paik Hospital, Goyang, South Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yoo-Sook Joung
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
3
|
Defelippe VM, Brilstra EH, Otte WM, Cross HJ, O'Callaghan F, De Giorgis V, Poduri A, Lerche H, Sisodiya S, Braun KPJ, Jansen FE, Perucca E. N-of-1 trials in epilepsy: A systematic review and lessons paving the way forward. Epilepsia 2024. [PMID: 39254637 DOI: 10.1111/epi.18068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVE Defined as prospective single-patient crossover studies with repeated paired cycles of active and control intervention, N-of-1 trials have gained attention as an option to obtain high-quality evidence of efficacy, particularly for patients with rare epilepsies in whom conduction of well-powered randomized controlled trials can be challenging. The objective of this systematic review is to provide an appraisal of the literature on N-of-1 trials in individuals with epilepsy. METHODS We searched PubMed and Embase on January 12, 2024, for studies meeting the following criteria: prospectively planned, within-patient, multiple-crossover design in individuals with epilepsy and outcomes related to comorbidities. Information on design, outcome measurements, intervention, and analyses was retrieved. Risk of bias assessment was performed using the Risk of Bias in N-of-1 Trials (RoBiNT) scale. We highlighted methodological aspects of the N-of-1 trials identified and discuss future recommendations. RESULTS Five studies met our inclusion criteria. An additional multiple-crossover trial that evaluated treatment effects exclusively at group level was also included because of its relevance to N-of-1 study methodology. The studies enrolled individuals with focal seizures, absences or cognitive impairement and electrographic discharges. Treatments included established or investigational antiseizure medications, off-label medications, neurostimulation or lifestyle intervention. Three of the five N-of-1 trials reported on individual cases. The studies' strengths were the use of individualized treatment dosages and symptom-specific patient-reported outcomes. Limitations were related to minimal reporting of baseline characteristics and seizure burden. SIGNIFICANCE The trials identified by our search exemplify how the N-of-1 design can be applied to assess interventions in individuals with epilepsy-related disorders. Future N-of-1 trials of antiseizure interventions should take into account baseline seizure frequency, should apply statistical models suited to capture seizure frequency changes reliably and make predefined interim assessments. Non-seizure outcome measures evaluable over short periods should be considered. Tailored N-of-1 methodology could pave the way to evidence-based, treatment selection for patients with rare epilepsies.
Collapse
Affiliation(s)
- Victoria M Defelippe
- Department of Child Neurology, UMCU Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- (Affiliated) member or collaborating partner of the European Reference Network (ERN) for rare and complex epilepsies (EpiCARE), Barcelona, Spain
| | - Eva H Brilstra
- Department of Genetics, UMCU Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- (Affiliated) member or collaborating partner of the European Reference Network (ERN) for rare and complex epilepsies (EpiCARE), Barcelona, Spain
| | - Willem M Otte
- Department of Child Neurology, UMCU Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- (Affiliated) member or collaborating partner of the European Reference Network (ERN) for rare and complex epilepsies (EpiCARE), Barcelona, Spain
| | - Helen J Cross
- Developmental Neurosciences, University College London (UCL) Great Ormond Street NIHR BRC, Institute of Child Health, London, UK
- (Affiliated) member or collaborating partner of the European Reference Network (ERN) for rare and complex epilepsies (EpiCARE), Barcelona, Spain
| | - Finbar O'Callaghan
- Developmental Neurosciences, University College London (UCL) Great Ormond Street NIHR BRC, Institute of Child Health, London, UK
- (Affiliated) member or collaborating partner of the European Reference Network (ERN) for rare and complex epilepsies (EpiCARE), Barcelona, Spain
| | - Valentina De Giorgis
- (Affiliated) member or collaborating partner of the European Reference Network (ERN) for rare and complex epilepsies (EpiCARE), Barcelona, Spain
- Fondazione Mondino National Institute of Neurology/University of Pavia, Pavia, Italy
| | - Annapurna Poduri
- Epilepsy Genetics Program, Boston Children's Hospital and Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Holger Lerche
- (Affiliated) member or collaborating partner of the European Reference Network (ERN) for rare and complex epilepsies (EpiCARE), Barcelona, Spain
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University and University Hospital of Tübingen, Tubingen, Germany
| | - Sanjay Sisodiya
- (Affiliated) member or collaborating partner of the European Reference Network (ERN) for rare and complex epilepsies (EpiCARE), Barcelona, Spain
- Department of Clinical and Experimental Epilepsy, UCL Queen's Square Institute of Neurology, London, UK
| | - Kees P J Braun
- Department of Child Neurology, UMCU Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- (Affiliated) member or collaborating partner of the European Reference Network (ERN) for rare and complex epilepsies (EpiCARE), Barcelona, Spain
| | - Floor E Jansen
- Department of Child Neurology, UMCU Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- (Affiliated) member or collaborating partner of the European Reference Network (ERN) for rare and complex epilepsies (EpiCARE), Barcelona, Spain
| | - Emilio Perucca
- (Affiliated) member or collaborating partner of the European Reference Network (ERN) for rare and complex epilepsies (EpiCARE), Barcelona, Spain
- Department of Medicine, University of Melbourne (Austin Health), Heidelberg, Victoria, Australia
- Australia and Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Scheffer IE, Zuberi S, Mefford HC, Guerrini R, McTague A. Developmental and epileptic encephalopathies. Nat Rev Dis Primers 2024; 10:61. [PMID: 39237642 DOI: 10.1038/s41572-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Developmental and epileptic encephalopathies, the most severe group of epilepsies, are characterized by seizures and frequent epileptiform activity associated with developmental slowing or regression. Onset typically occurs in infancy or childhood and includes many well-defined epilepsy syndromes. Patients have wide-ranging comorbidities including intellectual disability, psychiatric features, such as autism spectrum disorder and behavioural problems, movement and musculoskeletal disorders, gastrointestinal and sleep problems, together with an increased mortality rate. Problems change with age and patients require substantial support throughout life, placing a high psychosocial burden on parents, carers and the community. In many patients, the aetiology can be identified, and a genetic cause is found in >50% of patients using next-generation sequencing technologies. More than 900 genes have been identified as monogenic causes of developmental and epileptic encephalopathies and many cell components and processes have been implicated in their pathophysiology, including ion channels and transporters, synaptic proteins, cell signalling and metabolism and epigenetic regulation. Polygenic risk score analyses have shown that common variants also contribute to phenotypic variability. Holistic management, which encompasses antiseizure therapies and care for multimorbidities, is determined both by epilepsy syndrome and aetiology. Identification of the underlying aetiology enables the development of precision medicines to improve the long-term outcome of patients with these devastating diseases.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
- Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences, Royal Hospital for Children, Glasgow, UK
| | - Heather C Mefford
- Center for Paediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
5
|
Shin HJ, Ko A, Kim SH, Kang HC, Lee JS. L-serine treatment in a patient with refractory epilepsy due to a GRIN2A missense mutation. Acta Neurol Belg 2024:10.1007/s13760-024-02616-8. [PMID: 39103744 DOI: 10.1007/s13760-024-02616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Affiliation(s)
- Hui Jin Shin
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
6
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
7
|
Juliá-Palacios N, Olivella M, Sigatullina Bondarenko M, Ibáñez-Micó S, Muñoz-Cabello B, Alonso-Luengo O, Soto-Insuga V, García-Navas D, Cuesta-Herraiz L, Andreo-Lillo P, Aguilera-Albesa S, Hedrera-Fernández A, González Alguacil E, Sánchez-Carpintero R, Martín Del Valle F, Jiménez González E, Cean Cabrera L, Medina-Rivera I, Perez-Ordoñez M, Colomé R, Lopez L, Engracia Cazorla M, Fornaguera M, Ormazabal A, Alonso-Colmenero I, Illescas KS, Balsells-Mejía S, Mari-Vico R, Duffo Viñas M, Cappuccio G, Terrone G, Romano R, Manti F, Mastrangelo M, Alfonsi C, de Siqueira Barros B, Nizon M, Gjerulfsen CE, Muro VL, Karall D, Zeiner F, Masnada S, Peterlongo I, Oyarzábal A, Santos-Gómez A, Altafaj X, García-Cazorla Á. L-serine treatment in patients with GRIN-related encephalopathy: a phase 2A, non-randomized study. Brain 2024; 147:1653-1666. [PMID: 38380699 DOI: 10.1093/brain/awae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
GRIN-related disorders are rare developmental encephalopathies with variable manifestations and limited therapeutic options. Here, we present the first non-randomized, open-label, single-arm trial (NCT04646447) designed to evaluate the tolerability and efficacy of L-serine in children with GRIN genetic variants leading to loss-of-function. In this phase 2A trial, patients aged 2-18 years with GRIN loss-of-function pathogenic variants received L-serine for 52 weeks. Primary end points included safety and efficacy by measuring changes in the Vineland Adaptive Behavior Scales, Bayley Scales, age-appropriate Wechsler Scales, Gross Motor Function-88, Sleep Disturbance Scale for Children, Pediatric Quality of Life Inventory, Child Behavior Checklist and the Caregiver-Teacher Report Form following 12 months of treatment. Secondary outcomes included seizure frequency and intensity reduction and EEG improvement. Assessments were performed 3 months and 1 day before starting treatment and 1, 3, 6 and 12 months after beginning the supplement. Twenty-four participants were enrolled (13 males/11 females, mean age 9.8 years, SD 4.8), 23 of whom completed the study. Patients had GRIN2B, GRIN1 and GRIN2A variants (12, 6 and 5 cases, respectively). Their clinical phenotypes showed 91% had intellectual disability (61% severe), 83% had behavioural problems, 78% had movement disorders and 58% had epilepsy. Based on the Vineland Adaptive Behavior Composite standard scores, nine children were classified as mildly impaired (cut-off score > 55), whereas 14 were assigned to the clinically severe group. An improvement was detected in the Daily Living Skills domain (P = 0035) from the Vineland Scales within the mild group. Expressive (P = 0.005), Personal (P = 0.003), Community (P = 0.009), Interpersonal (P = 0.005) and Fine Motor (P = 0.031) subdomains improved for the whole cohort, although improvement was mostly found in the mild group. The Growth Scale Values in the Cognitive subdomain of the Bayley-III Scale showed a significant improvement in the severe group (P = 0.016), with a mean increase of 21.6 points. L-serine treatment was associated with significant improvement in the median Gross Motor Function-88 total score (P = 0.002) and the mean Pediatric Quality of Life total score (P = 0.00068), regardless of severity. L-serine normalized the EEG pattern in five children and the frequency of seizures in one clinically affected child. One patient discontinued treatment due to irritability and insomnia. The trial provides evidence that L-serine is a safe treatment for children with GRIN loss-of-function variants, having the potential to improve adaptive behaviour, motor function and quality of life, with a better response to the treatment in mild phenotypes.
Collapse
Affiliation(s)
- Natalia Juliá-Palacios
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Mireia Olivella
- Bioinformatics and Bioimaging Group. Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia, 08500 Vic, Spain
- Institute for Research and Innovation in Life and Health Sciences (IRIS-CC), University of Vic-Central University of Catalonia, 08500 Vic, Spain
| | - Mariya Sigatullina Bondarenko
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | | | - Beatriz Muñoz-Cabello
- Department of Pediatrics, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Olga Alonso-Luengo
- Department of Pediatrics, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | | | - Deyanira García-Navas
- Department of Pediatric Neurology, Complejo Hospitalario Universitario de Cáceres, 10003 Cáceres, Spain
| | | | - Patricia Andreo-Lillo
- Neuropediatric Unit, Pediatric Department, University Hospital of Sant Joan d'Alacant, 03550 Sant Joan d'Alacant, Spain
| | - Sergio Aguilera-Albesa
- Paediatric Neurology Unit, Department of Pediatrics, Hospital Universitario de Navarra, 31008, Pamplona, Spain
| | - Antonio Hedrera-Fernández
- Child Neurology Unit, Pediatrics Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | | | | | | | | | - Ines Medina-Rivera
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Marta Perez-Ordoñez
- Child and Adolescent Mental Health Area, Psychiatry and Psychology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Roser Colomé
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Laura Lopez
- Department of Rehabilitation, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - María Engracia Cazorla
- Department of Rehabilitation, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Montserrat Fornaguera
- Department of Rehabilitation, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Aida Ormazabal
- Department of Clinical Biochemistry, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- European Reference Network for Hereditary Metabolic Diseases (MetabERN), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Itziar Alonso-Colmenero
- Pediatric Neurology Department, Hospital Sant Joan de Déu, Full Member of ERN EpiCare, Barcelona University, 08950 Barcelona, Spain
| | - Katia Sofía Illescas
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Sol Balsells-Mejía
- Department of Research Promotion and Management. Statistical Support, Hospital Sant Joan de Déu (HSJD), 08950 Barcelona, Spain
| | - Rosanna Mari-Vico
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Maria Duffo Viñas
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
- Child and Adolescent Mental Health Area, Psychiatry and Psychology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Gerarda Cappuccio
- Department of Translational Medical Sciences, Università degli Studi di Napoli 'Federico II', 80125 Naples, Italy
- Telethon Institute of Genetics and Medicine, Department of Pediatrics, Pozzuoli, 80131 Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Università degli Studi di Napoli 'Federico II', 80125 Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Università degli Studi di Napoli 'Federico II', 80125 Naples, Italy
| | - Filippo Manti
- Department of Human Neuroscience, University of Rome La Sapienza, 00185 Roma, Lazio, Italy
| | - Mario Mastrangelo
- Department of Women and Child Health and Uroginecological Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Child Neurology and Psychiatry Unit, Department of Neuroscience/Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Chiara Alfonsi
- Department of Human Neuroscience, University of Rome La Sapienza, 00185 Roma, Lazio, Italy
| | - Bruna de Siqueira Barros
- Núcleo de Estudos da Saúde do Adolescente, Programa de Pós-Graduação em Ciências Médicas, Universidade do Estado do Rio de Janeiro, Faculdade de Ciência Médicas, 56066 Rio de Janeiro, RJ, Brazil
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, 44093 Nantes, France
| | | | - Valeria L Muro
- Pediatric Neurology Unit, Hospital Britanico Buenos Aires, C1280AEB Buenos Aires, Argentina
| | - Daniela Karall
- Clinic for Paediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Fiona Zeiner
- Clinic for Paediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Silvia Masnada
- Department of Child Neurology, V. Buzzi Children's Hospital, 20125 Milan, Italy
| | - Irene Peterlongo
- Department of Child Neurology, V. Buzzi Children's Hospital, 20125 Milan, Italy
| | - Alfonso Oyarzábal
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Ana Santos-Gómez
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Xavier Altafaj
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Ángeles García-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| |
Collapse
|
8
|
Raber J, Holden S, Kessler K, Glaeser B, McQuesten C, Chaudhari M, Stenzel F, Lenarczyk M, Leonard SW, Morré J, Choi J, Kronenberg A, Borg A, Kwok A, Stevens JF, Olsen C, Willey JS, Bobe G, Minnier J, Baker JE. Effects of photon irradiation in the presence and absence of hindlimb unloading on the behavioral performance and metabolic pathways in the plasma of Fischer rats. Front Physiol 2024; 14:1316186. [PMID: 38260101 PMCID: PMC10800373 DOI: 10.3389/fphys.2023.1316186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: The space environment astronauts experience during space missions consists of multiple environmental challenges, including microgravity. In this study, we assessed the behavioral and cognitive performances of male Fisher rats 2 months after sham irradiation or total body irradiation with photons in the absence or presence of simulated microgravity. We analyzed the plasma collected 9 months after sham irradiation or total body irradiation for distinct alterations in metabolic pathways and to determine whether changes to metabolic measures were associated with specific behavioral and cognitive measures. Methods: A total of 344 male Fischer rats were irradiated with photons (6 MeV; 3, 8, or 10 Gy) in the absence or presence of simulated weightlessness achieved using hindlimb unloading (HU). To identify potential plasma biomarkers of photon radiation exposure or the HU condition for behavioral or cognitive performance, we performed regression analyses. Results: The behavioral effects of HU on activity levels in an open field, measures of anxiety in an elevated plus maze, and anhedonia in the M&M consumption test were more pronounced than those of photon irradiation. Phenylalanine, tyrosine, and tryptophan metabolism, and phenylalanine metabolism and biosynthesis showed very strong pathway changes, following photon irradiation and HU in animals irradiated with 3 Gy. Here, 29 out of 101 plasma metabolites were associated with 1 out of 13 behavioral measures. In the absence of HU, 22 metabolites were related to behavioral and cognitive measures. In HU animals that were sham-irradiated or irradiated with 8 Gy, one metabolite was related to behavioral and cognitive measures. In HU animals irradiated with 3 Gy, six metabolites were related to behavioral and cognitive measures. Discussion: These data suggest that it will be possible to develop stable plasma biomarkers of behavioral and cognitive performance, following environmental challenges like HU and radiation exposure.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Breanna Glaeser
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chloe McQuesten
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Mitali Chaudhari
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Fiona Stenzel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Marek Lenarczyk
- Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott Willem Leonard
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey Morré
- Mass Spectrometry Core, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alexander Borg
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Christopher Olsen
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Animal Sciences, Oregon State University, Corvallis, OR, United States
| | - Jessica Minnier
- Oregon Health & Science University-Portland State University School of Public Health, Knight Cancer Institute Biostatistics Shared Resource, The Knight Cardiovascular Institute, OR Health & Science University, Portland, OR, United States
| | - John E. Baker
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Gjerulfsen CE, Krey I, Klöckner C, Rubboli G, Lemke JR, Møller RS. Spectrum of NMDA Receptor Variants in Neurodevelopmental Disorders and Epilepsy. Methods Mol Biol 2024; 2799:1-11. [PMID: 38727899 DOI: 10.1007/978-1-0716-3830-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
N-methyl-D-aspartate receptors (NMDAR) are ligand-gated ion channels mediating excitatory neurotransmission and are important for normal brain development, cognitive abilities, and motor functions. Pathogenic variants in the Glutamate receptor Ionotropic N-methyl-D-aspartate (GRIN) genes (GRIN1, GRIN2A-D) encoding NMDAR subunits have been associated with a wide spectrum of neurodevelopmental disorders and epilepsies ranging from treatable focal epilepsies to devastating early-onset developmental and epileptic encephalopathies. Genetic variants in NMDA receptor genes can cause a range of complex alterations to receptor properties resulting in various degrees of loss-of-function, gain-of-function, or mixtures thereof. Understanding how genetic variants affect the function of the receptors, therefore, represents an important first step in the ongoing development towards targeted therapies. Currently, targeted treatment options for GRIN-related diseases are limited. However, treatment with memantine has been reported to significantly reduce seizure frequency in a few individuals with developmental and epileptic encephalopathies harboring de novo gain-of-function GRIN2A missense variants, and supplementary treatment with L-serine has been associated with improved motor and cognitive performance as well as reduced seizure frequency in patients with GRIN2B loss-of-function missense variants as well as GRIN2A and GRIN2B null variants.
Collapse
Affiliation(s)
- Cathrine E Gjerulfsen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark.
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
10
|
De Wachter M, Schoonjans AS, Weckhuysen S, Van Schil K, Löfgren A, Meuwissen M, Jansen A, Ceulemans B. From diagnosis to treatment in genetic epilepsies: Implementation of precision medicine in real-world clinical practice. Eur J Paediatr Neurol 2024; 48:46-60. [PMID: 38039826 DOI: 10.1016/j.ejpn.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/20/2023] [Accepted: 11/11/2023] [Indexed: 12/03/2023]
Abstract
The implementation of whole exome sequencing (WES) has had a major impact on the diagnostic yield of genetic testing in individuals with epilepsy. The identification of a genetic etiology paves the way to precision medicine: an individualized treatment approach, based on the disease pathophysiology. The aim of this retrospective cohort study was to: (1) determine the diagnostic yield of WES in a heterogeneous cohort of individuals with epilepsy referred for genetic testing in a real-world clinical setting, (2) investigate the influence of epilepsy characteristics on the diagnostic yield, (3) determine the theoretical yield of treatment changes based on genetic diagnosis and (4) explore the barriers to implementation of precision medicine. WES was performed in 247 individuals with epilepsy, aged between 7 months and 68 years. In 34/247 (14 %) a (likely) pathogenic variant was identified. In 7/34 (21 %) of these individuals the variant was found using a HPO-based filtering. Diagnostic yield was highest for individuals with an early onset of epilepsy (39 %) or in those with a developmental and epileptic encephalopathy (34 %). Precision medicine was a theoretical possibility in 20/34 (59 %) of the individuals with a (likely) pathogenic variant but implemented in only 11/34 (32 %). The major barrier to implementation of precision treatment was the limited availability or reimbursement of a given drug. These results confirm the potential impact of genetic analysis on treatment choices, but also highlight the hurdles to the implementation of precision medicine. To optimize precision medicine in real-world practice, additional endeavors are needed: unifying definitions of precision medicine, establishment of publicly accessible databases that include data on the functional effect of gene variants, increasing availability and reimbursement of precision therapeutics, and broadening access to innovative clinical trials.
Collapse
Affiliation(s)
- Matthias De Wachter
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium.
| | - An-Sofie Schoonjans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Sarah Weckhuysen
- Department of Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium; Applied&Translational Neurogenomics Group, VIB-CMN, VIB, UAntwerpen, Universiteitsplein 1, 2610, Wilrijk, Belgium; Translational Neurosciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kristof Van Schil
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Ann Löfgren
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Anna Jansen
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium; Translational Neurosciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| |
Collapse
|
11
|
Um KB, Kwak S, Cheon SH, Kim J, Hwang SK. AST-001 Improves Social Deficits and Restores Dopamine Neuron Activity in a Mouse Model of Autism. Biomedicines 2023; 11:3283. [PMID: 38137504 PMCID: PMC10741043 DOI: 10.3390/biomedicines11123283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impaired social communication and social interaction, restricted and repetitive behavior, and interests. The core symptoms of ASD are associated with deficits in mesocorticolimbic dopamine pathways that project from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). AST-001 is an investigational product currently in a phase 3 clinical trial for treating the core symptoms of ASD, with L-serine as the API (active pharmaceutical ingredient). Because the causes of ASD are extremely heterogeneous, a single genetic ASD model cannot represent all autism models. In this paper, we used the VPA-exposed model, which is more general and widely used than a single genetic model, but this is also one of the animal models of autism. Herein, we conducted experiments to demonstrate the efficacy of AST-001 as L-Serine that alters the regulation of the firing rate in dopamine neurons by inhibiting small conductance Ca2+-activated K+ channels (SK channels). Through these actions, AST-001 improved sociability and social novelty by rescuing the intrinsic excitabilities of dopamine neurons in VPA-exposed ASD mouse models that showed ASD-related behavioral abnormalities. It is thought that this effect of improving social deficits in VPA-exposed ASD mouse models is due to AST-001 normalizing aberrant SK channel activities that slowed VTA dopamine neuron firing. Overall, these findings suggest that AST-001 may be a potential therapeutic agent for ASD patients, and that its mechanism of action may involve the regulation of dopamine neuron activity and the improvement of social interaction.
Collapse
Affiliation(s)
- Ki Bum Um
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - Soyoung Kwak
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - Sun-Ha Cheon
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - JuHyun Kim
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - Su-Kyeong Hwang
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
12
|
Pérez IF, Villagra TB, Jiménez-Balado J, Redondo JJ, Recasens BB. Risk factors and outcome of epilepsy in adults with cerebral palsy or intellectual disability. Epilepsy Behav 2023; 147:109450. [PMID: 37769423 DOI: 10.1016/j.yebeh.2023.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Epilepsy is found in 10-60% of individuals with cerebral palsy (CP) and 5.5-35% with intellectual disability (ID). However, little is known about the long-term evolution of epilepsy among adults. The aim of the study is to describe the factors associated with epilepsy and its outcome in a population of adults with CP or ID. METHODS This retrospective study reviewed the medical records of 306 individuals with CP/ID. All individuals underwent neurological, psychiatric, and neuropsychological follow-ups. RESULTS In the cohort, 72.5% of the individuals had a CP diagnosis, with a mean age of 36.4 years (IQR 24.0-46.0). Epilepsy was present in 55.6% of the individuals and was associated with CP (p < 0.01), spastic subtype (p < 0.01), a higher degree of ID (p < 0.01), hemorrhagic and congenital malformation etiologies (p 0.011), abnormal neuroimaging (p < 0.01), and worse scores on motor and communication scales (p < 0.01). Drug-resistant epilepsy (DRE) (22.4%) was associated with higher scores on motor scales (p < 0.01). Additionally, 42.3% of the individuals who attempted antiseizure medication (ASM) withdrawal experienced recurrence, which was associated with epileptic activity on the electroencephalogram (EEG) (p 0.004). CONCLUSIONS Epilepsy is a common comorbidity in adults with CP or ID and is associated with greater brain damage and a more severe phenotype. Seizure recurrence after ASM withdrawal occurred in half of the individuals and was associated with epileptic activity on the EEG.
Collapse
Affiliation(s)
- Isabel Fernández Pérez
- Neurology Department, Fundació ASPACE Catalunya, Barcelona, Spain; Neurology Department, Hospital del Mar, Barcelona, Spain
| | | | - Joan Jiménez-Balado
- Neurovascular Research Lab, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jordi Jiménez Redondo
- Technical Secretariat and Research Commission, Fundació ASPACE Catalunya, Barcelona, Spain
| | - Bernat Bertran Recasens
- Neurology Department, Fundació ASPACE Catalunya, Barcelona, Spain; Neurology Department, Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
13
|
Myers SJ, Yuan H, Perszyk RE, Zhang J, Kim S, Nocilla KA, Allen JP, Bain JM, Lemke JR, Lal D, Benke TA, Traynelis SF. Classification of missense variants in the N-methyl-d-aspartate receptor GRIN gene family as gain- or loss-of-function. Hum Mol Genet 2023; 32:2857-2871. [PMID: 37369021 PMCID: PMC10508039 DOI: 10.1093/hmg/ddad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Advances in sequencing technology have generated a large amount of genetic data from patients with neurological conditions. These data have provided diagnosis of many rare diseases, including a number of pathogenic de novo missense variants in GRIN genes encoding N-methyl-d-aspartate receptors (NMDARs). To understand the ramifications for neurons and brain circuits affected by rare patient variants, functional analysis of the variant receptor is necessary in model systems. For NMDARs, this functional analysis needs to assess multiple properties in order to understand how variants could impact receptor function in neurons. One can then use these data to determine whether the overall actions will increase or decrease NMDAR-mediated charge transfer. Here, we describe an analytical and comprehensive framework by which to categorize GRIN variants as either gain-of-function (GoF) or loss-of-function (LoF) and apply this approach to GRIN2B variants identified in patients and the general population. This framework draws on results from six different assays that assess the impact of the variant on NMDAR sensitivity to agonists and endogenous modulators, trafficking to the plasma membrane, response time course and channel open probability. We propose to integrate data from multiple in vitro assays to arrive at a variant classification, and suggest threshold levels that guide confidence. The data supporting GoF and LoF determination are essential to assessing pathogenicity and patient stratification for clinical trials as personalized pharmacological and genetic agents that can enhance or reduce receptor function are advanced. This approach to functional variant classification can generalize to other disorders associated with missense variants.
Collapse
Affiliation(s)
- Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kelsey A Nocilla
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James P Allen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jennifer M Bain
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, Köln 50923, Germany
| | - Timothy A Benke
- Department of Pediatrics, Pharmacology and Neurology, University of Colorado School of Medicine, and Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Phone Myint SMM, Sun LY. L-serine: Neurological Implications and Therapeutic Potential. Biomedicines 2023; 11:2117. [PMID: 37626614 PMCID: PMC10452085 DOI: 10.3390/biomedicines11082117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
L-serine is a non-essential amino acid that plays a vital role in protein synthesis, cell proliferation, development, and sphingolipid formation in the central nervous system. It exerts its effects through the activation of glycine receptors and upregulation of PPAR-γ, resulting in neurotransmitter synthesis, neuroprotection, and anti-inflammatory effects. L-serine shows potential as a protective agent in various neurological diseases and neurodegenerative disorders. Deficiency of L-serine and its downstream products has been linked to severe neurological deficits. Despite its crucial role, there is limited understanding of its mechanistic production and impact on glial and neuronal cells. Most of the focus has been on D-serine, the downstream product of L-serine, which has been implicated in a wide range of neurological diseases. However, L-serine is approved by FDA for supplemental use, while D-serine is not. Hence, it is imperative that we investigate the wider effects of L-serine, particularly in relation to the pathogenesis of several neurological deficits that, in turn, lead to diseases. This review aims to explore current knowledge surrounding L-serine and its potential as a treatment for various neurological diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Liou Y. Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
15
|
He L, Ding Y, Zhou X, Li T, Yin Y. Serine signaling governs metabolic homeostasis and health. Trends Endocrinol Metab 2023; 34:361-372. [PMID: 36967366 DOI: 10.1016/j.tem.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 05/12/2023]
Abstract
Serine has functions that are involved in metabolic homeostasis and health in pathological or stressful situations. Notably, the de novo serine synthesis pathway (SSP) plays a vital role in targeted regulation of immune responses, cell proliferation, and lipid/protein metabolism. The presentation of serine residues derived from SSP may be a signal of stress and provide novel insights into the relationship between metabolic homeostasis and diseases. Here, we summarize the current trends in understanding the regulatory mechanisms of serine metabolism, discuss how serine signaling governs metabolic and antistress processes, including oxidative stress, immunity, energy and lipid metabolism, intestinal microbiota, and the neurological system. We present a possible framework by which serine metabolism maintains metabolic homeostasis and treats human diseases.
Collapse
Affiliation(s)
- Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
| | - Yaqiong Ding
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China
| | - Xihong Zhou
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China
| | - Tiejun Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
| | - Yulong Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
| |
Collapse
|
16
|
Herzog LE, Wang L, Yu E, Choi S, Farsi Z, Song BJ, Pan JQ, Sheng M. Mouse mutants in schizophrenia risk genes GRIN2A and AKAP11 show EEG abnormalities in common with schizophrenia patients. Transl Psychiatry 2023; 13:92. [PMID: 36914641 PMCID: PMC10011509 DOI: 10.1038/s41398-023-02393-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Schizophrenia is a heterogeneous psychiatric disorder with a strong genetic basis, whose etiology and pathophysiology remain poorly understood. Exome sequencing studies have uncovered rare, loss-of-function variants that greatly increase risk of schizophrenia [1], including loss-of-function mutations in GRIN2A (aka GluN2A or NR2A, encoding the NMDA receptor subunit 2A) and AKAP11 (A-Kinase Anchoring Protein 11). AKAP11 and GRIN2A mutations are also associated with bipolar disorder [2], and epilepsy and developmental delay/intellectual disability [1, 3, 4], respectively. Accessible in both humans and rodents, electroencephalogram (EEG) recordings offer a window into brain activity and display abnormal features in schizophrenia patients. Does loss of Grin2a or Akap11 in mice also result in EEG abnormalities? We monitored EEG in heterozygous and homozygous knockout Grin2a and Akap11 mutant mice compared with their wild-type littermates, at 3- and 6-months of age, across the sleep/wake cycle and during auditory stimulation protocols. Grin2a and Akap11 mutants exhibited increased resting gamma power, attenuated auditory steady-state responses (ASSR) at gamma frequencies, and reduced responses to unexpected auditory stimuli during mismatch negativity (MMN) tests. Sleep spindle density was reduced in a gene dose-dependent manner in Akap11 mutants, whereas Grin2a mutants showed increased sleep spindle density. The EEG phenotypes of Grin2a and Akap11 mutant mice show a variety of abnormal features that overlap considerably with human schizophrenia patients, reflecting systems-level changes caused by Grin2a and Akap11 deficiency. These neurophysiologic findings further substantiate Grin2a and Akap11 mutants as genetic models of schizophrenia and identify potential biomarkers for stratification of schizophrenia patients.
Collapse
Affiliation(s)
- Linnea E Herzog
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lei Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eunah Yu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zohreh Farsi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryan J Song
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
17
|
den Hollander B, Veenvliet ARJ, Rothuizen-Lindenschot M, van Essen P, Peters G, Santos-Gómez A, Olivella M, Altafaj X, Brands MM, Jacobs BAW, van Karnebeek CD. Evidence for effect of l-serine, a novel therapy for GRIN2B-related neurodevelopmental disorder. Mol Genet Metab 2023; 138:107523. [PMID: 36758276 DOI: 10.1016/j.ymgme.2023.107523] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
RATIONALE To date, causal therapy is potentially available for GRIN2B-related neurodevelopmental disorder (NDD) due to loss-of-function (LoF) variants in GRIN2B, resulting in dysfunction of the GluN2B subunit-containing N-methyl-d-aspartate receptor (NMDAR). Recently, in vitro experiments showed that high doses of NMDAR co-agonist d-serine has the potential to boost the activity in GluN2B LoF variant-containing NMDARs. Initial reports of GRIN2B-NDD patients LoF variants, treated with l-serine using different regimens, showed varying effects on motor and cognitive performance, communication, behavior and EEG. Here, this novel treatment using a standardized protocol with an innovative developmental outcome measure is explored further in an open-label observational GRIN2B-NDD study. METHODS Initially, in vitro studies were conducted in order to functionally stratify two de novo GRIN2B variants present in two female patients (18 months and 4 years old). Functional studies showed that both variants are LoF, and thus the patients were treated experimentally according to an approved protocol with oral l-serine (500 mg/kg/day in 4 doses) for a period of 12 months. Both patients showed a heterogeneous clinical phenotype, however overlapping symptoms were present: intellectual developmental disability (IDD), behavioral abnormalities and hypotonia. Outcome measures included laboratory tests, quality of life, sleep, irritability, stool, and performance skills, measured by, among others, the Perceive-Recall-Plan-Perform System of Task Analysis (PRPP-Assessment). RESULTS Both patients tolerated l-serine without adverse effects. In one patient, improvement in psychomotor development and cognitive functioning was observed after 12 months (PRPP mastery score 10% at baseline, 78% at twelve months). In the most severe clinically affected patient no significant objective improvement in validated outcomes was observed. Caregivers of both patients reported subjective increase of alertness and improved communication skills. CONCLUSION Our observational study confirms that l-serine supplementation is safe in patients with GRIN2B-NDD associated with LoF variants, and may accelerate psychomotor development and ameliorate cognitive performance in some but not all patients. The PRPP-Assessment, a promising instrument to evaluate everyday activities and enhance personalized and value-based care, was not performed in the severely affected patient, meaning that possible positive results may have been missed. To generate stronger evidence for effect of l-serine in GRIN2B-NDD, we will perform placebo-controlled n-of-1 trials.
Collapse
Affiliation(s)
- B den Hollander
- Amsterdam University Medical Centers, University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - A R J Veenvliet
- Amsterdam University Medical Centers, University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands; Radboud University Medical Center, Department of Pediatrics, Amalia Children's Hospital, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - M Rothuizen-Lindenschot
- Radboud University Medical Center, Department of Rehabilitation Medicine, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands; HAN University of Applied Sciences, Department of Occupational Therapy, Kapittelweg 33, Nijmegen, The Netherlands
| | - P van Essen
- Radboud University Medical Center, Department of Pediatrics, Amalia Children's Hospital, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - G Peters
- Radboud University Medical Center, Department of Rehabilitation Medicine, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - A Santos-Gómez
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - M Olivella
- Biosciences Department, Faculty of Sciences and Technology, University of Vic-Central University of Catalonia, Barcelona, Spain
| | - X Altafaj
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - M M Brands
- Amsterdam University Medical Centers, University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - B A W Jacobs
- Amsterdam University Medical Centers, Department of Pharmacy and Clinical Pharmacology, Meibergdreef 9, Amsterdam, The Netherlands; Medicine for Society, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - C D van Karnebeek
- Amsterdam University Medical Centers, University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands; Amsterdam University Medical Centers, Department of Human Genetics, Amsterdam Reproduction and Development, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Brünger T, Pérez-Palma E, Montanucci L, Nothnagel M, Møller RS, Schorge S, Zuberi S, Symonds J, Lemke JR, Brunklaus A, Traynelis SF, May P, Lal D. Conserved patterns across ion channels correlate with variant pathogenicity and clinical phenotypes. Brain 2023; 146:923-934. [PMID: 36036558 PMCID: PMC9976975 DOI: 10.1093/brain/awac305] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Clinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. As a consequence, therapeutic decision-making is challenging without molecular testing of each variant. Our biophysical knowledge of ion-channel structures and function is just emerging, and it is currently not well understood which amino acid residues cause disease when mutated. We sought to systematically identify biological properties associated with variant pathogenicity across all major voltage and ligand-gated ion-channel families. We collected and curated 3049 pathogenic variants from hundreds of neurodevelopmental and other disorders and 12 546 population variants for 30 ion channel or channel subunits for which a high-quality protein structure was available. Using a wide range of bioinformatics approaches, we computed 163 structural features and tested them for pathogenic variant enrichment. We developed a novel 3D spatial distance scoring approach that enables comparisons of pathogenic and population variant distribution across protein structures. We discovered and independently replicated that several pore residue properties and proximity to the pore axis were most significantly enriched for pathogenic variants compared to population variants. Using our 3D scoring approach, we showed that the strongest pathogenic variant enrichment was observed for pore-lining residues and alpha-helix residues within 5Å distance from the pore axis centre and not involved in gating. Within the subset of residues located at the pore, the hydrophobicity of the pore was the feature most strongly associated with variant pathogenicity. We also found an association between the identified properties and both clinical phenotypes and functional in vitro assays for voltage-gated sodium channels (SCN1A, SCN2A, SCN8A) and N-methyl-D-aspartate receptor (GRIN1, GRIN2A, GRIN2B) encoding genes. In an independent expert-curated dataset of 1422 neurodevelopmental disorder pathogenic patient variants and 679 electrophysiological experiments, we show that pore axis distance is associated with seizure age of onset and cognitive performance as well as differential gain versus loss-of-channel function. In summary, we identified biological properties associated with ion-channel malfunction and show that these are correlated with in vitro functional readouts and clinical phenotypes in patients with neurodevelopmental disorders. Our results suggest that clinical decision support algorithms that predict variant pathogenicity and function are feasible in the future.
Collapse
Affiliation(s)
- Tobias Brünger
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Eduardo Pérez-Palma
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago 7590943, Chile
| | - Ludovica Montanucci
- Lerner Research Institute Cleveland Clinic, Genomic Medicine Institute, Cleveland, OH 44195, USA
| | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
- University Hospital Cologne, 50937 Cologne, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, the Danish Epilepsy Center, DK 4293 Dianalund, Denmark
| | - Stephanie Schorge
- Department of Neuroscience, Physiology and Pharmacology, UCL, London WC1E 6BT, UK
| | - Sameer Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, UK
| | - Joseph Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, UK
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, UK
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322-3090, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
- Lerner Research Institute Cleveland Clinic, Genomic Medicine Institute, Cleveland, OH 44195, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
19
|
Fischer FP, Karge RA, Weber YG, Koch H, Wolking S, Voigt A. Drosophila melanogaster as a versatile model organism to study genetic epilepsies: An overview. Front Mol Neurosci 2023; 16:1116000. [PMID: 36873106 PMCID: PMC9978166 DOI: 10.3389/fnmol.2023.1116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Epilepsy is one of the most prevalent neurological disorders, affecting more than 45 million people worldwide. Recent advances in genetic techniques, such as next-generation sequencing, have driven genetic discovery and increased our understanding of the molecular and cellular mechanisms behind many epilepsy syndromes. These insights prompt the development of personalized therapies tailored to the genetic characteristics of an individual patient. However, the surging number of novel genetic variants renders the interpretation of pathogenetic consequences and of potential therapeutic implications ever more challenging. Model organisms can help explore these aspects in vivo. In the last decades, rodent models have significantly contributed to our understanding of genetic epilepsies but their establishment is laborious, expensive, and time-consuming. Additional model organisms to investigate disease variants on a large scale would be desirable. The fruit fly Drosophila melanogaster has been used as a model organism in epilepsy research since the discovery of "bang-sensitive" mutants more than half a century ago. These flies respond to mechanical stimulation, such as a brief vortex, with stereotypic seizures and paralysis. Furthermore, the identification of seizure-suppressor mutations allows to pinpoint novel therapeutic targets. Gene editing techniques, such as CRISPR/Cas9, are a convenient way to generate flies carrying disease-associated variants. These flies can be screened for phenotypic and behavioral abnormalities, shifting of seizure thresholds, and response to anti-seizure medications and other substances. Moreover, modification of neuronal activity and seizure induction can be achieved using optogenetic tools. In combination with calcium and fluorescent imaging, functional alterations caused by mutations in epilepsy genes can be traced. Here, we review Drosophila as a versatile model organism to study genetic epilepsies, especially as 81% of human epilepsy genes have an orthologous gene in Drosophila. Furthermore, we discuss newly established analysis techniques that might be used to further unravel the pathophysiological aspects of genetic epilepsies.
Collapse
Affiliation(s)
- Florian P. Fischer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Robin A. Karge
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Yvonne G. Weber
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Henner Koch
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Stefan Wolking
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
Sabo SL, Lahr JM, Offer M, Weekes ALA, Sceniak MP. GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms. Front Synaptic Neurosci 2023; 14:1090865. [PMID: 36704660 PMCID: PMC9873235 DOI: 10.3389/fnsyn.2022.1090865] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The GRIN2B-related neurodevelopmental disorder is a rare disease caused by mutations in the GRIN2B gene, which encodes the GluN2B subunit of NMDA receptors. Most individuals with GRIN2B-related neurodevelopmental disorder present with intellectual disability and developmental delay. Motor impairments, autism spectrum disorder, and epilepsy are also common. A large number of pathogenic de novo mutations have been identified in GRIN2B. However, it is not yet known how these variants lead to the clinical symptoms of the disease. Recent research has begun to address this issue. Here, we describe key experimental approaches that have been used to better understand the pathophysiology of this disease. We discuss the impact of several distinct pathogenic GRIN2B variants on NMDA receptor properties. We then critically review pivotal studies examining the synaptic and neurodevelopmental phenotypes observed when disease-associated GluN2B variants are expressed in neurons. These data provide compelling evidence that various GluN2B mutants interfere with neuronal differentiation, dendrite morphogenesis, synaptogenesis, and synaptic plasticity. Finally, we identify important open questions and considerations for future studies aimed at understanding this complex disease. Together, the existing data provide insight into the pathophysiological mechanisms that underlie GRIN2B-related neurodevelopmental disorder and emphasize the importance of comparing the effects of individual, disease-associated variants. Understanding the molecular, cellular and circuit phenotypes produced by a wide range of GRIN2B variants should lead to the identification of core neurodevelopmental phenotypes that characterize the disease and lead to its symptoms. This information could help guide the development and application of effective therapeutic strategies for treating individuals with GRIN2B-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Shasta L. Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,*Correspondence: Shasta L. Sabo
| | - Jessica M. Lahr
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Madelyn Offer
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Anika LA Weekes
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michael P. Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
21
|
GRIN2A-related epilepsy and speech disorders: A comprehensive overview with a focus on the role of precision therapeutics. Epilepsy Res 2023; 189:107065. [PMID: 36516565 DOI: 10.1016/j.eplepsyres.2022.107065] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Language dysfunction is a common and serious comorbidity of epilepsy, especially in individuals with epilepsy aphasia spectrum syndromes. Childhood epilepsy with centrotemporal spikes is on the mild end of the spectrum, while epileptic encephalopathy with continuous spike-and-wave during sleep syndrome is on the severe end. Traditional antiseizure medicines and immunotherapy are currently used to treat severely affected patients, but the results are usually disappointing. The discovery that GRIN2A is the primary monogenic etiology of these diseases has opened the door to precision treatments. The GRIN2A gene encodes GluN2A protein, which constitutes a subunit of the NMDA receptor (NMDAR). The GRIN2A pathogenic variants cause gain or loss of function of NMDAR; the former can be treated with uncompetitive NMDAR antagonists, such as memantine, while the latter with NMDAR co-agonist serine. Hyper-precision therapies with various other effective agents are likely to be developed shortly to target the diverse functional effects of different variants. Precision treatments for GRIN2A-related disorders will benefit those who suffer from the condition and pave the way for new therapeutic approaches to a variety of other NMDAR-linked neurodegenerative and psychiatric diseases (schizophrenia, Parkinson's disease, Alzheimer's disease, and so on). Furthermore, more research into GRIN2A-related disorders will help us better understand the neuroinflammatory and neuroimmunological basis of epilepsy, as well as the pathological and physiological network activation mechanisms that cause sleep activation of central-temporal spikes and language impairment.
Collapse
|
22
|
Clapcote SJ. How can we obtain truly translational mouse models to improve clinical outcomes in schizophrenia? Dis Model Mech 2022; 15:dmm049970. [PMID: 36441105 PMCID: PMC10655820 DOI: 10.1242/dmm.049970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Schizophrenia is a serious mental illness affecting 0.7% of the world's population. Despite over 50 years of schizophrenia drug identification and development, there have been no fundamental advances in the treatment of schizophrenia since the 1980s. Complex genetic aetiology and elusive pathomechanisms have made it difficult for researchers to develop models that sufficiently reflect pathophysiology to support effective drug discovery. However, recent large-scale, well-powered genomic studies have identified risk genes that represent tractable entry points to decipher disease mechanisms in heterogeneous patient populations and develop targeted treatments. Replicating schizophrenia-associated gene variants in mouse models is an important strategy to start understanding their pathogenicity and role in disease biology. Furthermore, longitudinal studies in a wide range of genetic mouse models from early postnatal life are required to assess the progression of this disease through developmental stages to improve early diagnostic strategies and enable preventative measures. By expanding and refining our approach to schizophrenia research, we can improve prevention strategies and treatment of this debilitating disease.
Collapse
|
23
|
Krey I, Platzer K, Esterhuizen A, Berkovic SF, Helbig I, Hildebrand MS, Lerche H, Lowenstein D, Møller RS, Poduri A, Sadleir L, Sisodiya SM, Weckhuysen S, Wilmshurst JM, Weber Y, Lemke JR. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord 2022; 24:765-786. [PMID: 35830287 PMCID: PMC10752379 DOI: 10.1684/epd.2022.1448] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2022] [Indexed: 01/19/2023]
Abstract
Epilepsy genetics is a rapidly developing field, in which novel disease-associated genes, novel mechanisms associated with epilepsy, and precision medicine approaches are continuously being identified. In the past decade, advances in genomic knowledge and analysis platforms have begun to make clinical genetic testing accessible for, in principle, people of all ages with epilepsy. For this reason, the Genetics Commission of the International League Against Epilepsy (ILAE) presents this update on clinical genetic testing practice, including current techniques, indications, yield of genetic testing, recommendations for pre- and post-test counseling, and follow-up after genetic testing is completed. We acknowledge that the resources vary across different settings but highlight that genetic diagnostic testing for epilepsy should be prioritized when the likelihood of an informative finding is high. Results of genetic testing, in particular the identification of causative genetic variants, are likely to improve individual care. We emphasize the importance of genetic testing for individuals with epilepsy as we enter the era of precision therapy.
Collapse
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alina Esterhuizen
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Heidelberg, VIC, Australia
| | - Ingo Helbig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Building C, Arnold-Heller-Straße 3, 24105 Kiel, Germany
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg and Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Holger Lerche
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Daniel Lowenstein
- Department of Neurology, University of California, San Francisco, USA
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology London, UK and Chalfont Centre for Epilepsy, Buckinghamshire, UK
| | - Sarah Weckhuysen
- Center for Molecular Neurology, VIB-University of Antwerp, VIB, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Jo M. Wilmshurst
- Department of Paediatric Neurology, Paediatric and Child Health, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Yvonne Weber
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
- Department of Epileptology and Neurology, University of Aachen, Germany
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
24
|
Syrbe S. Developmental and epileptic encephalopathies - therapeutic consequences of genetic testing. MED GENET-BERLIN 2022; 34:215-224. [PMID: 38835873 PMCID: PMC11006352 DOI: 10.1515/medgen-2022-2145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Developmental and epileptic encephalopathies comprise a heterogeneous group of monogenic neurodevelopmental disorders characterized by early-onset seizures, marked epileptic activity and abnormal neurocognitive development. The identification of an increasing number of underlying genetic alterations and their pathophysiological roles in cellular signaling drives the way toward novel precision therapies. The implementation of novel treatments that target the underlying mechanisms gives hope for disease modification that will improve not only the seizure burden but also the neurodevelopmental outcome of affected children. So far, beneficial effects are mostly reported in individual trials and small numbers of patients. There is a need for international collaborative studies to define the natural history and relevant outcome measures and to test novel pharmacological approaches.
Collapse
Affiliation(s)
- Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Burns W, Chaudhari BP, Haffner DN. Neurogenetic and Metabolic Mimics of Common Neonatal Neurological Disorders. Semin Pediatr Neurol 2022; 42:100972. [PMID: 35868729 DOI: 10.1016/j.spen.2022.100972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
Neurogenetic and metabolic diseases often present in the neonatal period, masquerading as other disorders, most commonly as neonatal encephalopathy and seizures. Advancements in our understanding of inborn errors of metabolism are leading to an increasing number of therapeutic options. Many of these treatments can improve long-term neurodevelopment and seizure control. However, the treatments are frequently condition-specific. A high index of suspicion is required for prompt identification and treatment. When suspected, simultaneous metabolic and molecular testing are recommended along with concurrent treatment.
Collapse
Affiliation(s)
- William Burns
- Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH.
| | - Bimal P Chaudhari
- Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Neonatology, Nationwide Children's Hospital, Columbus, OH; Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Darrah N Haffner
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Neurology, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
26
|
Personalized medicine for rare neurogenetic disorders: can we make it happen? Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006200. [PMID: 35332073 PMCID: PMC8958924 DOI: 10.1101/mcs.a006200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rare neurogenetic disorders are collectively common, affecting 3% of the population, and often manifest with complex multiorgan comorbidity. With advances in genetic, -omics, and computational analysis, more children can be diagnosed and at an earlier age. Innovations in translational research facilitate the identification of treatment targets and development of disease-modifying drugs such as gene therapy, nutraceuticals, and drug repurposing. This increasingly allows targeted therapy to prevent the often devastating manifestations of rare neurogenetic disorders. In this perspective, successes in diagnosis, prevention, and treatment are discussed with a focus on inherited disorders of metabolism. Barriers for the identification, development, and implementation of rare disease-specific therapies are discussed. New methodologies, care networks, and collaborative frameworks are proposed to optimize the potential of personalized genomic medicine to decrease morbidity and improve lives of these vulnerable patients.
Collapse
|