1
|
De K, Prasad P, Sinha S, Mukhopadhyay S, Roy SS. Synthesis, Characterization, and Biological Evaluation of Radiolabeled Glutamine Conjugated Polymeric Nanoparticles: A Simple Approach for Tumor Imaging. ACS APPLIED BIO MATERIALS 2023. [PMID: 37248067 DOI: 10.1021/acsabm.3c00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Application of nanoradiopharmaceuticals for molecular imaging has gained worldwide importance for their multifaceted potentials focusing on providing a safe and cost-effective approach. Biodistribution studies on such species are capable of bringing nanomedicine to patients. Current therapeutically available labeling strategies suffer from different limitations, including off-target cytotoxicity and radiolabel release over time. Poly(lactic-co-glycolic acid)(PLGA) nanoparticles are biodegradable carriers for a variety of contrast agents that can be employed in medicine with high loading capacity for multimodal imaging agents. Here, glutamine-conjugated PLGA polymers were used to construct polymeric nanoparticles (G-PNP) similar to unconjugated PLGA nanoparticles (PNP)s formulated for ex vivo cell labeling and in vivo tumor scintigraphy studies. G-PNP/PNP, characterized by Fourier-transform infrared, atomic-force-microscopy, particle-size, and zeta-potential studies, were biocompatible as evaluated by MTT assay. G-PNPs were radiolabeled with 99mtechnetium (99mTc) by borohydrite reduction. G-PNPs demonstrated higher cellular uptake than PNPs, with no major cytotoxicity. Radiochemical purity indicated that 99mTc labeled G-PNP (99mTc-G-PNP) can form a stable complex with substantial stability in serum with respect to time. Imaging studies showed that 99mTc-G-PNP significantly accumulated at the C6 glioma cell induced tumor-site in rats. Thus, 99mTc-G-PNP demonstrated favorable characteristics and imaging potential which may make it a promising tumor imaging nanoprobe as a nanoradiopharmaceutical.
Collapse
Affiliation(s)
- Kakali De
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Parash Prasad
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samarendu Sinha
- Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700 094, West Bengal, India
| | - Soma Mukhopadhyay
- Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700 094, West Bengal, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
2
|
Yu S, Chen L, Xu H, Long S, Jiang J, Wei W, Niu X, Li X. Application of nanomaterials in diagnosis and treatment of glioblastoma. Front Chem 2022; 10:1063152. [PMID: 36569956 PMCID: PMC9780288 DOI: 10.3389/fchem.2022.1063152] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Diagnosing and treating glioblastoma patients is currently hindered by several obstacles, such as tumor heterogeneity, the blood-brain barrier, tumor complexity, drug efflux pumps, and tumor immune escape mechanisms. Combining multiple methods can increase benefits against these challenges. For example, nanomaterials can improve the curative effect of glioblastoma treatments, and the synergistic combination of different drugs can markedly reduce their side effects. In this review, we discuss the progression and main issues regarding glioblastoma diagnosis and treatment, the classification of nanomaterials, and the delivery mechanisms of nanomedicines. We also examine tumor targeting and promising nano-diagnosis or treatment principles based on nanomedicine. We also summarize the progress made on the advanced application of combined nanomaterial-based diagnosis and treatment tools and discuss their clinical prospects. This review aims to provide a better understanding of nano-drug combinations, nano-diagnosis, and treatment options for glioblastoma, as well as insights for developing new tools.
Collapse
Affiliation(s)
- Shuangqi Yu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lijie Chen
- China Medical University, Shenyang, Liaoning, China
| | - Hongyu Xu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jiazhi Jiang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,*Correspondence: Xiang Li, ; Xing Niu, ; Wei Wei,
| | - Xing Niu
- China Medical University, Shenyang, Liaoning, China,*Correspondence: Xiang Li, ; Xing Niu, ; Wei Wei,
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,*Correspondence: Xiang Li, ; Xing Niu, ; Wei Wei,
| |
Collapse
|
3
|
Rhaman MM, Islam MR, Akash S, Mim M, Noor alam M, Nepovimova E, Valis M, Kuca K, Sharma R. Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: At a glance. Front Cell Dev Biol 2022; 10:989471. [PMID: 36120565 PMCID: PMC9478743 DOI: 10.3389/fcell.2022.989471] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022] Open
Abstract
In recent decades, research scientists, molecular biologists, and pharmacologists have placed a strong emphasis on cutting-edge nanostructured materials technologies to increase medicine delivery to the central nervous system (CNS). The application of nanoscience for the treatment of neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), Huntington’s disease (HD), brain cancer, and hemorrhage has the potential to transform care. Multiple studies have indicated that nanomaterials can be used to successfully treat CNS disorders in the case of neurodegeneration. Nanomedicine development for the cure of degenerative and inflammatory diseases of the nervous system is critical. Nanoparticles may act as a drug transporter that can precisely target sick brain sub-regions, boosting therapy success. It is important to develop strategies that can penetrate the blood–brain barrier (BBB) and improve the effectiveness of medications. One of the probable tactics is the use of different nanoscale materials. These nano-based pharmaceuticals offer low toxicity, tailored delivery, high stability, and drug loading capacity. They may also increase therapeutic effectiveness. A few examples of the many different kinds and forms of nanomaterials that have been widely employed to treat neurological diseases include quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These unique qualities, including sensitivity, selectivity, and ability to traverse the BBB when employed in nano-sized particles, make these nanoparticles useful for imaging studies and treatment of NDs. Multifunctional nanoparticles carrying pharmacological medications serve two purposes: they improve medication distribution while also enabling cell dynamics imaging and pharmacokinetic study. However, because of the potential for wide-ranging clinical implications, safety concerns persist, limiting any potential for translation. The evidence for using nanotechnology to create drug delivery systems that could pass across the BBB and deliver therapeutic chemicals to CNS was examined in this study.
Collapse
Affiliation(s)
- Md. Mominur Rhaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Md. Mominur Rhaman, ; Rohit Sharma,
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mobasharah Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Noor alam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- *Correspondence: Md. Mominur Rhaman, ; Rohit Sharma,
| |
Collapse
|
4
|
Zapolnik P, Pyrkosz A. Nanoemulsions as Gene Delivery in Mucopolysaccharidosis Type I-A Mini-Review. Int J Mol Sci 2022; 23:4785. [PMID: 35563175 PMCID: PMC9103791 DOI: 10.3390/ijms23094785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare monogenic disease in which glycosaminoglycans' abnormal metabolism leads to the storage of heparan sulfate and dermatan sulfate in various tissues. It causes its damage and impairment. Patients with the severe form of MPS I usually do not live up to the age of ten. Currently, the therapy is based on multidisciplinary care and enzyme replacement therapy or hematopoietic stem cell transplantation. Applying gene therapy might benefit the MPS I patients because it overcomes the typical limitations of standard treatments. Nanoparticles, including nanoemulsions, are used more and more in medicine to deliver a particular drug to the target cells. It allows for creating a specific, efficient therapy method in MPS I and other lysosomal storage disorders. This article briefly presents the basics of nanoemulsions and discusses the current state of knowledge about their usage in mucopolysaccharidosis type I.
Collapse
Affiliation(s)
- Paweł Zapolnik
- College of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Antoni Pyrkosz
- Department of Clinical Genetics, College of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
5
|
O’Connell RC, Dodd TM, Clingerman SM, Fluharty KL, Coyle J, Stueckle TA, Porter DW, Bowers L, Stefaniak AB, Knepp AK, Derk R, Wolfarth M, Mercer RR, Boots TE, Sriram K, Hubbs AF. Developing a Solution for Nasal and Olfactory Transport of Nanomaterials. Toxicol Pathol 2022; 50:329-343. [PMID: 35416103 PMCID: PMC9872725 DOI: 10.1177/01926233221089209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With advances in nanotechnology, engineered nanomaterial applications are a rapidly growing sector of the economy. Some nanomaterials can reach the brain through nose-to-brain transport. This transport creates concern for potential neurotoxicity of insoluble nanomaterials and a need for toxicity screening tests that detect nose-to-brain transport. Such tests can involve intranasal instillation of aqueous suspensions of nanomaterials in dispersion media that limit particle agglomeration. Unfortunately, protein and some elements in existing dispersion media are suboptimal for potential nose-to-brain transport of nanomaterials because olfactory transport has size- and ion-composition requirements. Therefore, we designed a protein-free dispersion media containing phospholipids and amino acids in an isotonic balanced electrolyte solution, a solution for nasal and olfactory transport (SNOT). SNOT disperses hexagonal boron nitride nanomaterials with a peak particle diameter below 100 nm. In addition, multiwalled carbon nanotubes (MWCNTs) in an established dispersion medium, when diluted with SNOT, maintain dispersion with reduced albumin concentration. Using stereomicroscopy and microscopic examination of plastic sections, dextran dyes dispersed in SNOT are demonstrated in the neuroepithelium of the nose and olfactory bulb of B6;129P2-Omptm3Mom/MomJ mice after intranasal instillation in SNOT. These findings support the potential for SNOT to disperse nanomaterials in a manner permitting nose-to-brain transport for neurotoxicity studies.
Collapse
Affiliation(s)
- Ryan C. O’Connell
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA,West Virginia University, Morgantown, West Virginia, USA
| | - Tiana M. Dodd
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | | - Kara L. Fluharty
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Jayme Coyle
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Todd A. Stueckle
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Dale W. Porter
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Lauren Bowers
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | | - Alycia K. Knepp
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Raymond Derk
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Michael Wolfarth
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Robert R. Mercer
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Theresa E. Boots
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Krishnan Sriram
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Ann F. Hubbs
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| |
Collapse
|
6
|
Nose-to-brain lipid nanocarriers: An active transportation across BBB in migraine management. Chem Phys Lipids 2022; 243:105177. [PMID: 35122739 DOI: 10.1016/j.chemphyslip.2022.105177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 12/21/2022]
Abstract
The present study focused on the development and evaluation of nanotechnology-based carrier systems of solid lipid nanoparticles (SLNs) to enhance the permeation and bioavailability of zolmitriptan across blood-brain-barrier (BBB). SLNs are the emerging field of nanotechnology with numerous applications like cosmetics and pharmaceutical research. Zolmitriptan-loaded SLNs were prepared by high-pressure homogenization method for targeted drug delivery to the brain. The SLNs were found to be round in shape with particle size ranging from 110 to 200nm and zeta potential upto -24.83± 3.03mV which indicates good colloidal stability. The maximum entrapment efficiency of zolmitriptan in SLNs was found to be 84.17± 12.24%. The in-vitro drug release and ex-vivo release studies exhibited 95.85±2.44% and 82.06±2.94% drug release, respectively for 24h. In-vivo studies was performed on male Wistar rats wherein the concentration of zolmitriptan was estimated in cerebrospinal fluid by LC-MS method. The selected formulation incorporated with SLNs showed significant enhancement in pharmacokinetic parameters like AUC (37.05± 2.45ng/mL), Cmax (42.08 ± 1.32ng/mL), Tmax (30min), and t1/2 (1.28h). Zolmitriptan-loaded SLNs via intranasal administration offers a novel approach to effectively circumvent first-pass hepatic metabolism than conventional oral route with 4-fold alleviation in permeation and 2-fold improvement in bioavailability. DATA AVAILABILITY: The data used to support the findings of this study are included within the article.
Collapse
|
7
|
Moradi SZ, Jalili F, Farhadian N, Joshi T, Wang M, Zou L, Cao H, Farzaei MH, Xiao J. Polyphenols and neurodegenerative diseases: focus on neuronal regeneration. Crit Rev Food Sci Nutr 2021; 62:3421-3436. [PMID: 33393375 DOI: 10.1080/10408398.2020.1865870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases are questions that modern therapeutics can still not answer. Great milestones have been achieved regarding liver, heart, skin, kidney and other types of organ transplantations but the greatest drawback is the adequate supply of these organs. Furthermore, there are still a few options available in the treatment of neurodegenerative diseases. With great advances in medical science, many health problems faced by humans have been solved, and their quality of life is improving. Moreover, diseases that were incurable in the past have now been fully cured. Still, the area of regenerative medicine, especially concerning neuronal regeneration, is in its infancy. Presently allopathic drugs, surgical procedures, organ transplantation, stem cell therapy forms the core of regenerative therapy. However, many times, the currently used therapies cannot completely cure damaged organs and neurodegenerative diseases. The current review focuses on the concepts of regeneration, hurdles faced in the path of regenerative therapy, neurodegenerative diseases and the idea of using peptides, cytokines, tissue engineering, genetic engineering, advanced stem cell therapy, and polyphenolic phytochemicals to cure damaged tissues and neurodegenerative diseases.
Collapse
Affiliation(s)
- Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faramarz Jalili
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Kumaun University (Nainital), Nainital, India
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Naqvi S, Panghal A, Flora SJS. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front Neurosci 2020; 14:494. [PMID: 32581676 PMCID: PMC7297271 DOI: 10.3389/fnins.2020.00494] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) disorders especially neurodegenerative disorders are the major challenge for public health and demand the great attention of researchers to protect people against them. In past few decades, different treatment strategies have been adopted, but their therapeutic efficacy are not enough and have only shown partial mitigation of symptoms. Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BSCFB) guard the CNS from harmful substances and pose as the major challenges in delivering drugs into CNS for treatment of CNS complications such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), stroke, epilepsy, brain tumors, multiple sclerosis (MS), and encephalitis, etc. Nanotechnology has come out as an exciting and promising new platform of treating neurological disorders and has shown great potential to overcome problems related to the conventional treatment approaches. Molecules can be nanoengineered to carry out multiple specific functions such as to cross the BBB, target specific cell or signaling pathway, respond to endogenous stimuli, and act as a vehicle for gene delivery, support nerve regeneration and cell survival. In present review, the role of nanocarrier systems such as liposomes, micelles, solid lipid nanoparticles (SLNPs), dendrimers, and nanoemulsions for delivery of various neurotherapeutic agents has been discussed, besides this, their mechanism of action, and nanoformulation of different neuroprotective agents like curcumin, edaravone, nerve growth factors in CNS disorders like Alzheimer’s, Parkinsonism, epilepsy, stroke, and brain tumors has been reviewed.
Collapse
Affiliation(s)
- Saba Naqvi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Archna Panghal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
9
|
Mallick A, Gupta A, Hussain A, Aparajay P, Singh S, Singh SK, Dev A. Intranasal delivery of gabapentin loaded optimized nanoemulsion for augmented permeation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Alshweiat A, Ambrus R, Csoka II. Intranasal Nanoparticulate Systems as Alternative Route of Drug Delivery. Curr Med Chem 2019; 26:6459-6492. [PMID: 31453778 DOI: 10.2174/0929867326666190827151741] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/25/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022]
Abstract
There is always a need for alternative and efficient methods of drug delivery. The nasal cavity can be considered as a non-invasive and efficient route of administration. It has been used for local, systemic, brain targeting, and vaccination delivery. Although many intranasal products are currently available on the market, the majority is used for local delivery with fewer products available for the other targets. As nanotechnology utilization in drug delivery has rapidly spread out, the nasal delivery has become attractive as a promising approach. Nanoparticulate systems facilitate drug transportation across the mucosal barrier, protect the drug from nasal enzyme degradation, enhance the delivery of vaccines to the lymphoid tissue of the nasal cavity with an adjuvant activity, and offer a way for peptide delivery into the brain and the systemic circulation, in addition to their potential for brain tumor treatment. This review article aims at discussing the potential benefit of the intranasal nanoparticulate systems, including nanosuspensions, lipid and surfactant, and polymer-based nanoparticles as regards productive intranasal delivery. The aim of this review is to focus on the topicalities of nanotechnology applications for intranasal delivery of local, systemic, brain, and vaccination purposes during the last decade, referring to the factors affecting delivery, regulatory aspects, and patient expectations. This review further identifies the benefits of applying the Quality by Design approaches (QbD) in product development. According to the reported studies on nanotechnology-based intranasal delivery, potential attention has been focused on brain targeting and vaccine delivery with promising outcomes. Despite the significant research effort in this field, nanoparticle-based products for intranasal delivery are not available. Thus, further efforts are required to promote the introduction of intranasal nanoparticulate products that can meet the requirements of regulatory affairs with high patient acceptance.
Collapse
Affiliation(s)
- Areen Alshweiat
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary.,Faculty of Pharmaceutical Science, The Hashemite University, Zarqa, Jordan
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - IIdikó Csoka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Co-delivery of GOLPH3 siRNA and gefitinib by cationic lipid-PLGA nanoparticles improves EGFR-targeted therapy for glioma. J Mol Med (Berl) 2019; 97:1575-1588. [PMID: 31673738 DOI: 10.1007/s00109-019-01843-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/10/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Glioblastoma is one of the most aggressive types of brain tumor. Epidermal growth factor receptors (EGFRs) are overexpressed in glioma, and EGFR amplifications and mutations lead to rapid proliferation and invasion. EGFR-targeted therapy might be an effective treatment for glioma. Gefitinib (Ge) is an EGFR tyrosine kinase inhibitor (TKI), and Golgi phosphoprotein 3 (GOLPH3) expression is associated with worse glioma prognosis. Downregulation of GOLPH3 could promote EGFR degradation. Here, an angiopep-2 (A2)-modified cationic lipid-poly (lactic-co-glycolic acid) (PLGA) nanoparticle (A2-N) was developed that can release Ge and GOLPH3 siRNA (siGOLPH3) upon entering glioma cells and therefore acts as a combinatorial anti-tumor therapy. The in vitro and in vivo studies proved that A2-N/Ge/siGOLPH3 successfully crossed the blood-brain barrier (BBB) and targeted glioma. Released siGOLPH3 effectively silenced GOLPH3 mRNA expression and further promoted EGFR and p-EGFR degradation. Released Ge also markedly inhibited EGFR signaling. This combined EGFR-targeted action achieved remarkable anti-glioma effects and could be a safe and effective treatment for glioma. KEY MESSAGES: Angiopep-2-modified cationic lipid polymer can penetrate the BBB. Gefitinib can inhibit EGFR signaling and block the autophosphorylation of critical tyrosine residues on EGFR. GOLPH3 siRNA can be transfected into glioma and downregulate GLOPH3 expression. A2-N/Ge/siGOLPH3 can inhibit glioma growth.
Collapse
|
12
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Mathematical Modeling and Simulation to Investigate the CNS Transport Characteristics of Nanoemulsion-Based Drug Delivery Following Intranasal Administration. Pharm Res 2019; 36:75. [PMID: 30923914 DOI: 10.1007/s11095-019-2610-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/14/2019] [Indexed: 01/17/2023]
Abstract
PURPOSE Despite encouraging preclinical results, mechanisms of CNS drug delivery following intranasal dosing of nanoemulsions remain incompletely understood. Herein, the transport characteristics of intranasally administered nanoemulsions are investigated using mathematical modeling and simulation. METHODS A compartmental model was developed to describe systemic and brain pharmacokinetics of drug solutions following intranasal dosing in rodents. The association between transport processes and CNS drug delivery was predicted using sensitivity analysis. Published pharmacokinetic data for four drugs; dosed as a nanoemulsion and aqueous solution were modeled to characterize differences in transport processes across formulations. RESULTS The intranasal model structure performed in a drug agnostic fashion. Sensitivity analysis suggested that though the extent of CNS drug delivery depends on nasal bioavailability, the CNS targeting efficiency is only sensitive to changes in drug permeability across the nasal epithelium. Modeling results indicated that nanoemulsions primarily improve nasal bioavailability and drug permeability across the olfactory epithelium, with minimal effect on drug permeability across the non-olfactory epithelium. CONCLUSIONS Using mathematical modeling we outlined dominant transport pathways following intranasal dosing, predicted the association between transport pathways and CNS drug delivery, predicted human CNS delivery after accounting for inter-species differences in nasal anatomy, and quantified the CNS delivery potential of different formulations in rodents.
Collapse
|
14
|
Fan LW, Carter K, Bhatt A, Pang Y. Rapid transport of insulin to the brain following intranasal administration in rats. Neural Regen Res 2019; 14:1046-1051. [PMID: 30762017 PMCID: PMC6404510 DOI: 10.4103/1673-5374.250624] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We previously reported that intranasal insulin protects substantia nigra dopaminergic neurons against 6-hydroxydopamine neurotoxicity in rats. This study aimed to assess insulin pharmacokinetics in the rat brain following intranasal application. Recombinant human insulin (rh-Ins) or phosphate buffer solution was administered to both nostrils of rats. Animals were sacrificed at 15 minutes, 1, 2, and 6 hours to determine insulin levels in different brain regions by an ultrasensitive, human-specific enzyme-linked immunosorbent assay kit. For fluorescence tracing study, rats were administered with intranasal florescence-tagged insulin (Alex546-Ins), and brains were fixed at 10 and 30 minutes to prepare sagittal sections. rh-Ins was detected in all brain regions examined except the cerebral cortex. The highest levels were detected in the brainstem, followed by the cerebellum, substantia nigra/ventral tegmental area, olfactory bulb, striatum, hippocampus, and thalamus/hypothalamus. Insulin levels reached a peak at 15 minutes and then declined gradually overtime, but remained significantly higher than baseline levels at 6 hours in most regions. Consistently, widespread Alex546-Ins-binding cells were detected in the brain at 10 and 30 minutes, with the olfactory bulb and brainstem showing the highest while the cerebral cortex showing lowest fluorescence signals. Double-immunostaining showed that Alex546-Ins-bindings were primarily co-localized with neuronal nuclei-positive neurons. In the subtantia nigra, phospho-Akt was found to be activated in a subset of Alex546-Ins and tyrosine hydroxylase double-labeled cells, suggesting activation of the Akt/PI3K pathway in these dopaminergic neurons. Data from this study suggest that intranasal insulin could effectively reach deep brain structures including the nigrostriatal pathways, where it binds to dopaminergic neurons and activates intracellular cell survival signaling. This study was approved by the Institutional Animal Care Committee at the University of Mississippi Medical Center (protocol 1333A) on June 29, 2015.
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kathleen Carter
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Abhay Bhatt
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
15
|
Wu X, Yang H, Yang W, Chen X, Gao J, Gong X, Wang H, Duan Y, Wei D, Chang J. Nanoparticle-based diagnostic and therapeutic systems for brain tumors. J Mater Chem B 2019; 7:4734-4750. [DOI: 10.1039/c9tb00860h] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many theranostic nanoparticles have been tailored for high-efficiency diagnostic or therapeutic agents or applied as carriers and might provide new possibilities for brain tumor diagnosis and treatment.
Collapse
|
16
|
Roovers J, De Jonghe P, Weckhuysen S. The therapeutic potential of RNA regulation in neurological disorders. Expert Opin Ther Targets 2018; 22:1017-1028. [PMID: 30372655 DOI: 10.1080/14728222.2018.1542429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gene regulation is the term used to describe the mechanisms by which a cell increases or decreases the amount of a gene product (RNA or protein). In complex organs such as the brain, gene regulation is of the utmost importance; aberrations in the regulation of specific genes can lead to neurological disorders. Understanding these mechanisms can create new strategies for targeting these disorders and progress is being made. Two drugs that function at the RNA level (nusinersen and eteplirsen) have now been approved by the FDA for the treatment of Spinomuscular atrophy and Duchenne muscular dystrophy, respectively; several other compounds for neurological disease are currently being investigated in preclinical studies and clinical trials. Areas covered: We highlight how gene regulation at the level of RNA molecules can be used as a therapeutic strategy to treat neurological disorders. We provide examples of how such an approach is being studied or used and discuss the current hurdles. Expert opinion: Targeting gene expression at the RNA level is a promising strategy to treat genetic neurological disorders. Safe administration, long-term efficacy, and potential side effects, however, still need careful evaluation before RNA therapeutics can be applied on a larger scale.
Collapse
Affiliation(s)
- Jolien Roovers
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium
| | - Peter De Jonghe
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium.,c Department of Neurology , University Hospital Antwerp , Antwerp , Belgium
| | - Sarah Weckhuysen
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium.,c Department of Neurology , University Hospital Antwerp , Antwerp , Belgium
| |
Collapse
|
17
|
Wang X, Wang X, Guo Z. Metal-involved theranostics: An emerging strategy for fighting Alzheimer’s disease. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Abdou EM, Kandil SM, Miniawy HMFE. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int J Pharm 2017; 529:667-677. [PMID: 28729175 DOI: 10.1016/j.ijpharm.2017.07.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/06/2017] [Accepted: 07/08/2017] [Indexed: 12/28/2022]
Abstract
Zolmitriptan (ZT) is a well-tolerated drug in migraine treatment suffering from low bioavailability due to low amount of the drug that reaches the brain after oral and nasal delivery. Development of new nasal mucoadhesive nanoemulsion formulation for zolmitriptan may success in delivering the drug directly from the nose to the brain to achieve rapid onset of action and high drug concentration in the brain which is required for treatment of acute migraine. ZT mucoadhesive nanoemulsion were prepared and characterized for drug content, zeta potential, particle size, morphology, residence time and permeation through the nasal mucosa. The selected formula was tested in-vivo in mice for its pharmacokinetics in comparison with intravenous and nasal solution of zolmitriptan. Results showed that addition of chitosan as mucoadhesive agent in 0.3% concentration to the nanoemulsion enhanced its residence time and zetapotential with no significant effect on the globule size. All tested formulations showed higher permeability coefficients than the zolmitriptan solution through the nasal mucosa. In-vivo studies showed that the mucoadhesive nanoemulsion formulation of zolmitriptan has higher AUC0-8 and shorter Tmax in the brain than the intravenous or the nasal solution. This was related to the small globule size and higher permeability of the formulation.
Collapse
Affiliation(s)
- Ebtsam M Abdou
- Department of pharmaceutics, National Organization of Drug Control and Research (NODCAR), Cairo, Egypt.
| | - Soha M Kandil
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology & Information(MTI), Cairo, Egypt
| | - Hala M F El Miniawy
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
19
|
Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery. J Neuroimmune Pharmacol 2017; 12:51-83. [PMID: 28160121 DOI: 10.1007/s11481-016-9724-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Neurological diseases and disorders (NDDs) present a significant societal burden and currently available drug- and biological-based therapeutic strategies have proven inadequate to alleviate it. Gene therapy is a suitable alternative to treat NDDs compared to conventional systems since it can be tailored to specifically alter select gene expression, reverse disease phenotype and restore normal function. The scope of gene therapy has broadened over the years with the advent of RNA interference and genome editing technologies. Consequently, encouraging results from central nervous system (CNS)-targeted gene delivery studies have led to their transition from preclinical to clinical trials. As we shift to an exciting gene therapy era, a retrospective of available literature on CNS-associated gene delivery is in order. This review is timely in this regard, since it analyzes key challenges and major findings from the last two decades and evaluates future prospects of brain gene delivery. We emphasize major areas consisting of physiological and pharmacological challenges in gene therapy, function-based selection of a ideal cellular target(s), available therapy modalities, and diversity of viral vectors and nanoparticles as vehicle systems. Further, we present plausible answers to key questions such as strategies to circumvent low blood-brain barrier permeability and most suitable CNS cell types for targeting. We compare and contrast pros and cons of the tested viral vectors in the context of delivery systems used in past and current clinical trials. Gene vector design challenges are also evaluated in the context of cell-specific promoters. Key challenges and findings reported for recent gene therapy clinical trials, assessing viral vectors and nanoparticles are discussed from the perspective of bench to bedside gene therapy translation. We conclude this review by tying together gene delivery challenges, available vehicle systems and comprehensive analyses of neuropathogenesis to outline future prospects of CNS-targeted gene therapies.
Collapse
|
20
|
Nanotechnology-based drug delivery systems for Alzheimer's disease management: Technical, industrial, and clinical challenges. J Control Release 2016; 245:95-107. [PMID: 27889394 DOI: 10.1016/j.jconrel.2016.11.025] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with high prevalence in the rapidly growing elderly population in the developing world. The currently FDA approved drugs for the management of symptomatology of AD are marketed mainly as conventional oral medications. Due to their gastrointestinal side effects and lack of brain targeting, these drugs and dosage regiments hinder patient compliance and lead to treatment discontinuation. Nanotechnology-based drug delivery systems (NTDDS) administered by different routes can be considered as promising tools to improve patient compliance and achieve better therapeutic outcomes. Despite extensive research, literature screening revealed that clinical activities involving NTDDS application in research for AD are lagging compared to NTDDS for other diseases such as cancers. The industrial perspectives, processability, and cost/benefit ratio of using NTDDS for AD treatment are usually overlooked. Moreover, active and passive immunization against AD are by far the mostly studied alternative AD therapies because conventional oral drug therapy is not yielding satisfactorily results. NTDDS of approved drugs appear promising to transform this research from 'paper to clinic' and raise hope for AD sufferers and their caretakers. This review summarizes the recent studies conducted on NTDDS for AD treatment, with a primary focus on the industrial perspectives and processability. Additionally, it highlights the ongoing clinical trials for AD management.
Collapse
|
21
|
|
22
|
Li X, Tsibouklis J, Weng T, Zhang B, Yin G, Feng G, Cui Y, Savina IN, Mikhalovska LI, Sandeman SR, Howel CA, Mikhalovsky SV. Nano carriers for drug transport across the blood-brain barrier. J Drug Target 2016; 25:17-28. [PMID: 27126681 DOI: 10.1080/1061186x.2016.1184272] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully discussed.
Collapse
Affiliation(s)
- Xinming Li
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China.,b School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , UK
| | - John Tsibouklis
- b School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , UK
| | - Tingting Weng
- c Department of Chemical Engineering , Guangdong Petroleum and Chemical Technology Institute , Foshan , China
| | - Buning Zhang
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Guoqiang Yin
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Guangzhu Feng
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Yingde Cui
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Irina N Savina
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Lyuba I Mikhalovska
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Susan R Sandeman
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Carol A Howel
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Sergey V Mikhalovsky
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK.,e School of Engineering , Nazarbayev Uiversity , Astana , Kazakhstan
| |
Collapse
|
23
|
Kumar A, Jain SK. Preliminary studies for the development of intranasal nanoemulsion containing CNS agent: emphasizing the utilization of cut and weigh method. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:515-521. [PMID: 27007745 DOI: 10.3109/21691401.2016.1160405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT The selection of excipients and preformulation strategy plays a vital role for the development of nanoemulsion, due to anatomical and physiological challenges posed by nasal cavity. OBJECTIVE This attempt is focused on the selection and optimization of excipients for the development of a nanoemulsion system for intranasal delivery. MATERIALS AND METHODS Excipients were selected on the basis of solubility of active drug, compatibility interactions and nasal irritancy. Surfactant and co-surfactant combination and their ratio were finalized on the basis of nanoemulsion region obtained from constructed phase diagrams with Capmul MCM as oil phase. A validated cut and weigh method was employed for the optimization of different phase diagrams with respect to nanoemulsion region. RESULTS AND DISCUSSION The solubility of drug in Capmul MCM, Labrasol, and Transcutol-P was found to be superior with numeric values of 79.50 ± 1.68 mg/ml, 51.10 ± 1.39 mg/ml, and 36.60 ± 0.85 mg/ml, respectively. On the basis of phase diagram analysis, Labrasol and Transcutol-P in 3:1 ratio provides greater nanoemulsion region of 65.28 ± 0.18%. The validation of cut and weigh method revealed that there was no significant statistical difference (P > 0.05) with a %RSD value of 2.38 for intersheet variation. CONCLUSION The results of validation studies for cut and weigh method suggests that it can be effectively used as an optimization method for the selection of nanoemulsion composition.
Collapse
Affiliation(s)
- Amrish Kumar
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (Central University) , Bilaspur , Chhattisgarh , India
| | - Sunil Kumar Jain
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (Central University) , Bilaspur , Chhattisgarh , India
| |
Collapse
|
24
|
Tang X, Liang Y, Zhu Y, Xie C, Yao A, Chen L, Jiang Q, Liu T, Wang X, Qian Y, Wei J, Ni W, Dai J, Jiang Z, Hou W. Anti-transferrin receptor-modified amphotericin B-loaded PLA-PEG nanoparticles cure Candidal meningitis and reduce drug toxicity. Int J Nanomedicine 2015; 10:6227-41. [PMID: 26491294 PMCID: PMC4599718 DOI: 10.2147/ijn.s84656] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fatal fungal infections in central nervous system (CNS) can occur through hematogenous spread or direct extension. At present, hydrophobic amphotericin B (AMB) is the most effective antifungal drug in clinical trials. However, AMB is hydrophobic and therefore penetrates poorly into the CNS, and therapeutic levels of AMB are hard to achieve. The transferrin receptor (TfR/CD71) located at the blood-brain barrier mediates transferrin transcytosis. In order to enhance the receptor-mediated delivery of AMB into CNS with therapeutic level, an anti-TfR antibody (OX26)-modified AMB-loaded PLA (poly[lactic acid])-PEG (polyethylene glycol)-based micellar drug delivery system was constructed. The prepared OX26-modified AMB-loaded nanoparticles (OX26-AMB-NPs) showed significant reduction of CNS fungal burden and an increase of mouse survival time. In conclusion, OX26-AMB-NPs represent a promising novel drug delivery system for intracerebral fungal infection.
Collapse
Affiliation(s)
- Xiaolong Tang
- Clinical Laboratory, Huainan First People's Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China ; State Key Laboratory of Virology/Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yong Liang
- Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, Huaian, People's Republic of China
| | - Yongqiang Zhu
- Clinical Laboratory, Huainan First People's Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China ; Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chunmei Xie
- School of Biotechnology, Southern Medical University, Guangzhou, People's Republic of China
| | - Aixia Yao
- Clinical Laboratory, Huainan First People's Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China
| | - Li Chen
- Clinical Laboratory, Huainan First People's Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China
| | - Qinglin Jiang
- Clinical Laboratory, Huainan First People's Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China
| | - Tingting Liu
- Clinical Laboratory, Huainan First People's Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China
| | - Xiaoyu Wang
- Clinical Laboratory, Huainan First People's Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China
| | - Yunyun Qian
- Clinical Laboratory, Huainan First People's Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China
| | - Jia Wei
- Clinical Laboratory, Huainan First People's Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China
| | - Wenxuan Ni
- Clinical Laboratory, Huainan First People's Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China
| | - Jingjing Dai
- Clinical Laboratory, Huainan First People's Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan, People's Republic of China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, People's Republic of China ; Guangdong Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, People's Republic of China
| | - Wei Hou
- State Key Laboratory of Virology/Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
25
|
Dilnawaz F, Sahoo SK. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov Today 2015; 20:1256-64. [DOI: 10.1016/j.drudis.2015.06.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/20/2015] [Accepted: 06/11/2015] [Indexed: 11/26/2022]
|
26
|
Basalious EB, Shamma RN. Novel self-assembled nano-tubular mixed micelles of Pluronics P123, Pluronic F127 and phosphatidylcholine for oral delivery of nimodipine: In vitro characterization, ex vivo transport and in vivo pharmacokinetic studies. Int J Pharm 2015; 493:347-56. [DOI: 10.1016/j.ijpharm.2015.07.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
27
|
Ross KA, Brenza TM, Binnebose AM, Phanse Y, Kanthasamy AG, Gendelman HE, Salem AK, Bartholomay LC, Bellaire BH, Narasimhan B. Nano-enabled delivery of diverse payloads across complex biological barriers. J Control Release 2015; 219:548-559. [PMID: 26315817 DOI: 10.1016/j.jconrel.2015.08.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 01/12/2023]
Abstract
Complex biological barriers are major obstacles for preventing and treating disease. Nanocarriers are designed to overcome such obstacles by enhancing drug delivery through physiochemical barriers and improving therapeutic indices. This review critically examines both biological barriers and nanocarrier payloads for a variety of drug delivery applications. A spectrum of nanocarriers is discussed that have been successfully developed for improving tissue penetration for preventing or treating a range of infectious, inflammatory, and degenerative diseases.
Collapse
Affiliation(s)
- Kathleen A Ross
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA
| | - Timothy M Brenza
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA
| | - Andrea M Binnebose
- Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Vet Med, Ames 50011, USA
| | - Yashdeep Phanse
- Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison 53706, USA
| | | | - Howard E Gendelman
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha 68198, USA
| | - Aliasger K Salem
- Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, 115 S. Grand Avenue, Iowa City 52242, USA
| | - Lyric C Bartholomay
- Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison 53706, USA
| | - Bryan H Bellaire
- Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Vet Med, Ames 50011, USA
| | - Balaji Narasimhan
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA.
| |
Collapse
|
28
|
Fonseca-Santos B, Gremião MPD, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease. Int J Nanomedicine 2015; 10:4981-5003. [PMID: 26345528 PMCID: PMC4531021 DOI: 10.2147/ijn.s87148] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
29
|
Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine 2015; 10:4321-40. [PMID: 26170667 PMCID: PMC4498719 DOI: 10.2147/ijn.s78308] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed.
Collapse
Affiliation(s)
- Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianfeng Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Limin Wei
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
30
|
Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. Application of dental nanomaterials: potential toxicity to the central nervous system. Int J Nanomedicine 2015; 10:3547-65. [PMID: 25999717 PMCID: PMC4437601 DOI: 10.2147/ijn.s79892] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.
Collapse
Affiliation(s)
- Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianfeng Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Limin Wei
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
31
|
Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:715-29. [PMID: 25652894 DOI: 10.1016/j.nano.2014.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
Nanoparticulate delivery systems represent an area of particular promise for nanoneuromedicines. They possess significant potential for desperately needed therapies designed to combat a range of disorders associated with aging. As such, the field was selected as the focus for the 2014 meeting of the American Society for Nanomedicine. Regenerative, protective, immune modulatory, anti-microbial and anti-inflammatory products, or imaging agents are readily encapsulated in or conjugated to nanoparticles and as such facilitate the delivery of drug payloads to specific action sites across the blood-brain barrier. Diagnostic imaging serves to precisely monitor disease onset and progression while neural stem cell replacement can regenerate damaged tissue through control of stem cell fates. These, taken together, can improve disease burden and limit systemic toxicities. Such enabling technologies serve to protect the nervous system against a broad range of degenerative, traumatic, metabolic, infectious and immune disorders. From the clinical editor: Nanoneuromedicine is a branch of nanomedicine that specifically looks at the nervous system. In the clinical setting, a fundamental hurdle in nervous system disorders is due to an inherent inability of nerve cells to regenerate after damage. Nanotechnology can offer new approaches to overcome these challenges. This review describes recent developments in nanomedicine delivery systems that would affect stem cell repair and regeneration in the nervous system.
Collapse
|
32
|
Ballerini C, Baldi G, Aldinucci A, Maggi P. Nanomaterial applications in multiple sclerosis inflamed brain. J Neuroimmune Pharmacol 2015; 10:1-13. [PMID: 25616566 DOI: 10.1007/s11481-015-9588-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
In the last years scientific progress in nanomaterials, where size and shape make the difference, has increased their utilization in medicine with the development of a promising new translational science: nanomedicine. Due to their surface and core biophysical properties, nanomaterials hold the promise for medical applications in central nervous system (CNS) diseases: inflammatory, degenerative and tumors. The present review is focused on nanomaterials at the neuro-immune interface, evaluating two aspects: the possible CNS inflammatory response induced by nanomaterials and the developments of nanomaterials to improve treatment and diagnosis of neuroinflammatory diseases, with a focus on multiple sclerosis (MS). Indeed, nanomedicine allows projecting new ways of drug delivery and novel techniques for CNS imaging. Despite the wide field of application in neurological diseases of nanomaterials, our topic here is to review the more recent development of nanomaterials that cross blood brain barrier (BBB) and reach specific target during CNS inflammatory diseases, a crucial strategy for CNS early diagnosis and drug delivery, indeed the main challenges of nanomedicine.
Collapse
Affiliation(s)
- Clara Ballerini
- Department of Neurofarba, University of Florence, Viale Pieraccini, 6, 50137, Florence, Italy,
| | | | | | | |
Collapse
|
33
|
Image-Guided Delivery of Therapeutics to the Brain. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Li J, Cai P, Shalviri A, Henderson JT, He C, Foltz WD, Prasad P, Brodersen PM, Chen Y, DaCosta R, Rauth AM, Wu XY. A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS NANO 2014; 8:9925-9940. [PMID: 25307677 DOI: 10.1021/nn501069c] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Metastatic brain cancers, in particular cancers with multiple lesions, are one of the most difficult malignancies to treat owing to their location and aggressiveness. Chemotherapy for brain metastases offers some hope. However, its efficacy is severely limited as most chemotherapeutic agents are incapable of crossing the blood-brain barrier (BBB) efficiently. Thus, a multifunctional nanotheranostic system based on poly(methacrylic acid)-polysorbate 80-grafted-starch was designed herein for the delivery of BBB-impermeable imaging and therapeutic agents to brain metastases of breast cancer. In vivo magnetic resonance imaging and confocal fluorescence microscopy were used to confirm extravasation of gadolinium and dye-loaded nanoparticles from intact brain microvessels in healthy mice. The targetability of doxorubicin (Dox)-loaded nanoparticles to intracranially established brain metastases of breast cancer was evaluated using whole body and ex vivo fluorescence imaging of the brain. Coexistence of nanoparticles and Dox in brain metastatic lesions was further confirmed by histological and microscopic examination of dissected brain tissue. Immuno-histochemical staining for caspase-3 and terminal-deoxynucleotidyl transferase dUTP nick end labeling for DNA fragmentation in tumor-bearing brain sections revealed that Dox-loaded nanoparticles selectively induced cancer cell apoptosis 24 h post-injection, while sparing normal brain cells from harm. Such effects were not observed in the mice treated with free Dox. Treatment with Dox-loaded nanoparticles significantly inhibited brain tumor growth compared to free Dox at the same dose as assessed by in vivo bioluminescence imaging of the brain metastases. These findings suggest that the multifunctional nanoparticles are promising for the treatment of brain metastases.
Collapse
Affiliation(s)
- Jason Li
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Qian S, Wang Q, Zuo Z. Improved brain uptake of peptide-based CNS drugs via alternative routes of administrations of its nanocarrier delivery systems: a promising strategy for CNS targeting delivery of peptides. Expert Opin Drug Metab Toxicol 2014; 10:1491-508. [DOI: 10.1517/17425255.2014.956080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Gomes MJ, Neves JD, Sarmento B. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int J Nanomedicine 2014; 9:1757-69. [PMID: 24741312 PMCID: PMC3984056 DOI: 10.2147/ijn.s45886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antiretroviral drug therapy plays a cornerstone role in the treatment of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome patients. Despite obvious advances over the past 3 decades, new approaches toward improved management of infected individuals are still required. Drug distribution to the central nervous system (CNS) is required in order to limit and control viral infection, but the presence of natural barrier structures, in particular the blood-brain barrier, strongly limits the perfusion of anti-HIV compounds into this anatomical site. Nanotechnology-based approaches may help providing solutions for antiretroviral drug delivery to the CNS by potentially prolonging systemic drug circulation, increasing the crossing and reducing the efflux of active compounds at the blood-brain barrier, and providing cell/tissue-targeting and intracellular drug delivery. After an initial overview on the basic features of HIV infection of the CNS and barriers to active compound delivery to this anatomical site, this review focuses on recent strategies based on antiretroviral drug-loaded solid nanoparticles and drug nanosuspensions for the potential management of HIV infection of the CNS.
Collapse
Affiliation(s)
| | - José das Neves
- Instituto de Engenharia Biomédica (INEB), Porto, Portugal ; Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Instituto Superior de Ciências da Saúde-Norte, CESPU, Gandra, Portugal
| | - Bruno Sarmento
- Instituto de Engenharia Biomédica (INEB), Porto, Portugal ; Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Instituto Superior de Ciências da Saúde-Norte, CESPU, Gandra, Portugal
| |
Collapse
|
37
|
Shah L, Gattacceca F, Amiji MM. CNS delivery and pharmacokinetic evaluations of DALDA analgesic peptide analog administered in Nano-sized oil-in-water emulsion formulation. Pharm Res 2013; 31:1315-24. [PMID: 24297071 DOI: 10.1007/s11095-013-1252-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/10/2013] [Indexed: 12/18/2022]
Abstract
PURPOSE Although neuro-active peptides are highly potent as central nervous system (CNS) therapeutics, their systemic delivery across the blood-brain barrier (BBB) is limited due to lack of permeability in the brain and rapid systemic metabolism. In this study, we aimed at enhancing the brain delivery and stability of chemically modified [D-Arg(2), Lys(4)]-dermorphin-(1-4)-amide)] (DALDA) peptide to achieve prolonged analgesic effects. METHODS The C8-DALDA peptide analog was encapsulated in an oil-in-water nanoemulsion formulation made specifically with oils rich in omega-3 rich polyunsaturated fatty acid (PUFA) to enhance CNS availability. The nanoemulsion formulation was administered systemically in CD-1 mice and qualitative and quantitative biodistribution was evaluated. We have also examined the effect of curcumin, which is known to down-regulate efflux transporters and inhibit systemic metabolism, on the pharmacokinetic properties of the peptide. RESULTS Qualitative and quantitative biodistribution and pharmacokinetic studies in mice clearly demonstrated improved plasma and brain exposure of modified DALDA when administered in nanoemulsion, thereby providing an exciting opportunity towards improved efficacy and/or lowered dose of the peptide. The various dosing regimens tested for modified DALDA solution and curcumin nanoemulsion directed towards a novel combination strategy for improved systemic delivery of peptides across the BBB. CONCLUSIONS Encapsulation of the drug in PUFA nanoemulsion is an effective strategy for delivery of peptides. This work provides a novel combination strategy for improved delivery of peptides to the brain.
Collapse
Affiliation(s)
- Lipa Shah
- Department of Pharmaceutical Sciences, School of Pharmacy Bouvé College of Health Sciences, Northeastern University, Boston, MA, 02115, USA
| | | | | |
Collapse
|