1
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Sui Z, Wan C, Cheng H, Yang B. Micro/nanorobots for gastrointestinal tract. Front Chem 2024; 12:1423696. [PMID: 39582767 PMCID: PMC11581860 DOI: 10.3389/fchem.2024.1423696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
The application of micro/nanomotors (MNMs) in the gastrointestinal tract has become a Frontier in the treatment of gastrointestinal diseases. These miniature robots can enter the gastrointestinal tract through oral administration, achieving precise drug delivery and therapy. They can traverse mucosal layers and tissue barriers, directly targeting tumors or other lesion sites, thereby enhancing the bioavailability and therapeutic effects of drugs. Through the application of nanotechnology, these MNMs are able to accomplish targeted medication release, regulating drug release in response to either external stimuli or the local biological milieu. This results in reduced side effects and increased therapeutic efficacy. This review summarizes the primary classifications and power sources of current MNMs, as well as their applications in the gastrointestinal tract, providing inspiration and direction for the treatment of gastrointestinal diseases with MNMs.
Collapse
Affiliation(s)
- Ziqi Sui
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chugen Wan
- Department of Gastroenterology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Hefei Cheng
- Department of Gastroenterology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Bin Yang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Voci S, Gagliardi A, Ambrosio N, Zannetti A, Cosco D. Lipid- and polymer-based formulations containing TNF-α inhibitors for the treatment of inflammatory bowel diseases. Drug Discov Today 2024; 29:104090. [PMID: 38977124 DOI: 10.1016/j.drudis.2024.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Monoclonal antibodies inhibiting tumor necrosis factor-alpha (iTNF-α) have revolutionized the therapeutic regimen of inflammatory bowel disease, but their main drawback is the parenteral route of administration they require. An alternative approach lies in the delivery of these molecules to the area involved in the inflammatory process by means of innovative formulations able to promote their localization in affected tissues while also decreasing the number of administrations required. This review describes the advantages deriving from the use of lipid- and polymer-based systems containing iTNF-α, focusing on their physicochemical and technological properties and discussing the preclinical results obtained in vivo using rodent models of colitis.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University of Catanzaro 'Magna Græcia', 88100 Catanzaro, Italy
| | - Agnese Gagliardi
- Department of Health Sciences, University of Catanzaro 'Magna Græcia', 88100 Catanzaro, Italy
| | - Nicola Ambrosio
- Department of Health Sciences, University of Catanzaro 'Magna Græcia', 88100 Catanzaro, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples 80145, Italy
| | - Donato Cosco
- Department of Health Sciences, University of Catanzaro 'Magna Græcia', 88100 Catanzaro, Italy.
| |
Collapse
|
4
|
Gazzi R, Gelli R, Aleandri S, Carone M, Luciani P. Bioinspired and bioderived nanomedicine for inflammatory bowel disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1986. [PMID: 39140489 DOI: 10.1002/wnan.1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Due to its chronic nature and complex pathophysiology, inflammatory bowel disease (IBD) poses significant challenges for treatment. The long-term therapies for patients, often diagnosed between the ages of 20 and 40, call for innovative strategies to target inflammation, minimize systemic drug exposure, and improve patients' therapeutic outcomes. Among the plethora of strategies currently pursued, bioinspired and bioderived nano-based formulations have garnered interest for their safety and versatility in the management of IBD. Bioinspired nanomedicine can host and deliver not only small drug molecules but also biotherapeutics, be made gastroresistant and mucoadhesive or mucopenetrating and, for these reasons, are largely investigated for oral administration, while surprisingly less for rectal delivery, recommended first-line treatment approach for several IBD patients. The use of bioderived nanocarriers, mostly extracellular vesicles (EVs), endowed with unique homing abilities, is still in its infancy with respect to the arsenal of nanomedicine under investigation for IBD treatment. An emerging source of EVs suited for oral administration is ingesta, that is, plants or milk, thanks to their remarkable ability to resist the harsh environment of the upper gastrointestinal tract. Inspired by the unparalleled properties of natural biomaterials, sophisticated avenues for enhancing therapeutic efficacy and advancing precision medicine approaches in IBD care are taking shape, although bottlenecks arising either from the complexity of the nanomedicine designed or from the lack of a clear regulatory pathway still hinder a smooth and efficient translation to the clinics. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Rafaela Gazzi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Marianna Carone
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Andretto V, Rosso A, Zilio S, Sidi-Boumedine J, Boschetti G, Sankar S, Buffier M, Miele AE, Denis M, Choffour PA, Briançon S, Nancey S, Kryza D, Lollo G. Peptide-Based Hydrogel for Nanosystems Encapsulation: the Next Generation of Localized Delivery Systems for the Treatment of Intestinal Inflammations. Adv Healthc Mater 2024; 13:e2303280. [PMID: 38445812 DOI: 10.1002/adhm.202303280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Conventional therapies for inflammatory bowel diseases are mainly based on systemic treatments which cause side effects and toxicity over long-term administration. Nanoparticles appear as a valid alternative to allow a preferential accumulation in inflamed tissues following oral administration while reducing systemic drug exposure. To increase their residence time in the inflamed intestine, the nanoparticles are here associated with a hydrogel matrix. A bioadhesive peptide-based hydrogel is mixed with nanoemulsions, creating a hybrid lipid-polymer nanocomposite. Mucopenetrating nanoemulsions of 100 nm are embedded in a scaffold constituted of the self-assembling peptide hydrogel product PuraStat. The nanocomposite is fully characterized to study the impact of lipid particles in the hydrogel structure. Rheological measurements and circular dichroism analyses are performed to investigate the system's microstructure and physical properties. Biodistribution studies demonstrate that the nanocomposite acts as a depot in the stomach and facilitates the slow release of the nanoemulsions in the intestine. Efficacy studies upon oral administration of the drug-loaded system show the improvement of the disease score in a mouse model of intestinal inflammation.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Annalisa Rosso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- SATT, Ouest Valorisation, 14C Rue du Patis Tatelin, Renne, 35708, France
| | - Jacqueline Sidi-Boumedine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Gilles Boschetti
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - Sharanya Sankar
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Marie Buffier
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Adriana Erica Miele
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ISA UMR 5280, 5 rue de la Doua, Villeurbanne, F-69100, France
- Dept Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome, I-00185, Italy
| | - Morgane Denis
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Antineo, R&D Department, Lyon, 69008, France
| | | | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Stéphane Nancey
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- Hospices Civils de Lyon, Lyon, 69437, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| |
Collapse
|
6
|
Andretto V, Dusi S, Zilio S, Repellin M, Kryza D, Ugel S, Lollo G. Tackling TNF-α in autoinflammatory disorders and autoimmune diseases: From conventional to cutting edge in biologics and RNA- based nanomedicines. Adv Drug Deliv Rev 2023; 201:115080. [PMID: 37660747 DOI: 10.1016/j.addr.2023.115080] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Autoinflammatory disorders and autoimmune diseases result from abnormal deviations of innate and adaptive immunity that heterogeneously affect organs and clinical phenotypes. Despite having etiologic and phenotypic differences, these two conditions share the onset of an aberrant inflammatory process. Targeting the main drivers controlling inflammation is useful to treat both autoimmune and autoinflammatory syndromes. TNF-α is a major player in the inflammatory immune response, and anti-TNF-α antibodies have been a revolutionary treatment in many autoimmune disorders. However, production difficulties and high development costs hinder their implementation, and accessibility to their use is still limited. Innovative strategies aimed at overcoming the limitations associated with anti-TNF-α antibodies are being explored, including RNA-based therapies. Here we summarize the central role of TNF-α in immune disorders and how anti-TNF-based immunotherapies changed the therapeutic landscape, albeit with important limitations related to side effects, tolerance, and resistance to therapies. We then outline how nanotechnology has provided the final momentum for the use of nucleic acids in the treatment of autoimmune and autoinflammatory diseases, with a focus on inflammatory bowel diseases (IBDs). The example of IBDs allows the evaluation and discussion of the nucleic acids-based treatments that have been developed, to identify the role that innovative approaches possess in view of the treatment of autoinflammatory disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Silvia Dusi
- Istituto Oncologico Veneto IRCCS, Padova 35128, Italy
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; SATT Ouest Valorisation, 14C Rue du Patis Tatelin 35708, Rennes, France
| | - Mathieu Repellin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; PULSALYS SATT Lyon-Saint Etienne, 47 Boulevard du 11 Novembre 1918, 69625 Villeurbanne, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; Hospices Civils de Lyon, 69437 Lyon, France
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France.
| |
Collapse
|
7
|
Zhang S, Zhu C, Huang W, Liu H, Yang M, Zeng X, Zhang Z, Liu J, Shi J, Hu Y, Shi X, Wang ZH. Recent progress of micro/nanomotors to overcome physiological barriers in the gastrointestinal tract. J Control Release 2023; 360:514-527. [PMID: 37429360 DOI: 10.1016/j.jconrel.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Oral administration is a convenient administration route for gastrointestinal disease therapy with good patient compliance. But the nonspecific distribution of the oral drugs may cause serious side effects. In recent years, oral drug delivery systems (ODDS) have been applied to deliver the drugs to the gastrointestinal disease sites with decreased side effects. However, the delivery efficiency of ODDS is tremendously limited by physiological barriers in the gastrointestinal sites, such as the long and complex gastrointestinal tract, mucus layer, and epithelial barrier. Micro/nanomotors (MNMs) are micro/nanoscale devices that transfer various energy sources into autonomous motion. The outstanding motion characteristics of MNMs inspired the development of targeted drug delivery, especially the oral drug delivery. However, a comprehensive review of oral MNMs for the gastrointestinal diseases therapy is still lacking. Herein, the physiological barriers of ODDS were comprehensively reviewed. Afterward, the applications of MNMs in ODDS for overcoming the physiological barriers in the past 5 years were highlighted. Finally, future perspectives and challenges of MNMs in ODDS are discussed as well. This review will provide inspiration and direction of MNMs for the therapy of gastrointestinal diseases, pushing forward the clinical application of MNMs in oral drug delivery.
Collapse
Affiliation(s)
- Shuhao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Chaoran Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Wanting Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Xiufang Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Tan F, Li H, Zhang K, Xu L, Zhang D, Han Y, Han J. Sodium Alginate/Chitosan-Coated Liposomes for Oral Delivery of Hydroxy-α-Sanshool: In Vitro and In Vivo Evaluation. Pharmaceutics 2023; 15:2010. [PMID: 37514196 PMCID: PMC10383520 DOI: 10.3390/pharmaceutics15072010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Hydroxy-α-Sanshool (HAS) possesses various pharmacological properties, such as analgesia and regulating gastrointestinal function. However, the low oral bioavailability of HAS has limited its oral delivery in clinical application. METHODS AND RESULTS To enhance its oral bioavailability, a nanocomposite delivery system based on chitosan (CH, as the polycation) and sodium alginate (SA, as the polyanion) was prepared using a layer-by-layer coating technique. The morphology, thermal behavior and Fourier transform infrared spectrum (FTIR) showed that the obtained sodium alginate/chitosan-coated HAS-loaded liposomes (SA/CH-HAS-LIP) with core-shell structures have been successfully covered with polymers. When compared with HAS-loaded liposomes (HAS-LIP), SA/CH-HAS-LIP displayed obvious pH sensitivity and a sustained-release behavior in in vitro studies, which fitted well to Weibull model. In vivo, the half-life of HAS from SA/CH-HAS-LIP remarkably extended after oral administration compared to the free drug. Additionally, it allowed a 4.6-fold and 4.2-fold increase in oral bioavailability, respectively, compared with free HAS and HAS-LIP. CONCLUSIONS SA/CH-HAS-LIP could be a promising release vehicle for the oral delivery of HAS to increase its oral bioavailability.
Collapse
Affiliation(s)
- Fengming Tan
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Huan Li
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Kai Zhang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lulu Xu
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dahan Zhang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jing Han
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
9
|
Parastar H, Farahpour MR, Shokri R, Jafarirad S, Kalantari M. Acceleration in healing of infected full-thickness wound with novel antibacterial γ-AlOOH-based nanocomposites. Prog Biomater 2023; 12:123-136. [PMID: 36598736 PMCID: PMC10154451 DOI: 10.1007/s40204-022-00216-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
This study was conducted to synthesize γ-AlOOH (bohemite)-based nanocomposites (NCs) of Au/γ-AlOOH-NC and its functionalized derivative using chitosan (Au/γ-AlOOH/Ctn-NC) and with the help of one-step Mentha piperita. The physicochemical characteristics of the NCs were investigated. In addition, biomedical properties, such as antibacterial activity under in vitro and in vivo conditions, and cell viability were assessed. Wound healing activity on infected wounds and histological parameters were assessed. The gene expressions of TNF-α, Capase 3, Bcl-2, Cyclin-D1 and FGF-2 were investigated. The TEM and FESEM images showed the sheet-like structure for bohemite in Au/γ-AlOOH-NC with Au nanoparticles in a range of 14-15 nm. The elemental analysis revealed the presence of carbon, oxygen, aluminum, and Au elements in the as-synthesized Au/γ-AlOOH. The results for toxicity showed that the produced nanocomposites did not show any cytotoxicity. Biomedical studies confirmed that Au/γ-AlOOH-NC and Au/γ-AlOOH/Ctn-NC have anti-bacterial properties and could expedite the wound healing process in infected wounds by an increase in collagen biosynthesis. The administration of ointment containing Au/γ-AlOOH-NC and Au/γ-AlOOH/Ctn-NC decreased the expressions of TNF-α, and increased the expressions of Capase 3, Bcl-2, Cyclin-D1 and FGF-2. The novelty of this study was that bohemite and Au nanoparticles can be used as a dressing to accelerate the wound healing process. In green synthesis of Au/γ-AlOOH-NC, phytochemical compounds of the plant extract are appropriate reagents for stabilization and the production of Au/γ-AlOOH-NC. Therefore, the new bohemite-based NCs can be considered as candidate for treatment of infected wounds after future clinical studies.
Collapse
Affiliation(s)
- Hilda Parastar
- Department of Microbiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | - Rasoul Shokri
- Department of Microbiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Saeed Jafarirad
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Research Center of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Mohsen Kalantari
- Department of Microbiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
10
|
Andretto V, Taurino G, Guerriero G, Guérin H, Lainé E, Bianchi MG, Agusti G, Briançon S, Bussolati O, Clayer-Montembault A, Lollo G. Nanoemulsions Embedded in Alginate Beads as Bioadhesive Nanocomposites for Intestinal Delivery of the Anti-Inflammatory Drug Tofacitinib. Biomacromolecules 2023. [PMID: 37228181 DOI: 10.1021/acs.biomac.3c00260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oral administration of nanoparticles (NPs) is a promising strategy to overcome solubility and stability issues of many active compounds. However, this route faces major obstacles related to the hostile gastrointestinal (GI) environment, which impairs the efficacy of orally administered nanomedicines. Here, we propose nanocomposites as a promising approach to increase the retention time of NPs in the intestinal tract by using bio- and mucoadhesive matrixes able to protect the cargo until it reaches the targeted area. A microfluidic-based approach has been applied for the production of tailored nanoemulsions (NEs) of about 110 nm, used for the encapsulation of small hydrophobic drugs such as the anti-inflammatory JAK-inhibitor tofacitinib. These NEs proved to be efficiently internalized into a mucus-secreting human intestinal monolayer of Caco-2/HT29-MTX cells and to deliver tofacitinib to subepithelial human THP-1 macrophage-like cells, reducing their inflammatory response. NEs were then successfully encapsulated into alginate hydrogel microbeads of around 300 μm, which were characterized by rheological experiments and dried to create a long-term stable system for pharmaceutical applications. Finally, ex vivo experiments on excised segments of rats' intestine proved the bioadhesive ability of NEs embedded in alginate hydrogels compared to free NEs, showing the advantage that this hybrid system can offer for the treatment of intestinal pathologies.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
- MRH-Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy
| | - Giulia Guerriero
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Hanäé Guérin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Emmanuelle Lainé
- Université Clermont Auvergne, INRAe, UMR454 MEDIS (Microbiologie, Environnement Digestif et Santé), 28 place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Massimiliano G Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
- MRH-Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy
| | - Géraldine Agusti
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
- MRH-Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy
| | - Alexandra Clayer-Montembault
- Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères (IMP), 15 boulevard Latarjet, F-69622 Villeurbanne, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
11
|
Zhu W, Chao Y, Jin Q, Chen L, Shen JJ, Zhu J, Chai Y, Lu P, Yang N, Chen M, Yang Y, Chen Q, Liu Z. Oral Delivery of Therapeutic Antibodies with a Transmucosal Polymeric Carrier. ACS NANO 2023; 17:4373-4386. [PMID: 36802527 DOI: 10.1021/acsnano.2c09266] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Therapeutic proteins are playing increasingly important roles in treating numerous types of diseases. However, oral administration of proteins, especially large ones (e.g., antibodies), remains a great challenge due to their difficulties in penetrating intestinal barriers. Herein, fluorocarbon-modified chitosan (FCS) is developed for efficient oral delivery of different therapeutic proteins, in particular large ones such as immune checkpoint blockade antibodies. In our design, therapeutic proteins are mixed with FCS to form nanoparticles, lyophilized with appropriate excipients, and then filled into enteric capsules for oral administration. It has been found that FCS could promote transmucosal delivery of its cargo protein via inducing transitory rearrangement of tight junction associated proteins between intestinal epithelial cells and subsequently release free proteins into blood circulation. It is shown that at a 5-fold dose oral delivery of anti-programmed cell death protein-1 (αPD1) or its combination with anti-cytotoxic T-lymphocyte antigen 4 (αCTLA4) using this method could achieve comparable antitumor therapeutic responses to that achieved by intravenous injection of corresponding free antibodies in various types of tumor models and, more excitingly, result in significantly reduced immune-related adverse events. Our work successfully demonstrates the enhanced oral delivery of antibody drugs to achieve systemic therapeutic responses and may revolutionize the future clinical usage of protein therapeutics.
Collapse
Affiliation(s)
- Wenjun Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- InnoBM Pharmaceuticals Co. Itd., Suzhou, Jiangsu 215123, China
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jing-Jing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jiafei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yu Chai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Panhao Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- InnoBM Pharmaceuticals Co. Itd., Suzhou, Jiangsu 215123, China
| |
Collapse
|
12
|
Wang S, Meng S, Zhou X, Gao Z, Piao MG. pH-Responsive and Mucoadhesive Nanoparticles for Enhanced Oral Insulin Delivery: The Effect of Hyaluronic Acid with Different Molecular Weights. Pharmaceutics 2023; 15:pharmaceutics15030820. [PMID: 36986680 PMCID: PMC10056758 DOI: 10.3390/pharmaceutics15030820] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Drug degradation at low pH and rapid clearance from intestinal absorption sites are the main factors limiting the development of oral macromolecular delivery systems. Based on the pH responsiveness and mucosal adhesion of hyaluronic acid (HA) and poly[2-(dimethylamino)ethyl methacrylate] (PDM), we prepared three HA–PDM nano-delivery systems loaded with insulin (INS) using three different molecular weights (MW) of HA (L, M, H), respectively. The three types of nanoparticles (L/H/M-HA–PDM–INS) had uniform particle sizes and negatively charged surfaces. The optimal drug loadings of the L-HA–PDM–INS, M-HA–PDM–INS, H-HA–PDM–INS were 8.69 ± 0.94%, 9.11 ± 1.03%, and 10.61 ± 1.16% (w/w), respectively. The structural characteristics of HA–PDM–INS were determined using FT-IR, and the effect of the MW of HA on the properties of HA–PDM–INS was investigated. The release of INS from H-HA–PDM–INS was 22.01 ± 3.84% at pH 1.2 and 63.23 ± 4.10% at pH 7.4. The protective ability of HA–PDM–INS with different MW against INS was verified by circular dichroism spectroscopy and protease resistance experiments. H-HA–PDM–INS retained 45.67 ± 5.03% INS at pH 1.2 at 2 h. The biocompatibility of HA–PDM–INS, regardless of the MW of HA, was demonstrated using CCK-8 and live–dead cell staining. Compared with the INS solution, the transport efficiencies of L-HA–PDM–INS, M-HA–PDM–INS, and H-HA–PDM–INS increased 4.16, 3.81, and 3.10 times, respectively. In vivo pharmacodynamic and pharmacokinetic studies were performed in diabetic rats following oral administration. H-HA–PDM–INS exhibited an effective hypoglycemic effect over a long period, with relative bioavailability of 14.62%. In conclusion, these simple, environmentally friendly, pH-responsive, and mucoadhesive nanoparticles have the potential for industrial development. This study provides preliminary data support for oral INS delivery.
Collapse
Affiliation(s)
- Shuangqing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Saige Meng
- Department of Pharmacy, No. 73 Group Military Hospital of PLA, Xiamen 361003, China
| | - Xinlei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zhonggao Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.G.); (M.G.P.)
| | - Ming Guan Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Correspondence: (Z.G.); (M.G.P.)
| |
Collapse
|
13
|
Alginate-pectin microparticles loaded with nanoemulsions as nanocomposites for wound healing. Drug Deliv Transl Res 2022; 13:1343-1357. [PMID: 36512287 PMCID: PMC10102150 DOI: 10.1007/s13346-022-01257-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/14/2022]
Abstract
AbstractThis work combines natural polymers with nanoemulsions (NEs) to formulate nanocomposites as an innovative wound dressing. Spray-drying has been used to produce alginate-pectin in situ gelling powders as carriers for NEs loaded with curcumin (CCM), a model antimicrobial drug. The influence of NEs encapsulation in polymer-based microparticles was studied in terms of particle size distribution, morphology, and stability after spray-drying. NEs loading did not affect the size of microparticles which was around 3.5 µm, while the shape and surface morphology analyzed using scanning electron microscope (SEM) changed from irregular to spherical. Nanocomposites as dried powders were able to form a gel in less than 5 min when in contact with simulated wound fluid (SWF), while the value of moisture transmission of the in situ formed hydrogels allowed to promote good wound transpiration. Moreover, rheologic analyses showed that in situ formed gels loaded with NEs appeared more elastic than blank formulations. The in situ formed gel allowed the prolonged release of CCM-loaded NEs in the wound bed, reaching 100% in 24 h. Finally, powders cytocompatibility was confirmed by incubation with keratinocyte cells (HaCaT), proving that such nanocomposites can be considered a potential candidate for wound dressings.
Graphical Abstract
Collapse
|
14
|
Pintea A, Vlad RA, Antonoaea P, Rédai EM, Todoran N, Barabás EC, Ciurba A. Structural Characterization and Optimization of a Miconazole Oral Gel. Polymers (Basel) 2022; 14:polym14225011. [PMID: 36433136 PMCID: PMC9692734 DOI: 10.3390/polym14225011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The development of semisolid formulations, gels in particular, has raised the attention of scientists more and more over the last decades. Because of their biocompatibility, hydrophilic nature, and capacity of absorbing large quantities of water, hydrogels are still one of the most promising pharmaceutical formulations in the pharmaceutical industry. The purpose of this study is to develop an optimal formulation capable of incorporating a water-poorly soluble active ingredient such as miconazole used in the treatment of fungal infections with Candida albicans and Candida parapsilosis. A D-optimal design was applied to study the relationship between the formulation parameter and the gel characteristics. The independent parameters used in this study were the Carbopol 940 concentration (the polymer used to obtain the gel matrix), the sodium hydroxide amount, and the presence/absence of miconazole. Ten different dependent parameters (Y1-Y10) were evaluated (penetrometry, spreadability, viscosity, and tangential tension at 1 and 11 levels of speed whilst destructuring and during the reorganization of the gel matrix). The consistency of the gels ranged from 23.2 mm (GO2) to 29.6 mm (GM5). The least spreadable gel was GO7 (1384 mm2), whilst the gel that presented the best spreadability was GO1 (3525 mm2). The viscosity and the tangential stress at the selected levels (1 and 11) varied due to the different compositions of the proposed gels. The gels were also tested for drug content and antifungal activity. All determinations had satisfying results; the drug content was within limits accepted by Ph. Eur. 10 and all formulations containing miconazole exhibited antifungal activity. An optimal formulation with miconazole was attained, consisting of 0.84% Carbopol 940 and 0.32% sodium hydroxide.
Collapse
Affiliation(s)
- Andrada Pintea
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Paula Antonoaea
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence:
| | - Emöke Margit Rédai
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Nicoleta Todoran
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Enikő-Csilla Barabás
- Cellular Biology and Microbiology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Laboratory Medicine, Mures, County Hospital, 540136 Targu Mures, Romania
| | - Adriana Ciurba
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
15
|
Zhang Y, Chen R, Wang Y, Wang P, Pu J, Xu X, Chen F, Jiang L, Jiang Q, Yan F. Antibiofilm activity of ultra-small gold nanoclusters against Fusobacterium nucleatum in dental plaque biofilms. J Nanobiotechnology 2022; 20:470. [PMID: 36329432 PMCID: PMC9632159 DOI: 10.1186/s12951-022-01672-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Pathogenic dental plaque biofilms are universal and harmful, which can result in oral infections and systemic diseases. Many conventional therapeutic methods have proven insufficient or ineffective against plaque biofilms. Therefore, new strategies are urgently needed. Fusobacterium nucleatum (F. nucleatum), a periodontal pathogen associated with a variety of oral and systemic diseases, is thought to be central to the development and structure of dental plaques. Here, ultra-small gold nanoclusters (AuNCs) were prepared. They exhibited potent antibacterial activity against F. nucleatum through enhanced destruction of bacterial membranes and generation of reactive oxygen species. Furthermore, due to their excellent penetration, the AuNCs could inhibit biofilm formation and destroy mature biofilms in vitro. Their antibiofilm efficacy was further confirmed in a mouse model, where they reduced biofilm accumulation and ameliorated inflammation. Meanwhile, the disruption of oral and gut microbiota caused by colonization of oral F. nucleatum could be partially restored through AuNCs treatment. Therefore, AuNCs could be considered as promising antibiofilm agents and have great potential in the clinical treatment of dental plaque.
Collapse
Affiliation(s)
- Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Rixin Chen
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yuxian Wang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jiajie Pu
- 01life Institute, 518000, Shenzhen, China
| | | | - Faming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 211816, Nanjing, China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
16
|
Cornilă A, Iurian S, Tomuță I, Porfire A. Orally Dispersible Dosage Forms for Paediatric Use: Current Knowledge and Development of Nanostructure-Based Formulations. Pharmaceutics 2022; 14:pharmaceutics14081621. [PMID: 36015247 PMCID: PMC9414456 DOI: 10.3390/pharmaceutics14081621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
The paediatric population has always suffered from a lack of medicines tailored to their needs, especially in terms of accurate dosage, stability and acceptability. Orodispersible dosage forms have gone through a resurrection as an alternative to liquid formulations or fractioned solid formulations, although they are still subject to several inconveniences, among which the unpleasant taste and the low oral bioavailability of the API are the most significant hurdles in the way of achieving an optimal drug product. Nanostructures can address these inconveniences through their size and variety, owing to the plethora of materials that can be used in their manufacturing. Through the formation and functionalisation of nanostructures, followed by their inclusion in orodispersible dosage forms, safe, stable and acceptable medicines intended for paediatric use can be developed.
Collapse
|
17
|
Briot T, Kolenda C, Ferry T, Medina M, Laurent F, Leboucher G, Pirot F. Paving the way for phage therapy using novel drug delivery approaches. J Control Release 2022; 347:414-424. [PMID: 35569589 DOI: 10.1016/j.jconrel.2022.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Bacterial resistance against antibiotics is an emergent medical issue. The development of novel therapeutic approaches is urgently needed and, in this context, bacteriophages represent a promising strategy to fight multi resistant bacteria. However, for some applications, bacteriophages cannot be used without an appropriate drug delivery system which increases their stability or provides an adequate targeting to the site of infection. This review summarizes the main application routes for bacteriophages and presents the new delivery approaches designed to increase phage's activity. Clinical successes of these formulations are also highlighted. Globally, this work paves the way for the design and optimization of nano and micro delivery systems for phage therapy.
Collapse
Affiliation(s)
- Thomas Briot
- Pharmacy department, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France.
| | - Camille Kolenda
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Tristan Ferry
- Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France; Infectious and Tropical Diseases unit, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Mathieu Medina
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Frederic Laurent
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Gilles Leboucher
- Pharmacy department, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France
| | - Fabrice Pirot
- Plateforme FRIPHARM, Service pharmaceutique, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France; Laboratoire de Recherche et Développement de Pharmacie Galénique Industrielle, Plateforme FRIPHARM, Faculté de Pharmacie, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique - UMR 5305, Université Claude Bernard Lyon 1, Lyon, France
| | | |
Collapse
|
18
|
Al-Hatamleh MAI, Alshaer W, Hatmal MM, Lambuk L, Ahmed N, Mustafa MZ, Low SC, Jaafar J, Ferji K, Six JL, Uskoković V, Mohamud R. Applications of Alginate-Based Nanomaterials in Enhancing the Therapeutic Effects of Bee Products. Front Mol Biosci 2022; 9:865833. [PMID: 35480890 PMCID: PMC9035631 DOI: 10.3389/fmolb.2022.865833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Since the ancient times, bee products (i.e., honey, propolis, pollen, bee venom, bee bread, and royal jelly) have been considered as natural remedies with therapeutic effects against a number of diseases. The therapeutic pleiotropy of bee products is due to their diverse composition and chemical properties, which is independent on the bee species. This has encouraged researchers to extensively study the therapeutic potentials of these products, especially honey. On the other hand, amid the unprecedented growth in nanotechnology research and applications, nanomaterials with various characteristics have been utilized to improve the therapeutic efficiency of these products. Towards keeping the bee products as natural and non-toxic therapeutics, the green synthesis of nanocarriers loaded with these products or their extracts has received a special attention. Alginate is a naturally produced biopolymer derived from brown algae, the desirable properties of which include biodegradability, biocompatibility, non-toxicity and non-immunogenicity. This review presents an overview of alginates, including their properties, nanoformulations, and pharmaceutical applications, placing a particular emphasis on their applications for the enhancement of the therapeutic effects of bee products. Despite the paucity of studies on fabrication of alginate-based nanomaterials loaded with bee products or their extracts, recent advances in the area of utilizing alginate-based nanomaterials and other types of materials to enhance the therapeutic potentials of bee products are summarized in this work. As the most widespread and well-studied bee products, honey and propolis have garnered a special interest; combining them with alginate-based nanomaterials has led to promising findings, especially for wound healing and skin tissue engineering. Furthermore, future directions are proposed and discussed to encourage researchers to develop alginate-based stingless bee product nanomedicines, and to help in selecting suitable methods for devising nanoformulations based on multi-criteria decision making models. Also, the commercialization prospects of nanocomposites based on alginates and bee products are discussed. In conclusion, preserving original characteristics of the bee products is a critical challenge in developing nano-carrier systems. Alginate-based nanomaterials are well suited for this task because they can be fabricated without the use of harsh conditions, such as shear force and freeze-drying, which are often used for other nano-carriers. Further, conjunction of alginates with natural polymers such as honey does not only combine the medicinal properties of alginates and honey, but it could also enhance the mechanical properties and cell adhesion capacity of alginates.
Collapse
Affiliation(s)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Khalid Ferji
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | - Jean-Luc Six
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- *Correspondence: Rohimah Mohamud,
| |
Collapse
|
19
|
Baral KC, Bajracharya R, Lee SH, Han HK. Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. Int J Nanomedicine 2021; 16:7535-7556. [PMID: 34795482 PMCID: PMC8594788 DOI: 10.2147/ijn.s337427] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics have demonstrated their high potential to treat and/or prevent various diseases including neurodegenerative disorders, cancers, cardiovascular diseases, and inflammatory diseases. Probiotics are also effective against multidrug-resistant pathogens and help maintain a balanced gut microbiota ecosystem. Accordingly, the global market of probiotics is growing rapidly, and research efforts to develop probiotics into therapeutic adjuvants are gaining momentum. However, because probiotics are living microorganisms, many biological and biopharmaceutical barriers limit their clinical application. Probiotics may lose their activity in the harsh gastric conditions of the stomach or in the presence of bile salts. Moreover, they easily lose their viability under thermal or oxidative stress during their preparation and storage. Therefore, stable formulations of probiotics are required to overcome the various physicochemical, biopharmaceutical, and biological barriers and to maximize their therapeutic effectiveness and clinical applicability. This review provides an overview of the pharmaceutical applications of probiotics and covers recent formulation approaches to optimize the delivery of probiotics with particular emphasis on various dosage forms and formulation technologies.
Collapse
Affiliation(s)
- Kshitis Chandra Baral
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Rajiv Bajracharya
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Sang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| |
Collapse
|
20
|
Solid and Semisolid Innovative Formulations Containing Miconazole-Loaded Solid Lipid Microparticles to Promote Drug Entrapment into the Buccal Mucosa. Pharmaceutics 2021; 13:pharmaceutics13091361. [PMID: 34575437 PMCID: PMC8468017 DOI: 10.3390/pharmaceutics13091361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
The currently available antifungal therapy for oral candidiasis (OC) has various limitations restricting its clinical use, such as short retention time, suboptimal drug concentration and low patients compliance. These issues could be overcome using micro or nanotechnology. In particular, solid lipid microparticles (SLMs) resulted as a particularly promising penetration enhancer carrier for lipophilic drugs, such as the antifungal miconazole (MCZ). Based on these considerations, cetyl decanoate (here synthesized without the use of metal catalysis) was employed together with 1-hexadecanol to prepare MCZ-loaded SLMs. These resulted in a powder composed of 45–300 µm diameter solid spherical particles, able to load a high amount of MCZ in the amorphous form and characterized by a melting temperature range perfectly compatible with oromucosal administration (35–37 °C). Moreover, when compared to Daktarin® 2% oral gel in ex vivo experiments, SLMs were able to increase up to three-fold MCZ accumulation into the porcine buccal mucosa. The prepared SLMs were then loaded into a buccal gel or a microcomposite mucoadhesive buccal film and evaluated in terms of MCZ permeation and/or accumulation into porcine buccal mucosa by using lower doses than the conventional dosage form. The promising results obtained highlighted an enhancement in terms of MCZ accumulation even at low doses. Furthermore, the prepared buccal film was eligible as stable, reproducible and also highly mucoadhesive. Therefore, the formulated SLMs represent a penetration enhancer vehicle suitable to reduce the dose of lipophilic drugs to be administered to achieve the desired therapeutic effects, as well as being able to be effectively embedded into easily administrable solid or semisolid dosage forms.
Collapse
|
21
|
Gelatin-Graphene Oxide Nanocomposite Hydrogels for Kluyveromyces lactis Encapsulation: Potential Applications in Probiotics and Bioreactor Packings. Biomolecules 2021; 11:biom11070922. [PMID: 34206397 PMCID: PMC8302002 DOI: 10.3390/biom11070922] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Nutraceutical formulations based on probiotic microorganisms have gained significant attention over the past decade due to their beneficial properties on human health. Yeasts offer some advantages over other probiotic organisms, such as immunomodulatory properties, anticancer effects and effective suppression of pathogens. However, one of the main challenges for their oral administration is ensuring that cell viability remains high enough for a sustained therapeutic effect while avoiding possible substrate inhibition issues as they transit through the gastrointestinal (GI) tract. Here, we propose addressing these issues using a probiotic yeast encapsulation strategy, Kluyveromyces lactis, based on gelatin hydrogels doubly cross-linked with graphene oxide (GO) and glutaraldehyde to form highly resistant nanocomposite encapsulates. GO was selected here as a reinforcement agent due to its unique properties, including superior solubility and dispersibility in water and other solvents, high biocompatibility, antimicrobial activity, and response to electrical fields in its reduced form. Finally, GO has been reported to enhance the mechanical properties of several materials, including natural and synthetic polymers and ceramics. The synthesized GO-gelatin nanocomposite hydrogels were characterized in morphological, swelling, mechanical, thermal, and rheological properties and their ability to maintain probiotic cell viability. The obtained nanocomposites exhibited larger pore sizes for successful cell entrapment and proliferation, tunable degradation rates, pH-dependent swelling ratio, and higher mechanical stability and integrity in simulated GI media and during bioreactor operation. These results encourage us to consider the application of the obtained nanocomposites to not only formulate high-performance nutraceuticals but to extend it to tissue engineering, bioadhesives, smart coatings, controlled release systems, and bioproduction of highly added value metabolites.
Collapse
|
22
|
Nanocomposite sponges for enhancing intestinal residence time following oral administration. J Control Release 2021; 333:579-592. [PMID: 33838210 DOI: 10.1016/j.jconrel.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 01/25/2023]
Abstract
In this work, nanocomposites that combine mucopenetrating and mucoadhesive properties in a single system are proposed as innovative strategy to increase drug residence time in the intestine following oral administration. To this aim, novel mucoadhesive chitosan (CH) sponges loaded with mucopenetrating nanoemulsions (NE) were developed via freeze-casting technique. The NE mucopenetration ability was determined studying the surface affinity and thermodynamic binding of the nanosystem with mucins. The ability of nanoparticles to penetrate across a preformed mucins layer was validated by 3D-time laps Confocal Laser Scanning Microscopy imaging. Microscopy observations (Scanning Electron Microscopy and Optical Microscopy) showed that NE participated in the structure of the sponge affecting its stability and in vitro release kinetics. When incubated with HCT 116 and Caco-2 cell lines, the NE proved to be cytocompatible over a wide concentration range. Finally, the in vivo biodistribution of the nanocomposite was evaluated after oral gavage in healthy mice. The intestinal retention of NE was highly enhanced when loaded in the sponge compared to the NE suspension. Overall, our results demonstrated that the developed nanocomposite sponge is a promising system for sustained drug intestinal delivery.
Collapse
|