1
|
Li C, Li CQ, Chen ZB, Liu BQ, Sun X, Wei KH, Li CY, Luan JB. Wolbachia symbionts control sex in a parasitoid wasp using a horizontally acquired gene. Curr Biol 2024; 34:2359-2372.e9. [PMID: 38692276 DOI: 10.1016/j.cub.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Host reproduction can be manipulated by bacterial symbionts in various ways. Parthenogenesis induction is the most effective type of reproduction manipulation by symbionts for their transmission. Insect sex is determined by regulation of doublesex (dsx) splicing through transformer2 (tra2) and transformer (tra) interaction. Although parthenogenesis induction by symbionts has been studied since the 1970s, its underlying molecular mechanism is unknown. Here we identify a Wolbachia parthenogenesis-induction feminization factor gene (piff) that targets sex-determining genes and causes female-producing parthenogenesis in the haplodiploid parasitoid Encarsia formosa. We found that Wolbachia elimination repressed expression of female-specific dsx and enhanced expression of male-specific dsx, which led to the production of wasp haploid male offspring. Furthermore, we found that E. formosa tra is truncated and non-functional, and Wolbachia has a functional tra homolog, termed piff, with an insect origin. Wolbachia PIFF can colocalize and interact with wasp TRA2. Moreover, Wolbachia piff has coordinated expression with tra2 and dsx of E. formosa. Our results demonstrate the bacterial symbiont Wolbachia has acquired an insect gene to manipulate the host sex determination cascade and induce parthenogenesis in wasps. This study reveals insect-to-bacteria horizontal gene transfer drives the evolution of animal sex determination systems, elucidating a striking mechanism of insect-microbe symbiosis.
Collapse
Affiliation(s)
- Ce Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chu-Qiao Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhan-Bo Chen
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing-Qi Liu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiang Sun
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Kai-Heng Wei
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chen-Yi Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Hull JJ, Heu CC, Gross RJ, LeRoy DM, Schutze IX, Langhorst D, Fabrick JA, Brent CS. Doublesex is essential for masculinization but not feminization in Lygus hesperus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 166:104085. [PMID: 38307215 DOI: 10.1016/j.ibmb.2024.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
In most holometabolous insects, sex differentiation occurs via a hierarchical cascade of transcription factors, with doublesex (dsx) regulating genes that control sex-specific traits. Although less is known in hemimetabolous insects, early evidence suggests that substantial differences exist from more evolutionarily advanced insects. Here, we identified and characterized dsx in Lygus hesperus (western tarnished plant bug), a hemipteran pest of many agricultural crops in western North America. The full-length transcript for L. hesperus dsx (Lhdsx) and several variants encode proteins with conserved DNA binding and oligomerization domains. Transcript profiling revealed that Lhdsx is ubiquitously expressed, likely undergoes alternative pre-mRNA splicing, and, unlike several model insects, is sex-biased rather than sex-specific. Embryonic RNA interference (RNAi) of Lhdsx only impacted sex development in adult males, which lacked both internal reproductive organs and external genitalia. No discernible impacts on adult female development or reproductivity were observed. RNAi knockdown of Lhdsx in nymphs likewise only affected adult males, which lacked the characteristic dimorphic coloration but had dramatically elevated vitellogenin transcripts. Gene knockout of Lhdsx by CRISPR/Cas9 editing yielded only females in G0 and strongly biased heterozygous G1 offspring to females with the few surviving males showing severely impaired genital development. These results indicate that L. hesperus male development requires Lhdsx, whereas female development proceeds via a basal pathway that functions independently of dsx. A fundamental understanding of sex differentiation in L. hesperus could be important for future gene-based management strategies of this important agricultural pest.
Collapse
Affiliation(s)
- J Joe Hull
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA.
| | - Chan C Heu
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Roni J Gross
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Dannialle M LeRoy
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Inana X Schutze
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Daniel Langhorst
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Colin S Brent
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| |
Collapse
|
3
|
Kitano J, Ansai S, Fujimoto S, Kakioka R, Sato M, Mandagi IF, Sumarto BKA, Yamahira K. A Cryptic Sex-Linked Locus Revealed by the Elimination of a Master Sex-Determining Locus in Medaka Fish. Am Nat 2023; 202:231-240. [PMID: 37531272 DOI: 10.1086/724840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractSex chromosomes rapidly turn over in several taxonomic groups. Sex chromosome turnover is generally thought to start with the appearance of a new sex-determining gene on an autosome while an old sex-determining gene still exists, followed by the fixation of the new one. However, we do not know how prevalent the transient state is, where multiple sex-determining loci coexist within natural populations. Here, we removed a Y chromosome with a master male-determining gene DMY from medaka fish using high temperature-induced sex-reversed males. After four generations, the genomic characteristics of a sex chromosome were found on one chromosome, which was an autosome in the original population. Thus, the elimination of a master sex-determining locus can reveal a cryptic locus with a possible sex-determining effect, which can be the seed for sex chromosome turnover. Our results suggest that populations that seem to have a single-locus XY system may have other chromosomal regions with sex-determining effects. In conclusion, the coexistence of multiple sex-determining genes in a natural population may be more prevalent than previously thought. Experimental elimination of a master sex-determining locus may serve as a promising method for finding a locus that can be a protosex chromosome.
Collapse
|
4
|
Kuwabara T, Kohno H, Hatakeyama M, Kubo T. Evolutionary dynamics of mushroom body Kenyon cell types in hymenopteran brains from multifunctional type to functionally specialized types. SCIENCE ADVANCES 2023; 9:eadd4201. [PMID: 37146148 PMCID: PMC10162674 DOI: 10.1126/sciadv.add4201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Evolutionary dynamics of diversification of brain neuronal cell types that have underlain behavioral evolution remain largely unknown. Here, we compared transcriptomes and functions of Kenyon cell (KC) types that compose the mushroom bodies between the honey bee and sawfly, a primitive hymenopteran insect whose KCs likely have the ancestral properties. Transcriptome analyses show that the sawfly KC type shares some of the gene expression profile with each honey bee KC type, although unique gene expression profiles have also been acquired in each honey bee KC type. In addition, functional analysis of two sawfly genes suggested that the functions in learning and memory of the ancestral KC type were heterogeneously inherited among the KC types in the honey bee. Our findings strongly suggest that the functional evolution of KCs in Hymenoptera involved two previously hypothesized processes for evolution of cell function: functional segregation and divergence.
Collapse
Affiliation(s)
- Takayoshi Kuwabara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masatsugu Hatakeyama
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba 305-8634, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Wu WT, Xu LY, Yan ZJ, Bi N, Cheng CY, Yang F, Yang WJ, Yang JS. Identification and characterization of the Doublesex gene and its mRNA isoforms in the brine shrimp Artemia franciscana. Biochem J 2023; 480:385-401. [PMID: 36852878 DOI: 10.1042/bcj20220495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
Doublesex (DSX) proteins are members of the Doublesex/mab-3-related (DMRT) protein family and play crucial roles in sex determination and differentiation among the animal kingdom. In the present study, we identified two Doublesex (Dsx)-like mRNA isoforms in the brine shrimp Artemia franciscana (Kellogg 1906), which are generated by the combination of alternative promoters, alternative splicing and alternative polyadenylation. The two transcripts exhibited sex-biased enrichment, which we termed AfrDsxM and AfrDsxF. They share a common region which encodes an identical N-terminal DNA-binding (DM) domain. RT-qPCR analyses showed that AfrDsxM is dominantly expressed in male Artemia while AfrDsxF is specifically expressed in females. Expression levels of both isoforms increased along with the developmental stages of their respective sexes. RNA interference with dsRNA showed that the knockdown of AfrDsxM in male larvae led to the appearance of female traits including an ovary-like structure in the original male reproductive system and an elevated expression of vitellogenin. However, silencing of AfrDsxF induced no clear phenotypic change in female Artemia. These results indicated that the male AfrDSXM may act as inhibiting regulator upon the default female developmental mode in Artemia. Furthermore, electrophoretic mobility shift assay analyses revealed that the unique DM domain of AfrDSXs can specifically bind to promoter segments of potential downstream target genes like AfrVtg. These data show that AfrDSXs play crucial roles in regulating sexual development in Artemia, and further provide insight into the evolution of sex determination/differentiation in sexual organisms.
Collapse
Affiliation(s)
- Wen-Tao Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lian-Ying Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Jun Yan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ning Bi
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cai-Yuan Cheng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fan Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
7
|
Chikami Y, Okuno M, Toyoda A, Itoh T, Niimi T. Evolutionary History of Sexual Differentiation Mechanism in Insects. Mol Biol Evol 2022; 39:msac145. [PMID: 35820410 PMCID: PMC9290531 DOI: 10.1093/molbev/msac145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing underpins functional diversity in proteins and the complexity and diversity of eukaryotes. An example is the doublesex gene, the key transcriptional factor in arthropod sexual differentiation. doublesex is controlled by sex-specific splicing and promotes both male and female differentiation in holometabolan insects, whereas in hemimetabolan species, doublesex has sex-specific isoforms but is not required for female differentiation. How doublesex evolved to be essential for female development remains largely unknown. Here, we investigate ancestral states of doublesex using Thermobia domestica belonging to Zygentoma, the sister group of Pterygota, that is, winged insects. We find that, in T. domestica, doublesex expresses sex-specific isoforms but is only necessary for male differentiation of sexual morphology. This result supports the hypothesis that doublesex initially promoted male differentiation during insect evolution. However, T. domestica doublesex has a short female-specific region and upregulates the expression of vitellogenin homologs in females, suggesting that doublesex may already play some role in female morphogenesis of the common ancestor of Pterygota. Reconstruction of the ancestral sequence and prediction of protein structures show that the female-specific isoform of doublesex has an extended C-terminal disordered region in holometabolan insects but not in nonholometabolan species. We propose that doublesex acquired its function in female morphogenesis through a change in the protein motif structure rather than the emergence of the female-specific exon.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
8
|
Wang Y, Rensink AH, Fricke U, Riddle MC, Trent C, van de Zande L, Verhulst EC. Doublesex regulates male-specific differentiation during distinct developmental time windows in a parasitoid wasp. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103724. [PMID: 35093500 DOI: 10.1016/j.ibmb.2022.103724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Sexually dimorphic traits in insects are subject to sexual selection, but our knowledge of the underlying molecular mechanisms is still scarce. Here we investigate how the highly conserved gene, Doublesex (Dsx), is involved in shaping sexual dimorphism in the model parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). First, we present the revised Dsx gene structure including an alternative transcription start, and two additional male NvDsx transcript isoforms. We show sex-specific NvDsx expression and splicing throughout development, and demonstrate that transient NvDsx silencing in different male developmental stages shifts two sexually dimorphic traits from male to female morphology, with the effect being dependent on the timing of silencing. In addition, we determined the effect of NvDsx on the development of reproductive organs. Transient silencing of NvDsx in early male larvae affects the growth and differentiation of the internal and external reproductive tissues. We did not observe phenotypic changes in females after NvDsx silencing. Our results indicate that male NvDsx is required to suppress female-specific traits and/or to promote male-specific traits during distinct developmental windows. This provides new insights into the regulatory activity of Dsx during male wasp development in the Hymenoptera.
Collapse
Affiliation(s)
- Yidong Wang
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands
| | - Anna H Rensink
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Ute Fricke
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands
| | - Megan C Riddle
- Biology Department, Western Washington University, Washington, USA
| | - Carol Trent
- Biology Department, Western Washington University, Washington, USA
| | - Louis van de Zande
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Eveline C Verhulst
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands; Wageningen University, Laboratory of Genetics, Wageningen, the Netherlands.
| |
Collapse
|
9
|
Jin B, Zhao Y, Dong Y, Liu P, Sun Y, Li X, Zhang X, Chen XG, Gu J. Alternative splicing patterns of doublesex reveal a missing link between Nix and doublesex in the sex determination cascade of Aedes albopictus. INSECT SCIENCE 2021; 28:1601-1620. [PMID: 33179439 DOI: 10.1111/1744-7917.12886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 05/06/2023]
Abstract
Sexual development in insects is regulated by a complicated hierarchical cascade of sex determination. The primary signals are diverse, whereas the central nexus doublesex (dsx) gene is relatively conserved within the pathway. Aedes (Stegomyia) albopictus is an important vector with an extensive worldwide distribution. We previously reported that Ae. albopictus dsx (Aalbdsx) yields one male- (AalbdsxM ) and three female-specific isoforms (AalbdsxF1-3 ); however, the spatiotemporal expression profiles and mechanisms regulating sex-specific alternative splicing require further investigation. In this study, we demonstrated that the AalbdsxM messenger RNA (mRNA) represents the default pattern when analyzed in human foreskin fibroblasts and HeLa cells. We combined reverse transcription polymerase chain reaction with RNA immunoprecipitation using specific antibodies against tagged Ae. albopictus male-determining factor AalNix and confirmed that AalNix indirectly regulates dsx pre-mRNA and regulates its alternative splicing. During the early embryo stage (0-2 and 4-8 h), maternal dsxF and default splicing dsxM were detected in both sexes; the expression of dsxM then decreased until sufficient AalNix transcripts accumulated in male embryos at 20-24 h. These findings suggest that one or more potential dsx splicing enhancers can shift dsxM to dsxF in both sexes; however, the presence of Nix influences the function of this unknown splicing enhancer and ultimately leads to the formation of dsxM in males. Finally, our results provide important insight into the regulatory mechanism of dsx alternative splicing in the mosquito.
Collapse
Affiliation(s)
- Binbin Jin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yijie Zhao
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yunqiao Dong
- Reproductive Medical Centre of Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Peiwen Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yan Sun
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiaocong Li
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xin Zhang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jinbao Gu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
10
|
Shields EJ, Sorida M, Sheng L, Sieriebriennikov B, Ding L, Bonasio R. Genome annotation with long RNA reads reveals new patterns of gene expression and improves single-cell analyses in an ant brain. BMC Biol 2021; 19:254. [PMID: 34838024 PMCID: PMC8626913 DOI: 10.1186/s12915-021-01188-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Functional genomic analyses rely on high-quality genome assemblies and annotations. Highly contiguous genome assemblies have become available for a variety of species, but accurate and complete annotation of gene models, inclusive of alternative splice isoforms and transcription start and termination sites, remains difficult with traditional approaches. RESULTS Here, we utilized full-length isoform sequencing (Iso-Seq), a long-read RNA sequencing technology, to obtain a comprehensive annotation of the transcriptome of the ant Harpegnathos saltator. The improved genome annotations include additional splice isoforms and extended 3' untranslated regions for more than 4000 genes. Reanalysis of RNA-seq experiments using these annotations revealed several genes with caste-specific differential expression and tissue- or caste-specific splicing patterns that were missed in previous analyses. The extended 3' untranslated regions afforded great improvements in the analysis of existing single-cell RNA-seq data, resulting in the recovery of the transcriptomes of 18% more cells. The deeper single-cell transcriptomes obtained with these new annotations allowed us to identify additional markers for several cell types in the ant brain, as well as genes differentially expressed across castes in specific cell types. CONCLUSIONS Our results demonstrate that Iso-Seq is an efficient and effective approach to improve genome annotations and maximize the amount of information that can be obtained from existing and future genomic datasets in Harpegnathos and other organisms.
Collapse
Affiliation(s)
- Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Masato Sorida
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Long Ding
- Department of Biology, New York University, New York, NY, USA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Mine S, Sumitani M, Aoki F, Hatakeyama M, Suzuki MG. Effects of Functional Depletion of Doublesex on Male Development in the Sawfly, Athalia rosae. INSECTS 2021; 12:insects12100849. [PMID: 34680618 PMCID: PMC8538284 DOI: 10.3390/insects12100849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The sawfly, Athalia rosae, exploits a haplodiploid mode of reproduction, in which fertilized eggs develop into diploid females, whereas unfertilized eggs parthenogenetically develop into haploid males. The doublesex (dsx) gene is a well-conserved transcription factor that regulates sexual differentiation in insects. In the present study, we knocked down the A. rosae ortholog of dsx (Ardsx) during several developmental stages with repeated double-stranded RNA (dsRNA) injections. As a result, knockdown of Ardsx in haploid males caused almost complete male-to-female sex reversal, but the resulting eggs were infertile. The same knockdown approach using diploid males caused complete male-to-female sex reversal; they were able to produce fertile eggs and exhibited female behaviors. The same RNAi treatment did not affect female differentiation. These results demonstrated that dsx in the sawfly is essential for male development and its depletion caused complete male-to-female sex reversal. This is the first demonstration of functional depletion of dsx not causing intersexuality but inducing total sex reversal in males instead. Abstract The doublesex (dsx) gene, which encodes a transcription factor, regulates sexual differentiation in insects. Sex-specific splicing of dsx occurs to yield male- and female-specific isoforms, which promote male and female development, respectively. Thus, functional disruption of dsx leads to an intersexual phenotype in both sexes. We previously identified a dsx ortholog in the sawfly, Athalia rosae. Similar to dsx in other insects, dsx in the sawfly yields different isoforms in males and females as a result of alternative splicing. The sawfly exploits a haplodiploid mode of reproduction, in which fertilized eggs develop into diploid females, whereas unfertilized eggs parthenogenetically develop into haploid males. In the present study, we knocked down the A. rosae ortholog of dsx (Ardsx) during several developmental stages with repeated double-stranded RNA (dsRNA) injections. Knockdown of Ardsx via parental RNA interference (RNAi), which enables knockdown of genes in offspring embryos, led to a lack of internal and external genitalia in haploid male progeny. Additional injection of dsRNA targeting Ardsx in these animals caused almost complete male-to-female sex reversal, but the resulting eggs were infertile. Notably, the same knockdown approach using diploid males obtained by sib-crossing caused complete male-to-female sex reversal; they were morphologically and behaviorally females. The same RNAi treatment did not affect female differentiation. These results indicate that dsx in the sawfly is essential for male development and its depletion caused complete male-to-female sex reversal. This is the first demonstration of functional depletion of dsx not causing intersexuality but inducing total sex reversal in males instead.
Collapse
Affiliation(s)
- Shotaro Mine
- Department of Biosciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan;
| | - Megumi Sumitani
- Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba 305-8634, Japan;
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan;
| | - Masatsugu Hatakeyama
- Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba 305-8634, Japan;
| | - Masataka G. Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan;
- Correspondence: ; Tel.: +81-4-7136-3694
| |
Collapse
|
12
|
Oeyen JP, Baa-Puyoulet P, Benoit JB, Beukeboom LW, Bornberg-Bauer E, Buttstedt A, Calevro F, Cash EI, Chao H, Charles H, Chen MJM, Childers C, Cridge AG, Dearden P, Dinh H, Doddapaneni HV, Dolan A, Donath A, Dowling D, Dugan S, Duncan E, Elpidina EN, Friedrich M, Geuverink E, Gibson JD, Grath S, Grimmelikhuijzen CJP, Große-Wilde E, Gudobba C, Han Y, Hansson BS, Hauser F, Hughes DST, Ioannidis P, Jacquin-Joly E, Jennings EC, Jones JW, Klasberg S, Lee SL, Lesný P, Lovegrove M, Martin S, Martynov AG, Mayer C, Montagné N, Moris VC, Munoz-Torres M, Murali SC, Muzny DM, Oppert B, Parisot N, Pauli T, Peters RS, Petersen M, Pick C, Persyn E, Podsiadlowski L, Poelchau MF, Provataris P, Qu J, Reijnders MJMF, von Reumont BM, Rosendale AJ, Simao FA, Skelly J, Sotiropoulos AG, Stahl AL, Sumitani M, Szuter EM, Tidswell O, Tsitlakidis E, Vedder L, Waterhouse RM, Werren JH, Wilbrandt J, Worley KC, Yamamoto DS, van de Zande L, Zdobnov EM, Ziesmann T, Gibbs RA, Richards S, Hatakeyama M, Misof B, Niehuis O. Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biol Evol 2021; 12:1099-1188. [PMID: 32442304 PMCID: PMC7455281 DOI: 10.1093/gbe/evaa106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.
Collapse
Affiliation(s)
- Jan Philip Oeyen
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Lead Contact
| | | | | | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | | | - Anja Buttstedt
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Germany
| | - Federica Calevro
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Elizabeth I Cash
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University.,Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Hubert Charles
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Mei-Ju May Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | | | - Andrew G Cridge
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Alexander Donath
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Daniel Dowling
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Elizabeth Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Joshua D Gibson
- Department of Biology, Georgia Southern University, Statesboro.,Department of Entomology, Purdue University, West Lafayette
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (CULS), Praha 6-Suchdol, Czech Republic
| | - Cameron Gudobba
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Frank Hauser
- Department of Biology, University of Copenhagen, Denmark
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Emmanuelle Jacquin-Joly
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Versailles, France
| | | | - Jeffery W Jones
- Department of Biological Sciences, Oakland University, Rochester
| | - Steffen Klasberg
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Peter Lesný
- Institute of Evolutionary Biology and Ecology, Zoology and Evolutionary Biology, University of Bonn, Germany
| | - Mackenzie Lovegrove
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Sebastian Martin
- Institute of Evolutionary Biology and Ecology, Zoology and Evolutionary Biology, University of Bonn, Germany
| | | | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Nicolas Montagné
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Paris, France
| | - Victoria C Moris
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| | - Monica Munoz-Torres
- Berkeley Bioinformatics Open-source Projects (BBOP), Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Shwetha Canchi Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, Kansas
| | - Nicolas Parisot
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Thomas Pauli
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| | - Ralph S Peters
- Arthropoda Department, Center for Taxonomy and Evolutionary Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Malte Petersen
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Emma Persyn
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Paris, France
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | | | - Panagiotis Provataris
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Björn Marcus von Reumont
- Institute for Insect Biotechnology, University of Gießen, Germany.,Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | | | - Felipe A Simao
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - John Skelly
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | | | - Aaron L Stahl
- Department of Biological Sciences, University of Cincinnati.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Megumi Sumitani
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Owashi, Tsukuba, Japan
| | - Elise M Szuter
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University
| | - Olivia Tidswell
- Biochemistry Department, University of Otago, Dunedin, New Zealand.,Zoology Department, University of Cambridge, United Kingdom
| | | | - Lucia Vedder
- Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, Germany
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Jeanne Wilbrandt
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Yakushiji, Shimotsuke, Japan
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Tanja Ziesmann
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Masatsugu Hatakeyama
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| |
Collapse
|
13
|
Roelofs D, Zwaenepoel A, Sistermans T, Nap J, Kampfraath AA, Van de Peer Y, Ellers J, Kraaijeveld K. Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC Biol 2020; 18:57. [PMID: 32460826 PMCID: PMC7251882 DOI: 10.1186/s12915-020-00789-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/06/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gene duplication events play an important role in the evolution and adaptation of organisms. Duplicated genes can arise through different mechanisms, including whole-genome duplications (WGDs). Recently, WGD was suggested to be an important driver of evolution, also in hexapod animals. RESULTS Here, we analyzed 20 high-quality hexapod genomes using whole-paranome distributions of estimated synonymous distances (KS), patterns of within-genome co-linearity, and phylogenomic gene tree-species tree reconciliation methods. We observe an abundance of gene duplicates in the majority of these hexapod genomes, yet we find little evidence for WGD. The majority of gene duplicates seem to have originated through small-scale gene duplication processes. We did detect segmental duplications in six genomes, but these lacked the within-genome co-linearity signature typically associated with WGD, and the age of these duplications did not coincide with particular peaks in KS distributions. Furthermore, statistical gene tree-species tree reconciliation failed to support all but one of the previously hypothesized WGDs. CONCLUSIONS Our analyses therefore provide very limited evidence for WGD having played a significant role in the evolution of hexapods and suggest that alternative mechanisms drive gene duplication events in this group of animals. For instance, we propose that, along with small-scale gene duplication events, episodes of increased transposable element activity could have been an important source for gene duplicates in hexapods.
Collapse
Affiliation(s)
- Dick Roelofs
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Keygene N.V, Agro Business Park 90, 6708 PW, Wageningen, The Netherlands
| | - Arthur Zwaenepoel
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Tom Sistermans
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Joey Nap
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Andries A Kampfraath
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Yves Van de Peer
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, Center for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0028, South Africa
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Origins Center, Nijenborgh 7, 9747AG, Groningen, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Matthey-Doret C, van der Kooi CJ, Jeffries DL, Bast J, Dennis AB, Vorburger C, Schwander T. Mapping of Multiple Complementary Sex Determination Loci in a Parasitoid Wasp. Genome Biol Evol 2020; 11:2954-2962. [PMID: 31596478 PMCID: PMC6821247 DOI: 10.1093/gbe/evz219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Sex determination has evolved in a variety of ways and can depend on environmental and genetic signals. A widespread form of genetic sex determination is haplodiploidy, where unfertilized, haploid eggs develop into males and fertilized diploid eggs into females. One of the molecular mechanisms underlying haplodiploidy in Hymenoptera, the large insect order comprising ants, bees, and wasps, is complementary sex determination (CSD). In species with CSD, heterozygosity at one or several loci induces female development. Here, we identify the genomic regions putatively underlying multilocus CSD in the parasitoid wasp Lysiphlebus fabarum using restriction-site associated DNA sequencing. By analyzing segregation patterns at polymorphic sites among 331 diploid males and females, we identify up to four CSD candidate regions, all on different chromosomes. None of the candidate regions feature evidence for homology with the csd gene from the honey bee, the only species in which CSD has been characterized, suggesting that CSD in L. fabarum is regulated via a novel molecular mechanism. Moreover, no homology is shared between the candidate loci, in contrast to the idea that multilocus CSD should emerge from duplications of an ancestral single-locus system. Taken together, our results suggest that the molecular mechanisms underlying CSD in Hymenoptera are not conserved between species, raising the question as to whether CSD may have evolved multiple times independently in the group.
Collapse
Affiliation(s)
- Cyril Matthey-Doret
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Casper J van der Kooi
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Daniel L Jeffries
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Alice B Dennis
- Institute of Integrative Biology, ETH Zürich, Switzerland.,Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Christoph Vorburger
- Institute of Integrative Biology, ETH Zürich, Switzerland.,Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| |
Collapse
|
15
|
Xu J, Yu Y, Chen K, Huang Y. Intersex regulates female external genital and imaginal disc development in the silkworm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:1-8. [PMID: 30831220 DOI: 10.1016/j.ibmb.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
As a component of the mediator complex, the intersex (ix) gene product is involved in the sex determination pathway of the Drosophila melanogaster. IX functions together with the female-specific product of doublesex (dsx) at the bottom of the hierarchy to implement female sexual differentiation. Here we analyzed the functions of the ix gene in the model lepidopteran insect Bombyx mori. We found that Bmix is expressed in many tissues and is highly expressed in early pupal stages. We used the transgene-based CRISPR/Cas9 system to generate mutants of the Bmix gene. The Bmix female mutants were sterile and had irregular external genitalia, whereas in the mutant males external genitalia were normal. Mutants of both sexes had normal gonad development and normal splicing of the Bmdsx pre-mRNA, suggesting that Bmix functions independently of Bmdsx. Interestingly, both male and female mutants had defective development of the imaginal disc including wing, antenna, and leg. RNA-seq and gene expression analyses indicated that genes involved in WNT, Hippo, and Hedgehog signaling pathways and wing development genes Bmawd and Bmfng were up-regulated or down-regulated in the Bmix mutants compared with wild-type animals. Our data provide insights into the multiple functions of Bmix in female external genital and imaginal disc development in the silkworm.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
16
|
Roth A, Vleurinck C, Netschitailo O, Bauer V, Otte M, Kaftanoglu O, Page RE, Beye M. A genetic switch for worker nutrition-mediated traits in honeybees. PLoS Biol 2019; 17:e3000171. [PMID: 30897091 PMCID: PMC6428258 DOI: 10.1371/journal.pbio.3000171] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
Highly social insects are characterized by caste dimorphism, with distinct size differences of reproductive organs between fertile queens and the more or less sterile workers. An abundance of nutrition or instruction via diet-specific compounds has been proposed as explanations for the nutrition-driven queen and worker polyphenism. Here, we further explored these models in the honeybee (Apis mellifera) using worker nutrition rearing and a novel mutational screening approach using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) method. The worker nutrition-driven size reduction of reproductive organs was restricted to the female sex, suggesting input from the sex determination pathway. Genetic screens on the sex determination genes in genetic females for size polyphenism revealed that doublesex (dsx) mutants display size-reduced reproductive organs irrespective of the sexual morphology of the organ tissue. In contrast, feminizer (fem) mutants lost the response to worker nutrition-driven size control. The first morphological worker mutants in honeybees demonstrate that the response to nutrition relies on a genetic program that is switched “ON” by the fem gene. Thus, the genetic instruction provided by the fem gene provides an entry point to genetically dissect the underlying processes that implement the size polyphenism. In honeybees, nutrition drives dimorphic size development of reproductive organs in fertile queens and sterile workers. A study using the first induced morphological mutants in honeybees demonstrates that this developmental plasticity requires a genetic program that is switched on by the “feminizer” gene. In honeybees, nutrition drives dimorphic size development of reproductive organs in fertile queens and sterile workers. The first induced morphological mutants in honeybees demonstrate that this developmental plasticity requires a genetic program that is switched “ON” by the feminizer (fem) gene.
Collapse
Affiliation(s)
- Annika Roth
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Christina Vleurinck
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Oksana Netschitailo
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Vivien Bauer
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Marianne Otte
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Robert E. Page
- School of Life Sciences, Arizona State University, Phoenix, Arizona, United States of America
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
17
|
Aviles A, Boulogne I, Durand N, Maria A, Cordeiro A, Bozzolan F, Goutte A, Alliot F, Dacher M, Renault D, Maibeche M, Siaussat D. Effects of DEHP on post-embryonic development, nuclear receptor expression, metabolite and ecdysteroid concentrations of the moth Spodoptera littoralis. CHEMOSPHERE 2019; 215:725-738. [PMID: 30347366 DOI: 10.1016/j.chemosphere.2018.10.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is recognized in vertebrates as an Endocrine Disrupting Chemical (EDC). DEHP can alter steroid hormones production, development, reproduction and behavior in vertebrates. Only few studies investigated DEHP effects on insects. However, some recent studies on aquatic insects showed that DEHP could also act as an EDC by interfering with the signaling pathways of ecdysteroids, the main hormones involved in the control of insect post-embryonic development and physiology. The aim of the study was to investigate (1) the fate of DEHP within a terrestrial insect species by exposing larvae to food containing a wide range of DEHP concentrations and (2) the effects of this chemical on their post-embryonic development and metamorphosis, by using a multi-level approach. DEHP was shown to be present both in larvae and resulting stages, with higher concentrations in chrysalises and adults than in larvae. DEHP concentrations also decreased at the end of the last larval instar, suggesting the metabolic transformation or excretion of this chemical during this time. Only the two highest DEHP doses induced higher insect mortality, whereas low and intermediate concentrations increased larval food consumption without affecting body weight. Metabolic profiles showed that in control insects, the last three days before metamorphosis correspond to a metabolic transition, but with time-dependent changes in treated insects. Interestingly, DEHP treatments also alter both hemolymphatic ecdysteroid titers and expression levels of ecdysteroid response genes. These results confirm that DEHP can alter insect post-embryonic development and metamorphosis, by interfering with ecdysteroid pathways.
Collapse
Affiliation(s)
- Amandine Aviles
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Isabelle Boulogne
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France; Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED 4277, 76000 Rouen, France
| | - Nicolas Durand
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Annick Maria
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Alexandra Cordeiro
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Aurélie Goutte
- École Pratique des Hautes Études (EPHE), PSL Research University, UMR 7619 METIS, Sorbonne Université, Paris, France
| | - Fabrice Alliot
- École Pratique des Hautes Études (EPHE), PSL Research University, UMR 7619 METIS, Sorbonne Université, Paris, France
| | - Matthieu Dacher
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France; Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - David Renault
- Université de Rennes 1, UMR CNRS 6553 Ecobio, 263 Avenue du Gal Leclerc, CS 74205, 35042 Rennes Cedex, France; Institut Universitaire de France, 1 Rue Descartes, Paris, France
| | - Martine Maibeche
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - David Siaussat
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France.
| |
Collapse
|
18
|
Geuverink E, Kraaijeveld K, van Leussen M, Chen F, Pijpe J, Linskens MHK, Beukeboom LW, van de Zande L. Evidence for involvement of a transformer paralogue in sex determination of the wasp Leptopilina clavipes. INSECT MOLECULAR BIOLOGY 2018; 27:780-795. [PMID: 30039559 DOI: 10.1111/imb.12522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transformer (tra) is the central gear in many insect sex determination pathways and transduces a wide range of primary signals. Mediated by transformer-2 (tra2) it directs sexual development into the female or male mode. Duplications of tra have been detected in numerous Hymenoptera, but a function in sex determination has been confirmed only in Apis mellifera. We identified a tra2 orthologue (Lc-tra2), a tra orthologue (Lc-tra) and a tra paralogue (Lc-traB) in the genome of Leptopilina clavipes (Hymenoptera: Cynipidae). We compared the sequence and structural conservation of these genes between sexual (arrhenotokous) and asexual all-female producing (thelytokous) individuals. Lc-tra is sex-specifically spliced in adults consistent with its orthologous function. The male-specific regions of Lc-tra are conserved in both reproductive modes. The paralogue Lc-traB lacks the genomic region coding for male-specific exons and can only be translated into a full-length TRA-like peptide sequence. Furthermore, unlike LC-TRA, the LC-TRAB interstrain sequence variation is not differentiated into a sexual and an asexual haplotype. The LC-TRAB protein interacts with LC-TRA as well as LC-TRA2. This suggests that Lc-traB functions as a conserved element in sex determination of sexual and asexual individuals.
Collapse
Affiliation(s)
- E Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - K Kraaijeveld
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - M van Leussen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - F Chen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J Pijpe
- University of Applied Sciences Leiden, Leiden, The Netherlands
| | - M H K Linskens
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - L W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - L van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Zhuo JC, Hu QL, Zhang HH, Zhang MQ, Jo SB, Zhang CX. Identification and functional analysis of the doublesex gene in the sexual development of a hemimetabolous insect, the brown planthopper. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 102:31-42. [PMID: 30237076 DOI: 10.1016/j.ibmb.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/25/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
In the sex determination cascade, the genes dsx (doublesex) in insects, mab-3 (male abnormal 3) in nematodes, and Dmrt1 (dsx/mab-3 related transcription factor-1) in vertebrates act as the base molecular switches and play important roles. Moreover, these genes share the same conserved feature domain-DNA-binding oligomerization domain (OD1), and female-specific dsx also has a conserved oligomerization domain 2 (OD2). Although sex determination and the functions of dsx in several holometabolous insects have been well documented, sex determination and the function of dsx in hemimetabolous insects remain a mystery. In this study, four dsx homologs were unexpectedly found in the Nilaparvata lugens (brown planthopper, BPH, order Hemiptera), which also showed a different evolutionary status. We found that only one of the four homologs, Nldsx, which has three alternative splicing variants (female-specific NldsxF, male-specific NldsxM, non-sex-specific NldsxC), was required in the sexual development of N. lugens. Compared with that of holometabolous species, the dsx of N. lugens contains a less conserved OD1, while the OD2 domain of BPH was not identifiable because the common region is poorly conserved, and the female-specific region is short. RNAi-mediated knockdown of Nldsx in female BPH resulted in a larger body size with a normal abdomen and reproductive system, while no changes in fertility were noted. However, adult males with RNA interference knockdown of NldsxM in nymphs became pseudofemales, were infertile, had abnormal copulatory organs, and had impassable deferent ducts with hyperplastic walls; additionally, the pseudofemales could not produce the normal courtship signals. Our results suggest that dsx plays a critical role in male BPH somatic development and mating behavior. This is the first study to show that dsx is essential for sexual development in a hemipteran species.
Collapse
Affiliation(s)
- Ji-Chong Zhuo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Qing-Ling Hu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Hou-Hong Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Meng-Qiu Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Song Bok Jo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; Kim Jong Suk University of Education, Democratic People's Republic of Korea
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Miyakawa MO, Tsuchida K, Miyakawa H. The doublesex gene integrates multi-locus complementary sex determination signals in the Japanese ant, Vollenhovia emeryi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 94:42-49. [PMID: 29408414 DOI: 10.1016/j.ibmb.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 06/07/2023]
Abstract
A female diploid, male haploid sex determination system (haplodiploidy) is found in hymenopteran taxa, such as ants, wasps, bees and sawflies. In this system, a single, complementary sex-determination (sl-CSD) locus functions as the primary sex-determination signal. In the taxa that has evolved this system, females and males are heterozygous and hemi/homozygous at the CSD locus, respectively. While the sl-CSD system enables females to alter sex ratios in the nest, it carries a high cost in terms of inbreeding, as individuals that are homozygous at the CSD locus become sterile diploid males. To counter this risk, some of hymenopteran species have evolved a multi-locus CSD (ml-CSD) system, which effectively reduces the proportion of sterile males. However, the mechanism by which these multiple primary signals are integrated and how they affect the terminal sex-differentiation signal of the molecular cascade have not yet been clarified. To resolve these questions, we examined the molecular cascade in the Japanese ant Vollenhovia emeryi, which we previously confirmed has two CSD loci. Here, we showed that the sex-determination gene, doublesex (dsx), which is highly conserved among phylogenetically distant taxa, is responsible for integrating two CSD signals in V. emeryi. After identifying and characterizing dsx, genotypes containing two CSD loci and splicing patterns of dsx were found to correspond to the sexual phenotype, suggesting that two primary signals are integrated into dsx. These findings will facilitate future molecular and functional studies of the sex determination cascade in V. emeryi, and shed light on the evolution and diversification of sex determination systems in insects.
Collapse
Affiliation(s)
- Misato Okamoto Miyakawa
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350, Minemachi, Utsunomiya, Tochigi 321-8505, Japan.
| | - Koji Tsuchida
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, 350, Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|