1
|
Jenčič B, Pongrac P, Vasić M, Starič P, Kelemen M, Regvar M. Gold-Assisted Molecular Imaging of Organic Tissue by MeV Secondary Ion Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2358-2364. [PMID: 37682634 PMCID: PMC10557134 DOI: 10.1021/jasms.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
The quality of molecular imaging by means of MeV primary ion-induced secondary ion mass spectrometry by coating with gold was evaluated on different reference organic molecules and plant samples. The enhancement of the secondary ion yield was evident for the majority of the studied analytes, reaching the highest values at gold thicknesses between 0.5 and 2 nm, and increased the intensity up to 5-fold for reference samples and >2-fold for specific peaks within the plant sample. Improved propagation of the electric field due to the target potential on otherwise electrically insulating plant samples was also evident through improved image resolution and by reducing the background in mass spectra. However, detection of several molecules was significantly decreased at even at 1 nm thick gold layer. The results indicated that an optimized sequence of analysis is required to reliably interpret results.
Collapse
Affiliation(s)
- Boštjan Jenčič
- Jožef
Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Paula Pongrac
- Jožef
Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Biotechnical
Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Mirjana Vasić
- Jožef
Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Jožef
Stefan Institute Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Pia Starič
- Jožef
Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Biotechnical
Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Mitja Kelemen
- Jožef
Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Jožef
Stefan Institute Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Marjana Regvar
- Biotechnical
Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Lork AA, Vo KLL, Phan NTN. Chemical Imaging and Analysis of Single Nerve Cells by Secondary Ion Mass Spectrometry Imaging and Cellular Electrochemistry. Front Synaptic Neurosci 2022; 14:854957. [PMID: 35651734 PMCID: PMC9149580 DOI: 10.3389/fnsyn.2022.854957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
A nerve cell is a unit of neuronal communication in the nervous system and is a heterogeneous molecular structure, which is highly mediated to accommodate cellular functions. Understanding the complex regulatory mechanisms of neural communication at the single cell level requires analytical techniques with high sensitivity, specificity, and spatial resolution. Challenging technologies for chemical imaging and analysis of nerve cells will be described in this review. Secondary ion mass spectrometry (SIMS) allows for non-targeted and targeted molecular imaging of nerve cells and synapses at subcellular resolution. Cellular electrochemistry is well-suited for quantifying the amount of reactive chemicals released from living nerve cells. These techniques will also be discussed regarding multimodal imaging approaches that have recently been shown to be advantageous for the understanding of structural and functional relationships in the nervous system. This review aims to provide an insight into the strengths, limitations, and potentials of these technologies for synaptic and neuronal analyses.
Collapse
Affiliation(s)
| | | | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Correlated fluorescence microscopy and multi-ion beam secondary ion mass spectrometry imaging reveals phosphatidylethanolamine increases in the membrane of cancer cells over-expressing the molecular chaperone subunit CCTδ. Anal Bioanal Chem 2020; 413:445-453. [PMID: 33130974 PMCID: PMC7806562 DOI: 10.1007/s00216-020-03013-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/14/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Changes in the membrane composition of sub-populations of cells can influence different properties with importance to tumour growth, metastasis and treatment efficacy. In this study, we use correlated fluorescence microscopy and ToF-SIMS with C60+ and (CO2)6k+ ion beams to identify and characterise sub-populations of cells based on successful transfection leading to over-expression of CCTδ, a component of the multi-subunit molecular chaperone named chaperonin-containing tailless complex polypeptide 1 (CCT). CCT has been linked to increased cell growth and proliferation and is known to affect cell morphology but corresponding changes in lipid composition of the membrane have not been measured until now. Multivariate analysis of the surface mass spectra from single cells, focused on the intact lipid ions, indicates an enrichment of phosphatidylethanolamine species in the transfected cells. While the lipid changes in this case are driven by the structural changes in the protein cytoskeleton, the consequence of phosphatidylethanolamine enrichment may have additional implications in cancer such as increased membrane fluidity, increased motility and an ability to adapt to a depletion of unsaturated lipids during cancer cell proliferation. This study demonstrates a successful fluorescence microscopy-guided cell by cell membrane lipid analysis with broad application to biological investigation.Graphical abstract.
Collapse
|
4
|
Holmes DT, Romney MG, Angel P, DeMarco ML. Proteomic applications in pathology and laboratory medicine: Present state and future prospects. Clin Biochem 2020; 82:12-20. [PMID: 32442429 DOI: 10.1016/j.clinbiochem.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Clinical mass spectrometry applications have traditionally focused on small molecules, particularly in the areas of therapeutic drug monitoring, toxicology, and measurement of endogenous and exogenous steroids. More recently, the use of matrix assisted laser desorption/ionization time of flight mass spectrometry for the identification of microbial pathogens has been widely implemented. Following this evolution, there has been an expanding role for the measurement of peptides and proteins in pathology and laboratory medicine. This review explores the current state of protein measurement by clinical mass spectrometry and the analytical strategies employed, as well as emerging applications in clinical chemistry, clinical microbiology and anatomical pathology.
Collapse
Affiliation(s)
- Daniel T Holmes
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| | - Marc G Romney
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charelston, SC 29425 Canada.
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| |
Collapse
|
5
|
Neumann EK, Do TD, Comi TJ, Sweedler JV. Exploring the Fundamental Structures of Life: Non-Targeted, Chemical Analysis of Single Cells and Subcellular Structures. Angew Chem Int Ed Engl 2019; 58:9348-9364. [PMID: 30500998 PMCID: PMC6542728 DOI: 10.1002/anie.201811951] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 01/14/2023]
Abstract
Cells are a basic functional and structural unit of living organisms. Both unicellular communities and multicellular species produce an astonishing chemical diversity, enabling a wide range of divergent functions, yet each cell shares numerous aspects that are common to all living organisms. While there are many approaches for studying this chemical diversity, only a few are non-targeted and capable of analyzing hundreds of different chemicals at cellular resolution. Here, we review the non-targeted approaches used to perform comprehensive chemical analyses, provide chemical imaging information, or obtain high-throughput single-cell profiling data. Single-cell measurement capabilities are rapidly increasing in terms of throughput, limits of detection, and completeness of the chemical analyses; these improvements enable their application to understand ever more complex physiological phenomena, such as learning, memory, and behavior.
Collapse
Affiliation(s)
- Elizabeth K. Neumann
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thanh D. Do
- Department of Chemistry, 1420 Circle Drive, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Troy J. Comi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Neumann EK, Do TD, Comi TJ, Sweedler JV. Erforschung der fundamentalen Strukturen des Lebens: Nicht zielgerichtete chemische Analyse von Einzelzellen und subzellulären Strukturen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elizabeth K. Neumann
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| | - Thanh D. Do
- Department of ChemistryUniversity of Tennessee 1420 Circle Drive Knoxville TN 37996 USA
| | - Troy J. Comi
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| |
Collapse
|
7
|
Wilson RS, Nairn AC. Cell-Type-Specific Proteomics: A Neuroscience Perspective. Proteomes 2018; 6:51. [PMID: 30544872 PMCID: PMC6313874 DOI: 10.3390/proteomes6040051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Cell-type-specific analysis has become a major focus for many investigators in the field of neuroscience, particularly because of the large number of different cell populations found in brain tissue that play roles in a variety of developmental and behavioral disorders. However, isolation of these specific cell types can be challenging due to their nonuniformity and complex projections to different brain regions. Moreover, many analytical techniques used for protein detection and quantitation remain insensitive to the low amounts of protein extracted from specific cell populations. Despite these challenges, methods to improve proteomic yield and increase resolution continue to develop at a rapid rate. In this review, we highlight the importance of cell-type-specific proteomics in neuroscience and the technical difficulties associated. Furthermore, current progress and technological advancements in cell-type-specific proteomics research are discussed with an emphasis in neuroscience.
Collapse
Affiliation(s)
- Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, 300 George St., New Haven, CT 06511, USA.
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, 300 George St., New Haven, CT 06511, USA.
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT 06511, USA.
| |
Collapse
|
8
|
Wang J, Wang Z, Liu F, Cai L, Pan JB, Li Z, Zhang S, Chen HY, Zhang X, Mo Y. Vacuum Ultraviolet Laser Desorption/Ionization Mass Spectrometry Imaging of Single Cells with Submicron Craters. Anal Chem 2018; 90:10009-10015. [DOI: 10.1021/acs.analchem.8b02478] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jia Wang
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Zhaoying Wang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Feng Liu
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lesi Cai
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Jian-bin Pan
- The State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210023, People’s Republic of China
| | - Zhanping Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Sichun Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Hong-Yuan Chen
- The State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210023, People’s Republic of China
| | - Xinrong Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Yuxiang Mo
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
9
|
Abstract
Metabolomics, the characterization of metabolites and their changes within biological systems, has seen great technological and methodological progress over the past decade. Most metabolomic experiments involve the characterization of the small-molecule content of fluids or tissue homogenates. While these microliter and larger volume metabolomic measurements can characterize hundreds to thousands of compounds, the coverage of molecular content decreases as sample sizes are reduced to the nanoliter and even to the picoliter volume range. Recent progress has enabled the ability to characterize the major molecules found within specific individual cells. Especially within the brain, a myriad of cell types are colocalized, and oftentimes only a subset of these cells undergo changes in both healthy and pathological states. Here we highlight recent progress in mass spectrometry-based approaches used for single cell metabolomics, emphasizing their application to neuroscience research. Single cell studies can be directed to measuring differences between members of populations of similar cells (e.g., oligodendrocytes), as well as characterizing differences between cell types (e.g., neurons and astrocytes), and are especially useful for measuring changes occurring during different behavior states, exposure to diets and drugs, neuronal activity, and disease. When combined with other omics approaches such as transcriptomics, and with morphological and physiological measurements, single cell metabolomics aids fundamental neurochemical studies, has great potential in pharmaceutical development, and should improve the diagnosis and treatment of brain diseases.
Collapse
Affiliation(s)
- Meng Qi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Marina C Philip
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Ning Yang
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Comi TJ, Makurath MA, Philip MC, Rubakhin SS, Sweedler JV. MALDI MS Guided Liquid Microjunction Extraction for Capillary Electrophoresis-Electrospray Ionization MS Analysis of Single Pancreatic Islet Cells. Anal Chem 2017; 89:7765-7772. [PMID: 28636327 PMCID: PMC5518278 DOI: 10.1021/acs.analchem.7b01782] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022]
Abstract
The ability to characterize chemical heterogeneity in biological structures is essential to understanding cellular-level function in both healthy and diseased states, but these variations remain difficult to assess using a single analytical technique. While mass spectrometry (MS) provides sufficient sensitivity to measure many analytes from volume-limited samples, each type of mass spectrometric analysis uncovers only a portion of the complete chemical profile of a single cell. Matrix-assisted laser desorption/ionization (MALDI) MS and capillary electrophoresis electrospray ionization (CE-ESI)-MS are complementary analytical platforms frequently utilized for single-cell analysis. Optically guided MALDI MS provides a high-throughput assessment of lipid and peptide content for large populations of cells, but is typically nonquantitative and fails to detect many low-mass metabolites because of MALDI matrix interferences. CE-ESI-MS allows quantitative measurements of cellular metabolites and increased analyte coverage, but has lower throughput because the electrophoretic separation is relatively slow. In this work, the figures of merit for each technique are combined via an off-line method that interfaces the two MS systems with a custom liquid microjunction surface sampling probe. The probe is mounted on an xyz translational stage, providing 90.6 ± 0.6% analyte removal efficiency with a spatial targeting accuracy of 42.8 ± 2.3 μm. The analyte extraction footprint is an elliptical area with a major diameter of 422 ± 21 μm and minor diameter of 335 ± 27 μm. To validate the approach, single rat pancreatic islet cells were rapidly analyzed with optically guided MALDI MS to classify each cell into established cell types by their peptide content. After MALDI MS analysis, a majority of the analyte remains for follow-up measurements to extend the overall chemical coverage. Optically guided MALDI MS was used to identify individual pancreatic islet α and β cells, which were then targeted for liquid microjunction extraction. Extracts from single α and β cells were analyzed with CE-ESI-MS to obtain qualitative information on metabolites, including amino acids. Matching the molecular masses and relative migration times of the extracted analytes and related standards allowed identification of several amino acids. Interestingly, dopamine was consistently detected in both cell types. The results demonstrate the successful interface of optical microscopy-guided MALDI MS and CE-ESI-MS for sequential chemical profiling of individual, mammalian cells.
Collapse
Affiliation(s)
- Troy J. Comi
- Department
of Chemistry and the Beckman Institute, and Department of Molecular and Integrative
Physiology, University of Illinois, Urbana−Champaign, Illinois 61801, United
States
| | - Monika A. Makurath
- Department
of Chemistry and the Beckman Institute, and Department of Molecular and Integrative
Physiology, University of Illinois, Urbana−Champaign, Illinois 61801, United
States
| | - Marina C. Philip
- Department
of Chemistry and the Beckman Institute, and Department of Molecular and Integrative
Physiology, University of Illinois, Urbana−Champaign, Illinois 61801, United
States
| | - Stanislav S. Rubakhin
- Department
of Chemistry and the Beckman Institute, and Department of Molecular and Integrative
Physiology, University of Illinois, Urbana−Champaign, Illinois 61801, United
States
| | - Jonathan V. Sweedler
- Department
of Chemistry and the Beckman Institute, and Department of Molecular and Integrative
Physiology, University of Illinois, Urbana−Champaign, Illinois 61801, United
States
| |
Collapse
|
11
|
Wu K, Jia F, Zheng W, Luo Q, Zhao Y, Wang F. Visualization of metallodrugs in single cells by secondary ion mass spectrometry imaging. J Biol Inorg Chem 2017; 22:653-661. [DOI: 10.1007/s00775-017-1462-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
|
12
|
Comi TJ, Do TD, Rubakhin SS, Sweedler JV. Categorizing Cells on the Basis of their Chemical Profiles: Progress in Single-Cell Mass Spectrometry. J Am Chem Soc 2017; 139:3920-3929. [PMID: 28135079 PMCID: PMC5364434 DOI: 10.1021/jacs.6b12822] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 02/06/2023]
Abstract
The chemical differences between individual cells within large cellular populations provide unique information on organisms' homeostasis and the development of diseased states. Even genetically identical cell lineages diverge due to local microenvironments and stochastic processes. The minute sample volumes and low abundance of some constituents in cells hinder our understanding of cellular heterogeneity. Although amplification methods facilitate single-cell genomics and transcriptomics, the characterization of metabolites and proteins remains challenging both because of the lack of effective amplification approaches and the wide diversity in cellular constituents. Mass spectrometry has become an enabling technology for the investigation of individual cellular metabolite profiles with its exquisite sensitivity, large dynamic range, and ability to characterize hundreds to thousands of compounds. While advances in instrumentation have improved figures of merit, acquiring measurements at high throughput and sampling from large populations of cells are still not routine. In this Perspective, we highlight the current trends and progress in mass-spectrometry-based analysis of single cells, with a focus on the technologies that will enable the next generation of single-cell measurements.
Collapse
Affiliation(s)
- Troy J. Comi
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thanh D. Do
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Do TD, Comi TJ, Dunham SJB, Rubakhin SS, Sweedler JV. Single Cell Profiling Using Ionic Liquid Matrix-Enhanced Secondary Ion Mass Spectrometry for Neuronal Cell Type Differentiation. Anal Chem 2017; 89:3078-3086. [PMID: 28194949 DOI: 10.1021/acs.analchem.6b04819] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A high-throughput single cell profiling method has been developed for matrix-enhanced-secondary ion mass spectrometry (ME-SIMS) to investigate the lipid profiles of neuronal cells. Populations of cells are dispersed onto the substrate, their locations determined using optical microscopy, and the cell locations used to guide the acquisition of SIMS spectra from the cells. Up to 2,000 cells can be assayed in one experiment at a rate of 6 s per cell. Multiple saturated and unsaturated phosphatidylcholines (PCs) and their fragments are detected and verified with tandem mass spectrometry from individual cells when ionic liquids are employed as a matrix. Optically guided single cell profiling with ME-SIMS is suitable for a range of cell sizes, from Aplysia californica neurons larger than 75 μm to 7-μm rat cerebellar neurons. ME-SIMS analysis followed by t-distributed stochastic neighbor embedding of peaks in the lipid molecular mass range (m/z 700-850) distinguishes several cell types from the rat central nervous system, largely based on the relative proportions of four dominant lipids, PC(32:0), PC(34:1), PC(36:1), and PC(38:5). Furthermore, subpopulations within each cell type are tentatively classified consistent with their endogenous lipid ratios. The results illustrate the efficacy of a new approach to classify single cell populations and subpopulations using SIMS profiling of lipid and metabolite contents. These methods are broadly applicable for high throughput single cell chemical analyses.
Collapse
Affiliation(s)
- Thanh D Do
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Troy J Comi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sage J B Dunham
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
O'Rourke MB, Padula MP. A new standard of visual data representation for imaging mass spectrometry. Proteomics Clin Appl 2016; 11. [PMID: 27730748 DOI: 10.1002/prca.201600098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/26/2016] [Accepted: 10/07/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE MALDI imaging MS (IMS) is principally used for cancer diagnostics. In our own experience with publishing IMS data, we have been requested to modify our protocols with respect to the areas of the tissue that are imaged in order to comply with the wider literature. In light of this, we have determined that current methodologies lack effective controls and can potentially introduce bias by only imaging specific areas of the targeted tissue EXPERIMENTAL DESIGN: A previously imaged sample was selected and then cropped in different ways to show the potential effect of only imaging targeted areas. RESULTS By using a model sample, we were able to effectively show how selective imaging of samples can misinterpret tissue features and by changing the areas that are acquired, according to our new standard, an effective internal control can be introduced. CONCLUSIONS AND CLINICAL RELEVANCE Current IMS sampling convention relies on the assumption that sample preparation has been performed correctly. This prevents users from checking whether molecules have moved beyond borders of the tissue due to delocalization and consequentially products of improper sample preparation could be interpreted as biological features that are of critical importance when encountered in a visual diagnostic.
Collapse
Affiliation(s)
- Matthew B O'Rourke
- Proteomics Core Facility, University of Technology Sydney, Ultimo, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
15
|
Jansson ET, Comi TJ, Rubakhin SS, Sweedler JV. Single Cell Peptide Heterogeneity of Rat Islets of Langerhans. ACS Chem Biol 2016; 11:2588-95. [PMID: 27414158 DOI: 10.1021/acschembio.6b00602] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measuring the chemical composition of individual cells in mammalian organs can provide critical insights toward understanding the mechanisms leading to their normal and pathological function. In this work, single cell heterogeneity of islets of Langerhans is characterized with high throughput by microscopy-guided single cell matrix-assisted laser desorption/ionization mass spectrometry. Two levels of chemical heterogeneity were observed from the analysis of more than 3000 individual cells. Within a single islet, cellular heterogeneity was evident from the exclusive expression of the canonical biomarkers glucagon, insulin, pancreatic polypeptide (PP), and somatostatin within α-, β-, γ-, and δ-cells, respectively. We localized the neuropeptide WE-14, a known cell-to-cell signaling molecule, to individual δ-cells. Moreover, several unreported endogenous peptides generated by dibasic site cleavages of PP were detected within individual γ-cells. Of these, PP(27-36) was previously shown to activate the human Y4 receptor, suggesting it has a signaling role in vivo. Heterogeneity in cell composition was also observed between islets as evidenced by a 50-fold larger α-cell population in islets of the dorsal pancreas compared to the ventral-derived pancreatic islets. Finally, PP(27-36) was more abundant in γ-cells from the ventral region of the pancreas, indicating differences in the extent of PP-prohormone processing in the two regions of the pancreas.
Collapse
Affiliation(s)
- Erik T. Jansson
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Troy J. Comi
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Storage of cell samples for ToF-SIMS experiments-How to maintain sample integrity. Biointerphases 2016; 11:02A313. [PMID: 26810048 DOI: 10.1116/1.4940704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In order to obtain comparable and reproducible results from time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of biological cells, the influence of sample preparation and storage has to be carefully considered. It has been previously shown that the impact of the chosen preparation routine is crucial. In continuation of this work, the impact of storage needs to be addressed, as besides the fact that degradation will unavoidably take place, the effects of different storage procedures in combination with specific sample preparations remain largely unknown. Therefore, this work examines different wet (buffer, water, and alcohol) and dry (air-dried, freeze-dried, and critical-point-dried) storage procedures on human mesenchymal stem cell cultures. All cell samples were analyzed by ToF-SIMS immediately after preparation and after a storage period of 4 weeks. The obtained spectra were compared by principal component analysis with lipid- and amino acid-related signals known from the literature. In all dry storage procedures, notable degradation effects were observed, especially for lipid-, but also for amino acid-signal intensities. This leads to the conclusion that dried samples are to some extent easier to handle, yet the procedure is not the optimal storage solution. Degradation proceeds faster, which is possibly caused by oxidation reactions and cleaving enzymes that might still be active. Just as well, wet stored samples in alcohol struggle with decreased signal intensities from lipids and amino acids after storage. Compared to that, the wet stored samples in a buffered or pure aqueous environment revealed no degradation effects after 4 weeks. However, this storage bears a higher risk of fungi/bacterial contamination, as sterile conditions are typically not maintained. Thus, regular solution change is recommended for optimized storage conditions. Not directly exposing the samples to air, wet storage seems to minimize oxidation effects, and hence, buffer or water storage with regular renewal of the solution is recommended for short storage periods.
Collapse
|
17
|
Metal-assisted polyatomic SIMS and laser desorption/ionization for enhanced small molecule imaging of bacterial biofilms. Biointerphases 2016; 11:02A325. [PMID: 26945568 DOI: 10.1116/1.4942884] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mass spectrometry imaging (MSI) has become an important analytical tool for many sectors of science and medicine. As the application of MSI expands into new areas of inquiry, existing methodologies must be adapted and improved to meet emerging challenges. Particularly salient is the need for small molecule imaging methods that are compatible with complex multicomponent systems, a challenge that is amplified by the effects of analyte migration and matrix interference. With a focus on microbial biofilms from the opportunistic pathogen Pseudomonas aeruginosa, the relative advantages of two established microprobe-based MSI techniques-polyatomic secondary ion mass spectrometry (SIMS) and laser desorption/ionization-are compared, with emphasis on exploring the effect of surface metallization on small molecule imaging. A combination of qualitative image comparison and multivariate statistical analysis demonstrates that sputtering microbial biofilms with a 2.5 nm layer of gold selectively enhances C60-SIMS ionization for several molecular classes including rhamnolipids and 2-alkyl-quinolones. Metallization also leads to the reduction of in-source fragmentation and subsequent ionization of media-specific background polymers, which improves spectral purity and image quality. These findings show that the influence of metallization upon ionization is strongly dependent on both the surface architecture and the analyte class, and further demonstrate that metal-assisted C60-SIMS is a viable method for small molecule imaging of intact molecular ions in complex biological systems.
Collapse
|
18
|
Bodzon-Kulakowska A, Suder P. Imaging mass spectrometry: Instrumentation, applications, and combination with other visualization techniques. MASS SPECTROMETRY REVIEWS 2016; 35:147-69. [PMID: 25962625 DOI: 10.1002/mas.21468] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/23/2015] [Indexed: 05/18/2023]
Abstract
Imaging Mass Spectrometry (IMS) is strengthening its position as a valuable analytical tool. It has unique ability to identify structures and to unravel molecular changes that occur in the precisely defined part of the sample. These unique features open new possibilities in the field of various aspects of biological research. In this review we briefly discuss the main imaging mass spectrometry techniques, as well as the nature of biological samples and molecules, which might be analyzed by such methodology. Moreover, a novel approach, where different analytical techniques might be combined with the results of IMS study, is emphasized and discussed. With such a fast development of IMS and related methods, we can foresee the promising future of this technique.
Collapse
Affiliation(s)
- Anna Bodzon-Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
- Academic Centre for Materials and Nanotechnology (ACMiN), AGH University of Science and Technology, 30-059 Krakow, Poland
| |
Collapse
|
19
|
Gulin A, Nadtochenko V, Astafiev A, Pogorelova V, Rtimi S, Pogorelov A. Correlating microscopy techniques and ToF-SIMS analysis of fully grown mammalian oocytes. Analyst 2016; 141:4121-9. [DOI: 10.1039/c6an00665e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An innovative protocol for the 2D-molecular thin film analysis applying ToF-SIMS, SEM, AFM and optical microscopy imaging of fully grown mice oocytes is described.
Collapse
Affiliation(s)
- Alexander Gulin
- N. N. Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- 119991 Moscow
- Russia
- Moscow State University
| | - Victor Nadtochenko
- N. N. Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- 119991 Moscow
- Russia
- Moscow State University
| | - Artyom Astafiev
- N. N. Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- 119991 Moscow
- Russia
| | | | - Sami Rtimi
- Ecole Polytechnique Fédeérale de Lausanne
- Institute of chemical sciences and engineering (ISIC)
- Lausanne
- VD
- Switzerland
| | | |
Collapse
|
20
|
Gulin AA, Pavlyukov MS, Gularyan SK, Nadtochenko VA. Visualization of the spatial distribution of Pt+ ions in cisplatin-treated glioblastoma cells by time-of-flight secondary ion mass spectrometry. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s1990747815020154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Assessment of different sample preparation routes for mass spectrometric monitoring and imaging of lipids in bone cells via ToF-SIMS. Biointerphases 2015; 10:019016. [PMID: 25791294 DOI: 10.1116/1.4915263] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In ToF-SIMS analysis, the experimental outcome from cell experiments is to a great extent influenced by the sample preparation routine. In order to better judge this critical influence in the case of lipid analysis, a detailed comparison of different sample preparation routines is performed-aiming at an optimized preparation routine for systematic lipid imaging of cell cultures. For this purpose, human mesenchymal stem cells were analyzed: (a) as chemically fixed, (b) freeze-dried, and (c) frozen-hydrated. For chemical fixation, different fixatives, i.e., glutaraldehyde, paraformaldehyde, and a mixture of both, were tested with different postfixative handling procedures like storage in phosphate buffered saline, water or critical point drying. Furthermore, secondary lipid fixation via osmium tetroxide was taken into account and the effect of an ascending alcohol series with and without this secondary lipid fixation was evaluated. Concerning freeze-drying, three different postprocessing possibilities were examined. One can be considered as a pure cryofixation technique while the other two routes were based on chemical fixation. Cryofixation methods known from literature, i.e., freeze-fracturing and simple frozen-hydrated preparation, were also evaluated to complete the comparison of sample preparation techniques. Subsequent data evaluation of SIMS spectra in both, positive and negative, ion mode was performed via principal component analysis by use of peak sets representative for lipids. For freeze-fracturing, these experiments revealed poor reproducibility making this preparation route unsuitable for systematic investigations and statistic data evaluation. Freeze-drying after cryofixation showed improved reproducibility and well preserved lipid contents while the other freeze-drying procedures showed drawbacks in one of these criteria. In comparison, chemical fixation techniques via glutar- and/or paraformaldehyde proved most suitable in terms of reproducibility and preserved lipid contents, while alcohol and osmium treatment led to the extraction of lipids and are therefore not recommended.
Collapse
|
22
|
Yuki D, Sugiura Y, Zaima N, Akatsu H, Takei S, Yao I, Maesako M, Kinoshita A, Yamamoto T, Kon R, Sugiyama K, Setou M. DHA-PC and PSD-95 decrease after loss of synaptophysin and before neuronal loss in patients with Alzheimer's disease. Sci Rep 2014; 4:7130. [PMID: 25410733 PMCID: PMC5382699 DOI: 10.1038/srep07130] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/04/2014] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by senile plaques, neurofibrillary tangles, synaptic disruption, and neuronal loss. Several studies have demonstrated decreases of docosahexaenoic acid-containing phosphatidylcholines (DHA-PCs) in the AD brain. In this study, we used matrix-assisted laser desorption/ionization imaging mass spectrometry in postmortem AD brain to show that PC molecular species containing stearate and DHA, namely PC(18:0/22:6), was selectively depleted in the gray matter of patients with AD. Moreover, in the brain regions with marked amyloid β (Aβ) deposition, the magnitude of the PC(18:0/22:6) reduction significantly correlated with disease duration. Furthermore, at the molecular level, this depletion was associated with reduced levels of the postsynaptic protein PSD-95 but not the presynaptic protein synaptophysin. Interestingly, this reduction in PC(18:0/22:6) levels did not correlate with the degrees of Aβ deposition and neuronal loss in AD. The analysis of the correlations of key factors and disease duration showed that their effects on the disease time course were arranged in order as Aβ deposition, presynaptic disruption, postsynaptic disruption coupled with PC(18:0/22:6) reduction, and neuronal loss.
Collapse
Affiliation(s)
- Dai Yuki
- 1] Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan [2] Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo 132-0035, Japan
| | - Yuki Sugiura
- 1] Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan [2] JST Precursory Research for Embryonic Science Technology (PREST) Project, 160-8582 Tokyo, Japan
| | - Nobuhiro Zaima
- 1] Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan [2] Department of Applied Biological Chemistry, Kinki University, 3327-204 Naka-machi, Nara 631-8505, Japan
| | - Hiroyasu Akatsu
- 1] Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyori-cho, Toyohashi, Aichi 441-8124, Japan [2] Department of Medicine for Aging in Place and Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shiro Takei
- 1] Department of Optical Imaging, Medical Photonics Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan [2] JST, ERATO, Sato project, Tokyo 160-8582, Japan
| | - Ikuko Yao
- 1] Department of Optical Imaging, Medical Photonics Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan [2] JST, ERATO, Sato project, Tokyo 160-8582, Japan
| | - Masato Maesako
- School of Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ayae Kinoshita
- School of Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Yamamoto
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyori-cho, Toyohashi, Aichi 441-8124, Japan
| | - Ryo Kon
- Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo 132-0035, Japan
| | - Keikichi Sugiyama
- 1] Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo 132-0035, Japan [2] Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Mitsutoshi Setou
- 1] Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan [2] JST, ERATO, Sato project, Tokyo 160-8582, Japan
| |
Collapse
|
23
|
Lanni EJ, Dunham SJB, Nemes P, Rubakhin SS, Sweedler JV. Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1897-907. [PMID: 25183225 DOI: 10.1007/s13361-014-0978-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 05/09/2023]
Abstract
We describe a hybrid MALDI/C(60)-SIMS Q-TOF mass spectrometer and corresponding sample preparation protocols to image intact biomolecules and their fragments in mammalian spinal cord, individual invertebrate neurons, and cultured neuronal networks. A lateral spatial resolution of 10 μm was demonstrated, with further improvement feasible to 1 μm, sufficient to resolve cell outgrowth and interconnections in neuronal networks. The high mass resolution (>13,000 FWHM) and tandem mass spectrometry capability of this hybrid instrument enabled the confident identification of cellular metabolites. Sublimation of a suitable matrix, 2,5-dihydroxybenzoic acid, significantly enhanced the ion signal intensity for intact glycerophospholipid ions from mammalian nervous tissue, facilitating the acquisition of high-quality ion images for low-abundance biomolecules. These results illustrate that the combination of C60-SIMS and MALDI mass spectrometry offers particular benefits for studies that require the imaging of intact biomolecules with high spatial and mass resolution, such as investigations of single cells, subcellular organelles, and communities of cells.
Collapse
Affiliation(s)
- Eric J Lanni
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | | | |
Collapse
|
24
|
Phan NTN, Fletcher JS, Sjövall P, Ewing AG. ToF-SIMS imaging of lipids and lipid related compounds in Drosophila brain. SURF INTERFACE ANAL 2014; 46:123-126. [PMID: 25918451 DOI: 10.1002/sia.5547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Drosophila melanogaster (fruit fly) has a relatively simple nervous system but possesses high order brain functions similar to humans. Therefore, it has been used as a common model system in biological studies, particularly drug addiction. Here, the spatial distribution of biomolecules in the brain of the fly was studied using time-of flight secondary ion mass spectrometry (ToF-SIMS). Fly brains were analyzed frozen to prevent molecular redistribution prior to analysis. Different molecules were found to distribute differently in the tissue, particularly the eye pigments, diacylglycerides, and phospholipids, and this is expected to be driven by their biological functions in the brain. Correlations in the localization of these molecules were also observed using principal components analysis of image data, and this was used to identify peaks for further analysis. Furthermore, consecutive analyses following 10 keV Ar2500+ sputtering showed that different biomolecules respond differently to Ar2500+ sputtering. Significant changes in signal intensities between consecutive analyses were observed for high mass molecules including lipids.
Collapse
Affiliation(s)
- Nhu T N Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden ; National Center Imaging Mass Spectrometry, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden ; National Center Imaging Mass Spectrometry, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Peter Sjövall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden ; Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, SE-50115 Borås, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden ; National Center Imaging Mass Spectrometry, Kemivägen 10, SE-412 96 Gothenburg, Sweden ; Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
25
|
Romanova EV, Aerts JT, Croushore CA, Sweedler JV. Small-volume analysis of cell-cell signaling molecules in the brain. Neuropsychopharmacology 2014; 39:50-64. [PMID: 23748227 PMCID: PMC3857641 DOI: 10.1038/npp.2013.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
Modern science is characterized by integration and synergy between research fields. Accordingly, as technological advances allow new and more ambitious quests in scientific inquiry, numerous analytical and engineering techniques have become useful tools in biological research. The focus of this review is on cutting edge technologies that aid direct measurement of bioactive compounds in the nervous system to facilitate fundamental research, diagnostics, and drug discovery. We discuss challenges associated with measurement of cell-to-cell signaling molecules in the nervous system, and advocate for a decrease of sample volumes to the nanoliter volume regimen for improved analysis outcomes. We highlight effective approaches for the collection, separation, and detection of such small-volume samples, present strategies for targeted and discovery-oriented research, and describe the required technology advances that will empower future translational science.
Collapse
Affiliation(s)
- Elena V Romanova
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jordan T Aerts
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Callie A Croushore
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
26
|
Brison J, Robinson MA, Benoit DS, Muramoto S, Stayton PS, Castner DG. TOF-SIMS 3D imaging of native and non-native species within HeLa cells. Anal Chem 2013; 85:10869-77. [PMID: 24131300 PMCID: PMC3889863 DOI: 10.1021/ac402288d] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, a non-native chemical species, bromodeoxyuridine (BrdU), was imaged within single HeLa cells using time-of-flight secondary ion mass spectrometry (TOF-SIMS). z-corrected 3D images were reconstructed that accurately portray the distribution of intracellular BrdU as well as other intracellular structures. The BrdU was localized to the nucleus of cells, whereas structures composed of CxHyOz(-) species were located in bundles on the periphery of cells. The CxHyOz(-) subcellular features had a spatial resolution at or slightly below a micrometer (900 nm), as defined by the distance between the 16% and 84% intensities in a line scan across the edge of the features. Additionally, important parameters influencing the quality of the HeLa cell 3D images were investigated. Atomic force microscopy measurements revealed that the HeLa cells were sputtered at a rate of approximately 4 nm per 10(13) C60(+) ions/cm(2) at 10 keV and a 45° incident angle. Optimal 3D images were acquired using a Bi3(+) liquid metal ion gun operating in the simultaneous high mass and spatial resolution mode.
Collapse
Affiliation(s)
- Jeremy Brison
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, WA 98195-1653
- Department of Bioengineering, University of Washington, Seattle, WA 98195-1653
| | - Michael A. Robinson
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, WA 98195-1653
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1653
| | | | - Shin Muramoto
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, WA 98195-1653
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1653
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195-1653
| | - David G. Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, WA 98195-1653
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1653
- Department of Bioengineering, University of Washington, Seattle, WA 98195-1653
| |
Collapse
|
27
|
Current status and future perspectives of mass spectrometry imaging. Int J Mol Sci 2013; 14:11277-301. [PMID: 23759983 PMCID: PMC3709732 DOI: 10.3390/ijms140611277] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 01/05/2023] Open
Abstract
Mass spectrometry imaging is employed for mapping proteins, lipids and metabolites in biological tissues in a morphological context. Although initially developed as a tool for biomarker discovery by imaging the distribution of protein/peptide in tissue sections, the high sensitivity and molecular specificity of this technique have enabled its application to biomolecules, other than proteins, even in cells, latent finger prints and whole organisms. Relatively simple, with no requirement for labelling, homogenization, extraction or reconstitution, the technique has found a variety of applications in molecular biology, pathology, pharmacology and toxicology. By discriminating the spatial distribution of biomolecules in serial sections of tissues, biomarkers of lesions and the biological responses to stressors or diseases can be better understood in the context of structure and function. In this review, we have discussed the advances in the different aspects of mass spectrometry imaging processes, application towards different disciplines and relevance to the field of toxicology.
Collapse
|
28
|
Masyuko R, Lanni EJ, Sweedler JV, Bohn PW. Correlated imaging--a grand challenge in chemical analysis. Analyst 2013; 138:1924-39. [PMID: 23431559 PMCID: PMC3718397 DOI: 10.1039/c3an36416j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Correlated chemical imaging is an emerging strategy for acquisition of images by combining information from multiplexed measurement platforms to track, visualize, and interpret in situ changes in the structure, organization, and activities of interesting chemical systems, frequently spanning multiple decades in space and time. Acquiring and correlating information from complementary imaging experiments has the potential to expose complex chemical behavior in ways that are simply not available from single methods applied in isolation, thereby greatly amplifying the information gathering power of imaging experiments. However, in order to correlate image information across platforms, a number of issues must be addressed. First, signals are obtained from disparate experiments with fundamentally different figures of merit, including pixel size, spatial resolution, dynamic range, and acquisition rates. In addition, images are often acquired on different instruments in different locations, so the sample must be registered spatially so that the same area of the sample landscape is addressed. The signals acquired must be correlated in both spatial and temporal domains, and the resulting information has to be presented in a way that is readily understood. These requirements pose special challenges for image cross-correlation that go well beyond those posed in single technique imaging approaches. The special opportunities and challenges that attend correlated imaging are explored by specific reference to correlated mass spectrometric and Raman imaging, a topic of substantial and growing interest.
Collapse
Affiliation(s)
- Rachel Masyuko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
29
|
Passarelli MK, Ewing AG, Winograd N. Single-cell lipidomics: characterizing and imaging lipids on the surface of individual Aplysia californica neurons with cluster secondary ion mass spectrometry. Anal Chem 2013; 85:2231-8. [PMID: 23323749 PMCID: PMC3867296 DOI: 10.1021/ac303038j] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurons isolated from Aplysia californica , an organism with a well-defined neural network, were imaged with secondary ion mass spectrometry, C(60)-SIMS. A major lipid component of the neuronal membrane was identified as 1-hexadecyl-2-octadecenoyl-sn-glycero-3-phosphocholine [PC(16:0e/18:1)] using tandem mass spectrometry (MS/MS). The assignment was made directly off the sample surface using a C(60)-QSTAR instrument, a prototype instrument that combines an ion source with a commercial electrospray ionization/matrix-assisted laser desorption ionization (ESI/MALDI) mass spectrometer. Normal phase liquid chromatography mass spectrometry (NP-LC-MS) was used to confirm the assignment. Cholesterol and vitamin E were also identified with in situ tandem MS analyses that were compared to reference spectra obtained from purified compounds. In order to improve sensitivity on the single-cell level, the tandem MS spectrum of vitamin E reference material was used to extract and compile all the vitamin E related peaks from the cell image. The mass spectrometry images reveal heterogeneous distributions of intact lipid species, PC(16:0e/18:1), vitamin E, and cholesterol on the surface of a single neuron. The ability to detect these molecules and determine their relative distribution on the single-cell level shows that the C(60)-QSTAR is a potential platform for studying important biochemical processes, such as neuron degeneration.
Collapse
Affiliation(s)
- Melissa K. Passarelli
- Department of Chemistry, University Park, PA 16802, USA
- Department of Chemistry and Molecular Biology, The University of Gothenburg, SE-41296 Göteborg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, The University of Gothenburg, SE-41296 Göteborg, Sweden
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Göteborg, Sweden
| | | |
Collapse
|
30
|
Forsythe JG, Broussard JA, Lawrie JL, Kliman M, Jiao Y, Weiss SM, Webb DJ, McLean JA. Semitransparent nanostructured films for imaging mass spectrometry and optical microscopy. Anal Chem 2012; 84:10665-70. [PMID: 23146026 DOI: 10.1021/ac3022967] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Semitransparent porous silicon substrates have been developed for pairing nanostructure-initiator mass spectrometry (NIMS) imaging with traditional optical-based microscopy techniques. Substrates were optimized to generate the largest NIMS signal while maintaining sufficient transparency to allow visible light to pass through for optical microscopy. Using these substrates, both phase-contrast and NIMS images of phospholipids from a scratch-wounded cell monolayer were obtained. NIMS images were generated using a spatial resolution of 14 μm. Coupled with further improvements in spatial resolution, this approach may allow for the localization of intact biological molecules within cells without the need for labeling.
Collapse
Affiliation(s)
- Jay G Forsythe
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | |
Collapse
|