1
|
Luh D, Heiles S, Roderfeld M, Grevelding CG, Roeb E, Spengler B. Hepatic Topology of Glycosphingolipids in Schistosoma mansoni-Infected Hamsters. Anal Chem 2024; 96:6311-6320. [PMID: 38594017 PMCID: PMC11044111 DOI: 10.1021/acs.analchem.3c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host-pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI measurements were conducted in positive- and negative-ion mode for the visualization of neutral and acidic GSLs. Based on nano-HILIC MS/MS results, we discovered no downregulated but 50 significantly upregulated GSLs in liver samples of infected hamsters. AP-SMALDI MSI showed that 44 of these GSL species were associated with the granulomas in the liver tissue. Our findings suggest an important role of GSLs during granuloma formation.
Collapse
Affiliation(s)
- David Luh
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
- Leibniz-Institut
für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany
- Lipidomics,
Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Martin Roderfeld
- Gastroenterology, Justus Liebig University Giessen, 35392Giessen, Germany
| | | | - Elke Roeb
- Gastroenterology, Justus Liebig University Giessen, 35392Giessen, Germany
| | - Bernhard Spengler
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
2
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Wang Y, Li S, Qian K. Nanoparticle-based applications by atmospheric pressure matrix assisted desorption/ionization mass spectrometry. NANOSCALE ADVANCES 2023; 5:6804-6818. [PMID: 38059044 PMCID: PMC10697002 DOI: 10.1039/d3na00734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
Recently, the development of atmospheric pressure matrix assisted desorption/ionization mass spectrometry (AP MALDI MS) has made contributions not only to biomolecule analysis but also to spatial distribution. This has positioned AP MALDI as a powerful tool in multiple domains, thanks to its comprehensive advantages compared to conventional MALDI MS. These developments have addressed challenges associated with previous AP MALDI analysis systems, such as optimization of apparatus settings, synthesis of novel matrices, preconcentration and isolation strategies before analysis. Herein, applications in different fields using AP MALDI MS were described, including peptide and protein analysis, metabolite analysis, pharmaceutical analysis, and mass spectrometry imaging.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University Shanghai 200030 China
| | - Shunxiang Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University Shanghai 200030 China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University Shanghai 200030 China
| |
Collapse
|
4
|
Lu T, Freytag L, Narayana VK, Moore Z, Oliver SJ, Valkovic A, Nijagal B, Peterson AL, de Souza DP, McConville MJ, Whittle JR, Best SA, Freytag S. Matrix Selection for the Visualization of Small Molecules and Lipids in Brain Tumors Using Untargeted MALDI-TOF Mass Spectrometry Imaging. Metabolites 2023; 13:1139. [PMID: 37999235 PMCID: PMC10673325 DOI: 10.3390/metabo13111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging allows for the study of metabolic activity in the tumor microenvironment of brain cancers. The detectable metabolites within these tumors are contingent upon the choice of matrix, deposition technique, and polarity setting. In this study, we compared the performance of three different matrices, two deposition techniques, and the use of positive and negative polarity in two different brain cancer types and across two species. Optimal combinations were confirmed by a comparative analysis of lipid and small-molecule abundance by using liquid chromatography-mass spectrometry and RNA sequencing to assess differential metabolites and enzymes between normal and tumor regions. Our findings indicate that in the tumor-bearing brain, the recrystallized α-cyano-4-hydroxycinnamic acid matrix with positive polarity offered superior performance for both detected metabolites and consistency with other techniques. Beyond these implications for brain cancer, our work establishes a workflow to identify optimal matrices for spatial metabolomics studies.
Collapse
Affiliation(s)
- Tianyao Lu
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Lutz Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | - Vinod K. Narayana
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne 3010, Australia
| | - Zachery Moore
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Shannon J. Oliver
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | - Adam Valkovic
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | - Brunda Nijagal
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne 3010, Australia
| | - Amanda L. Peterson
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne 3010, Australia
| | - David P. de Souza
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne 3010, Australia
| | - Malcolm J. McConville
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne 3010, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne 3010, Australia
| | - James R. Whittle
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne 3052, Australia
| | - Sarah A. Best
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Saskia Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| |
Collapse
|
5
|
Yang E, Kim JH, Tressler CM, Shen XE, Brown DR, Johnson CC, Hahm TH, Barman I, Glunde K. RaMALDI: Enabling simultaneous Raman and MALDI imaging of the same tissue section. Biosens Bioelectron 2023; 239:115597. [PMID: 37597501 PMCID: PMC10544780 DOI: 10.1016/j.bios.2023.115597] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Multimodal tissue imaging techniques that integrate two complementary modalities are powerful discovery tools for unraveling biological processes and identifying biomarkers of disease. Combining Raman spectroscopic imaging (RSI) and matrix-assisted laser-desorption/ionization (MALDI) mass spectrometry imaging (MSI) to obtain fused images with the advantages of both modalities has the potential of providing spatially resolved, sensitive, specific biomolecular information, but has so far involved two separate sample preparations, or even consecutive tissue sections for RSI and MALDI MSI, resulting in images with inherent disparities. We have developed RaMALDI, a streamlined, integrated, multimodal imaging workflow of RSI and MALDI MSI, performed on a single tissue section with one sample preparation protocol. We show that RaMALDI imaging of various tissues effectively integrates molecular information acquired from both RSI and MALDI MSI of the same sample, which will drive discoveries in cell biology, biomedicine, and pathology, and advance tissue diagnostics.
Collapse
Affiliation(s)
- Ethan Yang
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Caitlin M Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Xinyi Elaine Shen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Dalton R Brown
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Cole C Johnson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tae-Hun Hahm
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ishan Barman
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Departments of Oncology and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
6
|
Wang Z, Zhu H, Xiong W. Advances in mass spectrometry-based multi-scale metabolomic methodologies and their applications in biological and clinical investigations. Sci Bull (Beijing) 2023; 68:2268-2284. [PMID: 37666722 DOI: 10.1016/j.scib.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Metabolomics is a nascent field of inquiry that emerged in the late 20th century. It encompasses the comprehensive profiling of metabolites across a spectrum of organisms, ranging from bacteria and cells to tissues. The rapid evolution of analytical methods and data analysis has greatly accelerated progress in this dynamic discipline over recent decades. Sophisticated techniques such as liquid chromatograph mass spectrometry (MS), gas chromatograph MS, capillary electrophoresis MS, and nuclear magnetic resonance serve as the cornerstone of metabolomic analysis. Building upon these methods, a plethora of modifications and combinations have emerged to propel the advancement of metabolomics. Despite this progress, scrutinizing metabolism at the single-cell or single-organelle level remains an arduous task over the decades. Some of the most thrilling advancements, such as single-cell and single-organelle metabolic profiling techniques, offer profound insights into the intricate mechanisms within cells and organelles. This allows for a comprehensive study of metabolic heterogeneity and its pivotal role in multiple biological processes. The progress made in MS imaging has enabled high-resolution in situ metabolic profiling of tissue sections and even individual cells. Spatial reconstruction techniques enable the direct representation of metabolic distribution and alteration in three-dimensional space. The application of novel metabolomic techniques has led to significant breakthroughs in biological and clinical studies, including the discovery of novel metabolic pathways, determination of cell fate in differentiation, anti-aging intervention through modulating metabolism, metabolomics-based clinicopathologic analysis, and surgical decision-making based on on-site intraoperative metabolic analysis. This review presents a comprehensive overview of both conventional and innovative metabolomic techniques, highlighting their applications in groundbreaking biological and clinical studies.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hongying Zhu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| |
Collapse
|
7
|
Ollen-Bittle N, Lowry CA, Donovan KE, Andrew RD, Whitehead SN. Validating MALDI-IMS Feasibility in Ex Vivo Brain Slices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37471497 DOI: 10.1021/jasms.3c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) generates unique mass spectra in X/Y coordinates across a tissue sample, thus allowing for the spatial detection and relative quantification of biologic compounds in situ. The soft ionization of MALDI-IMS makes it an ideal technique for high-resolution imaging of complex lipid species. Lipid-based spatial chemical maps derived from MALDI-IMS provide critical insight into the unique molecular profiles of a variety of neurologic diseases. Ex vivo brain slice preparations are a prominent alternative to in vivo animal models for studying many different neurologic conditions. For the first time, we present a feasible protocol for achieving reproducible lipidomic MALDI-IMS data from ex vivo rat brain slices and provide evidence that ex vivo brain slices maintain spatiochemical lipidomic profiles representative of an intact whole brain. We conducted a methods comparison assessing the lipid profiles within the neocortex, striatum, and corpus callosum between coronal sections taken from ex vivo brain slices and the current gold standard tissue preparation method, fresh frozen whole brains. For the first time we demonstrate a technique by which 400 μm ex vivo brain slices can be extracted from an imaging chamber and prepared for MALDI-IMS in a way that preserves their lipidomic integrity. We demonstrate the feasibility of MALDI-IMS in ex vivo brain slices and provide a roadmap for MALDI-IMS utilization in uncharted neuroscience fields.
Collapse
Affiliation(s)
- Nikita Ollen-Bittle
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
| | - Chloe A Lowry
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Katherine E Donovan
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R David Andrew
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
- Deparment of Clinical Neurological Sciences, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
8
|
Chan WH, Yau LF, Meng XY, Chan KM, Jiang ZH, Wang JR. Robust quantitation of gangliosides and sulfatides in human brain using UHPLC-MRM-MS: Method development and application in Alzheimer's disease. Talanta 2023; 256:124264. [PMID: 36689895 DOI: 10.1016/j.talanta.2023.124264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Gangliosides (GAs) and sulfatides (STs) are acidic glycosphingolipids that are particularly abundant in the nervous system and are closely related to aging and neurodegenerative disorders. To explore their roles in brain diseases, in-depth molecular profiling, including structural variations of sphingoid backbone, fatty acyl group, and sugar chain of GAs and STs was performed. A total of 210 GAs and 38 STs were characterized in the inferior frontal gyrus (IFG) of human brain, with 90 GAs discovered in brain tissues for the first time. Influential MS parameters for detecting GAs and STs in multiple reaction monitoring (MRM) mode were systematically examined and optimized to minimize in-source fragmentation, resulting in remarkable signal intensity enhancement for GAs and STs, especially for polysialylated species. To eliminate analytical variations, isotopic interference-free internal standards were prepared by simple and fast reduction reaction. The final established method facilitated the simultaneous quantitation of 184 GAs and 30 STs from 25 subtypes, which represents the highest number of GAs quantitated among all quantitation methods recorded in literature so far. The method was further validated and applied to reveal the aberrant change of GAs and STs in the IFG of 12 Alzheimer's disease (AD) patients. Four GAs exhibited high classification capacity for AD (AUC ≥0.80) and were thereby considered the most promising signatures for AD. These findings suggested the close correlation between GAs and the pathogenesis of AD, highlighting the achievements of our robust method for investigating the roles of GAs and STs in various physiological states and diseases.
Collapse
Affiliation(s)
- Wai-Him Chan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Lee-Fong Yau
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Xiong-Yu Meng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Ka-Man Chan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macao, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510000, China.
| |
Collapse
|
9
|
de Jonker M, Leonards PEG, Lamoree MH, Brandsma SH. A Rapid Screening Method for the Detection of Additives in Electronics and Plastic Consumer Products Using AP-MALDI-qTOF-MS. TOXICS 2023; 11:108. [PMID: 36850984 PMCID: PMC9960555 DOI: 10.3390/toxics11020108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
A novel method was developed and optimized for the fast-screening analysis of additives in electronics and plastic consumer products using atmospheric pressure matrix-assisted laser desorption ionization (AP-MALDI) coupled with a high-resolution quadrupole time-of-flight (qTOF) mass spectrometer (MS). To simplify sample preparation and increase sample throughput, an innovative 48 well graphene nanoplatelets (GNP) doped AP-MALDI target plate was developed. The GNP incorporated in the target plate fulfilled the role of the MALDI matrix and, therefore, sample extracts could be directly transferred to the AP-MALDI 48 well target plate and analyzed without a subsequent matrix addition. The homogeneously dispersed and immobilized GNP target plates also provided increased signal intensity and reproducibility. Furthermore, analytical standards of various plastic additives and plastic products with known concentrations of additives were studied to assess the AP-MALDI ionization mechanisms and method capability. The analysis time was 15 s per measurement using an automated sequence. The GNP-doped target plates exhibited high desorption/ionization of low molecular weight molecules (<1000 Da) and can be used in both positive and negative ionization modes. The AP-MALDI-qTOF-MS method was applied to screen for additives in various electronics and plastic consumer products. Suspect screening was performed using a database containing 1366 compounds. A total of 56 additives including antioxidants, flame retardants, plasticizers, UV-stabilizers, and UV-filters were identified (confidence level 4). Identification of certain plastic additives in plastic children's toys may indicate that they are recycled from waste electronic and electronic equipment (WEEE).
Collapse
|
10
|
Djambazova KV, Dufresne M, Migas LG, Kruse ARS, Van de Plas R, Caprioli RM, Spraggins JM. MALDI TIMS IMS of Disialoganglioside Isomers─GD1a and GD1b in Murine Brain Tissue. Anal Chem 2023; 95:1176-1183. [PMID: 36574465 DOI: 10.1021/acs.analchem.2c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gangliosides are acidic glycosphingolipids, containing ceramide moieties and oligosaccharide chains with one or more sialic acid residue(s) and are highly diverse isomeric structures with distinct biological roles. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) enables the untargeted spatial analysis of gangliosides, among other biomolecules, directly from tissue sections. Integrating trapped ion mobility spectrometry with MALDI IMS allows for the analysis of isomeric lipid structures in situ. Here, we demonstrate the gas-phase separation and identification of disialoganglioside isomers GD1a and GD1b that differ in the position of a sialic acid residue, in multiple samples, including a standard mixture of both isomers, a biological extract, and directly from thin tissue sections. The unique spatial distributions of GD1a/b (d36:1) and GD1a/b (d38:1) isomers were determined in rat hippocampus and spinal cord tissue sections, demonstrating the ability to structurally characterize and spatially map gangliosides based on both the carbohydrate chain and ceramide moieties.
Collapse
Affiliation(s)
- Katerina V Djambazova
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Lukasz G Migas
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Angela R S Kruse
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Raf Van de Plas
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Richard M Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 1161 21st Avenue S, Nashville, Tennessee 37232, United States
| | - Jeffrey M Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21st Avenue S #3218, Nashville, Tennessee 37232, United States
| |
Collapse
|
11
|
Bhattacharya N, Nagornov K, Verheggen K, Verhaert M, Sciot R, Verhaert P. MS1-Based Data Analysis Approaches for FFPE Tissue Imaging of Endogenous Peptide Ions by Mass Spectrometry Histochemistry (MSHC). Methods Mol Biol 2023; 2688:187-202. [PMID: 37410294 DOI: 10.1007/978-1-0716-3319-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Ambiguous reports in the literature exist regarding the use and usefulness of formalin-fixed paraffin-embedded (FFPE) tissues in mass spectrometry imaging (MSI). Especially for the study of endogenous (non-tryptic) peptides, several studies have concluded that MSI on archived FFPE tissue bank samples is virtually impossible. We here illustrate that by employing a variant of MSI, called mass spectrometry histochemistry (MSHC), biomolecular tissue localization data are obtained that unequivocally comprise endogenous peptides. We here discuss different informatics steps in a data analysis workflow to help filter peptide-related features out of large and complex datasets generated by atmospheric pressure matrix-assisted laser desorption/ionization high-resolution (Orbitrap mass analyzer) MSHC. These include, in addition to accurate mass measurements, Kendrick mass defect filtering and isotopic distribution scrutiny.
Collapse
Affiliation(s)
| | | | | | - Marthe Verhaert
- ProteoFormiX, Beerse, Belgium
- Department of Medical Oncology at Institute Jules Bordet, Brussels, Belgium
| | - Raf Sciot
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | | |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Michael JA, Mutuku SM, Ucur B, Sarretto T, Maccarone AT, Niehaus M, Trevitt AJ, Ellis SR. Mass Spectrometry Imaging of Lipids Using MALDI Coupled with Plasma-Based Post-Ionization on a Trapped Ion Mobility Mass Spectrometer. Anal Chem 2022; 94:17494-17503. [PMID: 36473074 DOI: 10.1021/acs.analchem.2c03745] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we report the development and optimization of a mass spectrometry imaging (MSI) platform that combines an atmospheric-pressure matrix-assisted laser desorption/ionization platform with plasma postionization (AP-MALDI-PPI) and trapped ion mobility spectrometry (TIMS). We discuss optimal parameters for operating the source, characterize the behavior of a variety of lipid classes in positive- and negative-ion modes, and explore the capabilities for lipid imaging using murine brain tissue. The instrument generates high signal-to-noise for numerous lipid species, with mass spectra sharing many similarities to those obtained using laser postionization (MALDI-2). The system is especially well suited for detecting lipids such as phosphatidylethanolamine (PE), as well as numerous sphingolipid classes and glycerolipids. For the first time, the coupling of plasma-based postionization with ion mobility is presented, and we show the value of ion mobility for the resolution and identification of species within rich spectra that contain numerous isobaric/isomeric signals that are not resolved in the m/z dimension alone, including isomeric PE and demethylated phosphatidylcholine lipids produced by in-source fragmentation. The reported instrument provides a powerful and user-friendly approach for MSI of lipids.
Collapse
Affiliation(s)
- Jesse A Michael
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Shadrack M Mutuku
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Boris Ucur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Tassiani Sarretto
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Alan T Maccarone
- Molecular Horizons and School of Chemistry and Molecular Bioscience Mass Spectrometry Facility, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Marcel Niehaus
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
14
|
Liu H, Pan Y, Xiong C, Han J, Wang X, Chen J, Nie Z. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for in situ analysis of endogenous small molecules in biological samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Bowman AP, Sawicki J, Talaty NN, Buck WR, Yang J, Wagner DS. Evaluation of Quantitative Platforms for Single Target Mass Spectrometry Imaging. Pharmaceuticals (Basel) 2022; 15:ph15101180. [PMID: 36297291 PMCID: PMC9609477 DOI: 10.3390/ph15101180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
(1) Imaging of pharmaceutical compounds in tissue is an increasingly important subsection of Mass Spectrometry Imaging (MSI). Identifying proper target engagement requires MS platforms with high sensitivity and spatial resolution. Three prominent categories of drugs are small molecule drugs, antibody-drug conjugate payloads, and protein degraders. (2) We tested six common MSI platforms for their limit of detection (LoD) on a representative compound for each category: a Matrix-Assisted Laser Desorption/Ionization (MALDI) Fourier Transform Ion Cyclotron, a MALDI-2 Time-of-Flight (ToF), a MALDI-2 Trapped Ion Mobility Spectrometry ToF, a Desorption Electrospray Ionization Orbitrap, and 2 Atmospheric Pressure-MALDI Triple Quadrupoles. Samples were homogenized tissue mimetic models of rat liver spiked with known concentrations of analytes. (3) We found that the AP-MALDI-QQQ platform outperformed all 4 competing platforms by a minimum of 2- to 52-fold increase in LoD for representative compounds from each category of pharmaceutical. (4) AP-MALDI-QQQ platforms are effective, cost-efficient mass spectrometers for the identification of targeted analytes of interest.
Collapse
|
16
|
Chen Y, Jiang L, Zhang R, Shi Z, Xie C, Hong Y, Wang J, Cai Z. Spatially revealed perfluorooctane sulfonate-induced nephrotoxicity in mouse kidney using atmospheric pressure MALDI mass spectrometry imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156380. [PMID: 35660446 DOI: 10.1016/j.scitotenv.2022.156380] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 05/20/2023]
Abstract
Perfluorooctane sulfonate (PFOS), an emerging environmental persistent pollutant, has attracted extensive attention due to its potential nephrotoxicity. However, little is known about the spatial variations of lipid metabolism associated with PFOS exposure. In this study, atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-MALDI MSI) was used to reveal the spatial distributions of PFOS and its adverse effect on lipid metabolism directly in mouse kidney sections. We have observed that PFOS accumulated in the renal pelvis and outer cortex regions, with some found in the medulla and inner cortex regions. Hematoxylin and eosin (H&E) staining results also demonstrated that the accumulation of PFOS caused damage to the mouse kidney, which was consistent with AP-MALDI MSI results. Furthermore, a total of 42 lipids were shown to be significantly different in the spatial distribution patterns and variations between control and PFOS exposure mice groups, including the significant down-regulation of lyso-glycerophospholipids (Lyso-GPs), phosphatidic acids (PA), phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylserines (PS) sphingomyelins (SM) and sulfatides (ST) in renal medulla or cortex region of mouse kidney sections, and remarkable up-regulation of cholesterol and phosphatidylinositols (PI) in the cortex regions of mouse kidney sections. The AP-MALDI MSI provides a new tool to explore spatial distributions and variations of the endogenous metabolites for the risk assessment of environmental pollutants.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Lilong Jiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Rong Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Zhangsheng Shi
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Chengyi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jianing Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| |
Collapse
|
17
|
Li H, Liu Y, Wang Z, Xie Y, Yang L, Zhao Y, Tian R. Mass spectrometry-based ganglioside profiling provides potential insights into Alzheimer's disease development. J Chromatogr A 2022; 1676:463196. [PMID: 35716462 DOI: 10.1016/j.chroma.2022.463196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/01/2023]
Abstract
Gangliosides are a family of glycosphingolipids which are particularly enriched in the nervous system. They play crucial roles in neuroprotection and neurological diseases. Alzheimer's disease (AD) is a neurodegenerative disease with cognitive, judgment and memory dysfunction. In this study, a mass spectrometry-based data-dependent acquisition method assisted with fragmentation characteristics screening by computer algorithm was developed for qualitative and quantitative analysis of gangliosides at low concentration. The developed method was applied to obtain detailed ganglioside species content in hippocampus of model mice (APPswe/PS1dE9 transgenic mice) with AD at 3- to 8-month-old. Up-regulated acetylated and N-acetylgalactosaminylated ganglioside species, and the down-regulated major gangliosides were observed with the development of AD from early to late stage. We speculated that deterioration of AD may be related to the acetylation/N-acetylgalactosaminylation transformation of complex gangliosides due to the inhibition of GD3 synthase activity. Moreover, the ganglioside species di-O-Ac-GT1a (d36:1), O-Ac-GD1b (d36:1) and O-Ac-GD1b (d36:0) were considered as the time-coursed biomarkers, and O-Ac-GT1a (d36:2) could be a candidate for early diagnosis of AD.
Collapse
Affiliation(s)
- Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yilian Liu
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Zhe Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuping Xie
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206 China
| | - Lijun Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China; Department of Oncology, The First Affiliated Hospital of SUSTech and Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China.
| |
Collapse
|
18
|
Angerer TB, Bour J, Biagi JL, Moskovets E, Frache G. Evaluation of 6 MALDI-Matrices for 10 μm Lipid Imaging and On-Tissue MSn with AP-MALDI-Orbitrap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:760-771. [PMID: 35358390 PMCID: PMC9074099 DOI: 10.1021/jasms.1c00327] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mass spectrometry imaging is a technique uniquely suited to localize and identify lipids in a tissue sample. Using an atmospheric pressure (AP-) matrix-assisted laser desorption ionization (MALDI) source coupled to an Orbitrap Elite, numerous lipid locations and structures can be determined in high mass resolution spectra and at cellular spatial resolution, but careful sample preparation is necessary. We tested 11 protocols on serial brain sections for the commonly used MALDI matrices CHCA, norharmane, DHB, DHAP, THAP, and DAN in combination with tissue washing and matrix additives to determine the lipid coverage, signal intensity, and spatial resolution achievable with AP-MALDI. In positive-ion mode, the most lipids could be detected with CHCA and THAP, while THAP and DAN without additional treatment offered the best signal intensities. In negative-ion mode, DAN showed the best lipid coverage and DHAP performed superiorly for gangliosides. DHB produced intense cholesterol signals in the white matter. One hundred fifty-five lipids were assigned in positive-ion mode (THAP) and 137 in negative-ion mode (DAN), and 76 peaks were identified using on-tissue tandem-MS. The spatial resolution achievable with DAN was 10 μm, confirmed with on tissue line-scans. This enabled the association of lipid species to single neurons in AP-MALDI images. The results show that the performance of AP-MALDI is comparable to vacuum MALDI techniques for lipid imaging.
Collapse
Affiliation(s)
- Tina B. Angerer
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | - Jerome Bour
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | - Jean-Luc Biagi
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | | | - Gilles Frache
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
19
|
Zeng T, Zhang R, Chen Y, Guo W, Wang J, Cai Z. In situ localization of lipids on mouse kidney tissues with acute cadmium toxicity using atmospheric pressure-MALDI mass spectrometry imaging. Talanta 2022; 245:123466. [PMID: 35460980 DOI: 10.1016/j.talanta.2022.123466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
Cadmium-induced nephrotoxicity has been one of the major concerns for public health over the past century. Lipid peroxidation is a principal mechanism in its pathological process. Atmospheric pressure-MALDI mass spectrometry imaging (AP-MALDI MSI) enables direct mapping of lipids in the biological tissue sections. Considering the spatial visualization of lipids on mouse kidney tissues with acute cadmium toxicity is lacking, this study dedicates to filling the gap by using AP-MALDI MSI. Of the tested matrices, the optimized matrix for labeling lipids was 2,5-dihydroxyacetophenone (DHAP). A set of lipids including phosphatidylcholines (PC), phosphatidylglycerol (PG), lysophosphatidylcholine (LPC), sphingomyelin (SM), phosphatidic acid (PA), triglyceride (TG), phosphatidylethanolamine (PE) and phosphatidylinositol (PI), etc. were identified and visualized. Accordingly, PC, PG, LPC, SM, PA and TG were down-regulated while PE and PI were up-regulated in the renal cortex or medulla regions in kidney tissues of the mouse with acute cadmium toxicity. Such in situ locations of lipids on mouse kidney tissues with acute cadmium toxicity could help discover tissue-specific nephrotoxic biomarkers and provide new insights into its renal toxicological mechanism.
Collapse
Affiliation(s)
- Ting Zeng
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai, 519087, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Rong Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Wenjing Guo
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jianing Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Hong Kong, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
20
|
Zhu X, Xu T, Peng C, Wu S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front Chem 2022; 9:782432. [PMID: 35186891 PMCID: PMC8850921 DOI: 10.3389/fchem.2021.782432] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Compared with conventional optical microscopy techniques, mass spectrometry imaging (MSI) or imaging mass spectrometry (IMS) is a powerful, label-free analytical technique, which can sensitively and simultaneously detect, quantify, and map hundreds of biomolecules, such as peptides, proteins, lipid, and other organic compounds in cells and tissues. So far, although several soft ionization techniques, such as desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS) have been used for imaging biomolecules, matrix-assisted laser desorption/ionization (MALDI) is still the most widespread MSI scanning method. Here, we aim to provide a comprehensive review of MALDI-MSI with an emphasis on its advances of the instrumentation, methods, application, and future directions in single cell and biological tissues.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Xu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chen Peng
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Shihua Wu, ; Shihua Wu,
| |
Collapse
|
21
|
Kim JY, Lim H, Moon DW. Mass Spectrometry Imaging of Small Molecules from Live Cells and Tissues using Nanomaterials. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jae Young Kim
- School of Electronic and Electrical Engineering, College of IT Engineering Kyungpook National University Daegu Republic of Korea
| | - Heejin Lim
- Department of New Biology Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Republic of Korea
| | - Dae Won Moon
- Department of New Biology Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Republic of Korea
- Dschool of Undergraduate Studies, DGIST Daegu Republic of Korea
| |
Collapse
|
22
|
Knodel A, Marggraf U, Hoffmann-Posorske E, Burhenn S, Brandt S, Ahlmann N, Foest D, Lorenz K, Franzke J. Pulsed Blue Laser Diode Thermal Desorption Microplasma Imaging Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:45-53. [PMID: 34856796 DOI: 10.1021/jasms.1c00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An ambient air laser desorption, plasma ionization imaging method is developed and presented using a microsecond pulsed laser diode for desorption and a flexible microtube plasma for ionization of the neutral desorbate. Inherent parameters such as the laser repetition rate and pulse width are optimized to the imaging application. For the desorption substrate, copper spots on a copper-glass sandwich structure are used. This novel design enables imaging without ablating the metal into the mass spectrometer. On this substrate, fixed calibration markers are used to decrease the positioning error in the imaging process, featuring a 3D offset correction within the experiment. The image is both screened spot-by-spot and per line scanning at a constant speed, which allows direct comparison. In spot-by-spot scanning, a novel algorithm is presented to unfold and to reconstruct the imaging data. This approach significantly decreases the time required for the imaging process, which allows imaging even at decreased sampling rates and thus higher mass resolution. After the experiment, the raw data is automatically converted and interpreted by a second algorithm, which allows direct visualization of the image from the data, even on low-intensity signals. Mouse liver microtome cuts have been screened for dehydrated cholesterol, proving good agreement of the unfolded data with the morphology of the tissue. The method optically resolves 30 μm, with 30 μm diameter copper spots and a 10 μm gap. No conventional chemical matrices or vacuum conditions are required.
Collapse
Affiliation(s)
- Alexander Knodel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Ulrich Marggraf
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Edeltraut Hoffmann-Posorske
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Sebastian Burhenn
- Experimental Physics II, Faculty of Physics and Astronomy, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Sebastian Brandt
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Norman Ahlmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Daniel Foest
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| |
Collapse
|
23
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
24
|
Smoluch M, Sobczyk J, Szewczyk I, Karaszkiewicz P, Silberring J. Mass spectrometry in art conservation-With focus on paintings. MASS SPECTROMETRY REVIEWS 2021:e21767. [PMID: 34870867 DOI: 10.1002/mas.21767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Conservation of historic artifacts has been a multidisciplinary field from its very beginning. Traditionally, it has been and still is associated with the history of art. It applies knowledge from technical and basic sciences, adapting their solutions to its goals. At present, however, a new tendency is clearly emerging-scientific research is starting to play an increasingly important role not only as a service, but also by proposing new solutions both in the traditional conservation areas and in new areas of conservation activities. The above trend opens up new perspectives for the field of preservation of our heritage but may also create new threats. Therefore, the conservators' caution in introducing new technologies should always be justified; after all, they are responsible for the effects of any activities on the historic objects. This, quite selective review, discusses application of mass spectrometry techniques for the detection of various components that are important to the conservators of our heritage with particular focus on paintings. The text also contains some basic knowledge of technical details to introduce the methodology to a broader group of professionals.
Collapse
Affiliation(s)
- Marek Smoluch
- AGH University of Science and Technology, Mickiewicza, Poland
| | - Joanna Sobczyk
- Department of Museum Prevention, Krakow Division, National Museum, Kraków, Poland
| | - Ireneusz Szewczyk
- Department of Museum Prevention, Krakow Division, National Museum, Kraków, Poland
| | - Pawel Karaszkiewicz
- Department of Museum Prevention, Krakow Division, National Museum, Kraków, Poland
| | - Jerzy Silberring
- AGH University of Science and Technology, Mickiewicza, Poland
- Department of Museum Prevention, Krakow Division, National Museum, Kraków, Poland
| |
Collapse
|
25
|
Review of Recent Advances in Lipid Analysis of Biological Samples via Ambient Ionization Mass Spectrometry. Metabolites 2021; 11:metabo11110781. [PMID: 34822439 PMCID: PMC8623600 DOI: 10.3390/metabo11110781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
The rapid and direct structural characterization of lipids proves to be critical for studying the functional roles of lipids in many biological processes. Among numerous analytical techniques, ambient ionization mass spectrometry (AIMS) allows for a direct molecular characterization of lipids from various complex biological samples with no/minimal sample pretreatment. Over the recent years, researchers have expanded the applications of the AIMS techniques to lipid structural elucidation via a combination with a series of derivatization strategies (e.g., the Paternò–Büchi (PB) reaction, ozone-induced dissociation (OzID), and epoxidation reaction), including carbon–carbon double bond (C=C) locations and sn-positions isomers. Herein, this review summarizes the reaction mechanisms of various derivatization strategies for C=C bond analysis, typical instrumental setup, and applications of AIMS in the structural elucidation of lipids from various biological samples (e.g., tissues, cells, and biofluids). In addition, future directions of AIMS for lipid structural elucidation are discussed.
Collapse
|
26
|
Matsushita S, Hasegawa T, Hiraoka M, Hayashi A, Suzuki Y. TLC-based MS Imaging Analysis of Glycosphingolipids and Glycerin Fatty Acid Esters after 1,2-Dichloroethane Washing. ANAL SCI 2021; 37:1491-1495. [PMID: 34690230 DOI: 10.2116/analsci.21c009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Matrix-assisted laser desorption/ionization-based mass spectrometry imaging (MSI) of separated lipids on thin-layer chromatography (TLC) plates or followed by blotted hydrophilic polyvinylidene fluoride (PVDF) membranes has become a powerful tool in lipidomic analyses. However, background peaks in MS spectra often cover lipid peaks in a low amount/ionization effect; consequently, only low intensities/resolutions MSI are obtained. To address the aforementioned problem, we attempted 1,2-dichloroethane pre-washing of TLC plates before development and found that backgrounds could successfully be removed from the TLC plate or PVDF membrane.
Collapse
Affiliation(s)
- Shoko Matsushita
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University
| | - Takuma Hasegawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University
| | - Marina Hiraoka
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University
| | - Aki Hayashi
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University
| | - Yusuke Suzuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University
| |
Collapse
|
27
|
Tran A, Monreal IA, Moskovets E, Aguilar HC, Jones JW. Rapid Detection of Viral Envelope Lipids Using Lithium Adducts and AP-MALDI High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2322-2333. [PMID: 33886294 PMCID: PMC8995026 DOI: 10.1021/jasms.1c00058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is an unmet need to develop analytical strategies that not only characterize the lipid composition of the viral envelope but also do so on a time scale that would allow for high-throughput analysis. With that in mind, we report the use of atmospheric pressure (AP) matrix-assisted laser desorption/ionization (MALDI) high-resolution mass spectrometry (HRMS) combined with lithium adduct consolidation to profile total lipid extracts rapidly and confidently from enveloped viruses. The use of AP-MALDI reduced the dependency of using a dedicated MALDI mass spectrometer and allowed for interfacing the MALDI source to a mass spectrometer with the desired features, which included high mass resolving power (>100000) and tandem mass spectrometry. AP-MALDI combined with an optimized MALDI matrix system, featuring 2',4',6'-trihydroxyacetophenone spiked with lithium salt, resulted in a robust and high-throughput lipid detection platform, specifically geared to sphingolipid detection. Application of the developed workflow included the structural characterization of prominent sphingolipids and detection of over 130 lipid structures from Influenza A virions. Overall, we demonstrate a high-throughput workflow for the detection and structural characterization of total lipid extracts from enveloped viruses using AP-MALDI HRMS and lithium adduct consolidation.
Collapse
Affiliation(s)
- Anh Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - I Abrrey Monreal
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | | | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
28
|
Hasan MM, Mimi MA, Mamun MA, Islam A, Waliullah ASM, Nabi MM, Tamannaa Z, Kahyo T, Setou M. Mass Spectrometry Imaging for Glycome in the Brain. Front Neuroanat 2021; 15:711955. [PMID: 34393728 PMCID: PMC8358800 DOI: 10.3389/fnana.2021.711955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Glycans are diverse structured biomolecules that play crucial roles in various biological processes. Glycosylation, an enzymatic system through which various glycans are bound to proteins and lipids, is the most common and functionally crucial post-translational modification process. It is known to be associated with brain development, signal transduction, molecular trafficking, neurodegenerative disorders, psychopathologies, and brain cancers. Glycans in glycoproteins and glycolipids expressed in brain cells are involved in neuronal development, biological processes, and central nervous system maintenance. The composition and expression of glycans are known to change during those physiological processes. Therefore, imaging of glycans and the glycoconjugates in the brain regions has become a “hot” topic nowadays. Imaging techniques using lectins, antibodies, and chemical reporters are traditionally used for glycan detection. However, those techniques offer limited glycome detection. Mass spectrometry imaging (MSI) is an evolving field that combines mass spectrometry with histology allowing spatial and label-free visualization of molecules in the brain. In the last decades, several studies have employed MSI for glycome imaging in brain tissues. The current state of MSI uses on-tissue enzymatic digestion or chemical reaction to facilitate successful glycome imaging. Here, we reviewed the available literature that applied MSI techniques for glycome visualization and characterization in the brain. We also described the general methodologies for glycome MSI and discussed its potential use in the three-dimensional MSI in the brain.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mst Afsana Mimi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Mahamodun Nabi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Zinat Tamannaa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Japan
| |
Collapse
|
29
|
Balluff B, Hopf C, Porta Siegel T, Grabsch HI, Heeren RMA. Batch Effects in MALDI Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:628-635. [PMID: 33523675 PMCID: PMC7944567 DOI: 10.1021/jasms.0c00393] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) has become an indispensible tool for spatially resolved molecular investigation of tissues. One of the key application areas is biomedical research, where matrix-assisted laser desorption/ionization (MALDI) MSI is predominantly used due to its high-throughput capability, flexibility in the molecular class to investigate, and ability to achieve single cell spatial resolution. While many of the initial technical challenges have now been resolved, so-called batch effects, a phenomenon already known from other omics fields, appear to significantly impede reliable comparison of data from particular midsized studies typically performed in translational clinical research. This critical insight will discuss at what levels (pixel, section, slide, time, and location) batch effects can manifest themselves in MALDI-MSI data and what consequences this might have for biomarker discovery or multivariate classification. Finally, measures are presented that could be taken to recognize and/or minimize these potentially detrimental effects, and an outlook is provided on what is still needed to ultimately overcome these effects.
Collapse
Affiliation(s)
- Benjamin Balluff
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6229 ER Maastricht, The Netherlands
- Mailing address: Dr. Benjamin Balluff,
Maastricht University, Maastricht MultiModal Molecular Imaging institute
(M4I), Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
Phone: +31 43 388 1251;
| | - Carsten Hopf
- Center
for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Tiffany Porta Siegel
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Heike I. Grabsch
- Department
of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC+), 6229 HX Maastricht, The Netherlands
- Pathology
and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, LS9 7TF Leeds, U.K.
| | - Ron M. A. Heeren
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
30
|
Hoang K, Trimpin S, McEwen CN, Pophristic M. A Combination MAI and MALDI Vacuum Source Operational from Atmospheric Pressure for Fast, Robust, and Sensitive Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:124-132. [PMID: 33270447 DOI: 10.1021/jasms.0c00298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Previously, vacuum matrix-assisted ionization (vMAI) was employed with matrix/analyte sample introduction into the vacuum of a mass spectrometer on a probe sample introduction device. Low attomole detection was achieved, while no carryover was observed even for concentrated samples. Here, we report a new vacuum ionization source designed to duplicate the sensitivity and robustness of probe device while providing fast multisample introduction to vacuum and rapid sequential ionization. Exposure of a sample to the vacuum of the mass spectrometer provides spontaneous ionization of volatile as well as nonvolatile analytes without the need for external energy input. However, the novel source design described herein, in addition to vMAI, can employ a laser to obtain vacuum matrix-assisted laser desorption/ionization (vMALDI). In particular, ionization by vMAI or vMALDI is achieved by using the appropriate matrix. Switching between ionization modes is accomplished in a few seconds. We present results demonstrating the utility of the two ionization methods in combination to improve the molecular analyses of sample composition. In both ionization modes, multiple samples can be sequentially and rapidly acquired to increase throughput in MS. With the prototype source, samples were acquired in as little as 1 s per sample. Exchanging multisample plates can be accomplished in as little as 2 s, suggesting low-cost high-throughput automation when properly developed.
Collapse
Affiliation(s)
- Khoa Hoang
- MS, LLC, Hockessin, Delaware 19707, United States
| | - Sarah Trimpin
- MS, LLC, Hockessin, Delaware 19707, United States
- Wayne State University, Detroit, Michigan 48202, United States
| | - Charles N McEwen
- MS, LLC, Hockessin, Delaware 19707, United States
- University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
31
|
Bien T, Perl M, Machmüller AC, Nitsche U, Conrad A, Johannes L, Müthing J, Soltwisch J, Janssen KP, Dreisewerd K. MALDI-2 Mass Spectrometry and Immunohistochemistry Imaging of Gb3Cer, Gb4Cer, and Further Glycosphingolipids in Human Colorectal Cancer Tissue. Anal Chem 2020; 92:7096-7105. [PMID: 32314902 DOI: 10.1021/acs.analchem.0c00480] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The main cellular receptors of Shiga toxins (Stxs), the neutral glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer/CD77) and globotetraosylceramide (Gb4Cer), are significantly upregulated in about half of the human colorectal carcinomas (CRC) and in other cancers. Therefore, conjugates exploiting the Gb3Cer/Gb4Cer-binding B subunit of Stx (StxB) have attracted great interest for both diagnostic and adjuvant therapeutic interventions. Moreover, fucosylated GSLs were recognized as potential tumor-associated targets. One obstacle to a broader use of these receptor/ligand systems is that the contribution of specific GSLs to tumorigenesis, in particular, in the context of an altered lipid metabolism, is only poorly understood. A second is that also nondiseased organs (e.g., kidney) and blood vessels can express high levels of certain GSLs, not least Gb3Cer/Gb4Cer. Here, we used, in a proof-of-concept study, matrix-assisted laser desorption/ionization mass spectrometry imaging combined with laser-induced postionization (MALDI-2-MSI) to simultaneously visualize the distribution of several Gb3Cer/Gb4Cer lipoforms and those of related GSLs (e.g., Gb3Cer/Gb4Cer precursors and fucosylated GSLs) in tissue biopsies from three CRC patients. Using MALDI-2 and StxB-based immunofluorescence microscopy, Gb3Cer and Gb4Cer were mainly found in dedifferentiated tumor cell areas, tumor stroma, and tumor-infiltrating blood vessels. Notably, fucosylated GSL such as Fuc-(n)Lc4Cer generally showed a highly localized expression in dysplastic glands and indian file-like cells infiltrating adipose tissue. Our "molecular histology" approach could support stratifying patients for intratumoral GSL expression to identify an optimal therapeutic strategy. The improved chemical coverage by MALDI-2 can also help to improve our understanding of the molecular basis of tumor development and GSL metabolism.
Collapse
Affiliation(s)
- Tanja Bien
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Markus Perl
- Department of Surgery, Klinikum rechts der Isar, Technical University München, Ismaninger Str. 22, 81675 München, Germany
| | - Andrea C Machmüller
- Department of Surgery, Klinikum rechts der Isar, Technical University München, Ismaninger Str. 22, 81675 München, Germany
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, Technical University München, Ismaninger Str. 22, 81675 München, Germany
| | - Anja Conrad
- Department of Surgery, Klinikum rechts der Isar, Technical University München, Ismaninger Str. 22, 81675 München, Germany
| | - Ludger Johannes
- Cellular and Chemical Biology Department, Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris CEDEX 05, France
| | - Johannes Müthing
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University München, Ismaninger Str. 22, 81675 München, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
32
|
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 2020; 61:636-654. [PMID: 31871065 PMCID: PMC7193971 DOI: 10.1194/jlr.tr119000427] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy. mailto:
| |
Collapse
|
33
|
Garate J, Lage S, Martín-Saiz L, Perez-Valle A, Ochoa B, Boyano MD, Fernández R, Fernández JA. Influence of Lipid Fragmentation in the Data Analysis of Imaging Mass Spectrometry Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:517-526. [PMID: 32126773 DOI: 10.1021/jasms.9b00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Imaging mass spectrometry (IMS) is becoming an essential technique in lipidomics. Still, many questions remain open, precluding it from achieving its full potential. Among them, identification of species directly from the tissue is of paramount importance. However, it is not an easy task, due to the abundance and variety of lipid species, their numerous fragmentation pathways, and the formation of a significant number of adducts, both with the matrix and with the cations present in the tissue. Here, we explore the fragmentation pathways of 17 lipid classes, demonstrating that in-source fragmentation hampers identification of some lipid species. Then, we analyze what type of adducts each class is more prone to form. Finally, we use that information together with data from on-tissue MS/MS and MS3 to refine the peak assignment in a real experiment over sections of human nevi, to demonstrate that statistical analysis of the data is significantly more robust if unwanted peaks due to fragmentation, matrix, and other species that only introduce noise in the analysis are excluded.
Collapse
Affiliation(s)
| | | | | | | | | | - M Dolores Boyano
- Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | | | | |
Collapse
|
34
|
Bredehöft J, Bhandari DR, Pflieger FJ, Schulz S, Kang JX, Layé S, Roth J, Gerstberger R, Mayer K, Spengler B, Rummel C. Visualizing and Profiling Lipids in the OVLT of Fat-1 and Wild Type Mouse Brains during LPS-Induced Systemic Inflammation Using AP-SMALDI MSI. ACS Chem Neurosci 2019; 10:4394-4406. [PMID: 31513369 DOI: 10.1021/acschemneuro.9b00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipids, including omega-3 polyunsaturated fatty acids (n-3-PUFAs), modulate brain-intrinsic inflammation during systemic inflammation. The vascular organ of the lamina terminalis (OVLT) is a brain structure important for immune-to-brain communication. We, therefore, aimed to profile the distribution of several lipids (e.g., phosphatidyl-choline/ethanolamine, PC/PE), including n-3-PUFA-carrying lipids (esterified in phospholipids), in the OVLT during systemic lipopolysaccharide(LPS)-induced inflammation. We injected wild type and endogenously n-3-PUFA producing fat-1 transgenic mice with LPS (i.p., 2.5 mg/kg) or PBS. Brain samples were analyzed using immunohistochemistry and high-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization orbital trapping mass spectrometry imaging (AP-SMALDI-MSI) for spatial resolution of lipids. Depending on genotype and treatment, several distinct distribution patterns were observed for lipids [e.g., lyso(L)PC (16:0)/(18:0)] proposed to be involved in inflammation. The distribution patterns ranged from being homogeneously disseminated [LPC (18:1)], absent/reduced signaling within the OVLT relative to adjacent preoptic tissue [PE (38:6)], either treatment- and genotype-dependent or independent low signal intensities [LPC (18:0)], treatment- and genotype-dependent [PC 38:6)] or independent accumulation in the OVLT [PC (38:7)], and accumulation in commissures, e.g., nerve fibers like the optic nerve [LPE (18:1)]. Overall, screening of lipid distribution patterns revealed distinct inflammation-induced changes in the OVLT, highlighting the prominent role of lipid metabolism in brain inflammation. Moreover, known and novel candidates for brain inflammation and immune-to-brain communication were detected specifically within this pivotal brain structure, a window between the periphery and the brain. The biological significance of these newly identified lipids abundant in the OVLT and the adjacent preoptic area remains to be further analyzed.
Collapse
Affiliation(s)
- Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Sophie Layé
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux 33076, France
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg 35032, Germany
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Konstantin Mayer
- University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Klinikstrasse 33, Giessen D-35392, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg 35032, Germany
| |
Collapse
|
35
|
Li G, Ma F, Cao Q, Zheng Z, DeLaney K, Liu R, Li L. Nanosecond photochemically promoted click chemistry for enhanced neuropeptide visualization and rapid protein labeling. Nat Commun 2019; 10:4697. [PMID: 31619683 PMCID: PMC6795811 DOI: 10.1038/s41467-019-12548-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022] Open
Abstract
Comprehensive protein identification and concomitant structural probing of proteins are of great biological significance. However, this is challenging to accomplish simultaneously in one confined space. Here, we develop a nanosecond photochemical reaction (nsPCR)-based click chemistry, capable of structural probing of proteins and enhancing their identifications through on-demand removal of surrounding matrices within nanoseconds. The nsPCR is initiated using a photoactive compound, 2-nitrobenzaldehyde (NBA), and is examined by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Benefiting from the on-demand matrix-removal effect, this nsPCR strategy enables enhanced neuropeptide identification and visualization from complex tissue samples such as mouse brain tissue. The design shows great promise for structural probing of proteins up to 155 kDa due to the exclusive accessibility of nsPCR to primary amine groups, as demonstrated by its general applicability using a series of proteins with various lysine residues from multiple sample sources, with accumulated labeling efficiencies greater than 90%. Mass spectrometry-based quantitative proteomics aim to identify and quantify proteins from complex biological samples. Here, the authors developed a method for simultaneous high-throughput protein labelling and on-demand matrix removal within nanoseconds.
Collapse
Affiliation(s)
- Gongyu Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Qinjingwen Cao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhen Zheng
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rui Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA. .,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
36
|
Sarbu M, Dehelean L, Munteanu CVA, Ica R, Petrescu AJ, Zamfir AD. Human caudate nucleus exhibits a highly complex ganglioside pattern as revealed by high-resolution multistage Orbitrap MS. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1669632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mirela Sarbu
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Liana Dehelean
- Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristian V. A. Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Raluca Ica
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Andrei J. Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alina D. Zamfir
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, Arad, Romania
| |
Collapse
|
37
|
Construction and testing of an atmospheric-pressure transmission-mode matrix assisted laser desorption ionisation mass spectrometry imaging ion source with plasma ionisation enhancement. Anal Chim Acta 2019; 1051:110-119. [DOI: 10.1016/j.aca.2018.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022]
|
38
|
Li G, Cao Q, Liu Y, DeLaney K, Tian Z, Moskovets E, Li L. Characterizing and alleviating ion suppression effects in atmospheric pressure matrix-assisted laser desorption/ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:327-335. [PMID: 30430670 PMCID: PMC6353668 DOI: 10.1002/rcm.8358] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/14/2018] [Accepted: 11/11/2018] [Indexed: 05/05/2023]
Abstract
RATIONALE As a powerful ambient ion source, atmospheric pressure (AP) matrix-assisted laser desorption/ionization (MALDI) enables direct analysis at atmospheric pressure/temperature and minimal sample preparation. With the increasing usage of AP-MALDI sources with Orbitrap instruments, systematic characterization of the extent of ion suppression effect (ISE) in AP-MALDI-Orbitrap mass spectrometry imaging (MSI) is desirable. Recently, a new low-pressure MALDI platform has been introduced that reportedly provided better sensitivity. While extensive research efforts have been devoted to improving spatial resolution, fewer studies focused on the characterization and sensitivity improvement of these MALDI platforms that, coupled with high-resolution Orbitraps, provide powerful strategy for MSI. METHODS We compared the analytical performance of AP and low-pressure (subatmospheric) MALDI sources to study the effect of pressure control in the ion source. Using a model peptide/protein mixture, we systematically evaluated the factors influencing ISE. Furthermore, the effect of laser spot size was evaluated through tissue imaging analysis of lipids and neuropeptides. The effects of ion suppression and laser spot size have also been examined by comparing the number of identified molecular species during MSI analysis. RESULTS Several key operating parameters including source pressure, laser energy, laser repetition rate, and microscopic slide coating materials were optimized to minimize the ISE. Under the optimal conditions, the subatmospheric AP-MALDI-Orbitrap platform with high spatial and mass spectral resolution enabled significantly improved coverage of several lipid and neuropeptide families in the MS analysis of mouse brain tissue sections. CONCLUSIONS The new SubAP-MALDI source coupled with an Orbitrap mass spectrometer was established as a viable platform for in situ endogenous biomolecular analysis with increased sensitivity compared with conventional AP-MALDI sources as evidenced by the confident identification of neuropeptides from mouse brain imaging analyses. The alleviated ISE was key to substantial performance improvement due to optimized intermediate pressure conditions and better ion collection by the ion funnel.
Collapse
Affiliation(s)
- Gongyu Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Qinjingwen Cao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yang Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zichuan Tian
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Contact Information for Corresponding Author: Prof. Dr. Lingjun Li, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA;, Phone: +1-608-265-8491;, Fax: +1-608-262-5345;,
| |
Collapse
|
39
|
Xu G, Li J. Recent advances in mass spectrometry imaging for multiomics application in neurology. J Comp Neurol 2018; 527:2158-2169. [DOI: 10.1002/cne.24571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Guang Xu
- Hubei Education Cloud Service Engineering Technology Research CenterHubei University of Education Wuhan China
| | - Jianjun Li
- Human Health TherapeuticsNational Research Council Canada Ottawa Ontario
| |
Collapse
|
40
|
Keller C, Maeda J, Jayaraman D, Chakraborty S, Sussman MR, Harris JM, Ané JM, Li L. Comparison of Vacuum MALDI and AP-MALDI Platforms for the Mass Spectrometry Imaging of Metabolites Involved in Salt Stress in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2018; 9:1238. [PMID: 30210517 PMCID: PMC6121006 DOI: 10.3389/fpls.2018.01238] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/06/2018] [Indexed: 05/23/2023]
Abstract
Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is routinely used to determine the spatial distributions of various biomolecules in tissues. Recently, there has been an increased interest in creating higher resolution images using sources with more focused beams. One such source, an atmospheric pressure (AP) MALDI source from MassTech, has a laser capable of reaching spatial resolutions of 10 μm. Here, the AP-MALDI source coupled with a Q Exactive HF Orbitrap platform is compared to the commercial MALDI LTQ Orbitrap XL system using Medicago truncatula root nodules. AP-MALDI parameters, such as the S-lens value, capillary temperature, and spray voltage, were optimized on the Q Exactive-HF platform for optimal detection of plant metabolites. The performance of the two systems was evaluated for sensitivity, spatial resolution, and overall ability to detect plant metabolites. The commercial MALDI LTQ Orbitrap XL was superior regarding the number of compounds detected, as at least two times more m/z were detected compared to the AP-MALDI system. However, although the AP-MALDI source requires a spatial resolution higher than 10 μm to get the best signal, the spatial resolution at 30 μm is still superior compared to the 75 μm spatial resolution achieved on the MALDI platform. The AP-MALDI system was also used to investigate the metabolites present in M. truncatula roots and root nodules under high salt and low salt conditions. A discriminative analysis with SCiLS software revealed m/z ions specific to the control and salt conditions. This analysis revealed 44 m/z ions present at relatively higher abundances in the control samples, and 77 m/z enriched in the salt samples. Liquid chromatography-tandem MS was performed to determine the putative molecular identities of some of the mass ions enriched in each sample, including, asparagine, adenosine, and nicotianamine in the control samples, and arginine and soyasaponin I in the salt treated samples.
Collapse
Affiliation(s)
- Caitlin Keller
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Junko Maeda
- Department of Agronomy, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, VT, United States
| | - Michael R. Sussman
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Jeanne M. Harris
- Department of Plant Biology, University of Vermont, Burlington, VT, United States
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin–Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
- *Correspondence: Lingjun Li, ;
| |
Collapse
|