1
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
3
|
Zhang ZC, Hales DA, Clemmer DE. Influence of N Terminus Amino Acid on Peptide Cleavage in Solution through Diketopiperazine Formation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1368-1376. [PMID: 35576623 PMCID: PMC10161955 DOI: 10.1021/jasms.2c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Diketopiperazine (DKP) formation is an important degradation pathway for peptides and proteins. It can occur during synthesis and storage in either solution or the solid state. The kinetics of peptide cleavage through DKP formation have been analyzed for the model peptides Xaa1-Pro2-Gly4-Lys7 [Xaa = Gln, Glu, Lys, Ser, Phe, Trp, Tyr, Cha (β-cyclohexylalanine), Aib (α-aminoisobutyric acid), Gly, and Val] at multiple elevated temperatures in ethanol with ion mobility spectrometry-mass spectrometry (IMS-MS). When Xaa is an amino acid with a charged or polar side chain, degradation is relatively fast. When Xaa is an amino acid with a nonpolar alkyl side chain, the peptide is relatively stable. For these peptides, a bulky group on the α carbon speeds up dissociation, but the kinetic effects vary in a complicated manner for bulky groups on the β or γ carbon. Peptides where Xaa has a nonpolar aromatic side chain show moderate dissociation rates. The stability of these peptides is a result of multiple factors. The reaction rate is enhanced by (1) the stabilization of the late transition state through the interaction of an aromatic ring with the nascent DKP ring or lowering the activation energy of nucleophilic attack intermediate state through polar or charged residues and (2) the preference of the cis proline bond favored by the aromatic N-terminus. The number of unseen intermediates and transition state thermodynamic values are derived for each peptide by modeling the kinetics data. Most of the transition states are entropically favored (ΔS⧧ ∼ -5 to +31 J·mol-1·K-1), and all are enthalpically disfavored (ΔH⧧ ∼ 93 to 109 kJ·mol-1). The Gibbs free energy of activation is similar for all of the peptides studied here (ΔG⧧ ∼ 90-99 kJ·mol-1).
Collapse
Affiliation(s)
- Zhi-Chao Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Laganowsky A, Clemmer DE, Russell DH. Variable-Temperature Native Mass Spectrometry for Studies of Protein Folding, Stabilities, Assembly, and Molecular Interactions. Annu Rev Biophys 2021; 51:63-77. [PMID: 34932911 PMCID: PMC9086101 DOI: 10.1146/annurev-biophys-102221-101121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structures and conformational dynamics of proteins, protein complexes, and their noncovalent interactions with other molecules are controlled specifically by the Gibbs free energy (entropy and enthalpy) of the system. For some organisms, temperature is highly regulated, but the majority of biophysical studies are carried out at room, nonphysiological temperature. In this review, we describe variable-temperature electrospray ionization (vT-ESI) mass spectrometry (MS)-based studies with unparalleled sensitivity, dynamic range, and selectivity for studies of both cold- and heat-induced chemical processes. Such studies provide direct determinations of stabilities, reactivities, and thermodynamic measurements for native and non-native structures of proteins and protein complexes and for protein-ligand interactions. Highlighted in this review are vT-ESI-MS studies that reveal 40 different conformers of chymotrypsin inhibitor 2, a classic two-state (native → unfolded) unfolder, and thermochemistry for a model membrane protein system binding lipid and its regulatory protein. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; ,
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; ,
| |
Collapse
|
5
|
Vakilian M. A review on the effect of prolyl isomerization on immune response aberration and hypersensitivity reactions: A unifying hypothesis. Clin Immunol 2021; 234:108896. [PMID: 34848356 DOI: 10.1016/j.clim.2021.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/01/2022]
Abstract
Little is known about the causes and mechanisms of ectopic immune responses, including different types of hypersensitivity, superantigens, and cytokine storms. Two of the most questionable phenomena observed in immunology are why the intensity and extent of immune responses to different antigens are different, and why some self-antigens are attacked as foreign. The secondary structure of the peptides involved in the immune system, such as the epitope-paratope interfaces plays a pivotal role in the resulting immune responses. Prolyl cis/trans isomerization plays a fundamental role in the form of the secondary structure and the folding of proteins. This review covers some of the emerging evidence indicating the impact of prolyl isomerization on protein conformation, aberration of immune responses, and the development of hypersensitivity reactions.
Collapse
Affiliation(s)
- Mehrdad Vakilian
- Department of Cell Biology, Genetics and Physiology, University of Malaga (UMA), The Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.
| |
Collapse
|
6
|
Jeanne Dit Fouque K, Wellmann M, Leyva Bombuse D, Santos-Fernandez M, Cintron-Diaz YL, Gomez-Hernandez ME, Kaplan D, Voinov VG, Fernandez-Lima F. Effective discrimination of gas-phase peptide conformers using TIMS-ECD-ToF MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5216-5223. [PMID: 34698320 PMCID: PMC8596503 DOI: 10.1039/d1ay01461g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the present work, four, well-studied, model peptides (e.g., substance P, bradykinin, angiotensin I and AT-Hook 3) were used to correlate structural information provided by ion mobility and ECD/CID fragmentation in a TIMS-q-EMS-ToF MS/MS platform, incorporporating an electromagnetostatic cell (EMS). The structural heterogeneity of the model peptides was observed by (i) multi-component ion mobility profiles (high ion mobility resolving power, R ∼115-145), and (ii) fast online characteristic ECD fragmentation patterns per ion mobility band (∼0.2 min). Particularly, it was demonstrated that all investigated species were probably conformers, involving cis/trans-isomerizations at X-Pro peptide bond, following the same protonation schemes, in good agreement with previous ion mobility and single point mutation experiments. The comparison between ion mobility selected ECD spectra and traditional FT-ICR ECD MS/MS spectra showed comparable ECD fragmentation efficiencies but differences in the ratio of radical (˙)/prime (') fragment species (H˙ transfer), which were associated with the differences in detection time after the electron capture event. The analysis of model peptides using online TIMS-q-EMSToF MS/MS provided complementary structural information on the intramolecular interactions that stabilize the different gas-phase conformations to those obtained by ion mobility or ECD alone.
Collapse
Affiliation(s)
- K Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| | - M Wellmann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Kiel 24098, Germany
| | - D Leyva Bombuse
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - M Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Y L Cintron-Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - M E Gomez-Hernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - D Kaplan
- KapScience LLC, Tewksbury, MA 01876, USA
| | - V G Voinov
- e-MSion Inc., Corvallis, OR 97330, USA
- Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - F Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
7
|
Zhang Z, Conant CR, El-Baba TJ, Raab SA, Fuller DR, Hales DA, Clemmer DE. Diketopiperazine Formation from FPG nK ( n = 1-9) Peptides: Rates of Structural Rearrangements and Mechanisms. J Phys Chem B 2021; 125:8107-8116. [PMID: 34270248 PMCID: PMC10661757 DOI: 10.1021/acs.jpcb.1c03515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peptides with penultimate proline residues undergo trans → cis isomerization of the Phe1-Pro2 peptide bond followed by spontaneous bond cleavage at the Pro2-Xxx3 bond (where Xxx is another amino acid residue), leading to cleavage of the Pro2-Xxx3 bond and formation of a diketopiperazine (DKP). In this paper, ion mobility spectrometry and mass spectrometry techniques were used to study the dissociation kinetics of nine peptides [Phe1-Pro2-Glyn-Lysn+3 (n = 1-9)] in ethanol. Shorter (n = 1-3) peptides are found to be more stable than longer (n = 4-9) peptides. Alanine substitution studies indicate that, when experiments are initiated, the Phe1-Pro2 bond of the n = 9 peptide exists exclusively in the cis configuration, while the n = 1-8 peptides appear to exist initially with both cis- and trans-Phe1-Pro2 configured bonds. Molecular dynamics simulations indicate that intramolecular hydrogen bonding interactions stabilize conformations of shorter peptides, thus inhibiting DKP formation. Similar stabilizing interactions appear less frequently in longer peptides. In addition, in smaller peptides, the N-terminal amino group is more likely to be charged compared to the same group in longer peptides, which would inhibit the dissociation through the DKP formation mechanism. Analysis of temperature-dependent kinetics measurements provides insight about the mechanism of bond cleavage. The analysis gives the following transition state thermochemistry: ΔG⧧ values range from 94.6 ± 0.9 to 101.5 ± 1.9 kJ·mol-1, values of ΔH⧧ range from 89.1 ± 0.9 to 116.7 ± 1.5 kJ·mol-1, and ΔS⧧ values range from -25.4 ± 2.6 to 50.8 ± 4.2 J·mol-1·K-1. Proposed mechanisms and thermochemistry are discussed.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| | - Christopher R Conant
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| | - Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| | - Daniel R Fuller
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, Arkansas, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
8
|
Zhang ZC, Raab SA, Hales DA, Clemmer DE. Influence of Solvents upon Diketopiperazine Formation of FPG8K. J Phys Chem B 2021; 125:2952-2959. [DOI: 10.1021/acs.jpcb.1c00269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhi-chao Zhang
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Shannon A. Raab
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - David A. Hales
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
- Department of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
9
|
Raab SA, El-Baba TJ, Woodall DW, Liu W, Liu Y, Baird Z, Hales DA, Laganowsky A, Russell DH, Clemmer DE. Evidence for Many Unique Solution Structures for Chymotrypsin Inhibitor 2: A Thermodynamic Perspective Derived from vT-ESI-IMS-MS Measurements. J Am Chem Soc 2020; 142:17372-17383. [PMID: 32866376 DOI: 10.1021/jacs.0c05365] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chymotrypsin inhibitor 2 (CI-2) is a classic model for two-state cooperative protein folding and is one of the most extensively studied systems. Alan Fersht, a pioneer in the field of structural biology, has studied the wild-type (wt) and over 100 mutant forms of CI-2 with traditional analytical and biochemical techniques. Here, we examine wt CI-2 and three mutant forms (A16G, K11A, L32A) to demonstrate the utility of variable-temperature (vT) electrospray ionization (ESI) paired with ion mobility spectrometry (IMS) and mass spectrometry (MS) to map the free energy folding landscape. As the solution temperature is increased, the abundance of each of the six ESI charge states for wt CI-2 and each mutant is found to vary independently. These results require that at least six unique types of CI-2 solution conformers are present. Ion mobility analysis reveals that within each charge state there are additional conformers having distinct solution temperature profiles. A model of the data at ∼30 different temperatures for all four systems suggests the presence of 41 unique CI-2 solution conformations. A thermodynamic analysis of this system yields values of ΔCp as well as ΔG, ΔH, and ΔS for each state at every temperature studied. Detailed energy landscapes derived from these data provide a rare glimpse into Anfinsen's thermodynamic hypothesis and the process of thermal denaturation, normally thought of as a cooperative two-state transition involving the native state and unstructured denatured species. Specifically, as the temperature is varied, the entropies and enthalpies of different conformers undergo dramatic changes in magnitude and relative order to maintain the delicate balance associated with equilibrium.
Collapse
Affiliation(s)
- Shannon A Raab
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Daniel W Woodall
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Wen Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yang Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zane Baird
- Baxter Healthcare Corporation, 927 South Curry Pike, Bloomington, Indiana 47403, United States
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
10
|
Woodall DW, Brown CJ, Raab SA, El-Baba TJ, Laganowsky A, Russell DH, Clemmer DE. Melting of Hemoglobin in Native Solutions as measured by IMS-MS. Anal Chem 2020; 92:3440-3446. [PMID: 31990187 PMCID: PMC7480357 DOI: 10.1021/acs.analchem.9b05561] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thermally induced structural transitions of the quaternary structure of the hemoglobin tetramer (human) in aqueous solution (150 mM ammonium acetate) were investigated using a variable temperature electrospray ionization (vt-ESI) technique in combination with ion mobility spectrometry (IMS) and mass spectrometry (MS) measurements. At low solution temperatures (28 to ∼40 °C), a heterotetrameric (α2β2) complex is the most abundant species that is observed. When the solution temperature is increased, this assembly dissociates into heterodimers (holo αβ forms) before ultimately forming insoluble aggregates at higher temperatures (>60 °C). In addition to the holo αβ forms, a small population of αβ dimers containing only a single heme ligand and having a dioxidation modification mapping to the β subunit are observed. The oxidized heterodimers are less stable than the unmodified holo-heterodimer. The Cys93 residue of the β subunit is the primary site of dioxidation. The close proximity of this post translational modification to both the αβ subunit interface and the heme binding site suggests that this modification is coupled to the loss of the heme and decreased protein stability. Changes in the charge state and collision cross sections of these species indicate that the tetramers and dimers favor less compact structures at elevated temperatures (prior to temperatures where dissociation dominates).
Collapse
Affiliation(s)
- Daniel W Woodall
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Christopher J Brown
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Shannon A Raab
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Tarick J El-Baba
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Arthur Laganowsky
- Department of Chemistry , Texas A & M University , College Station , Texas 77843 , United States
| | - David H Russell
- Department of Chemistry , Texas A & M University , College Station , Texas 77843 , United States
| | - David E Clemmer
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
11
|
El-Baba TJ, Clemmer DE. Solution thermochemistry of concanavalin A tetramer conformers measured by variable-temperature ESI-IMS-MS. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 443:93-100. [PMID: 32226278 PMCID: PMC7100878 DOI: 10.1016/j.ijms.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Variable-temperature nano-electrospray ionization coupled with ion mobility spectrometry-mass spectrometry is used to investigate the thermal denaturation of the tetrameric protein concanavalin A. As the solution temperature is increased, changes in mass spectra and collision cross section distributions provide evidence for discrete structural changes that occur at temperatures that are ~40 to 50 degrees below the temperature required for tetramer dissociation. The subtle structural changes are associated with four distinct tetramer conformations with unique melting temperatures. Gibbs-Helmholtz analysis of the free energies determined with respect to the most abundant "native" state yields heat capacities of ΔCp = 1.6 ± 0.3, -2.2 ± 0.4, and -2.9 ± 1.6 kJ·K-1·mol-1, and temperature dependent enthalpies and entropies for the three non-native conformations. Analysis of the thermochemistry indicates that the high-temperature products are entropically stable until the threshold for tetramer dissociation, and changes in heat capacity are consistent with increases in solvation of polar residues. Our findings suggest these high-temperature non-native states result from an increase in disorder at surface exposed regions. Such studies provide valuable insight towards the structural details of non-native states.
Collapse
Affiliation(s)
- Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington IN, 47401 USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington IN, 47401 USA
| |
Collapse
|
12
|
Conant CR, Fuller DR, Zhang Z, Woodall DW, Russell DH, Clemmer DE. Substance P in the Gas Phase: Conformational Changes and Dissociations Induced by Collisional Activation in a Drift Tube. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:932-945. [PMID: 30980379 PMCID: PMC6865269 DOI: 10.1007/s13361-019-02160-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 05/02/2023]
Abstract
The work presented below is related to our companion paper in this issue, entitled: Substance P in solution: trans-to-cis configurational changes of penultimate prolines initiate non-enzymatic peptide bond cleavages. Two-dimensional ion mobility spectrometry (IMS-IMS) and mass spectrometry techniques are used to investigate structural transitions for [M+3H]3+ ions of substance P (subP) upon collisional activation (CA) in the gas phase. In this approach, different conformations of ions having a specified mobility are selected after an initial IMS separation, collisionally activated to produce new conformers, and these product structures are separated again using a second IMS region. In this way, it is possible to follow folding and unfolding transitions of different conformations. The analysis shows evidence for five conformations. Unlike other systems, every transition is irreversible. Studies as a function of activation voltage are used to discern pathways of structural changes prior to reaching the energy required for dissociation. Thresholds associated with the onsets of transitions are calibrated to obtain estimates of the energetic barriers between different structures and semi-quantitative potential energy diagrams are presented. Overall, barriers associated with structural transitions of [subP+3H]3+ in the absence of solvent are on the order of ~ 40 kJ mol-1, substantially lower than the ~ 90 kJ mol-1 required for some similar structural transitions in solutions of ethanol. Comparisons of the transition energies in the gas phase with thermochemistry for similar transitions in solution provide clues about why reverse transitions are prohibited. Graphical Abstract.
Collapse
Affiliation(s)
- Christopher R Conant
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Daniel R Fuller
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Zhichao Zhang
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Daniel W Woodall
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA.
| |
Collapse
|