1
|
White CJ, Gausepohl AM, Wilkins HN, Eberhard CD, Orsburn BC, Williams DW. Spatial Heterogeneity of Brain Lipids in SIV-Infected Macaques Treated with Antiretroviral Therapy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:185-196. [PMID: 38288997 DOI: 10.1021/jasms.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Human immunodeficiency virus (HIV) infection continues to promote neurocognitive impairment, mood disorders, and brain atrophy, even in the modern era of viral suppression. Brain lipids are vulnerable to HIV-associated energetic strain and may contribute to HIV-associated neurologic dysfunction due to alterations in lipid breakdown and structural lipid composition. HIV neuropathology is region dependent, yet there has not been comprehensive characterization of the spatial heterogeneity of brain lipids during infection that possibly impacts neurologic function. To address this gap, we evaluated the spatial lipid distribution using matrix laser desorption/ionization imaging mass spectrometry (MALDI-IMS) across four brain regions (parietal cortex, midbrain, thalamus, and temporal cortex), as well as the kidney for a peripheral tissue control, in a simian immunodeficiency virus (SIV)-infected rhesus macaque treated with a course of antiretroviral therapies (ARTs). We assessed lipids indicative of fat breakdown [acylcarnitines (CARs)] and critical structural lipids [phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs)] across fatty acid chain lengths and degrees of unsaturation. CARs with very long-chain, polyunsaturated fatty acids (PUFAs) were more abundant across all brain regions than shorter chain, saturated, or monounsaturated species. We observed distinct brain lipid distribution patterns for the CARs and PCs. However, no clear expression patterns emerged for PEs. Surprisingly, the kidney was nearly devoid of ions corresponding to PUFAs common in brain. PEs and PCs with PUFAs had little intensity and less density than other species, and only one CAR species was observed in kidney at high intensity. Overall, our study demonstrates the stark variation in structural phospholipids and lipid-energetic intermediates present in the virally suppressed SIV-macaque brain. These findings may be useful for identifying regional vulnerabilities to damage due to brain lipid changes in people with HIV.
Collapse
Affiliation(s)
- Cory J White
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Andrew M Gausepohl
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hannah N Wilkins
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Molecular Microbiology & Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, United States
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Vines L, Sotelo D, Giddens N, Manza P, Volkow ND, Wang GJ. Neurological, Behavioral, and Pathophysiological Characterization of the Co-Occurrence of Substance Use and HIV: A Narrative Review. Brain Sci 2023; 13:1480. [PMID: 37891847 PMCID: PMC10605099 DOI: 10.3390/brainsci13101480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Combined antiretroviral therapy (cART) has greatly reduced the severity of HIV-associated neurocognitive disorders in people living with HIV (PLWH); however, PLWH are more likely than the general population to use drugs and suffer from substance use disorders (SUDs) and to exhibit risky behaviors that promote HIV transmission and other infections. Dopamine-boosting psychostimulants such as cocaine and methamphetamine are some of the most widely used substances among PLWH. Chronic use of these substances disrupts brain function, structure, and cognition. PLWH with SUD have poor health outcomes driven by complex interactions between biological, neurocognitive, and social factors. Here we review the effects of comorbid HIV and psychostimulant use disorders by discussing the distinct and common effects of HIV and chronic cocaine and methamphetamine use on behavioral and neurological impairments using evidence from rodent models of HIV-associated neurocognitive impairments (Tat or gp120 protein expression) and clinical studies. We also provide a biopsychosocial perspective by discussing behavioral impairment in differentially impacted social groups and proposing interventions at both patient and population levels.
Collapse
Affiliation(s)
- Leah Vines
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Diana Sotelo
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Natasha Giddens
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA;
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| |
Collapse
|
3
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Nigro SE, Wu M, Juliano AC, Napier TC, Landay AL, French AL, Yang S. Impaired verbal memory in individuals living with HIV and cocaine dependence. J Clin Exp Neuropsychol 2022; 44:134-145. [PMID: 35786160 DOI: 10.1080/13803395.2022.2086219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Our study aimed to understand the independent and combined effects of cocaine dependence and HIV status across aspects of verbal memory. METHOD Our sample consisted of a total of 102 individuals: 28 individuals living with HIV and cocaine dependence (HIV+/CD), 28 individuals who are HIV-negative with cocaine dependence (HIV-/CD), 20 individuals living with HIV without cocaine dependence (HIV+/ND), and 26 individuals who are HIV-negative without cocaine dependence (HIV-/ND). We utilized the Hopkins Verbal Learning Test-Revised Version (HVLT-R) to assess components of verbal memory, including encoding, recall, and recognition. A 2 (HIV: Yes/No) × 2 (Cocaine: Yes/No) MANCOVA on Total and Delayed Recall while controlling for premorbid intelligence was conducted. We used a Kruskal-Wallis H test to examine retrieval and recognition. RESULTS The combination of HIV and cocaine dependence amplified deficits on Total Recall. We found comparably poor performance across Delayed Recall between all three clinical groups. People living with HIV without cocaine dependence demonstrated intact recognition, whereas those with cocaine dependence had poor recognition. CONCLUSIONS HIV and cocaine both impacted verbal memory. However, there are potential subtle differences in the role cocaine versus HIV has on the memory process. People living with HIV without cocaine dependence recognized significantly more words than they could freely recall. In contrast, cocaine dependence impacted recognition in HIV and non-HIV groups. These performance patterns suggest HIV may be associated with retrieval deficits, whereas cocaine dependence may be associated with encoding deficits. Further research assessing these specific components of the memory process will help clarify these potential differences.
Collapse
Affiliation(s)
- Sarah E Nigro
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony C Juliano
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - T Celeste Napier
- Department of Psychiatry & Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Audrey L French
- Department of Medicine, CORE Center/Stroger Hospital of Cook County, Chicago, IL, USA
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Murray J, Meloni G, Cortes EP, KimSilva A, Jacobs M, Ramkissoon A, Crary JF, Morgello S. Frontal lobe microglia, neurodegenerative protein accumulation, and cognitive function in people with HIV. Acta Neuropathol Commun 2022; 10:69. [PMID: 35526056 PMCID: PMC9080134 DOI: 10.1186/s40478-022-01375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Microglia are implicated in Alzheimer's Disease (AD) pathogenesis. In a middle-aged cohort enriched for neuroinflammation, we asked whether microgliosis was related to neocortical amyloid beta (A[Formula: see text]) deposition and neuronal phosphorylated tau (p-tau), and whether microgliosis predicted cognition. Frontal lobe tissue from 191 individuals autopsied with detectable (HIV-D) and undetectable (HIV-U) HIV infection, and 63 age-matched controls were examined. Immunohistochemistry (IHC) was used to evaluate A[Formula: see text] plaques and neuronal p-tau, and quantitate microgliosis with markers Iba1, CD163, and CD68 in large regions of cortex. Glia in the A[Formula: see text] plaque microenvironment were quantitated by immunofluorescence (IF). The relationship of microgliosis to cognition was evaluated. No relationship between A[Formula: see text] or p-tau accumulation and overall severity of microgliosis was discerned. Individuals with uncontrolled HIV had the greatest microgliosis, but fewer A[Formula: see text] plaques; they also had higher prevalence of APOE [Formula: see text]4 alleles, but died earlier than other groups. HIV group status was the only variable predicting microgliosis over large frontal regions. In contrast, in the A[Formula: see text] plaque microenvironment, APOE [Formula: see text]4 status and sex were dominant predictors of glial infiltrates, with smaller contributions of HIV status. Cognition correlated with large-scale microgliosis in HIV-D, but not HIV-U, individuals. In this autopsy cohort, over large regions of cortex, HIV status predicts microgliosis, whereas in the A[Formula: see text] plaque microenvironment, traditional risk factors of AD (APOE [Formula: see text]4 and sex) are stronger determinants. While microgliosis does not predict neurodegenerative protein deposition, it does predict cognition in HIV-D. Increased neuroinflammation does not initiate amyloid deposition in a younger group with enhanced genetic risk. However, once A[Formula: see text] deposits are established, APOE [Formula: see text]4 predicts increased plaque-associated inflammation.
Collapse
Affiliation(s)
- Jacinta Murray
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Gregory Meloni
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Etty P Cortes
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ariadna KimSilva
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Michelle Jacobs
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Alyssa Ramkissoon
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - John F Crary
- Department of Neuroscience, The Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Artificial Intelligence and Human Health, Ronald M. Loeb Center for Alzheimer's Disease, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Susan Morgello
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA.
- Department of Neuroscience, The Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
6
|
Morgello S, Buyukturkoglu K, Murray J, Veenstra M, Berman JW, Byrd D, Inglese M. MR spectroscopy and diffusion imaging in people with human immunodeficiency virus: Relationships to clinical and immunologic findings. J Neuroimaging 2022; 32:158-170. [PMID: 34520593 PMCID: PMC8752497 DOI: 10.1111/jon.12931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE People with human immunodeficiency virus (HIV; PWH) present a complex array of immunologic and medical disorders that impact brain structure and metabolism, complicating the interpretation of neuroimaging. This pilot study of well-characterized multi-morbid PWH examined how medical and immunologic factors predicted brain characteristics on proton MR spectroscopy (1H-MRS) and diffusion-weighted imaging (DWI). METHODS Eighteen individuals on combination antiretroviral therapy (cART), with mean age of 56 years, underwent medical history review, neuroimaging, and on the day of imaging, blood draw for assay of 20 plasma cytokines and flow cytometric characterization of peripheral blood mononuclear cell subsets. Predictors of n-acetyl aspartate, choline, myoinositol, glutamate/glutamine, fractional anisotropy and mean diffusivity were identified through bivariate correlation; those significant at p < .1000 were advanced to multivariate analysis, with models created for each neuroimaging outcome. RESULTS Monocyte subsets and diverse cytokines accounted for 16 of 25 (64%) variables predicting 1H-MRS spectra in frontal gray and white matter and basal ganglia; monocyte subsets did not predict any DWI characteristic. In contrast, age, presence of hypertension, and duration of HIV infection accounted for 13 of 25 (52%) variables predicting diffusion characteristics in the corpus callosum, thalamic radiations, and basal ganglia but only 3 of 25 (12%) predictors of 1H-MRS features. CONCLUSIONS 1H-MRS neurometabolites were most often predicted by immunologic factors sensitive to temporal variation, whereas DWI metrics were more often related to longer-term disease state. In multi-morbid cART-era populations, selection and interpretation of neuroimaging modalities should account for complex temporal and pathogenetic influences of immunologic abnormality, disease state, and aging.
Collapse
Affiliation(s)
- Susan Morgello
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York,Departments of Neuroscience and Pathology, The Icahn School of Medicine at Mount Sinai, New York City, New York
| | | | - Jacinta Murray
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Mike Veenstra
- Departments of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Joan W. Berman
- Departments of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Desiree Byrd
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York,Department of Psychology, Queens College and the Graduate Center, City University of New York, Queens, New York
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
MR spectroscopy in HIV associated neurocognitive disorder in the era of cART: a review. AIDS Res Ther 2021; 18:65. [PMID: 34625091 PMCID: PMC8501619 DOI: 10.1186/s12981-021-00388-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
Neuroimaging has been a critical tool for understanding the neuropathological underpinnings observed in HIV. The pathophysiology of HAND is chiefly driven by neuroinflammation. Despite adhering to cART, low levels of viraemia probably persist in the brain in some patients leading to chronic immune activation with resultant neuroinflammation and consequent neuronal injury. MR spectroscopy has been widely used as a biomarker for the presence and severity of HAND in several studies. By studying the MRS signatures, it is possible to characterise the presence of neuroinflammation and neural injury. Furthermore, metabolite concentrations measured by MRS could be used as a quantitative indicator of HIV cerebral involvement, thereby affording the opportunity to assess the efficacy of cART in HAND. However, currently there are three significant limitations in the MRS HIV research literature: the relative paucity of prospective studies, the small number of regions of interrogation due to current methodology (single voxel MRS), and the evolving understanding of the impact of co-morbidities (e.g. ageing, mood disorders, alcoholism etc.) on MRS measurements. This review critically addresses the current literature of MRS studies in people living with HIV (PWH) with HAND to determine its value, especially in the context of the current cART era. In addition, we discuss technical considerations related to the disease and the future direction in HAND using MRS.
Collapse
|
8
|
Dahmani S, Kaliss N, VanMeter JW, Moore DJ, Ellis RJ, Jiang X. Alterations of Brain Metabolites in Adults With HIV: A Systematic Meta-analysis of Magnetic Resonance Spectroscopy Studies. Neurology 2021; 97:e1085-e1096. [PMID: 34253633 PMCID: PMC8456358 DOI: 10.1212/wnl.0000000000012394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE A meta-analysis of proton magnetic resonance spectroscopy studies to investigate alterations in brain metabolites in people with HIV (PWH), the relationship between metabolite alterations and combination antiretroviral therapy (cART), and the relationship between metabolite alterations and cognitive impairment. METHODS The PubMed database was searched for studies published from 1997 to 2020. Twenty-seven studies were identified, which included 1255 PWH and 633 controls. Four metabolites (N-acetyl aspartate [NAA], myo-inositol [mI], choline [Cho], and glutamatergic metabolites [Glx]) from 5 brain regions (basal ganglia [BG], frontal gray and white matter [FGM and FWM], and parietal gray and white matter [PGM and PWM]) were pooled separately using random-effects meta-analysis. RESULTS During early HIV infection, metabolite alterations were largely limited to the BG, including Cho elevation, a marker of inflammation. cART led to global mI and Cho normalization (i.e., less elevations), but improvement in NAA was negligible. In chronic PWH on cART, there were consistent NAA reductions across brain regions, along with Cho and mI elevations in the FWM and BG, and Glx elevations in the FWM. Cognitive impairment was associated with NAA reduction and to a lesser degree mI elevation. CONCLUSIONS The BG are the primary region affected during early infection. cART is successful in partially controlling neuroinflammation (global mI and Cho normalization). However, neuronal dysfunction (NAA reductions) and neuroinflammation (mI and Cho elevations) persist and contribute to cognitive impairment in chronic PWH. Novel compounds targeting NAA signal pathways, along with better neuroinflammation control, may help to reduce cognitive impairment in PWH.
Collapse
Affiliation(s)
- Sophia Dahmani
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla
| | - Nicholas Kaliss
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla
| | - John W VanMeter
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla
| | - David J Moore
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla
| | - Ronald J Ellis
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla
| | - Xiong Jiang
- From the Department of Neuroscience (S.D., N.K., X.J.) and Department of Neurology (J.W.V.), Georgetown University Medical Center, Washington, DC; Department of Psychiatry (D.J.M., R.J.E.) and Department of Neurosciences (R.J.E.), University of California, San Diego, La Jolla.
| |
Collapse
|
9
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
10
|
Tivarus ME, Zhuang Y, Wang L, Murray KD, Venkataraman A, Weber MT, Zhong J, Qiu X, Schifitto G. Mitochondrial toxicity before and after combination antiretroviral therapy, a Magnetic Resonance Spectroscopy study. NEUROIMAGE-CLINICAL 2021; 31:102693. [PMID: 34020161 PMCID: PMC8144469 DOI: 10.1016/j.nicl.2021.102693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/21/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
The aim of this study was to quantify, via Magnetic Resonance Spectroscopy (MRS), the effect of combination antiretroviral therapy (cART) on brain metabolites and characterize any possible associations between changes in metabolites, age, blood biomarkers of neuronal damage, functional connectivity and cognitive performance. As cART has dramatically increased the life expectancy of HIV-infected (HIV + ) individuals and unmasked an increase in HIV-associated neurocognitive disorders, it is still not clear whether cART neurotoxicity contributes to these disorders. We hypothesized a bimodal effect, with early cART treatment of HIV infection decreasing inflammation as measured by MRS metabolites and improving cognitive performance, and chronic exposure to cART contributing to persistence of cognitive impairment via its effect on mitochondrial function. Basal ganglia metabolites, functional connectivity, cognitive scores, as well as plasma levels of neurofilament light chain (NfL) and tau protein were measured before and after 12 weeks, 1 year and 2 years of cART in a cohort of 50 cART-naïve HIV + subjects and 72 age matched HIV- healthy controls. Glutamate (Glu) levels were lower in the cART naïve patients than in healthy controls and were inversely correlated with plasma levels of NfL. There were no other significant metabolite differences between HIV + and uninfected individuals. Treatment improved Glu levels in HIV+, however, no associations were found between Glu, functional connectivity and cognitive performance. Stable brain metabolites and plasma levels of NfL and Tau over two-years of follow-ups suggest there are no signs of cART neurotoxicity in this relatively young cohort of HIV + individuals.
Collapse
Affiliation(s)
- Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester NY, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester NY, USA.
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, USA
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester NY, USA
| | - Kyle D Murray
- Department of Physics and Astronomy, University of Rochester, Rochester NY, USA
| | - Arun Venkataraman
- Department of Physics and Astronomy, University of Rochester, Rochester NY, USA
| | - Miriam T Weber
- Department of Neurology, University of Rochester Medical Center, Rochester NY, USA
| | - Jianhui Zhong
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester NY, USA; Department of Physics and Astronomy, University of Rochester, Rochester NY, USA; Department of Biomedical Engineering, University of Rochester, Rochester NY, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester NY, USA
| | - Giovanni Schifitto
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester NY, USA; Department of Neurology, University of Rochester Medical Center, Rochester NY, USA
| |
Collapse
|
11
|
Britton MK, Porges EC, Bryant V, Cohen RA. Neuroimaging and Cognitive Evidence for Combined HIV-Alcohol Effects on the Central Nervous System: A Review. Alcohol Clin Exp Res 2021; 45:290-306. [PMID: 33296091 PMCID: PMC9486759 DOI: 10.1111/acer.14530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
Alcohol use disorder (AUD) among people living with HIV (PLWH) is a significant public health concern. Despite the advent of effective antiretroviral therapy, up to 50% of PLWH still experience worsened neurocognition, which comorbid AUD exacerbates. We report converging lines of neuroimaging and neuropsychological evidence linking comorbid HIV/AUD to dysfunction in brain regions linked to executive function, learning and memory, processing speed, and motor control, and consequently to impairment in daily life. The brain shrinkage, functional network alterations, and brain metabolite disruption seen in individuals with HIV/AUD have been attributed to several interacting pathways: viral proteins and EtOH are directly neurotoxic and exacerbate each other's neurotoxic effects; EtOH reduces antiretroviral adherence and increases viral replication; AUD and HIV both increase gut microbial translocation, promoting systemic inflammation and HIV transport into the brain by immune cells; and HIV may compound alcohol's damaging effects on the liver, further increasing inflammation. We additionally review the neurocognitive effects of aging, Hepatitis C coinfection, obesity, and cardiovascular disease, tobacco use, and nutritional deficiencies, all of which have been shown to compound cognitive changes in HIV, AUD, and in their comorbidity. Finally, we examine emerging questions in HIV/AUD research, including genetic and cognitive protective factors, the role of binge drinking in HIV/AUD-linked cognitive decline, and whether neurocognitive and brain functions normalize after drinking cessation.
Collapse
Affiliation(s)
- Mark K. Britton
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| | - Eric C. Porges
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| | - Vaughn Bryant
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
- University of Florida, Department of Epidemiology, 2004 Mowry Road, Gainesville, FL 32610
| | - Ronald A. Cohen
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| |
Collapse
|
12
|
Neuroimaging Advances in Diagnosis and Differentiation of HIV, Comorbidities, and Aging in the cART Era. Curr Top Behav Neurosci 2021; 50:105-143. [PMID: 33782916 DOI: 10.1007/7854_2021_221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the "cART era" of more widely available and accessible treatment, aging and HIV-related comorbidities, including symptoms of brain dysfunction, remain common among HIV-infected individuals on suppressive treatment. A better understanding of the neurobiological consequences of HIV infection is essential for developing thorough treatment guidelines and for optimizing long-term neuropsychological outcomes and overall brain health. In this chapter, we first summarize magnetic resonance imaging (MRI) methods used in over two decades of neuroHIV research. These methods evaluate brain volumetric differences and circuitry disruptions in adults living with HIV, and help map clinical correlations with brain function and tissue microstructure. We then introduce and discuss aging and associated neurological complications in people living with HIV, and processes by which infection may contribute to the risk for late-onset dementias. We describe how new technologies and large-scale international collaborations are helping to disentangle the effect of genetic and environmental risk factors on brain aging and neurodegenerative diseases. We provide insights into how these advances, which are now at the forefront of Alzheimer's disease research, may advance the field of neuroHIV. We conclude with a summary of how we see the field of neuroHIV research advancing in the decades to come and highlight potential clinical implications.
Collapse
|
13
|
Nickoloff-Bybel EA, Calderon TM, Gaskill PJ, Berman JW. HIV Neuropathogenesis in the Presence of a Disrupted Dopamine System. J Neuroimmune Pharmacol 2020; 15:729-742. [PMID: 32506353 PMCID: PMC7905900 DOI: 10.1007/s11481-020-09927-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/26/2020] [Indexed: 12/23/2022]
Abstract
Antiretroviral therapy (ART) has transformed HIV into a chronic condition, lengthening and improving the lives of individuals living with this virus. Despite successful suppression of HIV replication, people living with HIV (PLWH) are susceptible to a growing number of comorbidities, including neuroHIV that results from infection of the central nervous system (CNS). Alterations in the dopaminergic system have long been associated with HIV infection of the CNS. Studies indicate that changes in dopamine concentrations not only alter neurotransmission, but also significantly impact the function of immune cells, contributing to neuroinflammation and neuronal dysfunction. Monocytes/macrophages, which are a major target for HIV in the CNS, are responsive to dopamine. Therefore, defining more precisely the mechanisms by which dopamine acts on these cells, and the changes in cellular function elicited by this neurotransmitter are necessary to develop therapeutic strategies to treat neuroHIV. This is especially important for vulnerable populations of PLWH with chemically altered dopamine concentrations, such as individuals with substance use disorder (SUD), or aging individuals using dopamine-altering medications. The specific neuropathologic and neurocognitive consequences of increased CNS dopamine remain unclear. This is due to the complex nature of HIV neuropathogenesis, and logistical and technical challenges that contribute to inconsistencies among cohort studies, animal models and in vitro studies, as well as lack of demographic data and access to human CNS samples and cells. This review summarizes current understanding of the impact of dopamine on HIV neuropathogenesis, and proposes new experimental approaches to examine the role of dopamine in CNS HIV infection. Graphical abstract HIV Neuropathogenesis in the Presence of a Disrupted Dopamine System. Both substance abuse disorders and the use of dopaminergic medications for age-related diseases are associated with changes in CNS dopamine concentrations and dopaminergic neurotransmission. These changes can lead to aberrant immune function, particularly in myeloid cells, which contributes to the neuroinflammation, neuropathology and dysfunctional neurotransmission observed in dopamine-rich regions in HIV+ individuals. These changes, which are seen despite the use antiretroviral therapy (ART), in turn lead to further dysregulation of the dopamine system. Thus, in individuals with elevated dopamine, the bi-directional interaction between aberrant dopaminergic neurotransmission and HIV infection creates a feedback loop contributing to HIV associated neurocognitive dysfunction and neuroHIV. However, the distinct contributions and interactions made by HIV infection, inflammatory mediators, ART, drugs of abuse, and age-related therapeutics are poorly understood. Defining more precisely the mechanisms by which these factors influence the development of neurological disease is critical to addressing the continued presence of neuroHIV in vulnerable populations, such as HIV-infected older adults or drug abusers. Due to the complexity of this system, understanding these effects will require a combination of novel experimental modalities in the context of ART. These will include more rigorous epidemiological studies, relevant animal models, and in vitro cellular and molecular mechanistic analysis.
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - T M Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| | - J W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
14
|
Deme P, Rojas C, Slusher BS, Rais R, Afghah Z, Geiger JD, Haughey NJ. Bioenergetic adaptations to HIV infection. Could modulation of energy substrate utilization improve brain health in people living with HIV-1? Exp Neurol 2020; 327:113181. [PMID: 31930991 PMCID: PMC7233457 DOI: 10.1016/j.expneurol.2020.113181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
The human brain consumes more energy than any other organ in the body and it relies on an uninterrupted supply of energy in the form of adenosine triphosphate (ATP) to maintain normal cognitive function. This constant supply of energy is made available through an interdependent system of metabolic pathways in neurons, glia and endothelial cells that each have specialized roles in the delivery and metabolism of multiple energetic substrates. Perturbations in brain energy metabolism is associated with a number of different neurodegenerative conditions including impairments in cognition associated with infection by the Human Immunodeficiency Type 1 Virus (HIV-1). Adaptive changes in brain energy metabolism are apparent early following infection, do not fully normalize with the initiation of antiretroviral therapy (ART), and often worsen with length of infection and duration of anti-retroviral therapeutic use. There is now a considerable amount of cumulative evidence that suggests mild forms of cognitive impairments in people living with HIV-1 (PLWH) may be reversible and are associated with specific modifications in brain energy metabolism. In this review we discuss brain energy metabolism with an emphasis on adaptations that occur in response to HIV-1 infection. The potential for interventions that target brain energy metabolism to preserve or restore cognition in PLWH are also discussed.
Collapse
Affiliation(s)
- Pragney Deme
- The Johns Hopkins University School of Medicine, Department of Neurology, United States
| | - Camilo Rojas
- The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States
| | - Barbara S Slusher
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Raina Rais
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Zahra Afghah
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Jonathan D Geiger
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Norman J Haughey
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States.
| |
Collapse
|
15
|
Neurometabolic Remodeling in Chronic Hiv Infection: a Five-Year Follow-up Multi-Voxel Mrs Study. Sci Rep 2019; 9:19799. [PMID: 31875001 PMCID: PMC6930328 DOI: 10.1038/s41598-019-56330-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/02/2019] [Indexed: 11/09/2022] Open
Abstract
There is a lack of data about the long-term follow-up changes in neurometabolic profile and neuropsychological performance of HIV-positive subjects under continuous antiretroviral therapy (cART). The aim of the study was to assess changes in neurometabolic profile in chronically-infected, HIV-positive subjects during a five-year follow-up period, using multi-voxel proton magnetic resonance spectroscopy (1H-MRS). Nineteen neurologically asymptomatic, aviremic, HIV-positive subjects, underwent multi-voxel 2D MRS on a 3 T MR unit and synchronous neurocognitive assessment in a five-year follow-up period. Twelve voxels were placed in prefrontal cortices, anterior and posterior cingulate gyrus, intraparietal sulci, and frontal centrum semiovale white matter, to identify peaks of N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), and myoinositol (mI). Ratios of NAA/Cr, NAA/Cho, NAA/mI, mI/Cr, and Cho/Cr were analyzed. Longitudinal differences in ratios and neurocognitive scores were tested with the Wilcoxon signed-rank-test. Statistical significance was set at p ≤ 0.004 significant, and 0.05 > p > 0.004 trending toward significance. A significant longitudinal increase in NAA/Cr ratio was observed in 5/12 voxels, while there was a trend toward significance in an additional three. The increase in Cho/Cr reached statistical significance in one voxel. Changes in the mI/Cr ratio demonstrated a significant increase in 4/12 voxels. A progressive increase in NAA/Cr, followed by better neurocognitive performance, may be an indicator of brain plasticity in the setting of chronic HIV-related neuronal injury. A progressive mI/Cr increase could be partly explained by glial proliferation due to functional compartment remodeling and partly attributable to insufficient control of persistent neuroinflammation by cART.
Collapse
|
16
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
17
|
Cole JH, Caan MWA, Underwood J, De Francesco D, van Zoest RA, Wit FWNM, Mutsaerts HJMM, Leech R, Geurtsen GJ, Portegies P, Majoie CBLM, Schim van der Loeff MF, Sabin CA, Reiss P, Winston A, Sharp DJ. No Evidence for Accelerated Aging-Related Brain Pathology in Treated Human Immunodeficiency Virus: Longitudinal Neuroimaging Results From the Comorbidity in Relation to AIDS (COBRA) Project. Clin Infect Dis 2019; 66:1899-1909. [PMID: 29309532 DOI: 10.1093/cid/cix1124] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/02/2018] [Indexed: 12/31/2022] Open
Abstract
Background Despite successful antiretroviral therapy, people living with human immunodeficiency virus (PLWH) experience higher rates of age-related morbidity, including abnormal brain structure, brain function, and cognitive impairment. This has raised concerns that PLWH may experience accelerated aging-related brain pathology. Methods We performed a multicenter longitudinal study of 134 virologically suppressed PLWH (median age, 56.0 years) and 79 demographically similar human immunodeficiency virus (HIV)-negative controls (median age, 57.2 years). To measure cognitive performance and brain pathology, we conducted detailed neuropsychological assessments and multimodality neuroimaging (T1-weighted, T2-weighted, diffusion magnetic resonance imaging [MRI], resting-state functional MRI, spectroscopy, arterial spin labeling) at baseline and at 2 years. Group differences in rates of change were assessed using linear mixed effects models. Results One hundred twenty-three PLWH and 78 HIV-negative controls completed longitudinal assessments (median interval, 1.97 years). There were no differences between PLWH and HIV-negative controls in age, sex, years of education, smoking or alcohol use. At baseline, PLWH had poorer global cognitive performance (P < .01), lower gray matter volume (P = .04), higher white matter hyperintensity load (P = .02), abnormal white matter microstructure (P < .005), and greater brain-predicted age difference (P = .01). Longitudinally, there were no significant differences in rates of change in any neuroimaging measure between PLWH and HIV-negative controls (P > .1). Cognitive performance was longitudinally stable in both groups. Conclusions We found no evidence that middle-aged PLWH, when receiving successful treatment, are at increased risk of accelerated aging-related brain changes or cognitive decline over 2 years.
Collapse
Affiliation(s)
- James H Cole
- Computational, Cognitive and Computational Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Matthan W A Caan
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Davide De Francesco
- Department of Infection and Population Health, University College London, United Kingdom
| | - Rosan A van Zoest
- Department of Global Health, Academic Medical Center, Amsterdam Institute for Global Health and Development
| | - Ferdinand W N M Wit
- Department of Global Health, Academic Medical Center, Amsterdam Institute for Global Health and Development.,Dutch HIV Monitoring Foundation, Amsterdam, The Netherlands
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Kate Gleason College of Engineering, Rochester Institute of Technology, New York
| | - Rob Leech
- Computational, Cognitive and Computational Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London
| | | | - Peter Portegies
- Department of Neurology, OLVG Hospital.,Department of Neurology, Academic Medical Center
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Maarten F Schim van der Loeff
- Department of Infectious Diseases, Public Health Service of Amsterdam.,Department of Infectious Diseases, Center for Immunity and Infection Amsterdam, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Caroline A Sabin
- Department of Infection and Population Health, University College London, United Kingdom
| | - Peter Reiss
- Department of Global Health, Academic Medical Center, Amsterdam Institute for Global Health and Development.,Dutch HIV Monitoring Foundation, Amsterdam, The Netherlands
| | - Alan Winston
- Division of Infectious Diseases, Imperial College London
| | - David J Sharp
- Computational, Cognitive and Computational Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London
| | | |
Collapse
|
18
|
Nickoloff E, Mackie P, Runner K, Matt S, Khoshbouei H, Gaskill P. Dopamine increases HIV entry into macrophages by increasing calcium release via an alternative signaling pathway. Brain Behav Immun 2019; 82:239-252. [PMID: 31470080 PMCID: PMC6941734 DOI: 10.1016/j.bbi.2019.08.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Dopaminergic dysfunction has long been connected to the development of HIV infection in the CNS. Our previous data showed that dopamine increases HIV infection in human macrophages by increasing the susceptibility of primary human macrophages to HIV entry through stimulation of both D1-like and D2-like receptors. These data suggest that, in macrophages, both dopamine receptor subtypes may act through a common signaling mechanism. To define better the mechanism(s) underlying this effect, this study examines the specific signaling processes activated by dopamine in primary human monocyte-derived macrophages (hMDM). In addition to confirming that the increase in entry is unique to dopamine, these studies show that dopamine increases HIV entry through a PKA insensitive, Ca2+ dependent pathway. Further examination demonstrated that dopamine can signal through a previously defined, non-canonical pathway in human macrophages. This pathway involves both Ca2+ release and PKC phosphorylation, and these data show that dopamine mediates both of these effects and that both were partially inhibited by the Gq/11 specific inhibitor YM-254890. Studies have shown that Gq/11 preferentially couples to the D1-like receptor D5, indicating an important role of the D1-like receptors in mediating these effects. These data indicate a role for Ca2+ flux in the HIV entry process, and suggest a distinct signaling mechanism mediating some of the effects of dopamine in macrophages. Together, the data indicate that targeting this alternative dopamine signaling pathway might provide new therapeutic options for individuals with elevated CNS dopamine suffering from NeuroHIV.
Collapse
Affiliation(s)
- E.A. Nickoloff
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - P. Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611
| | - K. Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - S.M. Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - H. Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611,Department of Psychiatry, University of Florida, Gainesville, FL, 32611
| | - P.J. Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| |
Collapse
|
19
|
Relationships between cognition, function, and quality of life among HIV+ Canadian men. Qual Life Res 2019; 29:37-55. [PMID: 31502189 DOI: 10.1007/s11136-019-02291-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To estimate the extent to which HIV-related variables, cognition, and other brain health factors interrelate with other HIV-associated symptoms to influence function, health perception, and QOL in older HIV+ men in Canada. DESIGN Cross-sectional structural equation modelling (SEM) of data from the inaugural visit to the Positive Brain Health Now Cohort. SETTING HIV clinics at 5 Canadian sites. SUBJECTS 707 men, age ≥ 35 years, HIV+ for at least one year, without clinically diagnosed dementia. MAIN OUTCOME MEASURES Five latent and 21 observed variables from the World Health Organization's biopsychosocial model for functioning and disability and the Wilson-Cleary Model were analysed. SEM was used to link disease factors to symptoms, impairments, function, health perception, and QOL with a focus on cognition. RESULTS QOL was explained directly by depression, social role, health perception, social support, and quality of the environment. Measured cognitive performance had direct effects on activity/function and indirect effects on participation, HP and QOL, acting through self-reported cognitive difficulties and meaningful activities. CONCLUSION The biopsychosocial model showed good fit, with RMSEA < 0.05. This is the first time the full model has been tested in HIV. All of the domains included in the model are theoretically amenable to intervention and many have evidence-based interventions that could be harnessed to improve QOL.
Collapse
|
20
|
Dopaminergic impact of cART and anti-depressants on HIV neuropathogenesis in older adults. Brain Res 2019; 1723:146398. [PMID: 31442412 DOI: 10.1016/j.brainres.2019.146398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
Abstract
The success of combination antiretroviral therapy (cART) has transformed HIV infection into a chronic condition, resulting in an increase in the number of older, cART-treated adults living with HIV. This has increased the incidence of age-related, non-AIDS comorbidities in this population. One of the most common comorbidities is depression, which is also associated with cognitive impairment and a number of neuropathologies. In older people living with HIV, treating these overlapping disorders is complex, often creating pill burden or adverse drug-drug interactions that can exacerbate these neurologic disorders. Depression, NeuroHIV and many of the neuropsychiatric therapeutics used to treat them impact the dopaminergic system, suggesting that dopaminergic dysfunction may be a common factor in the development of these disorders. Further, changes in dopamine can influence the development of inflammation and the regulation of immune function, which are also implicated in the progression of NeuroHIV and depression. Little is known about the optimal clinical management of drug-drug interactions between cART drugs and antidepressants, particularly in regard to dopamine in older people living with HIV. This review will discuss those interactions, first examining the etiology of NeuroHIV and depression in older adults, then discussing the interrelated effects of dopamine and inflammation on these disorders, and finally reviewing the activity and interactions of cART drugs and antidepressants on each of these factors. Developing better strategies to manage these comorbidities is critical to the health of the aging, HIV-infected population, as the older population may be particularly vulnerable to drug-drug interactions affecting dopamine.
Collapse
|
21
|
Nir TM, Jahanshad N, Ching CRK, Cohen RA, Harezlak J, Schifitto G, Lam HY, Hua X, Zhong J, Zhu T, Taylor MJ, Campbell TB, Daar ES, Singer EJ, Alger JR, Thompson PM, Navia BA. Progressive brain atrophy in chronically infected and treated HIV+ individuals. J Neurovirol 2019; 25:342-353. [PMID: 30767174 PMCID: PMC6635004 DOI: 10.1007/s13365-019-00723-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 01/19/2023]
Abstract
Growing evidence points to persistent neurological injury in chronic HIV infection. It remains unclear whether chronically HIV-infected individuals on combined antiretroviral therapy (cART) develop progressive brain injury and impaired neurocognitive function despite successful viral suppression and immunological restoration. In a longitudinal neuroimaging study for the HIV Neuroimaging Consortium (HIVNC), we used tensor-based morphometry to map the annual rate of change of regional brain volumes (mean time interval 1.0 ± 0.5 yrs), in 155 chronically infected and treated HIV+ participants (mean age 48.0 ± 8.9 years; 83.9% male) . We tested for associations between rates of brain tissue loss and clinical measures of infection severity (nadir or baseline CD4+ cell count and baseline HIV plasma RNA concentration), HIV duration, cART CNS penetration-effectiveness scores, age, as well as change in AIDS Dementia Complex stage. We found significant brain tissue loss across HIV+ participants, including those neuro-asymptomatic with undetectable viral loads, largely localized to subcortical regions. Measures of disease severity, age, and neurocognitive decline were associated with greater atrophy. Chronically HIV-infected and treated individuals may undergo progressive brain tissue loss despite stable and effective cART, which may contribute to neurocognitive decline. Understanding neurological complications of chronic infection and identifying factors associated with atrophy may help inform strategies to maintain brain health in people living with HIV.
Collapse
Affiliation(s)
- Talia M Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 4676 Admiralty Way Suite 200, Marina del Rey, Los Angeles, CA, 90292, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 4676 Admiralty Way Suite 200, Marina del Rey, Los Angeles, CA, 90292, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 4676 Admiralty Way Suite 200, Marina del Rey, Los Angeles, CA, 90292, USA
- Graduate Interdepartmental Program in Neuroscience, UCLA School of Medicine, Los Angeles, CA, USA
| | - Ronald A Cohen
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | | | | | - Hei Y Lam
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 4676 Admiralty Way Suite 200, Marina del Rey, Los Angeles, CA, 90292, USA
| | - Xue Hua
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 4676 Admiralty Way Suite 200, Marina del Rey, Los Angeles, CA, 90292, USA
| | - Jianhui Zhong
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Tong Zhu
- Department Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Taylor
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Thomas B Campbell
- Medicine/Infectious Diseases, University of Colorado Denver, Aurora, CO, USA
| | - Eric S Daar
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, University of California, Los Angeles, CA, USA
| | - Elyse J Singer
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jeffry R Alger
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 4676 Admiralty Way Suite 200, Marina del Rey, Los Angeles, CA, 90292, USA.
| | - Bradford A Navia
- Department of Public Health, Infection Unit, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
22
|
Quigley A, O'Brien KK, Brouillette MJ, MacKay-Lyons M. Evaluating the Feasibility and Impact of a Yoga Intervention on Cognition, Physical Function, Physical Activity, and Affective Outcomes in People Living With HIV: Protocol for a Randomized Pilot Trial. JMIR Res Protoc 2019; 8:e13818. [PMID: 31115343 PMCID: PMC6547772 DOI: 10.2196/13818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Despite lower mortality rates due to combination antiretroviral therapy, people living with HIV (PLWH) are grappling with increasingly complex health issues, including cognitive impairments in areas such as memory, attention, processing speed, and motor function. Yoga has been shown to be an effective form of exercise and mindfulness-based stress reduction for many clinical populations. However, no randomized trials have evaluated the impact of yoga on cognitive and physical function among PLWH. Objective The aim of this pilot randomized trial was to determine the feasibility of a yoga intervention to lay the groundwork for a full-scale, multisite, community-based trial for PLWH. Specific objectives are to (1) assess the feasibility of study protocol and procedures, (2) compare cognition in the yoga group with the usual care control group after 12 weeks of the intervention in PLWH, and (3) compare the effects of the 12-week yoga intervention versus control on balance, walking speed, physical activity, mental health, medication adherence, and quality of life among PLWH. Methods We propose a pilot randomized trial with 2 parallel groups (yoga versus control). We will recruit 25 PLWH (>35 years) from community and health organizations in Halifax, Canada. After baseline assessment with blinded assessors, participants will be randomly assigned to the yoga or control group, using a random computer generator. Participants in the yoga group will engage in supervised 60-min group-based yoga sessions 3 times a week for 12 weeks at a yoga studio. Participants in the control group will maintain their current physical activity levels throughout the study. Results As per the Consolidated Standards of Reporting Trials extension for pilot studies, means of all outcomes, mean change, and 95% CIs will be calculated for each group separately. Two-tailed independent t tests and Fisher exact tests will be used to compare groups at baseline. We will analyze quantitative postintervention questionnaire responses using Chi-square tests, and open-ended responses will be analyzed thematically. Intention-to-treat and per-protocol analyses will be used to analyze secondary variables. Changes in outcome variables will be examined between groups and within groups. Effect sizes will be reported for each outcome. A priori adherence and satisfaction criteria will be met if participants attend >70% of the yoga sessions and if >70% of the participants are satisfied with the intervention as determined by a postparticipation questionnaire. Study enrollment began in January 2018, with results expected for October 2019. Conclusions This pilot randomized trial will be the first to investigate the feasibility and effect of a yoga intervention on cognitive and physical outcomes among PLWH. This work will inform the feasibility of further investigations in terms of capacity building, participant recruitment and retention, and assessment and intervention protocols. Trial Registration ClinicalTrials.gov NCT03071562; https://clinicaltrials.gov/ct2/show/NCT03071562 (Archived by WebCite at http://www.webcitation.org/785sfhWkw) International Registered Report Identifier (IRRID) DERR1-10.2196/13818
Collapse
Affiliation(s)
- Adria Quigley
- Department of Physiotherapy, Dalhousie University, Halifax, NS, Canada
| | - Kelly K O'Brien
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | | | - Marilyn MacKay-Lyons
- Department of Physiotherapy, Dalhousie University, Halifax, NS, Canada.,Department of Medicine, Dalhousie University, Halifax, NS, Canada.,Nova Scotia Health Authority, Halifax, NS, Canada
| |
Collapse
|
23
|
Alakkas A, Ellis RJ, Watson CWM, Umlauf A, Heaton RK, Letendre S, Collier A, Marra C, Clifford DB, Gelman B, Sacktor N, Morgello S, Simpson D, McCutchan JA, Kallianpur A, Gianella S, Marcotte T, Grant I, Fennema-Notestine C. White matter damage, neuroinflammation, and neuronal integrity in HAND. J Neurovirol 2019; 25:32-41. [PMID: 30291567 PMCID: PMC6416232 DOI: 10.1007/s13365-018-0682-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
HIV-associated neurocognitive disorders (HANDs) persist even with virologic suppression on combination antiretroviral therapy (cART), and the underlying pathophysiological mechanisms are not well understood. We performed structural magnetic resonance imaging and MR spectroscopy (MRS) in HIV+ individuals without major neurocognitive comorbidities. Study participants were classified as neurocognitively unimpaired (NU), asymptomatic (ANI), mild neurocognitive disorder (MND), or HIV-associated dementia (HAD). Using structural MRI, we measured volumes of cortical and subcortical gray matter and total and abnormal white matter (aWM). Using single-voxel MRS, we estimated metabolites in frontal gray matter (FGM) and frontal white matter (FWM) and basal ganglia (BG) regions. Adjusted odds ratios were used to compare HAND to NU. Among 253 participants, 40% met HAND criteria (21% ANI, 15% MND, and 4% HAD). Higher risk of HAND was associated with more aWM. Both HAD and MND also had smaller gray and white matter volumes than NU. Among individuals with undetectable plasma HIV RNA, structural volumetric findings were similar to the overall sample. MND had lower FWM creatine and higher FGM choline relative to NU, whereas HAD and ANI had lower BG N-acetyl aspartate relative to NU. In the virologically suppressed subgroup, however, ANI and MND had higher FGM choline compared to NU. Overall, HAND showed specific alterations (more aWM and inflammation; less gray matter volume and lower NAA). Some MR measures differentiated less severe subtypes of HAND from HAD. These MR alterations may represent legacy effects or accumulating changes, possibly related to medical comorbidities, antiretroviral therapy, or chronic effects of HIV brain infection.
Collapse
Affiliation(s)
| | - Ronald J Ellis
- University of California at San Diego, La Jolla, CA, USA
| | | | - Anya Umlauf
- University of California at San Diego, La Jolla, CA, USA
| | | | - Scott Letendre
- University of California at San Diego, La Jolla, CA, USA
| | | | | | | | | | - Ned Sacktor
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Asha Kallianpur
- Cleveland Clinic and Lerner Research Institute, Cleveland, OH, USA
| | - Sara Gianella
- University of California at San Diego, La Jolla, CA, USA
| | | | - Igor Grant
- University of California at San Diego, La Jolla, CA, USA
| | | |
Collapse
|
24
|
Abstract
Longitudinal changes in a population of interest are often heterogeneous and may be influenced by a combination of baseline factors. In such cases, traditional linear mixed effects models (Laird and Ware, 1982) assuming common parametric form for the mean structure may not be applicable. We show that the regression tree methodology for longitudinal data can identify and characterize longitudinally homogeneous subgroups. Most of the currently available regression tree construction methods are either limited to a repeated measures scenario or combine the heterogeneity among subgroups with the random inter-subject variability. We propose a longitudinal classification and regression tree (LongCART) algorithm under conditional inference framework (Hothorn, Hornik and Zeileis, 2006) that overcomes these limitations utilizing a two-step approach. The LongCART algorithm first selects the partitioning variable via a parameter instability test and then finds the optimal split for the selected partitioning variable. Thus, at each node, the decision of further splitting is type-I error controlled and thus it guards against variable selection bias, over-fitting and spurious splitting. We have obtained the asymptotic results for the proposed instability test and examined its finite sample behavior through simulation studies. Comparative performance of LongCART algorithm were evaluated empirically via simulation studies. Finally, we applied LongCART to study the longitudinal changes in choline levels among HIV-positive patients.
Collapse
|
25
|
Zulu SS, Simola N, Mabandla MV, Daniels WM. Effect of long-term administration of antiretroviral drugs (Tenofovir and Nevirapine) on neuroinflammation and neuroplasticity in mouse hippocampi. J Chem Neuroanat 2018; 94:86-92. [DOI: 10.1016/j.jchemneu.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 01/12/2023]
|
26
|
Soontornniyomkij V, Umlauf A, Soontornniyomkij B, Gouaux B, Ellis RJ, Levine AJ, Moore DJ, Letendre SL. Association of antiretroviral therapy with brain aging changes among HIV-infected adults. AIDS 2018; 32:2005-2015. [PMID: 29912063 PMCID: PMC6115290 DOI: 10.1097/qad.0000000000001927] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Antiretroviral therapy (ART) is currently recommended for all persons living with HIV (PLWH), regardless of their CD4 T-cell count, and should be continued throughout life. Nonetheless, vigilance of the safety of ART, including its neurotoxicity, must continue. We hypothesized that use of certain ART drugs might be associated with aging-related cerebral degenerative changes among PLWH. DESIGN Clinicopathological study of PLWH who were using ART drugs at the last clinical assessment. METHODS Using multivariable logistic regression, we tested associations between use of each specific ART drug (with reference to use of other ART drugs) and cerebral degenerative changes including neuronal phospho-tau lesions, β-amyloid plaque deposition, microgliosis, and astrogliosis in the frontal cortex and putamen (immunohistochemistry), as well as cerebral small vessel disease (CSVD) in the forebrain white matter (standard histopathology), with relevant covariates being taken into account. The Bonferroni adjustment was applied. RESULTS Darunavir use was associated with higher likelihood of neuronal phospho-tau lesions in the putamen [odds ratio (OR) 15.33, n = 93, P = 0.005]. Ritonavir use was associated with marked microgliosis in the putamen (OR 4.96, n = 101, P = 0.023). On the other hand, use of tenofovir disoproxil fumarate was associated with lower likelihood of β-amyloid plaque deposition in the frontal cortex (OR 0.13, n = 102, P = 0.012). There was a trend toward an association between emtricitabine use and CSVD (OR 13.64, n = 75, P = 0.099). CONCLUSION Our findings suggest that PLWH treated with darunavir and ritonavir may be at increased risk of aging-related cerebral degenerative changes.
Collapse
Affiliation(s)
| | | | | | | | - Ronald J Ellis
- HIV Neurobehavioral Research Program
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla
| | - Andrew J Levine
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles
| | - David J Moore
- HIV Neurobehavioral Research Program
- Department of Psychiatry
| | - Scott L Letendre
- HIV Neurobehavioral Research Program
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
27
|
CCR2 on Peripheral Blood CD14 +CD16 + Monocytes Correlates with Neuronal Damage, HIV-Associated Neurocognitive Disorders, and Peripheral HIV DNA: reseeding of CNS reservoirs? J Neuroimmune Pharmacol 2018; 14:120-133. [PMID: 29981000 DOI: 10.1007/s11481-018-9792-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/24/2018] [Indexed: 10/28/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) occur in ~50% of HIV infected individuals despite combined antiretroviral therapy. Transmigration into the CNS of CD14+CD16+ monocytes, particularly those that are HIV infected and express increased surface chemokine receptor CCR2, contributes to neuroinflammation and HAND. To examine whether in HIV infected individuals CCR2 on CD14+CD16+ monocytes serves as a potential peripheral blood biomarker of HAND, we examined a cohort of 45 HIV infected people. We correlated CCR2 on CD14+CD16+ monocytes with cognitive status, proton magnetic resonance spectroscopy (1H-MRS) measured neurometabolite levels, and peripheral blood mononuclear cell (PBMC) HIV DNA copies. We determined that CCR2 was increased specifically on CD14+CD16+ monocytes from people with HAND (median [interquartile range (IQR)]) (63.3 [51.6, 79.0]), compared to those who were not cognitively impaired (38.8 [26.7, 56.4]) or those with neuropsychological impairment due to causes other than HIV (39.8 [30.2, 46.5]). CCR2 was associated with neuronal damage, based on the inverse correlation of CCR2 on CD14+CD16+ monocytes with total N-Acetyl Aspartate (tNAA)/total Creatine (tCr) (r2 = 0.348, p = 0.01) and Glutamine-Glutamate (Glx)/tCr (r2 = 0.356, p = 0.01) in the right and left caudate nucleus, respectively. CCR2 on CD14+CD16+ monocytes also correlated with PBMC HIV DNA copies (ρ = 0.618, p = 0.02) that has previously been associated with HAND. These findings suggest that CCR2 on CD14+CD16+ monocytes may be a peripheral blood biomarker of HAND, indicative of increased HIV infected CD14+CD16+ monocyte entry into the CNS that possibly increases the macrophage viral reservoir and contributes to HAND.
Collapse
|
28
|
González RG, Fell R, He J, Campbell J, Burdo TH, Autissier P, Annamalai L, Taheri F, Parker T, Lifson JD, Halpern EF, Vangel M, Masliah E, Westmoreland SV, Williams KC, Ratai EM. Temporal/compartmental changes in viral RNA and neuronal injury in a primate model of NeuroAIDS. PLoS One 2018; 13:e0196949. [PMID: 29750804 PMCID: PMC5947913 DOI: 10.1371/journal.pone.0196949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/23/2018] [Indexed: 02/01/2023] Open
Abstract
Despite the advent of highly active anti-retroviral therapy HIV-associated neurocognitive disorders (HAND) continue to be a significant problem. Furthermore, the precise pathogenesis of this neurodegeneration is still unclear. The objective of this study was to examine the relationship between infection by the simian immunodeficiency virus (SIV) and neuronal injury in the rhesus macaque using in vivo and postmortem sampling techniques. The effect of SIV infection in 23 adult rhesus macaques was investigated using an accelerated NeuroAIDS model. Disease progression was modulated either with combination anti-retroviral therapy (cART, 4 animals) or minocycline (7 animals). Twelve animals remained untreated. Viral loads were monitored in the blood and cerebral spinal fluid, as were levels of activated monocytes in the blood. Neuronal injury was monitored in vivo using magnetic resonance spectroscopy. Viral RNA was quantified in brain tissue of each animal postmortem using reverse transcription polymerase chain reaction (RT-PCR), and neuronal injury was assessed by immunohistochemistry. Without treatment, viral RNA in plasma, cerebral spinal fluid, and brain tissue appears to reach a plateau. Neuronal injury was highly correlated both to plasma viral levels and a subset of infected/activated monocytes (CD14+CD16+), which are known to traffic the virus into the brain. Treatment with either cART or minocycline decreased brain viral levels and partially reversed alterations in in vivo and immunohistochemical markers for neuronal injury. These findings suggest there is significant turnover of replicating virus within the brain and the severity of neuronal injury is directly related to the brain viral load.
Collapse
Affiliation(s)
- R. Gilberto González
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Robert Fell
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Julian He
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Jennifer Campbell
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Tricia H. Burdo
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Patrick Autissier
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | | | - Faramarz Taheri
- New England Primate Research Center, Southborough, MA, United States of America
| | - Termara Parker
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Elkan F. Halpern
- Harvard Medical School, Boston, MA, United States of America
- Institute for Technology Assessment, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Mark Vangel
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, United States of America
| | | | - Kenneth C. Williams
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Eva-Maria Ratai
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
29
|
The role of catecholamines in HIV neuropathogenesis. Brain Res 2018; 1702:54-73. [PMID: 29705605 DOI: 10.1016/j.brainres.2018.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The success of anti-retroviral therapy has improved the quality of life and lifespan of HIV + individuals, transforming HIV infection into a chronic condition. These improvements have come with a cost, as chronic HIV infection and long-term therapy have resulted in the emergence of a number of new pathologies. This includes a variety of the neuropathological and neurocognitive effects collectively known as HIVassociated neurocognitive disorders (HAND) or NeuroHIV. These effects persist even in the absence of viral replication, suggesting that they are mediated the long-term changes in the CNS induced by HIV infection rather than by active replication. Among these effects are significant changes in catecholaminergic neurotransmission, especially in dopaminergic brain regions. In HIV-infected individuals not treated with ARV show prominent neuropathology is common in dopamine-rich brain regions and altered autonomic nervous system activity. Even infected individuals on therapy, there is significant dopaminergic neuropathology, and elevated stress and norepinephrine levels correlate with a decreased effectiveness of antiretroviral drugs. As catecholamines function as immunomodulatory factors, the resultant dysregulation of catecholaminergic tone could substantially alter the development of HIVassociated neuroinflammation and neuropathology. In this review, we discuss the role of catecholamines in the etiology of HIV neuropathogenesis. Providing a comprehensive examination of what is known about these molecules in the context of HIV-associated disease demonstrates the importance of further studies in this area, and may open the door to new therapeutic strategies that specifically ameliorate the effects of catecholaminergic dysregulation on NeuroHIV.
Collapse
|
30
|
Zahr NM. The Aging Brain With HIV Infection: Effects of Alcoholism or Hepatitis C Comorbidity. Front Aging Neurosci 2018; 10:56. [PMID: 29623036 PMCID: PMC5874324 DOI: 10.3389/fnagi.2018.00056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
As successfully treated individuals with Human Immunodeficiency Virus (HIV)-infected age, cognitive and health challenges of normal aging ensue, burdened by HIV, treatment side effects, and high prevalence comorbidities, notably, Alcohol Use Disorders (AUD) and Hepatitis C virus (HCV) infection. In 2013, people over 55 years old accounted for 26% of the estimated number of people living with HIV (~1.2 million). The aging brain is increasingly vulnerable to endogenous and exogenous insult which, coupled with HIV infection and comorbid risk factors, can lead to additive or synergistic effects on cognitive and motor function. This paper reviews the literature on neuropsychological and in vivo Magnetic Resonance Imaging (MRI) evaluation of the aging HIV brain, while also considering the effects of comorbidity for AUD and HCV.
Collapse
Affiliation(s)
- Natalie M Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
31
|
Chiou B, Lucassen E, Sather M, Kallianpur A, Connor J. Semaphorin4A and H-ferritin utilize Tim-1 on human oligodendrocytes: A novel neuro-immune axis. Glia 2018; 66:1317-1330. [PMID: 29457657 DOI: 10.1002/glia.23313] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023]
Abstract
Deficiency of trophic factors relating to the survival of oligodendrocytes, combined with direct interactions with the immune system, are favored paradigms that are increasingly implicated in demyelinating diseases of the central nervous system. We and others have previously shown that Sema4A and H-ferritin interact through the T-cell immunoglobulin and mucin domain (Tim-2) receptor in mice. H-ferritin has been identified as the iron delivery protein for oligodendrocytes, whereas Sema4A causes a direct cytotoxic effect. However, the expression of Tim-2 has not been detected in humans. Here, we demonstrate that, similar to rodents, human oligodendrocytes undergo apoptosis when exposed to Sema4A and take up H-ferritin for meeting iron requirements and that these functions are mediated via the Tim-1 receptor. Moreover, we also demonstrate the ability of H-ferritin to block Sema4A-mediated cytotoxicity. Furthermore, we show in a series of pilot studies that Sema4A is detectable in the CSF of multiple sclerosis patients and HIV-seropositive persons and can induce oligodendrocyte cell death. Together, these results identify a novel iron uptake mechanism for human oligodendrocytes and a connection between oligodendrocytes and the immune system.
Collapse
Affiliation(s)
- Brian Chiou
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Elisabeth Lucassen
- Department of Neurology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Michael Sather
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Asha Kallianpur
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - James Connor
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
32
|
Toich JTF, Taylor PA, Holmes MJ, Gohel S, Cotton MF, Dobbels E, Laughton B, Little F, van der Kouwe AJW, Biswal B, Meintjes EM. Functional Connectivity Alterations between Networks and Associations with Infant Immune Health within Networks in HIV Infected Children on Early Treatment: A Study at 7 Years. Front Hum Neurosci 2018; 11:635. [PMID: 29375341 PMCID: PMC5768628 DOI: 10.3389/fnhum.2017.00635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
Although HIV has been shown to impact brain connectivity in adults and youth, it is not yet known to what extent long-term early antiretroviral therapy (ART) may alter these effects, especially during rapid brain development in early childhood. Using both independent component analysis (ICA) and seed-based correlation analysis (SCA), we examine the effects of HIV infection in conjunction with early ART on resting state functional connectivity (FC) in 7 year old children. HIV infected (HIV+) children were from the Children with HIV Early Antiretroviral Therapy (CHER) trial and all initiated ART before 18 months; uninfected children were recruited from an interlinking vaccine trial. To better understand the effects of current and early immune health on the developing brain, we also investigated among HIV+ children the association of FC at 7 years with CD4 count and CD4%, both in infancy (6–8 weeks) and at scan. Although we found no differences within any ICA-generated resting state networks (RSNs) between HIV+ and uninfected children (27 HIV+, 18 uninfected), whole brain connectivity to seeds located at RSN connectivity peaks revealed several loci of FC differences, predominantly from seeds in midline regions (posterior cingulate cortex, paracentral lobule, cuneus, and anterior cingulate). Reduced long-range connectivity and increased short-range connectivity suggest developmental delay. Within the HIV+ children, clinical measures at age 7 years were not associated with FC values in any of the RSNs; however, poor immune health during infancy was associated with localized FC increases in the somatosensory, salience and basal ganglia networks. Together these findings suggest that HIV may affect brain development from its earliest stages and persist into childhood, despite early ART.
Collapse
Affiliation(s)
- Jadrana T F Toich
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Paul A Taylor
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,African Institute for Mathematical Sciences, Muizenberg, South Africa.,Scientific and Statistical Computing Core, National Institutes of Health, Bethesda, MD, United States
| | - Martha J Holmes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suril Gohel
- Department of Health Informatics, School of Health Professions, Rutgers University, Newark, NJ, United States
| | - Mark F Cotton
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Els Dobbels
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Ernesta M Meintjes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
33
|
Cysique LA, Jugé L, Gates T, Tobia M, Moffat K, Brew BJ, Rae C. Covertly active and progressing neurochemical abnormalities in suppressed HIV infection. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e430. [PMID: 29312999 PMCID: PMC5754644 DOI: 10.1212/nxi.0000000000000430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/10/2017] [Indexed: 11/15/2022]
Abstract
Objective To assess whether HIV-related brain injury is progressive in persons with suppressed HIV infection. Methods Seventy-three HIV+ virally suppressed men and 35 HIV- men, screened for psychiatric and alcohol/drug use disorders, underwent neuropsychological evaluation and proton magnetic resonance spectroscopy (1H-MRS) at baseline and after and 23 ± 5 months. 1H-MRS included brain regions known to be vulnerable to HIV and aging: frontal white matter (FWM), posterior cingulate cortex (PCC), and caudate area (CA). Major brain metabolites such as creatine (Cr: marker of cellular energy), N-acetyl aspartate (NAA: marker of neuronal integrity), choline (marker of cellular membrane turnover), glutamate/glutamine (excitatory/inhibitory neurotransmitter), and myo-Inositol (mI: marker of neuroinflammation) were calculated with reference to water signal. Neurocognitive decline was corrected for practice effect and baseline HIV-associated neurocognitive disorder (HAND) status. Results Across the study period, 44% had intact cognition, 42% stable HAND (including the single case that improved), 10% progressing HAND, and 4% incident HAND. When analyzing the neurochemical data per neurocognitive trajectories, we found decreasing PCC Cr in all subgroups compared with controls (p < 0.002). In addition, relative to the HIV- group, stable HAND showed decreasing FWM Cr, incident HAND showed steep FWM Cr reduction, whereas progressing HAND had a sharply decreasing PCC NAA and reduced but stable CA NAA. When analyzing the neurochemical data at the group level (HIV+ vs HIV- groups), we found stable abnormal metabolite concentrations over the study period: decreased FWM and PCC Cr (both p < 0.001), decreased PCC NAA and CA NAA (both p < 0.05) and PCC mI increase (p < 0.05). HIV duration and historical HAND had modest effects on metabolite changes. Conclusions Our study reveals covertly active or progressing HIV-related brain injury in the majority of this virally suppressed cohort, reflecting ongoing neuropathogenic processes that are only partially worsened by historical HAND and HIV duration. Longer-term studies will be important for determining the prognosis of these slowly evolving neurochemical abnormalities.
Collapse
Affiliation(s)
- Lucette A Cysique
- School of Medical Sciences (L.A.C., L.J., M.T., C.R.), Faculty of Medicine, UNSW Australia, Sydney; Neuroscience Research Australia (L.A.C., L.J., C.R.), Randwick; Peter Duncan Neuroscience Research Unit (L.A.C., T.G., B.J.B.), St. Vincent's Applied Medical Research Center, Darlinghurst; and St. Vincent's Hospital Sydney (L.A.C., T.G., K.M., B.J.B.), Darlinghurst, New South Wales, Australia
| | - Lauriane Jugé
- School of Medical Sciences (L.A.C., L.J., M.T., C.R.), Faculty of Medicine, UNSW Australia, Sydney; Neuroscience Research Australia (L.A.C., L.J., C.R.), Randwick; Peter Duncan Neuroscience Research Unit (L.A.C., T.G., B.J.B.), St. Vincent's Applied Medical Research Center, Darlinghurst; and St. Vincent's Hospital Sydney (L.A.C., T.G., K.M., B.J.B.), Darlinghurst, New South Wales, Australia
| | - Thomas Gates
- School of Medical Sciences (L.A.C., L.J., M.T., C.R.), Faculty of Medicine, UNSW Australia, Sydney; Neuroscience Research Australia (L.A.C., L.J., C.R.), Randwick; Peter Duncan Neuroscience Research Unit (L.A.C., T.G., B.J.B.), St. Vincent's Applied Medical Research Center, Darlinghurst; and St. Vincent's Hospital Sydney (L.A.C., T.G., K.M., B.J.B.), Darlinghurst, New South Wales, Australia
| | - Michael Tobia
- School of Medical Sciences (L.A.C., L.J., M.T., C.R.), Faculty of Medicine, UNSW Australia, Sydney; Neuroscience Research Australia (L.A.C., L.J., C.R.), Randwick; Peter Duncan Neuroscience Research Unit (L.A.C., T.G., B.J.B.), St. Vincent's Applied Medical Research Center, Darlinghurst; and St. Vincent's Hospital Sydney (L.A.C., T.G., K.M., B.J.B.), Darlinghurst, New South Wales, Australia
| | - Kirsten Moffat
- School of Medical Sciences (L.A.C., L.J., M.T., C.R.), Faculty of Medicine, UNSW Australia, Sydney; Neuroscience Research Australia (L.A.C., L.J., C.R.), Randwick; Peter Duncan Neuroscience Research Unit (L.A.C., T.G., B.J.B.), St. Vincent's Applied Medical Research Center, Darlinghurst; and St. Vincent's Hospital Sydney (L.A.C., T.G., K.M., B.J.B.), Darlinghurst, New South Wales, Australia
| | - Bruce J Brew
- School of Medical Sciences (L.A.C., L.J., M.T., C.R.), Faculty of Medicine, UNSW Australia, Sydney; Neuroscience Research Australia (L.A.C., L.J., C.R.), Randwick; Peter Duncan Neuroscience Research Unit (L.A.C., T.G., B.J.B.), St. Vincent's Applied Medical Research Center, Darlinghurst; and St. Vincent's Hospital Sydney (L.A.C., T.G., K.M., B.J.B.), Darlinghurst, New South Wales, Australia
| | - Caroline Rae
- School of Medical Sciences (L.A.C., L.J., M.T., C.R.), Faculty of Medicine, UNSW Australia, Sydney; Neuroscience Research Australia (L.A.C., L.J., C.R.), Randwick; Peter Duncan Neuroscience Research Unit (L.A.C., T.G., B.J.B.), St. Vincent's Applied Medical Research Center, Darlinghurst; and St. Vincent's Hospital Sydney (L.A.C., T.G., K.M., B.J.B.), Darlinghurst, New South Wales, Australia
| |
Collapse
|
34
|
Neural response to working memory demand predicts neurocognitive deficits in HIV. J Neurovirol 2017; 24:291-304. [PMID: 29280107 DOI: 10.1007/s13365-017-0607-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/31/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023]
Abstract
Human immunodeficiency virus (HIV) continues to have adverse effects on cognition and the brain in many infected people, despite a reduced incidence of HIV-associated dementia with combined antiretroviral therapy (cART). Working memory is often affected, along with attention, executive control, and cognitive processing speed. Verbal working memory (VWM) requires the interaction of each of the cognitive component processes along with a phonological loop for verbal repetition and rehearsal. HIV-related functional brain response abnormalities during VWM are evident in functional MRI (fMRI), though the neural substrate underlying these neurocognitive deficits is not well understood. The current study addressed this by comparing 24 HIV+ to 27 demographically matched HIV-seronegative (HIV-) adults with respect to fMRI activation on a VWM paradigm (n-back) relative to performance on two standardized tests of executive control, attention and processing speed (Stroop and Trail Making A-B). As expected, the HIV+ group had deficits on these neurocognitive tests compared to HIV- controls, and also differed in neural response on fMRI relative to neuropsychological performance. Reduced activation in VWM task-related brain regions on the 2-back was associated with Stroop interference deficits in HIV+ but not with either Trail Making A or B performance. Activation of the posterior cingulate cortex (PCC) of the default mode network during rest was associated with Hopkins Verbal Learning Test-2 (HVLT-2) learning in HIV+. These effects were not observed in the HIV- controls. Reduced dynamic range of neural response was also evident in HIV+ adults when activation on the 2-back condition was compared to the extent of activation of the default mode network during periods of rest. Neural dynamic range was associated with both Stroop and HVLT-2 performance. These findings provide evidence that HIV-associated alterations in neural activation induced by VWM demands and during rest differentially predict executive-attention and verbal learning deficits. That the Stroop, but not Trail Making was associated with VWM activation suggests that attentional regulation difficulties in suppressing interference and/or conflict regulation are a component of working memory deficits in HIV+ adults. Alterations in neural dynamic range may be a useful index of the impact of HIV on functional brain response and as a fMRI metric in predicting cognitive outcomes.
Collapse
|
35
|
Mangus LM, Beck SE, Queen SE, Brill SA, Shirk EN, Metcalf Pate KA, Muth DC, Adams RJ, Gama L, Clements JE, Mankowski JL. Lymphocyte-Dominant Encephalitis and Meningitis in Simian Immunodeficiency Virus-Infected Macaques Receiving Antiretroviral Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:125-134. [PMID: 29229308 DOI: 10.1016/j.ajpath.2017.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 01/21/2023]
Abstract
A retrospective neuropathologic review of 30 SIV-infected pigtailed macaques receiving combination antiretroviral therapy (cART) was conducted. Seventeen animals with lymphocyte-dominant inflammation in the brain and/or meninges that clearly was morphologically distinct from prototypic SIV encephalitis and human immunodeficiency virus encephalitis were identified. Central nervous system (CNS) infiltrates in cART-treated macaques primarily comprised CD20+ B cells and CD3+ T cells with fewer CD68+ macrophages. Inflammation was associated with low levels of SIV RNA in the brain as shown by in situ hybridization, and generally was observed in animals with episodes of cerebrospinal fluid (CSF) viral rebound or sustained plasma and CSF viremia during treatment. Although the lymphocytic CNS inflammation in these macaques shared morphologic characteristics with uncommon immune-mediated neurologic disorders reported in treated HIV patients, including CNS immune reconstitution inflammatory syndrome and neurosymptomatic CSF escape, the high prevalence of CNS lesions in macaques suggests that persistent adaptive immune responses in the CNS also may develop in neuroasymptomatic or mildly impaired HIV patients yet remain unrecognized given the lack of access to CNS tissue for histopathologic evaluation. Continued investigation into the mechanisms and outcomes of CNS inflammation in cART-treated, SIV-infected macaques will advance our understanding of the consequences of residual CNS HIV replication in patients on cART, including the possible contribution of adaptive immune responses to HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samuel A Brill
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dillon C Muth
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert J Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
36
|
Abstract
The implementation of combination antiretroviral therapy (cART) has changed HIV infection into a chronic illness, conveying extensive benefits, including greater longevity and advantages for the central nervous system (CNS). However, studies increasingly confirm that the CNS gains are incomplete, with reports of persistent immune activation affecting the CNS despite suppression of plasma HIV RNA. The rate of cognitive impairment is unchanged, although severity is generally milder than in the pre-cART era. In this review, we discuss cognitive outcomes from recently published clinical HIV studies, review observations on HIV biomarkers for cognitive change, and emphasize longitudinal imaging findings. Additionally, we summarize recent studies on CNS viral invasion, CD8 encephalitis, and how CNS involvement during the earliest stages of infection may set the stage for later cognitive manifestations.
Collapse
|
37
|
Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H. HIV, Tat and dopamine transmission. Neurobiol Dis 2017; 105:51-73. [PMID: 28457951 PMCID: PMC5541386 DOI: 10.1016/j.nbd.2017.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/04/2017] [Accepted: 04/16/2017] [Indexed: 01/02/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system, affecting more than 37 million people around the world. While combinatorial antiretroviral therapy (cART) has lowered mortality rates and improved quality of life in infected individuals, the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins may be involved in this decline, and several studies have indicated that the HIV protein transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically, data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the function of the dopamine transporter and specifically damaging dopamine-rich regions of the CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission may be, at least partially, a mechanism by which HIV infection directly or indirectly induces dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic neurotransmission. Further, this will provide a discussion of the experiments needed to further these investigations, and may help to identify or develop new therapeutic approaches for the prevention or treatment of these disorders in HIV-infected individuals.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Joyonna Gamble-George
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Hideaki Yano
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
38
|
Nucleoside reverse transcriptase inhibitors (NRTIs) induce proinflammatory cytokines in the CNS via Wnt5a signaling. Sci Rep 2017. [PMID: 28646196 PMCID: PMC5482870 DOI: 10.1038/s41598-017-03446-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HAART is very effective in suppressing HIV-1 replication in patients. However, patients staying on long-term HAART still develop various HIV-associated neurological disorders, even when the viral load is low. The underlying pathogenic mechanisms are largely unknown. Emerging evidence implicated that persistent neuroinflammation plays an important role in NeuroAIDS. Although residual virus or viral proteins are commonly thought as the causal factors, we are interested in the alternative possibility that HAART critically contributes to the neuroinflammation in the central nervous system (CNS). To test this hypothesis, we have determined the effect of NRTIs on the expression of proinflammatory cytokines in the various CNS regions. Mice (C57Bl/6) were administered with AZT (Zidovudine 100 mg/kg/day), 3TC (Lamivudine 50 mg/kg/day) or D4T (Stavudine 10 mg/kg/day) for 5 days, and cortices, hippocampi and spinal cords were collected for immunoblotting. Our results showed that NRTI administration up-regulated cytokines, including IL-1β, TNF-α and IL-6 in various CNS regions. In addition, we found that NRTIs also up-regulated Wnt5a protein. Importantly, BOX5 attenuated NRTI-induced cytokine up-regulation. These results together suggest that NRTIs up-regulate proinflammatory cytokines via a Wnt5a signaling-dependent mechanism. Our findings may help understand the potential pathogenic mechanisms of HAART-associated NeuroAIDS and design effective adjuvants.
Collapse
|
39
|
Ubaida-Mohien C, Lamberty B, Dickens AM, Mielke MM, Marcotte T, Sacktor N, Grant I, Letendre S, Franklin D, Cibrowski P, Tharakan R, McArthur JC, Fox H, Haughey NJ. Modifications in acute phase and complement systems predict shifts in cognitive status of HIV-infected patients. AIDS 2017; 31:1365-1378. [PMID: 28574961 PMCID: PMC5501712 DOI: 10.1097/qad.0000000000001503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The prevalence of HIV-associated neurocognitive disorders (HAND) has not changed considerably in the last two decades. Potent antiretroviral therapy has shifted the severity of HAND to milder phenotypes, but excess morbidity and mortality continue to be associated with HAND. Changes in numerous markers of immune function, inflammation, and cellular stress have been repeatedly associated with HAND, but the underlying systems that drive these changes have not been identified. METHOD In this study, we used systems informatics to interrogate the cerebrospinal fluid proteomic content of longitudinal samples obtained from HIV-infected adults with stably unimpaired, stably impaired, worsening, or improving neurocognitive performance. RESULTS AND CONCLUSION The patterns of change in cerebrospinal fluid protein content implicated the induction of acute phase and complement systems as important regulators of neurocognitive status. Worsening neurocognitive performance was preceded by induction of acute phase and complement systems, whereas improving neurocognitive performance was preceded by a downregulation of these systems.
Collapse
Affiliation(s)
- Ceereena Ubaida-Mohien
- Intramural Research Program, National Institute on Aging, Baltimore,
Maryland
- The Johns Hopkins University School of Medicine, Department of
Neurology, Baltimore, MD
| | - Benjamin Lamberty
- The University of Nebraska Medical Center, Department of
Pharmacology and Experimental Neuroscience, Omaha, NE
| | - Alex M. Dickens
- The Johns Hopkins University School of Medicine, Department of
Neurology, Baltimore, MD
| | - Michelle M Mielke
- Division of Epidemiology, Department of Health Sciences Research and
Department of Neurology College of Medicine, Mayo Clinic, Rochester, MN
| | - Thomas Marcotte
- HIV Neurobehavioral Research Program and Department of Psychiatry,
School of Medicine, University of California, San Diego, La Jolla, CA
| | - Ned Sacktor
- The Johns Hopkins University School of Medicine, Department of
Neurology, Baltimore, MD
| | - Igor Grant
- HIV Neurobehavioral Research Program and Department of Psychiatry,
School of Medicine, University of California, San Diego, La Jolla, CA
| | - Scott Letendre
- HIV Neurobehavioral Research Program and Department of Psychiatry,
School of Medicine, University of California, San Diego, La Jolla, CA
| | - D Franklin
- HIV Neurobehavioral Research Program and Department of Psychiatry,
School of Medicine, University of California, San Diego, La Jolla, CA
| | - Pawel Cibrowski
- The University of Nebraska Medical Center, Department of
Pharmacology and Experimental Neuroscience, Omaha, NE
| | - Ravi Tharakan
- The Johns Hopkins University School of Medicine, Department of
Psychiatry, Baltimore, MD
| | - Justin C. McArthur
- The Johns Hopkins University School of Medicine, Department of
Neurology, Baltimore, MD
| | - Howard Fox
- The University of Nebraska Medical Center, Department of
Pharmacology and Experimental Neuroscience, Omaha, NE
| | - Norman J. Haughey
- The Johns Hopkins University School of Medicine, Department of
Neurology, Baltimore, MD
- The Johns Hopkins University School of Medicine, Department of
Psychiatry, Baltimore, MD
| |
Collapse
|
40
|
Chaganti JR, Heinecke A, Gates TM, Moffat KJ, Brew BJ. Functional Connectivity in Virally Suppressed Patients with HIV-Associated Neurocognitive Disorder: A Resting-State Analysis. AJNR Am J Neuroradiol 2017; 38:1623-1629. [PMID: 28596187 DOI: 10.3174/ajnr.a5246] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/29/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE HIV-associated neurocognitive disorder still occurs despite virally suppressive combination antiretroviral therapy. In the pre-combination antiretroviral era and in patients without HIV suppression, HIV-associated neurocognitive disorder was caused by synaptodendritic injury resulting in impairment of neural networks, characterized by decreased attention, psychomotor slowing, and working memory deficits. Whether similar pathogenesis is true for HIV-associated neurocognitive disorder in the context of viral suppression is not clear. Resting-state fMRI has been shown to be efficient in detecting impaired neural networks in various neurologic illnesses. This pilot study aimed to assess resting-state functional connectivity of the brain in patients with active HIV-associated neurocognitive disorder in the context of HIV viral suppression in both blood and CSF. MATERIALS AND METHODS Eighteen patients with active HIV-associated neurocognitive disorder (recent diagnosis with progressing symptoms) on combination antiretroviral therapy with viral suppression in both blood and CSF and 9 demographically matched control subjects underwent resting-state functional MR imaging. The connectivity in the 6 known neural networks was assessed. To localize significant ROIs within the HIV and control group, we performed a seed-based correlation for each known resting-state network. RESULTS There were significant group differences between the control and HIV-associated neurocognitive disorder groups in the salience (0.26 versus 0.14, t = 2.6978, df = 25, P = .0123) and executive networks (0.52 versus 0.32, t = 2.2372, df = 25, P = .034). The covariate analysis with neuropsychological scores yielded statistically significant correlations in all 6 studied functional networks, with the most conspicuous correlation in salience networks. CONCLUSIONS Active HIV-associated neurocognitive disorder in virally suppressed patients is associated with significantly decreased connectivity in the salience and executive networks, thereby making it potentially useful as a biomarker.
Collapse
Affiliation(s)
- J R Chaganti
- From the Departments of Radiology (J.R.C., K.J.M.)
| | - A Heinecke
- Brain Innovation B.V. (A.H.), Maastricht, the Netherlands
| | - T M Gates
- Department of Neurology, Clinical Research Program (T.M.J.)
| | - K J Moffat
- From the Departments of Radiology (J.R.C., K.J.M.)
| | - B J Brew
- Neurology (B.J.B.), St Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia.,Neurosciences Program, Peter Duncan Neurosciences Unit (B.J.B.), St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
| |
Collapse
|
41
|
HIV-associated neurodegeneration and neuroimmunity: multivoxel MR spectroscopy study in drug-naïve and treated patients. Eur Radiol 2017; 27:4218-4236. [PMID: 28293774 DOI: 10.1007/s00330-017-4772-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/29/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The aim of this study was to test neurobiochemical changes in normal appearing brain tissue in HIV+ patients receiving and not receiving combined antiretroviral therapy (cART) and healthy controls, using multivoxel MR spectroscopy (mvMRS). METHODS We performed long- and short-echo 3D mvMRS in 110 neuroasymptomatic subjects (32 HIV+ subjects on cART, 28 HIV+ therapy-naïve subjects and 50 healthy controls) on a 3T MR scanner, targeting frontal and parietal supracallosal subcortical and deep white matter and cingulate gyrus (NAA/Cr, Cho/Cr and mI/Cr ratios were analysed). The statistical value was set at p < 0.05. RESULTS Considering differences between HIV-infected and healthy subjects, there was a significant decrease in the NAA/Cr ratio in HIV+ subjects in all observed locations, an increase in mI/Cr levels in the anterior cingulate gyrus (ACG), and no significant differences in Cho/Cr ratios, except in ACG, where the increase showed trending towards significance in HIV+ patients. There were no significant differences between HIV+ patients on and without cART in all three ratios. CONCLUSION Neuronal loss and dysfunction affects the whole brain volume in HIV-infected patients. Unfortunately, cART appears to be ineffective in halting accelerated neurodegenerative process induced by HIV but is partially effective in preventing glial proliferation. KEY POINTS • This is the first multivoxel human brain 3T MRS study in HIV. • All observed areas of the brain are affected by neurodegenerative process. • Cingulate gyrus and subcortical white matter are most vulnerable to HIV-induced neurodegeneration. • cART is effective in control of inflammation but ineffective in preventing neurodegeneration.
Collapse
|
42
|
Monnig MA. Immune activation and neuroinflammation in alcohol use and HIV infection: evidence for shared mechanisms. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 43:7-23. [PMID: 27532935 PMCID: PMC5250549 DOI: 10.1080/00952990.2016.1211667] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Emerging research points to innate immune mechanisms in the neuropathological and behavioral consequences of heavy alcohol use. Alcohol use is common among people living with HIV infection (PLWH), a chronic condition that carries its own set of long-term effects on brain and behavior. Notably, neurobiological and cognitive profiles associated with heavy alcohol use and HIV infection share several prominent features. This observation raises questions about interacting biological mechanisms as well as compounded impairment when HIV infection and heavy drinking co-occur. OBJECTIVE AND METHOD This narrative overview discusses peer-reviewed research on specific immune mechanisms of alcohol that exhibit apparent potential to compound the neurobiological and psychiatric sequelae of HIV infection. These include microbial translocation, systemic immune activation, blood-brain barrier compromise, microglial activation, and neuroinflammation. RESULTS Clinical and preclinical evidence supports overlapping mechanistic actions of HIV and alcohol use on peripheral and neural immune systems. In preclinical studies, innate immune signaling mediates many of the detrimental neurocognitive and behavioral effects of alcohol use. Neuropsychopharmacological research suggests potential for a feed-forward cycle in which heavy drinking induces innate immune signaling, which in turn stimulates subsequent alcohol use behavior. CONCLUSION Alcohol-induced immune activation and neuroinflammation are a serious health concern for PLWH. Future research to investigate specific immune effects of alcohol in the context of HIV infection has potential to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mollie A. Monnig
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI
| |
Collapse
|
43
|
Xu X, Hu H, Hong YA. Body burden of heavy metals among HIV high risk population in USA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1121-1126. [PMID: 27856018 DOI: 10.1016/j.envpol.2016.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 05/16/2023]
Abstract
OBJECTIVE HIV high risk population may face not only the threat of HIV infection but also a higher chance of exposure to environmental contaminants. However, no previous studies have examined the body burden of environmental pollutants including heavy metals among HIV high risk populations. The aim of this study was to investigate whether adults aged 20-59 years old at high risk of HIV infection have higher blood levels of heavy metals compared to those with low risk of HIV infection in United States. MATERIAL AND METHODS We used the National Health and Nutrition Examination Survey (NHANES) 1999-2010 to compare exposures to heavy metals including cadmium, lead, and total mercury by HIV risk status. RESULTS The results showed that people at high risk of HIV had higher blood concentrations of all heavy metals compared to their counterparts with lower HIV risks. In multivariate linear regression models, HIV risk status was significantly associated with increased blood cadmium, lead, and total mercury after adjusting for age, sex, race, education, and poverty income ratio. CONCLUSIONS Our study suggests that people at high risk of HIV have significantly higher body burden of heavy metals including cadmium, lead, and mercury compared to those with low risk of HIV. Further longitudinal study collecting more pollutants are warranted to determine the potential health effects of these elevated pollutants on both HIV-infected and HIV high-risk populations.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Epidemiology & Biostatistics, School of Public Health, Texas A&M Health Science Center, College Station, TX, United States.
| | - Hui Hu
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
| | - Yan Alicia Hong
- Department of Health Promotion and Community Health Sciences, School of Public Health, Texas A&M Health Science Center, College Station, TX, United States
| |
Collapse
|
44
|
Nasi M, De Biasi S, Gibellini L, Bianchini E, Pecorini S, Bacca V, Guaraldi G, Mussini C, Pinti M, Cossarizza A. Ageing and inflammation in patients with HIV infection. Clin Exp Immunol 2016; 187:44-52. [PMID: 27198731 DOI: 10.1111/cei.12814] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 01/05/2023] Open
Abstract
Nowadays, HIV+ patients have an expected lifespan that is only slightly shorter than healthy individuals. For this reason, along with the fact that infection can be acquired at a relatively advanced age, the effects of ageing on HIV+ people have begun to be evident. Successful anti-viral treatment is, on one hand, responsible for the development of side effects related to drug toxicity; on the other hand, it is not able to inhibit the onset of several complications caused by persistent immune activation and chronic inflammation. Therefore, patients with a relatively advanced age, i.e. aged more than 50 years, can experience pathologies that affect much older citizens. HIV+ individuals with non-AIDS-related complications can thus come to the attention of clinicians because of the presence of neurocognitive disorders, cardiovascular diseases, metabolic syndrome, bone abnormalities and non-HIV-associated cancers. Chronic inflammation and immune activation, observed typically in elderly people and defined as 'inflammaging', can be present in HIV+ patients who experience a type of premature ageing, which affects the quality of life significantly. This relatively new condition is extremely complex, and important factors have been identified as well as the traditional behavioural risk factors, e.g. the toxicity of anti-retroviral treatments and the above-mentioned chronic inflammation leading to a functional decline and a vulnerability to injury or pathologies. Here, we discuss the role of inflammation and immune activation on the most important non-AIDS-related complications of chronic HIV infection, and the contribution of aging per se to this scenario.
Collapse
Affiliation(s)
- M Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| | - S De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| | - L Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| | | | - S Pecorini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| | - V Bacca
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| | - G Guaraldi
- Department of Medical and Surgical Sciences for Adults and Children, University of Modena and Reggio Emilia, Modena, Italy.,Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - C Mussini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy.,Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - M Pinti
- Department of Life Sciences, Modena, Italy
| | - A Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| |
Collapse
|
45
|
Neurotoxicity in the Post-HAART Era: Caution for the Antiretroviral Therapeutics. Neurotox Res 2016; 30:677-697. [PMID: 27364698 DOI: 10.1007/s12640-016-9646-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
Despite the advent of highly active antiretroviral therapy (HAART), HIV-associated neurological disorders (HAND) remain a major challenge in human immunodeficiency virus (HIV) treatment. The early implementation of HAART in the infected individuals helps suppress the viral replication in the plasma and other compartments. Several studies also report the beneficial effect of drugs that successfully penetrate central nervous system (CNS). However, recent data in both clinical setup and in in vitro studies indicate CNS toxicity of the antiretrovirals (ARVs). Although the evidence is limited, correlation between prolonged use of ARVs and neurotoxicity strongly suggests that it is essential to study the underlying mechanisms responsible for such toxicity. Furthermore, closer attention toward clinical outcomes is required to screen various ARV regimens for their association with HAND and other comorbidities. A growing body of literature also indicates a possible role of accelerated aging in the antiretroviral therapy-associated neurotoxicity. Lastly, owing to high pill burden, multiple drugs in the HIV treatment also invite a possible role of drug-drug interaction via various cytochrome P450 enzymes. The particular emphasis of this review is to highlight the need to identify alternative approaches in reducing the CNS toxicity of the ARV drugs in HIV-infected individuals.
Collapse
|
46
|
Neuronal-Glia Markers by Magnetic Resonance Spectroscopy in HIV Before and After Combination Antiretroviral Therapy. J Acquir Immune Defic Syndr 2016; 71:24-30. [PMID: 26258565 DOI: 10.1097/qai.0000000000000779] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Combination antiretroviral therapy (cART) can suppress plasma HIV RNA to undetectable levels; yet reports indicate persistent HIV-associated neurocognitive disorders (HAND) among treated individuals. We sought to investigate imaging correlates of incomplete cognitive recovery among individuals with chronic HIV. METHODS We used single voxel proton magnetic resonance spectroscopy in 4 regions of the brain to measure changes in neuronal and glia biomarkers in cART-naive subjects before (n = 59, 27 with HAND) and after 12 months of cART. RESULTS At baseline, we observed elevated total choline (CHO) in the basal ganglia (BG, P = 0.002) and in the posterior cingulate gyrus (PCG, P = 0.022) associated with HIV infection. Myo-inositol (MI) was elevated in the frontal white matter (FWM, P = 0.040). N-acetylaspartate was elevated in the BG (P = 0.047). Using a mixed model approach among all HIV-infected individuals, at 6 months, we observed decreased n- acetylaspartate in FWM (P = 0.031), decreased creatine in PCG (P = 0.026) and increased MI in frontal gray matter (FGM, P = 0.023). At 12 months, we observed an increase in BG MI (P = 0.038) and in FGM (P = 0.021). Compared to those with normal cognition, HAND cases had higher FGM MI (P = 0.014) at baseline. At 12 months, individuals that remained cognitively impaired compared with those without HAND exhibited elevated CHO in the PCG (P = 0.018) and decreased glutamate in both FWM (P = 0.027) and BG (P = 0.013). CONCLUSIONS cART started during chronic HIV is associated with reduced neuronal-glia and inflammatory markers. Alterations in CHO are noted among individuals who remain impaired after 12 months of cART.
Collapse
|
47
|
Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC. HIV-associated neurocognitive disorder--pathogenesis and prospects for treatment. Nat Rev Neurol 2016; 12:234-48. [PMID: 26965674 DOI: 10.1038/nrneurol.2016.27] [Citation(s) in RCA: 597] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past two decades, several advancements have improved the care of HIV-infected individuals. Most importantly, the development and deployment of combination antiretroviral therapy (CART) has resulted in a dramatic decline in the rate of deaths from AIDS, so that people living with HIV today have nearly normal life expectancies if treated with CART. The term HIV-associated neurocognitive disorder (HAND) has been used to describe the spectrum of neurocognitive dysfunction associated with HIV infection. HIV can enter the CNS during early stages of infection, and persistent CNS HIV infection and inflammation probably contribute to the development of HAND. The brain can subsequently serve as a sanctuary for ongoing HIV replication, even when systemic viral suppression has been achieved. HAND can remain in patients treated with CART, and its effects on survival, quality of life and everyday functioning make it an important unresolved issue. In this Review, we describe the epidemiology of HAND, the evolving concepts of its neuropathogenesis, novel insights from animal models, and new approaches to treatment. We also discuss how inflammation is sustained in chronic HIV infection. Moreover, we suggest that adjunctive therapies--treatments targeting CNS inflammation and other metabolic processes, including glutamate homeostasis, lipid and energy metabolism--are needed to reverse or improve HAND-related neurological dysfunction.
Collapse
Affiliation(s)
- Deanna Saylor
- Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6113, 600 N Wolfe St, Baltimore, Maryland 21287, USA
| | - Alex M Dickens
- Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6113, 600 N Wolfe St, Baltimore, Maryland 21287, USA
| | - Ned Sacktor
- Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6113, 600 N Wolfe St, Baltimore, Maryland 21287, USA
| | - Norman Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6113, 600 N Wolfe St, Baltimore, Maryland 21287, USA
| | - Barbara Slusher
- Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6113, 600 N Wolfe St, Baltimore, Maryland 21287, USA
| | - Mikhail Pletnikov
- Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6113, 600 N Wolfe St, Baltimore, Maryland 21287, USA
| | - Joseph L Mankowski
- Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6113, 600 N Wolfe St, Baltimore, Maryland 21287, USA
| | - Amanda Brown
- Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6113, 600 N Wolfe St, Baltimore, Maryland 21287, USA
| | - David J Volsky
- The Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Justin C McArthur
- Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6113, 600 N Wolfe St, Baltimore, Maryland 21287, USA
| |
Collapse
|
48
|
Van Dalen YW, Blokhuis C, Cohen S, Ter Stege JA, Teunissen CE, Kuhle J, Kootstra NA, Scherpbier HJ, Kuijpers TW, Reiss P, Majoie CBLM, Caan MWA, Pajkrt D. Neurometabolite Alterations Associated With Cognitive Performance in Perinatally HIV-Infected Children. Medicine (Baltimore) 2016; 95:e3093. [PMID: 27015179 PMCID: PMC4998374 DOI: 10.1097/md.0000000000003093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Despite treatment with combination antiretroviral therapy (cART), cognitive impairment is still observed in perinatally HIV-infected children. We aimed to evaluate potential underlying cerebral injury by comparing neurometabolite levels between perinatally HIV-infected children and healthy controls. This cross-sectional study evaluated neurometabolites, as measured by Magnetic Resonance Spectroscopy (MRS), in perinatally HIV-infected children stable on cART (n = 26) and healthy controls (n = 36).Participants were included from a cohort of perinatally HIV-infected children and healthy controls, matched group-wise for age, gender, ethnicity, and socio-economic status. N-acetylaspartate (NAA), glutamate (Glu), myo-inositol (mI), and choline (Cho) levels were studied as ratios over creatine (Cre). Group differences and associations with HIV-related parameters, cognitive functioning, and neuronal damage markers (neurofilament and total Tau proteins) were determined using age-adjusted linear regression analyses.HIV-infected children had increased Cho:Cre in white matter (HIV-infected = 0.29 ± 0.03; controls = 0.27 ± 0.03; P value = 0.045). Lower nadir CD4+ T-cell Z-scores were associated with reduced neuronal integrity markers NAA:Cre and Glu:Cre. A Centers for Disease Control and Prevention (CDC) stage C diagnosis was associated with higher glial markers Cho:Cre and mI:Cre. Poorer cognitive performance was mainly associated with higher Cho:Cre in HIV-infected children, and with lower NAA:Cre and Glu:Cre in healthy controls. There were no associations between neurometabolites and neuronal damage markers in blood or CSF.Compared to controls, perinatally HIV-infected children had increased Cho:Cre in white matter, suggestive of ongoing glial proliferation. Levels of several neurometabolites were associated with cognitive performance, suggesting that MRS may be a useful method to assess cerebral changes potentially linked to cognitive outcomes.
Collapse
Affiliation(s)
- Yvonne W Van Dalen
- From the Department of Pediatric Hematology, Immunology and Infectious Diseases, (YWVD, CB, SC, JATS, HJS, TWK, DP); Psychosocial Department (JATS), Emma Children's Hospital/Academic Medical Center; Neurochemistry Laboratory and Biobank (CET), Department of Clinical Chemistry, VU University Medical Center and Neurocampus Amsterdam, the Netherlands; Neurology (JK), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland; Department of Experimental Immunology (NAK); Department of Global Health and Amsterdam Institute of Global Health and Development (PR), Academic Medical Center; HIV Monitoring Foundation (PR); Department of Internal Medicine (PR), Division of Infectious Diseases, Center for Infection and Immunity Amsterdam (CINIMA); and Department of Radiology (CBLMM, MWAC), Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mayo NE, Brouillette MJ, Fellows LK. Understanding and optimizing brain health in HIV now: protocol for a longitudinal cohort study with multiple randomized controlled trials. BMC Neurol 2016; 16:8. [PMID: 26762403 PMCID: PMC4712501 DOI: 10.1186/s12883-016-0527-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/05/2016] [Indexed: 11/26/2022] Open
Abstract
Background Chronic HIV infection commonly affects both cognition and mental health, even with excellent systemic viral control. The causes of compromised brain health are likely to be a multi-factorial combination of HIV-related biological factors, co-morbidities such as aging and cerebrovascular disease, and the erosion of coping skills, physical health, and social supports resulting from the strains of living with a chronic illness. Methods/design This study aims to provide a better understanding of the relationship between cognitive complaints, depression, and objectively measured cognitive impairment in HIV, and of the key factors, whether biological or personal, which relate to these presentations and to their evolution over time. Characterization of this heterogeneity will permit more focused pathophysiological studies, and allow more targeted interventions. The project makes extensive use of Web-based research and health care delivery tools, aiming to provide cost-effective, “clinic ready” tools to improve brain health in HIV. This project has two overarching aims, reflecting our dual goals of understanding and improving brain health in HIV, focusing on cognitive impairment, its contributors and consequences. The objectives are to contribute evidence for the validity of a brief brain health assessment, to estimate the extent to which HIV-related cognition-relevant clinical factors and patient-centered outcomes inter-relate and evolve over time, allowing identification of the mechanisms underpinning longitudinal change in brain health and to contribute evidence for the feasibility, effectiveness potential, acceptability, and underlying mechanisms of promising interventions for optimizing brain health. We adopt a cohort multiple randomized control trials design. A total of 900 participants will be characterized prospectively over a 27-month period to answer questions about the evolution of outcomes of interest. All participants will be offered basic brain health self-management information. Sub-groups will participate in pilot studies of specific, more intensive interventions to provide pragmatic evidence for feasibility, effectiveness, and comparative effectiveness. Discussion This work will provide needed estimates of the burden, heterogeneity, evolution, and mechanisms underlying compromised brain health in HIV, and test a range of promising non-pharmacological interventions. This is an on-going study; the trials nested within this cohort that are currently recruiting participants were registered on 7 October 2015 (Clinicaltrials.gov NCT02571504 and NCT02571595).
Collapse
Affiliation(s)
- Nancy E Mayo
- Department of Medicine and School of Physical and Occupational Therapy, McGill University, Ross Pavilion R4.29, 687 Pine Ave W, Montreal, QC, H3A 1A1, Canada. .,Division of Clinical Epidemiology and Division of Geriatrics, McGill University Health Center, Royal Victoria Hospital Site, Montreal, Canada.
| | - Marie-Josée Brouillette
- Department of Psychiatry, McGill University; Chronic Viral Illness Service, McGill University Health Centre, Montreal, Canada.
| | - Lesley K Fellows
- Department of Neurology & Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University St, Montreal, QC, H3A 2B4, Canada.
| | | |
Collapse
|
50
|
Gates TM, Cysique LA. The Chronicity of HIV Infection Should Drive the Research Strategy of NeuroHIV Treatment Studies: A Critical Review. CNS Drugs 2016; 30:53-69. [PMID: 26749584 PMCID: PMC4733144 DOI: 10.1007/s40263-015-0302-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV infection has become a chronic illness when successfully treated with combined antiretroviral therapy (cART). The long-term health prognosis of aging with controlled HIV infection and HIV-associated neurocognitive disorder (HAND) remains unclear. In this review, we propose that, almost 20 years after the introduction of cART, a change in research focus is needed, with a greater emphasis on chronicity effects driving our research strategy. We argue that pre-emptive documentation of episodes of mild neurocognitive dysfunction is needed to determine their long-term prognosis. This strategy would also seek to optimally represent the entire HAND spectrum in therapeutic trials to assess positive and/or negative treatment effects on brain functions. In the first part of the paper, to improve the standard implementation of the Frascati HAND diagnostic criteria, we provide a brief review of relevant quantitative neuropsychology concepts to clarify their appropriate application for a non-neuropsychological audience working in HIV research and wanting to conduct randomized clinical trials on brain functions. The second part comprises a review of various antiretroviral drug classes and individual agents with respect to their effects on HAND, while also addressing the question of when cART should be initiated to potentially reduce HAND incidence. In each section, we use recent observational studies and randomized controlled trials to illustrate our perspective while also providing relevant statistical comments. We conclude with a discussion of the neuroimaging methods that could be combined with neuropsychological approaches to enhance the validity of HIV neurology (neuroHIV) treatment effect studies.
Collapse
Affiliation(s)
- Thomas M Gates
- St. Vincent's Hospital Department of Neurology, Sydney, Australia
- St. Vincent's Hospital Centre for Applied Medical Research, Sydney, Australia
| | - Lucette A Cysique
- Neuroscience Research Australia, 139 Barker Street, Randwick, PO Box 1165, Sydney, NSW, 2031, Australia.
- The University of New South Wales, Sydney, Australia.
| |
Collapse
|