1
|
Veilleux C, Eugenin EA. Mechanisms of Zika astrocyte infection and neuronal toxicity. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:5-18. [PMID: 37027343 PMCID: PMC10070016 DOI: 10.1515/nipt-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 04/08/2023]
Abstract
Objectives Zika virus (ZIKV) has become an epidemic in several countries and was declared a major public health issue by the WHO. Although ZIKV infection is asymptomatic or shows mild fever-related symptoms in most people, the virus can be transmitted from a pregnant mother to the fetus, resulting in severe brain developmental abnormalities, including microcephaly. Multiple groups have identified developmental neuronal and neuronal progenitor compromise during ZIKV infection within the fetal brain, but little is known about whether ZIKV could infect human astrocytes and its effect on the developing brain. Thus, our objective was to determine astrocyte ZiKV infection in a developmental-dependent manner. Methods We analyze infection of pure cultures of astrocytes and mixed cultures of neurons and astrocytes in response to ZIKV using plaque assays, confocal, and electron microscopy to identify infectivity, ZIKV accumulation and intracellular distribution as well as apoptosis and interorganelle dysfunction. Results Here, we demonstrated that ZIKV enters, infects, replicates, and accumulates in large quantities in human fetal astrocytes in a developmental-dependent manner. Astrocyte infection and intracellular viral accumulation resulted in neuronal apoptosis, and we propose astrocytes are a ZIKV reservoir during brain development. Conclusions Our data identify astrocytes in different stages of development as major contributors to the devastating effects of ZIKV in the developing brain.
Collapse
Affiliation(s)
- Courtney Veilleux
- Public Health Research Institute (PHRI), New York, USA
- Deparment of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Eliseo A. Eugenin
- Public Health Research Institute (PHRI), New York, USA
- Deparment of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
2
|
Comtois J, Camara-Lemarroy CR, Mah JK, Kuhn S, Curtis C, Braun MH, Tellier R, Burton JM. Longitudinally extensive transverse myelitis with positive aquaporin-4 IgG associated with dengue infection: a case report and systematic review of cases. Mult Scler Relat Disord 2021; 55:103206. [PMID: 34418736 DOI: 10.1016/j.msard.2021.103206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/03/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuromyelitis Optica Spectrum Disorder can be associated with parainfectious and post-infectious triggers. Dengue virus infection is one of the most common arbovirus infections in the world, and may present with neurological manifestations. OBJECTIVES We present a case of DENV-associated with LETM and positive aquaporin-4 IgG, and a systematic review of published cases. METHODS Medline (Ovid) and PubMed were search through June 2021, for case reports, series and observational studies that described patients with DENV-associated LETM and/or NMOSD. RESULTS An adolescent girl who had recently immigrated from a Dengue-endemic region presented with a LETM with high positive AQP4-IgG titer and seropositive DENV IgM/IgG antibodies. She responded well to steroids and subsequently started maintenance rituximab for her NMOSD diagnosis. LITERATURE REVIEW 22 publications describing 27 patients met inclusion criteria. In addition to this case, three published cases met current criteria for NMOSD with serological evidence of acute DENV infection. CONCLUSIONS It is unknown whether there is a pathophysiological association between DENV infection and NMOSD. Regardless, if an immune-mediated event is suspected, particularly NMOSD, appropriate immunotherapy should be considered early. Decision regarding long term immunotherapy may depend on index of suspicion of true NMOSD, and this is where AQP4-IgG status and follow-up is helpful.
Collapse
Affiliation(s)
- Jacynthe Comtois
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada; Department of neurosciences, Faculty of medicine, University of Montreal, Montreal, Quebec, Canada
| | - Carlos R Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Jean K Mah
- Division of Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Susan Kuhn
- Division of Infectious Diseases, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colleen Curtis
- Division of Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Marvin H Braun
- Division of Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Raymond Tellier
- Division of Infectious diseases, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jodie M Burton
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Delery EC, MacLean AG. Culture Model for Non-human Primate Choroid Plexus. Front Cell Neurosci 2019; 13:396. [PMID: 31555096 PMCID: PMC6724611 DOI: 10.3389/fncel.2019.00396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/15/2019] [Indexed: 11/13/2022] Open
Abstract
While there are murine and rat choroid plexus epithelial cell cultures, a translationally relevant model for choroid plexus activation and function is still lacking. The rhesus macaque is the gold standard for modeling viral infection and activation of CNS, including HIV-associated neurocognitive disorders. We have developed a rhesus macaque choroid plexus epithelial cell culture model which we believe to be suitable for studies of inflammation associated with viral infection of the CNS. Epithelial morphology and function were assessed using vimentin, phalloidin, the tight junction protein zonula-occludens-1 (ZO-1), and focal adhesion kinase (FAK). Choroid plexus epithelial cell type was confirmed using immunofluorescence with two proteins highly expressed in the choroid plexus: transthyretin and α-klotho. Finally, barrier properties of the model were monitored using pro- and anti-inflammatory mediators (TNF-α, the TLR2 agonist PamCys3K, and dexamethasone). When pro-inflammatory TNF-α was added to the xCelligence wells, there was a decrease in barrier function, which decreased in a step-wise fashion with each additional administration. This barrier function was repaired upon addition of the steroid dexamethasone. The TLR2 agonist PAM3CysK increased barrier functions in TNF-α treated wells. We have presented a model of the blood-CSF barrier that will allow study into pro- and anti-inflammatory conditions in the brain, while simultaneously measuring real time changes to epithelial cells.
Collapse
Affiliation(s)
- Elizabeth C Delery
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States.,Tulane Program in Biomedical Sciences, New Orleans, LA, United States.,Department of Microbiology and Immunology, Tulane Medical School, New Orleans, LA, United States
| | - Andrew G MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States.,Tulane Program in Biomedical Sciences, New Orleans, LA, United States.,Department of Microbiology and Immunology, Tulane Medical School, New Orleans, LA, United States.,Tulane Brain Institute, New Orleans, LA, United States.,Tulane Center for Aging, New Orleans, LA, United States
| |
Collapse
|
4
|
Chiu KB, Lee KM, Robillard KN, MacLean AG. A Method to Investigate Astrocyte and Microglial Morphological Changes in the Aging Brain of the Rhesus Macaque. Methods Mol Biol 2019; 1938:265-276. [PMID: 30617987 DOI: 10.1007/978-1-4939-9068-9_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
With a rapidly aging population, studies of neuroinflammation and degeneration associated with eugeric aging are becoming critical. Using the unique archive at the Tulane National Primate Research Center as a resource, we have developed tools to quantify morphological changes in astrocytes and microglia across the life span of monkeys. This method can be used for morphometric studies of multiple parameters simultaneously in an unbiased manner.
Collapse
Affiliation(s)
- Kevin B Chiu
- Tulane National Primate Research Center, Covington, LA, USA.,Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Kim M Lee
- Tulane National Primate Research Center, Covington, LA, USA.,Vanderbilt Hospital Nashville, Nashville, TN, USA.,Tulane Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Katelyn N Robillard
- Tulane National Primate Research Center, Covington, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Covington, LA, USA. .,Tulane Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA, USA. .,Tulane Brain Institute, Tulane University, New Orleans, LA, USA. .,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
5
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
6
|
Chen T, He X, Zhang P, Yuan Y, Lang X, Yu J, Qin Z, Li X, Zhang Q, Zhu L, Zhang B, Wu Q, Zhao W. Research advancements in the neurological presentation of flaviviruses. Rev Med Virol 2019; 29:e2021. [PMID: 30548722 PMCID: PMC6590462 DOI: 10.1002/rmv.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022]
Abstract
Owing to the large-scale epidemic of Zika virus disease and its association with microcephaly, properties that allow flaviviruses to cause nervous system diseases are an important area of investigation. At present, although potential pathogenic mechanisms of flaviviruses in the nervous system have been examined, they have not been completely elucidated. In this paper, we review the possible mechanisms of blood-brain barrier penetration, the pathological effects on neurons, and the association between virus mutations and neurotoxicity. A hypothesis on neurotoxicity caused by the Zika virus is presented. Clarifying the mechanisms of virulence of flaviviruses will be helpful in finding better antiviral drugs and optimizing the treatment of symptoms.
Collapse
Affiliation(s)
- Tingting Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Peiru Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Yawen Yuan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xinyue Lang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xujuan Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Li Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Qinghua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Ramsey J, Martin EC, Purcell OM, Lee KM, MacLean AG. Self-injurious behaviours in rhesus macaques: Potential glial mechanisms. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2018; 62:1008-1017. [PMID: 30450801 PMCID: PMC6385863 DOI: 10.1111/jir.12558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Self-injurious behaviour (SIB) can be classified as intentional, direct injuring of body tissue usually without suicidal intent. In its non-suicidal form it is commonly seen as a clinical sign of borderline personality disorder, autism, PTSD, depression, and anxiety affecting a wide range of ages and conditions. In rhesus macaques SIB is most commonly manifested through hair plucking, self-biting, self-hitting, and head banging. SIB in the form of self-biting is observed in approximately 5-15% of individually housed monkeys. Recently, glial cells are becoming recognised as key players in regulating behaviours. METHOD The goal of this study was to determine the role of glial activation, including astrocytes, in macaques that had displayed SIB. To this end, we performed immunohistochemistry and next generation sequence of brain tissues from rhesus macaques with SIB. RESULTS Our studies showed increased vimentin, but not nestin, expression on astrocytes of macaques displaying SIB. Initial RNA Seq analyses indicate activation of pathways involved in tissue remodelling, neuroinflammation and cAMP signalling. CONCLUSIONS Glia are most probably activated in primates with self-injury, and are therefore potential novel targets for therapeutics.
Collapse
Affiliation(s)
- Joseph Ramsey
- Tulane Program in Neuroscience, Tulane University, New Orleans, LA 70112
| | - Elizabeth C. Martin
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA 70112
| | - Olivia M. Purcell
- Tulane Program in Neuroscience, Tulane University, New Orleans, LA 70112
| | - Kim M. Lee
- Tulane National Primate Research Center, Covington, LA 70433
- Tulane Program in Biomedical Science, Tulane Medical School, New Orleans, LA 70112
| | - Andrew G. MacLean
- Tulane Program in Neuroscience, Tulane University, New Orleans, LA 70112
- Tulane National Primate Research Center, Covington, LA 70433
- Tulane Program in Biomedical Science, Tulane Medical School, New Orleans, LA 70112
- Department of Microbiology & Immunology, Tulane Medical School, New Orleans, LA 70112
- Tulane Center for Aging, Tulane University New Orleans, LA 70112
| |
Collapse
|
8
|
Abstract
Viral infection in the brain can be acute or chronic, with the responses often producing foci of increasingly cytotoxic inflammation. This can lead to effects beyond the central nervous system (CNS). To stimulate discussion, this commentary addresses four questions: What drives the development of human immunodeficiency virus (HIV)-associated neurocognitive disorders, does the phenotype of macrophages in the CNS spur development of HIV encephalitis (HIVE), does continual activation of astrocytes drive the development of HIV-associated neurocognitive disorders/subclinical disease, and neuroinflammation: friend or foe? A unifying theory that connects each question is the issue of continued activation of glial cells, even in the apparent absence of simian immunodeficiency virus/HIV in the CNS. As the CNS innate immune system is distinct from the rest of the body, it is likely there could be a number of activation profiles not observed elsewhere.
Collapse
Affiliation(s)
- Elizabeth C. Delery
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane Program in Biomedical Sciences, Tulane Medical School, New Orleans, Louisiana
- Department of Microbiology and Immunology, Tulane Medical School, New Orleans, Louisiana
| | - Andrew G. MacLean
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane Program in Biomedical Sciences, Tulane Medical School, New Orleans, Louisiana
- Department of Microbiology and Immunology, Tulane Medical School, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
- Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
9
|
Simonin Y, Loustalot F, Desmetz C, Foulongne V, Constant O, Fournier-Wirth C, Leon F, Molès JP, Goubaud A, Lemaitre JM, Maquart M, Leparc-Goffart I, Briant L, Nagot N, Van de Perre P, Salinas S. Zika Virus Strains Potentially Display Different Infectious Profiles in Human Neural Cells. EBioMedicine 2016; 12:161-169. [PMID: 27688094 PMCID: PMC5078617 DOI: 10.1016/j.ebiom.2016.09.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 01/28/2023] Open
Abstract
The recent Zika virus (ZIKV) epidemic has highlighted the poor knowledge on its physiopathology. Recent studies showed that ZIKV of the Asian lineage, responsible for this international outbreak, causes neuropathology in vitro and in vivo. However, two African lineages exist and the virus is currently found circulating in Africa. The original African strain was also suggested to be neurovirulent but its laboratory usage has been criticized due to its multiple passages. In this study, we compared the French Polynesian (Asian) ZIKV strain to an African strain isolated in Central African Republic and show a difference in infectivity and cellular response between both strains in human neural stem cells and astrocytes. Consistently, this African strain led to a higher infection rate and viral production, as well as stronger cell death and anti-viral response. Our results highlight the need to better characterize the physiopathology and predict neurological impairment associated with African ZIKV.
Collapse
Affiliation(s)
- Yannick Simonin
- UMR 1058, INSERM, Université de Montpellier, Etablissement Français du Sang Pathogenesis and Control of Chronic Infections, Inserm, Montpellier, France; Université de Montpellier, Montpellier, France.
| | - Fabien Loustalot
- UMR 1058, INSERM, Université de Montpellier, Etablissement Français du Sang Pathogenesis and Control of Chronic Infections, Inserm, Montpellier, France
| | | | - Vincent Foulongne
- UMR 1058, INSERM, Université de Montpellier, Etablissement Français du Sang Pathogenesis and Control of Chronic Infections, Inserm, Montpellier, France; Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Orianne Constant
- UMR 1058, INSERM, Université de Montpellier, Etablissement Français du Sang Pathogenesis and Control of Chronic Infections, Inserm, Montpellier, France
| | - Chantal Fournier-Wirth
- UMR 1058, INSERM, Université de Montpellier, Etablissement Français du Sang Pathogenesis and Control of Chronic Infections, Inserm, Montpellier, France; Etablissement Français du Sang, Montpellier, France
| | - Fanny Leon
- UMR 1058, INSERM, Université de Montpellier, Etablissement Français du Sang Pathogenesis and Control of Chronic Infections, Inserm, Montpellier, France; Etablissement Français du Sang, Montpellier, France
| | - Jean-Pierre Molès
- UMR 1058, INSERM, Université de Montpellier, Etablissement Français du Sang Pathogenesis and Control of Chronic Infections, Inserm, Montpellier, France
| | - Aurélien Goubaud
- Institut de Médecine Régénératrice et Biothérapies, INSERM, U1183, Université de Montpellier, CHU Montpellier, Montpellier, France; Plateforme CHU SAFE-IPS, Infrastructure Nationale INGESTEM, Montpellier, France
| | - Jean-Marc Lemaitre
- Institut de Médecine Régénératrice et Biothérapies, INSERM, U1183, Université de Montpellier, CHU Montpellier, Montpellier, France; Plateforme CHU SAFE-IPS, Infrastructure Nationale INGESTEM, Montpellier, France
| | - Marianne Maquart
- Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Isabelle Leparc-Goffart
- Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Laurence Briant
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, FRE3689, CNRS-Université de Montpellier, Montpellier, France
| | - Nicolas Nagot
- UMR 1058, INSERM, Université de Montpellier, Etablissement Français du Sang Pathogenesis and Control of Chronic Infections, Inserm, Montpellier, France; Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Philippe Van de Perre
- UMR 1058, INSERM, Université de Montpellier, Etablissement Français du Sang Pathogenesis and Control of Chronic Infections, Inserm, Montpellier, France; Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Sara Salinas
- UMR 1058, INSERM, Université de Montpellier, Etablissement Français du Sang Pathogenesis and Control of Chronic Infections, Inserm, Montpellier, France.
| |
Collapse
|