1
|
Radhika NP, S M, Raj K, Anantharaju K, R SK, Appaji A. Acmella oleracea induced nanostructured Ca 2Fe 2O 5 for evaluation of photo catalytic degradation of cardiovascular drugs and bio toxicity. Heliyon 2023; 9:e15933. [PMID: 37215805 PMCID: PMC10192539 DOI: 10.1016/j.heliyon.2023.e15933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Biosynthesis of nanoparticles is increasingly becoming popular due to the demand for sustainable technologies worldwide. In the present investigation, Acmella oleracea plant extract fuelled combustion technique followed by calcination at 600 °C was adopted to prepare nanocrystalline Ca2Fe2O5. The prepared nano compound was characterised using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Ultra Violet (UV) spectroscopy, Infrared (IR) spectroscopy and its role was assessed for photocatalytic pollutant degradation along with bactericidal action in the concentration range of 1 μg/mL to 320 μg/mL. The photocatalytic degradation efficiency of pollutant drugs Clopidogrel Bisulphate and Asprin used for cardiovascular disorders is around 80% with 10 mg/L photocatalyst. The results showed that the photocatalytic activity increased with rising pH from 4, to 10, along with a significant antibacterial action against Enterococcus faecalis bacteria and a slight cytotoxic effect at high concentrations. The antibacterial property was reinforced by Minimum inhibitory concentrations (MIC) and Minimum bactericidal concentrations (MBC) studies with an average value of 0.103 at 600 nm which was further proved by significant anti-biofilm activeness. Adhesion tests in conjunction with cryogenic-scanning electron microscopy displayed a morphological change through agglomeration that caused an expansion in nano particles from 181 nm to 223.6 nm due to internalization followed by inactivation of bacteria. In addition, the non-toxicity of nano Ca2Fe2O5 was confirmed by subtle cytological changes in microscopic images of Allium Cepa root cells in the concentration range 0.01-100 μg/mL and a slight inhibition in HeLa cell proliferation indicated by IC50 value of 170.94 μg/mL. In total, the current investigation for the first time reveals the application of bio based synthesis of Nano Ca2Fe2O5 to new possibilities in bioremediation namely degrading cardiovascular pharmaceutical pollutants, endodontic antibacterial action and cytological activity.
Collapse
Affiliation(s)
| | - Malini S
- Department of Chemistry, B.M.S. College of Engineering, Bengaluru, India
| | - Kalyan Raj
- Department of Chemistry, B.M.S. College of Engineering, Bengaluru, India
| | - K.S. Anantharaju
- Department of Chemistry, Dayananda Sagar College of Engineering, Bengaluru, India
| | - Shylaja K. R
- Department of Chemistry, K.S. Institute of Technology, Bengaluru, India
| | - Abhishek Appaji
- Department of Medical Electronics Engineering, B.M.S. College of Engineering, Bengaluru, India
- University Eye Clinic Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Moghaddam AA, Mohammadi L, Bazrafshan E, Batool M, Behnampour M, Baniasadi M, Mohammadi L, Zafar MN. Antibiotics sequestration using metal nanoparticles: An updated systematic review and meta-analysis. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
3
|
Wang J, Liu Y, Yin W, Cao Y, Hou J, Wang S, Wang X. Solvent-induced facile synthesis of MnFe2O4 and the As(V) removal mechanism study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Bilgin Simsek E, Tuna Ö. Building synergism through heterojunction of n-CaTiO3 with p-CaFe2O4 for upgraded photocatalytic degradation of pharmaceuticals. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Sonal S, Acharya S, Mishra BK. Mesoporous carbon structure impregnated with 2D engineered zirconium: A sustainable adsorbent for the removal of dyes from the aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115009. [PMID: 35421720 DOI: 10.1016/j.jenvman.2022.115009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The key designing of new breeds of the adsorbents aimed to improve the physical, chemical and textural morphology along with surface functionalization, selectivity toward the contaminants, and regenerations efficiency. In this aspect, two adsorbents named wet oxidative and ultrasonicated zirconium impregnated composite, have been synthesized through two routes, i.e., wet oxidation and ultrasonication. In wet oxidation method, carbon-based materials are oxidized using an oxidant followed by impregnation, while in ultrasonication assisted route, the impregnation is carried out using acoustic phenomenon. The characterization study revealed that the wet oxidation process is more competent in impregnating zirconium and developing diverse porosity and functionalities. The maximum adsorption capacity of wet oxidative adsorbent was 812 mg/g for Reactive Blue 19 and 203.18 mg/g for Methylene Blue, that accentuated the efficiency of the adsorbent over raw activated carbon. The electrostatic interaction, hydrogen-bonding and ligand exchange phenomenon are the involved adsorption mechanism for dyes. The regeneration study finally asserts that the wet oxidative adsorbent shows an insignificant decrease in its capacity up to the 5th-cycle (i.e., 87.67% removal at 5th cycle) as compared to raw AC (46.71% removal at 5th cycle). Further, a continuous fixed-bed column study revealed a significant correlation between experimental breakthrough data and kinetic data. Thus, the developed adsorbent has a sedulous adsorption capacity to remove the most stubborn toxic dyes and can be used in industrial-scale applications.
Collapse
Affiliation(s)
- Sonalika Sonal
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Sourav Acharya
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Brijesh Kumar Mishra
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
6
|
Fu C, Sun G, Wang C, Wei B, Ran G, Song Q. Fabrication of nitrogen-doped graphene nanosheets anchored with carbon nanotubes for the degradation of tetracycline in saline water. ENVIRONMENTAL RESEARCH 2022; 206:112242. [PMID: 34695435 DOI: 10.1016/j.envres.2021.112242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The treatment of wastewater with high salinity is still a challenge because of the quenching effect of various anions on radical processes. The nonradical process may be a more promising pathway. Herein, a 3D structured nitrogen-doped graphene nanosheet anchored with carbon nanotubes (N-GS-CNTs) was prepared by direct pyrolysis of K3Fe(CN)6. The as-prepared catalyst can effectively activate peroxymonosulfate (PMS) for mineralization of tetracycline (TC) over a wide pH range (from 3 to 11) and even in high saline water (500 mM Cl-, HCO3-, etc.). The degradation mechanism was elucidated by both experimental characterizations and DFT calculations. The high catalytic efficiency was attributed to accelerated electron transfer from donor (TC) to acceptor (PMS) in the presence of the catalyst, which acts as electron shuttle mediators to promote a nonradical process. At the same time, the catalyst also enhances the production of singlet oxygen (1O2), hence further increasing the degradation rate. This study not only provides a simple method for synthesizing N-GS-CNT catalysts but also provides new insights into the electron transfer pathway for the removal of organic pollutants under high salinity conditions.
Collapse
Affiliation(s)
- Cheng Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China
| | - Guowei Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China
| | - Bangqi Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China.
| |
Collapse
|
7
|
Tang L, Zhang X, Li Z, Gudda FO, Waigi MG, Wang J, Liu H, Gao Y. Enhanced PAHs-contaminated site soils remediation by mixed persulfate and calcium peroxide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114363. [PMID: 35074729 DOI: 10.1016/j.jenvman.2021.114363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) remain in the site soils after relocated coking plants and oil refineries pose huge constraints to the subsequent land utilization. However, single persulfate (PS) or calcium peroxide (CP) remediation strategies can only inefficiently oxidize some PAHs in soil. This work sought to optimize PS/CP oxidation remediation strategy and verify its practical application effect in soil samples spiked with PAHs. The results showed that the mixed PS/CP oxidation remediation was better than the single oxidants strategies; it had high remediation performance in different particles and pollution loads of PAHs-contaminated soils. Simultaneously, reactive radicals (SO4·- and ·OH) were detected, and one side-product (CaSO4) was characterized. This work optimized the mixed PS/CP system (0.3 mol/L PS, and 8 g/kg CP, together with 0.18 mol/L Fe2+ and 0.11 mol/L C2O42-), and the corresponding Total-PAHs removal rate was 85.41%. Compared to the cost based on benzopyrene (BaP) removal, the study provided a cost-effective mixed PS/CP oxidation remediation technique (1.22 $/ton), widely applicable in soils polluted with various organic contaminants represented such as PAHs.
Collapse
Affiliation(s)
- Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaochun Zhang
- College of Economics and Management, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zekai Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hua Liu
- College of Economics and Management, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Lou X, Liu Z, Fang C, Tang Y, Guan J, Guo Y, Zhang X, Shi Y, Huang D, Cai Y. Fate of sulfamethoxazole and potential formation of haloacetic acids during chlorine disinfection process in aquaculture water. ENVIRONMENTAL RESEARCH 2022; 204:111958. [PMID: 34478721 DOI: 10.1016/j.envres.2021.111958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/30/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
There exist two common processes in fishery culture, i.e. antibiotic addition to reduce disease in fishery, and chlorination disinfection to inhibit infectious pathogenic microorganisms. However, antibiotic residues might play important reverse side roles for both aquaculture water pollution and potential formation of chlorination side products. Herein, the transformation behaviour, intermediates analyses and conversion pathway of antibiotic sulfamethoxazole (SMX), and potential generation of halogenated acetic acids (HAAs) in the process of chlorination in fishery water were examined, and the results revealed that the decomposing of SMX satisfied a pseudo first-order kinetic equation. Both the addition of available chlorine and high temperature had affirmative influences on the decontamination of SMX and production of HAAs, and the near-neutral pHs promoted the removal of SMX and generation of HAAs. Br- was favorable for the removal of SMX and yields of brominated acetic acids (Br-AAs). Based on the identified intermediate products, the transformation path of SMX in chlorination process was propounded, to wit, the C-S and S-N bonds in the SMX molecules were firstly cracked, and the primeval intermediate groups are then transformed to form chloroanilines, chlorophenols, etc., and subsequently, chlorophenols were chlorinated and ring-opened to generate toxic HAAs. This study might be meaningful to evaluate the effective removal of sulfonamide antibiotic residues and the potential generation of halogenated DBPs (H-DBPs) when chlorinated in aquaculture water.
Collapse
Affiliation(s)
- Xiaoyi Lou
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Zhiyuan Liu
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Changling Fang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yunyu Tang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jie Guan
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Yaoguang Guo
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Xuan Zhang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yongfu Shi
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Dongmei Huang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| | - Youqiong Cai
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| |
Collapse
|