1
|
Zhu Y, Zhao Y, Ning Z, Deng Y, Li B, Sun Y, Meng Z. Metabolic self-feeding in HBV-associated hepatocarcinoma centered on feedback between circulation lipids and the cellular MAPK/mTOR axis. Cell Commun Signal 2024; 22:280. [PMID: 38773448 PMCID: PMC11106961 DOI: 10.1186/s12964-024-01619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/17/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION Hepatitis B Virus (HBV) is widely recognized as a "metabolic virus" that disrupts hepatic metabolic homeostasis, rendering it one of the foremost risk factors for hepatocellular carcinoma (HCC). Except for antiviral therapy, the fundamental principles underlying HBV- and HBV+ HCC have remained unchanged, limiting HCC treatment options. OBJECTIVES In this study, we aim to identify the distinctive metabolic profile of HBV-associated HCC, with the promise of identifying novel metabolic targets that confer survival advantages and ultimately impede cancer progression. METHODS We employed a comprehensive methodology to evaluate metabolic alterations systematically. Initially, we analyzed transcriptomic and proteomic data obtained from a public database, subsequently validating these findings within our test cohort at both the proteomic and transcriptomic levels. Additionally, we conducted a comprehensive analysis of tissue metabolomics profiles, lipidomics, and the activity of the MAPK and AKT signaling pathway to corroborate the abovementioned changes. RESULTS Our multi-omics approach revealed distinct metabolic dysfunctions associated with HBV-associated HCC. Specifically, we observed upregulated steroid hormone biosynthesis, primary bile acid metabolism, and sphingolipid metabolism in HBV-associated HCC patients' serum. Notably, metabolites involved in primary bile acid and sphingolipids can activate the MAPK/mTOR pathway. Tissue metabolomics and lipidomics analyses further validated the serum metabolic alterations, particularly alterations in lipid composition and accumulation of unsaturated fatty acids. CONCLUSION Our findings emphasize the pivotal role of HBV in HCC metabolism, elucidating the activation of a unique MAPK/mTOR signaling axis by primary bile acids and sphingolipids. Moreover, the hyperactive MAPK/mTOR signaling axis transduction leads to significant reprogramming in lipid metabolism within HCC cells, further triggering the activation of the MAPK/mTOR pathway in turn, thereby establishing a self-feeding circle driven by primary bile acids and sphingolipids.
Collapse
Affiliation(s)
- Ying Zhu
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yingke Zhao
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Zhouyu Ning
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yong Deng
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Bing Li
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Yun Sun
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China.
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China.
| | - Zhiqiang Meng
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
2
|
Li D, Lin X, Li J, Liu X, Zhang F, Tang W, Zhang S, Dong L, Xue R. Eleven metabolism‑related genes composed of Stard5 predict prognosis and contribute to EMT phenotype in HCC. Cancer Cell Int 2023; 23:277. [PMID: 37978523 PMCID: PMC10656919 DOI: 10.1186/s12935-023-03097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with a high mortality and poor survival rate. Abnormal tumor metabolism is considered a hallmark of HCC and is a potential therapeutic target. This study aimed to identify metabolism-related biomarkers to evaluate the prognosis of patients with HCC. METHOD The Cancer Genome Atlas (TCGA) database was used to explore differential metabolic pathways based on high and low epithelial-mesenchymal transition (EMT) groupings. Genes in differential metabolic pathways were obtained for HCC metabolism-related molecular subtype analysis. Differentially expressed genes (DEGs) from the three subtypes were subjected to Lasso Cox regression analysis to construct prognostic risk models. Stard5 expression in HCC patients was detected by western blot and immunohistochemistry (IHC), and the role of Stard5 in the metastasis of HCC was investigated by cytological experiments. RESULTS Unsupervised clustering analysis based on metabolism-related genes revealed three subtypes in HCC with differential prognosis. A risk prognostic model was constructed based on 11 genes (STARD5, FTCD, SCN4A, ADH4, CFHR3, CYP2C9, CCL14, GADD45G, SOX11, SCIN, and SLC2A1) obtained by LASSO Cox regression analysis of the three subtypes of DEGs. We validated that the model had a good predictive power. In addition, we found that the high-risk group had a poor prognosis, higher proportion of Tregs, and responded poorly to chemotherapy. We also found that Stard5 expression was markedly decreased in HCC tissues, which was associated with poor prognosis and EMT. Knockdown of Stard5 contributed to the invasion and migration of HCC cells. Overexpression of Stard5 inhibited EMT in HCC cells. CONCLUSION We developed a new model based on 11 metabolism-related genes, which predicted the prognosis and response to chemotherapy or immunotherapy for HCC. Notably, we demonstrated for the first time that Stard5 acted as a tumor suppressor by inhibiting metastasis in HCC.
Collapse
Affiliation(s)
- Dongping Li
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiahui Lin
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jiale Li
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyi Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Feng Zhang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Cho SY, Hwang H, Kim YH, Yoo BC, Han N, Kong SY, Baek MJ, Kim KH, Lee MR, Park JG, Han SS, Lee WJ, Park C, Park JB, Kim JY, Park SJ, Woo SM. Refining Classification of Cholangiocarcinoma Subtypes via Proteogenomic Integration Reveals New Therapeutic Prospects. Gastroenterology 2023; 164:1293-1309. [PMID: 36898552 DOI: 10.1053/j.gastro.2023.02.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinomas (iCCs) are characterized by their rarity, difficult diagnosis, and overall poor prognosis. The iCC molecular classification for developing precision medicine strategies was investigated. METHODS Comprehensive genomic, transcriptomic, proteomic, and phosphoproteomic analyses were performed on treatment-naïve tumor samples from 102 patients with iCC who underwent surgical resection with curative intent. An organoid model was constructed for testing therapeutic potential. RESULTS Three clinically supported subtypes (stem-like, poorly immunogenic, and metabolism) were identified. NCT-501 (aldehyde dehydrogenase 1 family member A1 [ALDH1A1] inhibitor) exhibited synergism with nanoparticle albumin-bound-paclitaxel in the organoid model for the stem-like subtype. The oncometabolite dysregulations were associated with different clinical outcomes in the stem-like and metabolism subtypes. The poorly immunogenic subtype harbors the non-T-cell tumor infiltration. Integrated multiomics analysis not only reproduced the 3 subtypes but also showed heterogeneity in iCC. CONCLUSIONS This large-scale proteogenomic analysis provides information beyond that obtained with genomic analysis, allowing the functional impact of genomic alterations to be discerned. These findings may assist in the stratification of patients with iCC and in developing rational therapeutic strategies.
Collapse
Affiliation(s)
- Soo Young Cho
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea; Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yun-Hee Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Byong Chul Yoo
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Nayoung Han
- Department of Pathology, National Cancer Center, Goyang, Republic of Korea
| | - Sun-Young Kong
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea; Deparment of Laboratory Medicine, National Cancer Center, Goyang, Republic of Korea
| | - Min-Jeong Baek
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Kyung-Hee Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Mi Rim Lee
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Jae Gwang Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Sung-Sik Han
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Woo Jin Lee
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Charny Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea; Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
| | - Sang-Jae Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea.
| | - Sang Myung Woo
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea; Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea.
| |
Collapse
|
4
|
Genetic Predisposition to Hepatocellular Carcinoma. Metabolites 2022; 13:metabo13010035. [PMID: 36676960 PMCID: PMC9864136 DOI: 10.3390/metabo13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Liver preneoplastic and neoplastic lesions of the genetically susceptible F344 and resistant BN rats cluster, respectively, with human HCC with better (HCCB) and poorer prognosis (HCCP); therefore, they represent a valid model to study the molecular alterations determining the genetic predisposition to HCC and the response to therapy. The ubiquitin-mediated proteolysis of ERK-inhibitor DUSP1, which characterizes HCC progression, favors the unrestrained ERK activity. DUSP1 represents a valuable prognostic marker, and ERK, CKS1, or SKP2 are potential therapeutic targets for human HCC. In DN (dysplastic nodule) and HCC of F344 rats and human HCCP, DUSP1 downregulation and ERK1/2 overexpression sustain SKP2-CKS1 activity through FOXM1, the expression of which is associated with a susceptible phenotype. SAM-methyl-transferase reactions and SAM/SAH ratio are regulated by GNMT. In addition, GNMT binds to CYP1A, PARP1, and NFKB and PREX2 gene promoters. MYBL2 upregulation deregulates cell cycle and induces the progression of premalignant and malignant liver. During HCC progression, the MYBL2 transcription factor positively correlates with cells proliferation and microvessel density, while it is negatively correlated to apoptosis. Hierarchical supervised analysis, regarding 6132 genes common to human and rat liver, showed a gene expression pattern common to normal liver of both strains and BN nodules, and a second pattern is observed in F344 nodules and HCC of both strains. Comparative genetics studies showed that DNs of BN rats cluster with human HCCB, while F344 DNs and HCCs cluster with HCCP.
Collapse
|
5
|
Luparello C, Branni R, Abruscato G, Lazzara V, Drahos L, Arizza V, Mauro M, Di Stefano V, Vazzana M. Cytotoxic capability and the associated proteomic profile of cell-free coelomic fluid extracts from the edible sea cucumber Holothuria tubulosa on HepG2 liver cancer cells. EXCLI JOURNAL 2022; 21:722-743. [PMID: 35721581 PMCID: PMC9203982 DOI: 10.17179/excli2022-4825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive cancer histotype and one of the most common types of cancer worldwide. The identification of compounds that might intervene to restrain neoplastic cell growth appears imperative due to its elevated overall mortality. The marine environment represents a reservoir rich in bioactive compounds in terms of primary and secondary metabolites produced by aquatic animals, mainly invertebrates. In the present study, we determined whether the water-soluble cell-free extract of the coelomic fluid (CFE) of the edible sea cucumber Holothuria tubulosa could play an anti-HCC role in vitro by analyzing the viability and locomotory behavior, cell cycle distribution, apoptosis and autophagy modulation, mitochondrial function and cell redox state of HepG2 HCC cells. We showed that CFE causes an early block in the cell cycle at the G2/M phase, which is coupled to oxidative stress promotion, autophagosome depletion and mitochondrial dysfunction ultimately leading to apoptotic death. We also performed a proteomic analysis of CFE identifying a number of proteins that are seemingly responsible for anti-cancer effects. In conclusion, H. tubulosa's CFE merits further investigation to develop novel promising anti-HCC prevention and/or treatment agents and also beneficial supplements for formulation of functional foods and food packaging material.
Collapse
Affiliation(s)
- Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Rossella Branni
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Laszlo Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| |
Collapse
|
6
|
Pascale RM, Simile MM, Calvisi DF, Feo CF, Feo F. S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent. Cells 2022; 11:409. [PMID: 35159219 PMCID: PMC8834208 DOI: 10.3390/cells11030409] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFNα/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Maria M. Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Diego F. Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Claudio F. Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| |
Collapse
|
7
|
Tian J, Locker J. Gadd45 in the Liver: Signal Transduction and Transcriptional Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:87-99. [DOI: 10.1007/978-3-030-94804-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Yang CL, Qiu X, Lin JY, Chen XY, Zhang YM, Hu XY, Zhong JH, Tang S, Li XY, Xiang BD, Zhang ZM. Potential Role and Clinical Value of PPP2CA in Hepatocellular Carcinoma. J Clin Transl Hepatol 2021; 9:661-671. [PMID: 34722181 PMCID: PMC8516843 DOI: 10.14218/jcth.2020.00168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIMS Protein phosphatase 2A (PP2A) is associated with many cancers. This study aimed to clarify whether PPP2CA, which encodes the alpha isoform of the catalytic subunit of PP2A, plays a role in hepatocellular carcinoma (HCC) and to identify the potential underlying molecular pathways. METHODS Based on bioinformatics, public databases and our in-house RNA-Seq database, we analyzed the clinical value and molecular mechanism of PPP2CA in HCC. RESULTS Data were analyzed from 2,545 patients with HCC and 1,993 controls without HCC indexed in The Cancer Genome Atlas database, the Gene Expression Omnibus database and our in-house RNA-Seq database. PPP2CA expression was significantly higher in HCC tissue than in non-cancerous tissues (standardized mean difference: 0.69, 95% confidence interval [CI]: 0.50-0.89). PPP2CA expression was able to differentiate HCC from non-HCC, with an area under the summary receiver operator characteristic curve of 0.79 (95% CI: 0.75-0.83). Immunohistochemistry of tissue sections confirmed that PPP2CA protein was up-regulated in HCC tissues. High PPP2CA expression in HCC patients was associated with shorter overall, progression-free and disease-free survival. Potential molecular pathways through which PPP2CA may be involved in HCC were determined using miRWalk 2.0 as well as analysis of Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, and protein-protein interaction networks. CONCLUSIONS PPP2CA is up-regulated in HCC and higher expression correlates with worse prognosis. PPP2CA shows potential as a diagnostic marker for HCC. Future studies should examine whether PPP2CA contributes to HCC through the candidate microRNAs, pathways and hub genes identified in this study.
Collapse
Affiliation(s)
- Cheng-Lei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xue Qiu
- The First Clinical Medical School, Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Yan Lin
- The First Clinical Medical School, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-Yu Chen
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yu-Mei Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-Yin Hu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xi-Yi Li
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Correspondence to: Zhi-Ming Zhang and Bang-De Xiang, Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, He Di Rd #71, Nanning, Guangxi 530021, China. ORCID: https://orcid.org/0000-0001-9823-4945 (ZMZ), https://orcid.org/0000-0002-1877-7139 (BDX). Tel: +86-771-533-0855, Fax: +86-771-531-2000, E-mail: (ZMZ), (BDX)
| | - Zhi-Ming Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Correspondence to: Zhi-Ming Zhang and Bang-De Xiang, Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, He Di Rd #71, Nanning, Guangxi 530021, China. ORCID: https://orcid.org/0000-0001-9823-4945 (ZMZ), https://orcid.org/0000-0002-1877-7139 (BDX). Tel: +86-771-533-0855, Fax: +86-771-531-2000, E-mail: (ZMZ), (BDX)
| |
Collapse
|
9
|
Nuclear localization dictates hepatocarcinogenesis suppression by glycine N-methyltransferase. Transl Oncol 2021; 15:101239. [PMID: 34649149 PMCID: PMC8517931 DOI: 10.1016/j.tranon.2021.101239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
GNMT gene expression contributes to determine hepatocellular carcinoma (HCC) prognosis. GNMT expression is genetically determined. Nuclear GNMT binds to CYP1A1, PREX2, PARP1, and NFKB gene promoters and strongly inhibits their expression.
Background GNMT (glycine N-methyltransferase) is a tumor suppressor gene, but the mechanisms mediating its suppressive activity are not entirely known. Methods We investigated the oncosuppressive mechanisms of GNMT in human hepatocellular carcinoma (HCC). GNMT mRNA and protein levels were evaluated by quantitative RT-PCR and immunoblotting. GNMT effect in HCC cell lines was modulated through GNMT cDNA induced overexpression or anti-GNMT siRNA transfection. Results GNMT was expressed at low level in human HCCs with a better prognosis (HCCB) while it was almost absent in fast-growing tumors (HCCP). In HCCB, the nuclear localization of the GNMT protein was much more pronounced than in HCCP. In Huh7 and HepG2 cell lines, GNMT forced expression inhibited the proliferation and promoted apoptosis. At the molecular level, GNMT overexpression inhibited the expression of CYP1A (Cytochrome p450, aromatic compound-inducible), PREX2 (Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2), PARP1 [Poly (ADP-ribose) polymerase 1], and NFKB (nuclear factor-kB) genes. By chromatin immunoprecipitation, we found GNMT binding to the promoters of CYP1A1, PREX2, PARP1, and NFKB genes resulting in their strong inhibition. These genes are implicated in hepatocarcinogenesis, and are involved in the GNMT oncosuppressive action. Conclusion Overall, the present data indicate that GNMT exerts a multifaceted suppressive action by interacting with various cancer-related genes and inhibiting their expression.
Collapse
|
10
|
Liu Y, Li YQ, Huang SH, Li YL, Xia JW, Jia JS, Wei F, Wang JH, Dai GQ, Wang YC, Li XY, Han LX, Zhang XL, Xiang XD, Zhao WT, Xiao D, Lin XL. Liver-specific over-expression of Cripto-1 in transgenic mice promotes hepatocyte proliferation and deregulated expression of hepatocarcinogenesis-related genes and signaling pathways. Aging (Albany NY) 2021; 13:21155-21190. [PMID: 34517344 PMCID: PMC8457585 DOI: 10.18632/aging.203402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the role of embryonic gene Cripto-1 (CR-1) in hepatocellular carcinoma (HCC) using hepatocyte-specific CR-1-overexpressing transgenic mice. The expression of truncated 1.7-kb CR-1 transcript (SF-CR-1) was significantly higher than the full-length 2.0-kb CR-1 transcript (FL-CR-1) in a majority of HCC tissues and cell lines. Moreover, CR-1 mRNA and protein levels were significantly higher in HCC tissues than adjacent normal liver tissues. Hepatocyte-specific over-expression of CR-1 in transgenic mice enhanced hepatocyte proliferation after 2/3 partial hepatectomy (2/3 PHx). CR-1 over-expression significantly increased in vivo xenograft tumor growth of HCC cells in nude mice and in vitro HCC cell proliferation, migration, and invasion. CR-1 over-expression in the transgenic mouse livers deregulated HCC-related signaling pathways such as AKT, Wnt/β-catenin, Stat3, MAPK/ERK, JNK, TGF-β and Notch, as well as expression of HCC-related genes such as CD5L, S100A8, S100A9, Timd4, Orm2, Orm3, PDK4, DMBT1, G0S2, Plk2, Plk3, Gsta1 and Gsta2. However, histological signs of precancerous lesions, hepatocyte dysplasia or HCC formation were not observed in the livers of 3-, 6- or 8-month-old hepatocyte-specific CR-1-overexpressing transgenic mice. These findings demonstrate that liver-specific CR-1 overexpression in transgenic mice deregulates signaling pathways and genes associated with HCC.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Yan-Qing Li
- Department of Hematology, Central Hospital of Xuhui District, Shanghai 200030, China
| | - Shi-Hao Huang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yong-Long Li
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Xia
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Jun-Shuang Jia
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Jia-Hong Wang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Guan-Qi Dai
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yu-Cai Wang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Yan Li
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Liu-Xin Han
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Xiao-Ling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Xu-Dong Xiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, China
| | - Wen-Tao Zhao
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, China
| | - Dong Xiao
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:E2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
12
|
Kim MY, Choi S, Lee SE, Kim JS, Son SH, Lim YS, Kim BJ, Ryu BY, Uversky VN, Lee YJ, Kim CG. Development of a MEL Cell-Derived Allograft Mouse Model for Cancer Research. Cancers (Basel) 2019; 11:cancers11111707. [PMID: 31683958 PMCID: PMC6895914 DOI: 10.3390/cancers11111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 11/22/2022] Open
Abstract
Murine erythroleukemia (MEL) cells are often employed as a model to dissect mechanisms of erythropoiesis and erythroleukemia in vitro. Here, an allograft model using MEL cells resulting in splenomegaly was established to develop a diagnostic model for isolation/quantification of metastatic cells, anti-cancer drug screening, and evaluation of the tumorigenic or metastatic potentials of molecules in vivo. In this animal model, circulating MEL cells from the blood stream were successfully isolated and quantified with an additional in vitro cultivation step. In terms of the molecular-pathological analysis, we were able to successfully evaluate the functional discrimination between methyl-CpG-binding domain 2 (Mbd2) and p66α in erythroid differentiation, and tumorigenic potential in spleen and blood stream of allograft model mice. In addition, we found that the number of circulating MEL cells in anti-cancer drug-treated mice was dose-dependently decreased. Our data demonstrate that the newly established allograft model is useful to dissect erythroleukemia pathologies and non-invasively provides valuable means for isolation of metastatic cells, screening of anti-cancer drugs, and evaluation of the tumorigenic potentials.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Sungwoo Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Seol Eui Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Ji Sook Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Department of Clinical Pathology, Hanyang University Seoul Hospital, Seoul 04763, Korea.
| | - Seung Han Son
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Young Soo Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Bang-Jin Kim
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea.
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia.
| | - Young Jin Lee
- Institute of Pharmaceutical Science and Technology, Department of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Chul Geun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
13
|
Pascale RM, Simile MM, Peitta G, Seddaiu MA, Feo F, Calvisi DF. Experimental Models to Define the Genetic Predisposition to Liver Cancer. Cancers (Basel) 2019; 11:cancers11101450. [PMID: 31569678 PMCID: PMC6826893 DOI: 10.3390/cancers11101450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/24/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a frequent human cancer and the most frequent liver tumor. The study of genetic mechanisms of the inherited predisposition to HCC, implicating gene-gene and gene-environment interaction, led to the discovery of multiple gene loci regulating the growth and multiplicity of liver preneoplastic and neoplastic lesions, thus uncovering the action of multiple genes and epistatic interactions in the regulation of the individual susceptibility to HCC. The comparative evaluation of the molecular pathways involved in HCC development in mouse and rat strains differently predisposed to HCC indicates that the genes responsible for HCC susceptibility control the amplification and/or overexpression of c-Myc, the expression of cell cycle regulatory genes, and the activity of Ras/Erk, AKT/mTOR, and of the pro-apoptotic Rassf1A/Nore1A and Dab2IP/Ask1 pathways, the methionine cycle, and DNA repair pathways in mice and rats. Comparative functional genetic studies, in rats and mice differently susceptible to HCC, showed that preneoplastic and neoplastic lesions of resistant mouse and rat strains cluster with human HCC with better prognosis, while the lesions of susceptible mouse and rats cluster with HCC with poorer prognosis, confirming the validity of the studies on the influence of the genetic predisposition to hepatocarinogenesis on HCC prognosis in mouse and rat models. Recently, the hydrodynamic gene transfection in mice provided new opportunities for the recognition of genes implicated in the molecular mechanisms involved in HCC pathogenesis and prognosis. This method appears to be highly promising to further study the genetic background of the predisposition to this cancer.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Maria A Seddaiu
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Diego F Calvisi
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| |
Collapse
|
14
|
Pascale RM, Peitta G, Simile MM, Feo F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E296. [PMID: 31234428 PMCID: PMC6631235 DOI: 10.3390/medicina55060296] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of MAT1A gene under-regulation associated with up-regulation of the MAT2A gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of c-myc, H-ras, and K-ras expression, prevention of NF-kB activation, and induction of overexpression of the oncosuppressor PP2A gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of C/EBPα and UCA1 gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MAT2A and MAT2B expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
15
|
Loss of ALDH1L1 folate enzyme confers a selective metabolic advantage for tumor progression. Chem Biol Interact 2019; 302:149-155. [PMID: 30794800 DOI: 10.1016/j.cbi.2019.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase) is the enzyme in folate metabolism commonly downregulated in human cancers. One of the mechanisms of the enzyme downregulation is methylation of the promoter of the ALDH1L1 gene. Recent studies underscored ALDH1L1 as a candidate tumor suppressor and potential marker of aggressive cancers. In agreement with the ALDH1L1 loss in cancer, its re-expression leads to inhibition of proliferation and to apoptosis, but also affects migration and invasion of cancer cells through a specific folate-dependent mechanism involved in invasive phenotype. A growing body of literature evaluated the prognostic value of ALDH1L1 expression for cancer disease, the regulatory role of the enzyme in cellular proliferation, and associated metabolic and signaling cellular responses. Overall, there is a strong indication that the ALDH1L1 silencing provides metabolic advantage for tumor progression at a later stage when unlimited proliferation and enhanced motility become critical processes for the tumor expansion. Whether the ALDH1L1 loss is involved in tumor initiation is still an open question.
Collapse
|
16
|
Zhang X, Kang C, Li N, Liu X, Zhang J, Gao F, Dai L. Identification of special key genes for alcohol-related hepatocellular carcinoma through bioinformatic analysis. PeerJ 2019; 7:e6375. [PMID: 30755830 PMCID: PMC6368834 DOI: 10.7717/peerj.6375] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Background Alcohol-related hepatocellular carcinoma (HCC) was reported to be diagnosed at a later stage, but the mechanism was unknown. This study aimed to identify special key genes (SKGs) during alcohol-related HCC development and progression. Methods The mRNA data of 369 HCC patients and the clinical information were downloaded from the Cancer Genome Atlas project (TCGA). The 310 patients with certain HCC-related risk factors were included for analysis and divided into seven groups according to the risk factors. Survival analyses were applied for the HCC patients of different groups. The patients with hepatitis B virus or hepatitis C virus infection only were combined into the HCC-V group for further analysis. The differentially expressed genes (DEGs) between the HCCs with alcohol consumption only (HCC-A) and HCC-V tumors were identified through limma package in R with cutoff criteria│log2 fold change (logFC)|>1.0 and p < 0.05. The DEGs between eight alcohol-related HCCs and their paired normal livers of GSE59259 from the Gene Expression Omnibus (GEO) were identified through GEO2R (a built-in tool in GEO database) with cutoff criteria |logFC|> 2.0 and adj.p < 0.05. The intersection of the two sets of DEGs was considered SKGs which were then investigated for their specificity through comparisons between HCC-A and other four HCC groups. The SKGs were analyzed for their correlations with HCC-A stage and grade and their prognostic power for HCC-A patients. The expressional differences of the SKGs in the HCCs in whole were also investigated through Gene Expression Profiling Interactive Analysis (GEPIA). The SKGs in HCC were validated through Oncomine database analysis. Results Pathological stage is an independent prognostic factor for HCC patients. HCC-A patients were diagnosed later than HCC patients with other risk factors. Ten SKGs were identified and nine of them were confirmed for their differences in paired samples of HCC-A patients. Three (SLC22A10, CD5L, and UROC1) and four (SLC22A10, UROC1, CSAG3, and CSMD1) confirmed genes were correlated with HCC-A stage and grade, respectively. SPP2 had a lower trend in HCC-A tumors and was negatively correlated with HCC-A stage and grade. The SKGs each was differentially expressed between HCC-A and at least one of other HCC groups. CD5L was identified to be favorable prognostic factor for overall survival while CSMD1 unfavorable prognostic factor for disease-free survival for HCC-A patients and HCC patients in whole. Through Oncomine database, the dysregulations of the SKGs in HCC and their clinical significance were confirmed. Conclusion The poor prognosis of HCC-A patients might be due to their later diagnosis. The SKGs, especially the four stage-correlated genes (CD5L, SLC22A10, UROC1, and SPP2) might play important roles in HCC development, especially alcohol-related HCC development and progression. CD5L might be useful for overall survival and CSMD1 for disease-free survival predication in HCC, especially alcohol-related HCC.
Collapse
Affiliation(s)
| | | | | | - Xiaoli Liu
- Henan Province People's Hospital, Zhengzhou, China
| | | | | | - Liping Dai
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
MiR-122 Targets SerpinB3 and Is Involved in Sorafenib Resistance in Hepatocellular Carcinoma. J Clin Med 2019; 8:jcm8020171. [PMID: 30717317 PMCID: PMC6406326 DOI: 10.3390/jcm8020171] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
The only first-line treatment approved for advanced hepatocellular carcinoma (HCC) is sorafenib. Since many patients experience drug resistance, the discovery of more effective therapeutic strategies represents an unmet clinical need. MicroRNA (MiR)-122 is downregulated in most HCCs, while oncogenic SerpinB3 is upregulated. Here, we assessed the relationship between miR-122 and SerpinB3 and their influence on cell phenotype and sorafenib resistance in HCC. A bioinformatics analysis identified SerpinB3 among hypothetical miR-122 targets. In SerpinB3-overexpressing HepG2 cells, miR-122 transfection decreased SerpinB3 mRNA and protein levels, whereas miR-122 inhibition increased SerpinB3 expression. Luciferase assay demonstrated the interaction between miR-122 and SerpinB3 mRNA. In an HCC rat model, high miR-122 levels were associated with negative SerpinB3 expression, while low miR-122 levels correlated with SerpinB3 positivity. A negative correlation between miR-122 and SerpinB3 or stem cell markers was found in HCC patients. Anti-miR-122 transfection increased cell viability in sorafenib-treated Huh-7 cells, while miR-122 overexpression increased sorafenib sensitivity in treated cells, but not in those overexpressing SerpinB3. In conclusion, we demonstrated that miR-122 targets SerpinB3, and its low levels are associated with SerpinB3 positivity and a stem-like phenotype in HCC. MiR-122 replacement therapy in combination with sorafenib deserves attention as a possible therapeutic strategy in SerpinB3-negative HCCs.
Collapse
|
18
|
Simile MM, Latte G, Feo CF, Feo F, Calvisi DF, Pascale RM. Alterations of methionine metabolism in hepatocarcinogenesis: the emergent role of glycine N-methyltransferase in liver injury. Ann Gastroenterol 2018; 31:552-560. [PMID: 30174391 PMCID: PMC6102450 DOI: 10.20524/aog.2018.0288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
The methionine and folate cycles play a fundamental role in cell physiology and their alteration is involved in liver injury and hepatocarcinogenesis. Glycine N-methyltransferase is implicated in methyl group supply, DNA methylation, and nucleotide biosynthesis. It regulates the cellular S-adenosylmethionine/S-adenosylhomocysteine ratio and S-adenosylmethionine-dependent methyl transfer reactions. Glycine N-methyltransferase is absent in fast-growing hepatocellular carcinomas and present at a low level in slower growing HCC ones. The mechanism of tumor suppression by glycine N-methyltransferase is not completely known. Glycine N-methyltransferase inhibits hepatocellular carcinoma growth through interaction with Dep domain-containing mechanistic target of rapamycin (mTor)-interacting protein, a binding protein overexpressed in hepatocellular carcinoma. The interaction of the phosphatase and tensin homolog inhibitor, phosphatidylinositol 3,4,5-trisphosphate-dependent rac exchanger, with glycine N-methyltransferase enhances proteasomal degradation of this exchanger by the E3 ubiquitin ligase HectH. Glycine N-methyltransferase also regulates genes related to detoxification and antioxidation pathways. It supports pyrimidine and purine syntheses and minimizes uracil incorporation into DNA as consequence of folate depletion. However, recent evidence indicates that glycine N-methyltransferase targeted into nucleus still exerts strong anti-proliferative effects independent of its catalytic activity, while its restriction to cytoplasm prevents these effects. Our current knowledge suggest that glycine N-methyltransferase plays a fundamental, even if not yet completely known, role in cellular physiology and highlights the need to further investigate this role in normal and cancer cells.
Collapse
Affiliation(s)
- Maria M Simile
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Gavinella Latte
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Claudio F Feo
- Department of Clinical, Surgical and Experimental Medicine, Division of Surgery (Claudio F. Feo), University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Diego F Calvisi
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Rosa M Pascale
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| |
Collapse
|
19
|
Pascale RM, Feo CF, Calvisi DF, Feo F. Deregulation of methionine metabolism as determinant of progression and prognosis of hepatocellular carcinoma. Transl Gastroenterol Hepatol 2018; 3:36. [PMID: 30050996 DOI: 10.21037/tgh.2018.06.04] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
The under-regulation of liver-specific MAT1A gene codifying for S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and the up-regulation of widely expressed MAT2A, MATII isozyme occurs in hepatocellular carcinoma (HCC). MATα1:MATα2 switch strongly contributes to the fall in SAM liver content both in rodent and human liver carcinogenesis. SAM administration to carcinogen-treated animals inhibits hepatocarcinogenesis. The opposite occurs in Mat1a-KO mice, in which chronic SAM deficiency is followed by HCC development. This review focuses upon the changes, induced by the MATα1:MATα2 switch, involved in HCC development. In association with MATα1:MATα2 switch there occurs, in HCC, global DNA hypomethylation, decline of DNA repair, genomic instability, and deregulation of different signaling pathways such as overexpression of c-MYC (avian myelocytomatosis viral oncogene homolog), increase of polyamine (PA) synthesis and RAS/ERK (Harvey murine sarcoma virus oncogene homolog/extracellular signal-regulated kinase), IKK/NF-kB (I-k kinase beta/nuclear factor kB), PI3K/AKT, and LKB1/AMPK axes. Furthermore, a decrease in MATα1 expression and SAM level induces HCC cell proliferation and survival. SAM treatment in vivo and enforced MATα1 overexpression or MATα2 inhibition, in cultured HCC cells, prevent these changes. A negative correlation of MATα1:MATα2 and MATI/III:MATII ratios with cell proliferation and genomic instability and a positive correlation with apoptosis and global DNA methylation are present in human HCC. Altogether, these data suggest that the decrease of SAM level and the deregulation of MATs are potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Claudio F Feo
- Department of Medical, Surgery, and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Diego F Calvisi
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|
20
|
Angel J, DiGiovanni J. Genetic Determinants of Cancer Susceptibility. COMPREHENSIVE TOXICOLOGY 2018:330-360. [DOI: 10.1016/b978-0-12-801238-3.65251-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Downregulation of betaine homocysteine methyltransferase (BHMT) in hepatocellular carcinoma associates with poor prognosis. Tumour Biol 2015; 37:5911-7. [PMID: 26592251 DOI: 10.1007/s13277-015-4443-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022] Open
Abstract
Betaine homocysteine methyltransferase (BHMT) catalyzes the synthesis of methionine using betaine and homocysteine (Hcy), which is restricted to the liver and kidney. Impaired BHMT pathway has been associated with hepatocellular carcinogenesis in Bhmt-/- mice model, and decreased BHMT was observed in a small sample of human hepatocellular carcinoma (HCC) patients. However, the prognostic significance of BHMT in HCC has not been elucidated. This study aimed to examine the expression of BHMT in HCC and investigate the relationship between its expression and prognosis of HCC patients. BHMT expression was analyzed in 68 paired HCC samples (HCC tissues vs matched adjacent non-cancerous liver tissues), 115 paraffin-embedded HCC sections (primary cohort), and 65 paraffin-embedded HCC sections (validation cohort) using immunohistochemistry (IHC). The results of IHC analysis showed that BHMT was decreased in tumorous tissues in 85.2 % (58/68) of cases compared to the corresponding adjacent non-tumorous liver tissues. Further correlation analyses indicated that the decreased BHMT expression was closely correlated with serum α-fetoprotein (AFP) (p = 0.011), tumor size (p = 0.039), and vascular invasion (p = 0.017). Moreover, HCC patients with low BHMT expression had shorter overall survival (OS) and time to recurrence (TTR) than those with high BHMT expression in both primary cohort (p < 0.0001) and validation cohort (p < 0.05) assessed by the Kaplan-Meier method. In addition, multivariate analysis showed that BHMT was an independent prognostic factor for OS and TTR in the two cohorts (all p < 0.005). Collectively, our study demonstrated that BHMT could be served as a potential prognostic marker for HCC patients.
Collapse
|
22
|
Frau M, Feo CF, Feo F, Pascale RM. New insights on the role of epigenetic alterations in hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:65-83. [PMID: 27508177 PMCID: PMC4918272 DOI: 10.2147/jhc.s44506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence assigns to epigenetic mechanisms heritable differences in gene function that come into being during cell development or via the effect of environmental factors. Epigenetic deregulation is strongly involved in the development of hepatocellular carcinoma (HCC). It includes changes in methionine metabolism, promoter hypermethylation, or increased proteasomal degradation of oncosuppressors, as well as posttranscriptional deregulation by microRNA or messenger RNA (mRNA) binding proteins. Alterations in the methylation of the promoter of methyl adenosyltransferase MAT1A and MAT2A genes in HCC result in decreased S-adenosylmethionine levels, global DNA hypomethylation, and deregulation of signal transduction pathways linked to methionine metabolism and methyl adenosyltransferases activity. Changes in S-adenosylmethionine levels may also depend on MAT1A mRNA destabilization associated with MAT2A mRNA stabilization by specific proteins. Decrease in MAT1A expression has also been attributed to miRNA upregulation in HCC. A complex deregulation of miRNAs is also strongly involved in hepatocarcinogenesis, with up-regulation of different miRNAs targeting oncosuppressor genes and down-regulation of miRNAs targeting genes involved in cell-cycle and signal transduction control. Oncosuppressor gene down-regulation in HCC is also induced by promoter hypermethylation or posttranslational deregulation, leading to proteasomal degradation. The role of epigenetic changes in hepatocarcinogenesis has recently suggested new promising therapeutic approaches for HCC on the basis of the administration of methylating agents, inhibition of methyl adenosyltransferases, and restoration of the expression of tumor-suppressor miRNAs.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Claudio F Feo
- Department of Clinical and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa M Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|
23
|
Keeney JTR, Förster S, Sultana R, Brewer LD, Latimer CS, Cai J, Klein JB, Porter NM, Butterfield DA. Dietary vitamin D deficiency in rats from middle to old age leads to elevated tyrosine nitration and proteomics changes in levels of key proteins in brain: implications for low vitamin D-dependent age-related cognitive decline. Free Radic Biol Med 2013; 65:324-334. [PMID: 23872023 PMCID: PMC3859828 DOI: 10.1016/j.freeradbiomed.2013.07.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/22/2022]
Abstract
In addition to the well-known effects of vitamin D (VitD) in maintaining bone health, there is increasing appreciation that this vitamin may serve important roles in other organs and tissues, including the brain. Given that VitD deficiency is especially widespread among the elderly, it is important to understand how the range of serum VitD levels that mimic those found in humans (from low to high) affects the brain during aging from middle age to old age. To address this issue, 27 male F344 rats were split into three groups and fed isocaloric diets containing low (100 IU/kg food), control (1000 IU/kg food), or high (10,000 IU/kg food) VitD beginning at middle age (12 months) and continued for a period of 4-5 months. We compared the effects of these dietary VitD manipulations on oxidative and nitrosative stress measures in posterior brain cortices. The low-VitD group showed global elevation of 3-nitrotyrosine compared to control and high-VitD-treated groups. Further investigation showed that this elevation may involve dysregulation of the nuclear factor κ-light-chain enhancer of activated B cells (NF-κB) pathway and NF-κB-mediated transcription of inducible nitric oxide synthase (iNOS) as indicated by translocation of NF-κB to the nucleus and elevation of iNOS levels. Proteomics techniques were used to provide insight into potential mechanisms underlying these effects. Several brain proteins were found at significantly elevated levels in the low-VitD group compared to the control and high-VitD groups. Three of these proteins, 6-phosphofructokinase, triose phosphate isomerase, and pyruvate kinase, are involved directly in glycolysis. Two others, peroxiredoxin-3 and DJ-1/PARK7, have peroxidase activity and are found in mitochondria. Peptidyl-prolyl cis-trans isomerase A (cyclophilin A) has been shown to have multiple roles, including protein folding, regulation of protein kinases and phosphatases, immunoregulation, cell signaling, and redox status. Together, these results suggest that dietary VitD deficiency contributes to significant nitrosative stress in brain and may promote cognitive decline in middle-aged and elderly adults.
Collapse
Affiliation(s)
- Jeriel T R Keeney
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Sarah Förster
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Lawrence D Brewer
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Caitlin S Latimer
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jian Cai
- Division of Nephrology, Department of Medicine and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Jon B Klein
- Division of Nephrology, Department of Medicine and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Nada M Porter
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
24
|
Frau M, Feo F, Pascale RM. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J Hepatol 2013; 59:830-41. [PMID: 23665184 DOI: 10.1016/j.jhep.2013.04.031] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/15/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
Downregulation of liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and upregulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Being inhibited by its reaction product, MATII isoform upregulation cannot compensate for MATI/III decrease. Therefore, MAT1A:MAT2A switch contributes to decrease in SAM level in rodent and human hepatocarcinogenesis. SAM administration to carcinogen-treated rats prevents hepatocarcinogenesis, whereas MAT1A-KO mice, characterized by chronic SAM deficiency, exhibit macrovesicular steatosis, mononuclear cell infiltration in periportal areas, and HCC development. This review focuses upon the pleiotropic changes, induced by MAT1A/MAT2A switch, associated with HCC development. Epigenetic control of MATs expression occurs at transcriptional and post-transcriptional levels. In HCC cells, MAT1A/MAT2A switch is associated with global DNA hypomethylation, decrease in DNA repair, genomic instability, and signaling deregulation including c-MYC overexpression, rise in polyamine synthesis, upregulation of RAS/ERK, IKK/NF-kB, PI3K/AKT, and LKB1/AMPK axis. Furthermore, decrease in MAT1A expression and SAM levels results in increased HCC cell proliferation, cell survival, and microvascularization. All of these changes are reversed by SAM treatment in vivo or forced MAT1A overexpression or MAT2A inhibition in cultured HCC cells. In human HCC, MAT1A:MAT2A and MATI/III:MATII ratios correlate negatively with cell proliferation and genomic instability, and positively with apoptosis and global DNA methylation. This suggests that SAM decrease and MATs deregulation represent potential therapeutic targets for HCC. Finally, MATI/III:MATII ratio strongly predicts patients' survival length suggesting that MAT1A:MAT2A expression ratio is a putative prognostic marker for human HCC.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Laboratory of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | |
Collapse
|
25
|
Stat3 inhibits PTPN13 expression in squamous cell lung carcinoma through recruitment of HDAC5. BIOMED RESEARCH INTERNATIONAL 2013; 2013:468963. [PMID: 24191246 PMCID: PMC3804148 DOI: 10.1155/2013/468963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 08/17/2013] [Accepted: 08/30/2013] [Indexed: 01/05/2023]
Abstract
Proteins of the protein tyrosine phosphatase (PTP) family are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, and apoptosis. PTPN13 (also known as FAP1, PTPL1, PTPLE, PTPBAS, and PTP1E), a putative tumor suppressor, is frequently inactivated in lung carcinoma through the loss of either mRNA or protein expression. However, the molecular mechanisms underlying its dysregulation have not been fully explored. Interleukin-6 (IL-6) mediated Stat3 activation is viewed as crucial for multiple tumor growth and progression. Here, we demonstrate that PTPN13 is a direct transcriptional target of Stat3 in the squamous cell lung carcinoma. Our data show that IL-6 administration or transfection of a constitutively activated Stat3 in HCC-1588 and SK-MES-1 cells inhibits PTPN13 mRNA transcription. Using luciferase reporter and ChIP assays, we show that Stat3 binds to the promoter region of PTPN13 and promotes its activity through recruiting HDAC5. Thus, our results suggest a previously unknown Stat3-PTPN13 molecular network controlling squamous cell lung carcinoma development.
Collapse
|
26
|
Calvisi DF, Frau M, Tomasi ML, Feo F, Pascale RM. Deregulation of signalling pathways in prognostic subtypes of hepatocellular carcinoma: novel insights from interspecies comparison. Biochim Biophys Acta Rev Cancer 2013; 1826:215-37. [PMID: 23393659 DOI: 10.1016/j.bbcan.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is a frequent and fatal disease. Recent researches on rodent models and human hepatocarcinogenesis contributed to unravel the molecular mechanisms of hepatocellular carcinoma dedifferentiation and progression, and allowed the discovery of several alterations underlying the deregulation of cell cycle and signalling pathways. This review provides an interpretive analysis of the results of these studies. Mounting evidence emphasises the role of up-regulation of RAS/ERK, P13K/AKT, IKK/NF-kB, WNT, TGF-ß, NOTCH, Hedgehog, and Hippo signalling pathways as well as of aberrant proteasomal activity in hepatocarcinogenesis. Signalling deregulation often occurs in preneoplastic stages of rodent and human hepatocarcinogenesis and progressively increases in carcinomas, being most pronounced in more aggressive tumours. Numerous changes in signalling cascades are involved in the deregulation of carbohydrate, lipid, and methionine metabolism, which play a role in the maintenance of the transformed phenotype. Recent studies on the role of microRNAs in signalling deregulation, and on the interplay between signalling pathways led to crucial achievements in the knowledge of the network of signalling cascades, essential for the development of adjuvant therapies of liver cancer. Furthermore, the analysis of the mechanisms involved in signalling deregulation allowed the identification of numerous putative prognostic markers and novel therapeutic targets of specific hepatocellular carcinoma subtypes associated with different biologic and clinical features. This is of prime importance for the selection of patient subgroups that are most likely to obtain clinical benefit and, hence, for successful development of targeted therapies for liver cancer.
Collapse
Affiliation(s)
- Diego F Calvisi
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | |
Collapse
|
27
|
Gadd45 in the Liver: Signal Transduction and Transcriptional Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:69-80. [DOI: 10.1007/978-1-4614-8289-5_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|