1
|
da Silva Zanzarini I, Henrique Kita D, Scheiffer G, Karoline Dos Santos K, de Paula Dutra J, Augusto Pastore M, Gomes de Moraes Rego F, Picheth G, Ambudkar SV, Pulvirenti L, Cardullo N, Rotuno Moure V, Muccilli V, Tringali C, Valdameri G. Magnolol derivatives as specific and noncytotoxic inhibitors of breast cancer resistance protein (BCRP/ABCG2). Bioorg Chem 2024; 146:107283. [PMID: 38513324 PMCID: PMC11069345 DOI: 10.1016/j.bioorg.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
The breast cancer resistance protein (BCRP/ABCG2) transporter mediates the efflux of numerous antineoplastic drugs, playing a central role in multidrug resistance related to cancer. The absence of successful clinical trials using specific ABCG2 inhibitors reveals the urge to identify new compounds to attend this critical demand. In this work, a series of 13 magnolol derivatives was tested as ABCG2 inhibitors. Only two compounds, derivatives 10 and 11, showed partial and complete ABCG2 inhibitory effect, respectively. This inhibition was selective toward ABCG2, since none of the 13 compounds inhibited neither P-glycoprotein nor MRP1. Both inhibitors (10 and 11) were not transported by ABCG2 and demonstrated a low cytotoxic profile even at high concentrations (up to 100 µM). 11 emerged as the most promising compound of the series, considering the ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50), showing a therapeutic ratio (TR) higher than observed for 10 (10.5 versus 1.6, respectively). This derivative showed a substrate-independent and a mixed type of inhibition. The effect of compound 11 on the ABCG2 ATPase activity and thermostability revealed allosteric protein changes. This compound did not affect the expression levels of ABCG2 and increased the binding of the conformational-sensitive antibody 5D3. A docking study showed that 11 did not share the same binding site with ABCG2 substrate mitoxantrone. Finally, 11 could revert the chemoresistance to SN-38 mediated by ABCG2.
Collapse
Affiliation(s)
- Isadora da Silva Zanzarini
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Diogo Henrique Kita
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gustavo Scheiffer
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Kelly Karoline Dos Santos
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Julia de Paula Dutra
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Matteo Augusto Pastore
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, Brazil
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luana Pulvirenti
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Catania, Italy.
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil.
| |
Collapse
|
2
|
Rezaeeyan H, Arabfard M, Rasouli HR, Shahriary A, Gh BFNM. Evaluation of common protein biomarkers involved in the pathogenesis of respiratory diseases with proteomic methods: A systematic review. Immun Inflamm Dis 2023; 11:e1090. [PMID: 38018577 PMCID: PMC10659759 DOI: 10.1002/iid3.1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023] Open
Abstract
AIM Respiratory disease (RD) is one of the most common diseases characterized by lung dysfunction. Many diagnostic mechanisms have been used to identify the pathogenic agents of responsible for RD. Among these, proteomics emerges as a valuable diagnostic method for pinpointing the specific proteins involved in RD pathogenesis. Therefore, in this study, for the first time, we examined the protein markers involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, bronchiolitis obliterans (BO), and chemical warfare victims exposed to mustard gas, using the proteomics method as a systematic study. MATERIALS AND METHODS A systematic search was performed up to September 2023 on several databases, including PubMed, Scopus, ISI Web of Science, and Cochrane. In total, selected 4246 articles were for evaluation according to the criteria. Finally, 119 studies were selected for this systematic review. RESULTS A total of 13,806 proteins were identified, 6471 in COPD, 1603 in Asthma, 5638 in IPF, three in BO, and 91 in mustard gas exposed victims. Alterations in the expression of these proteins were observed in the respective diseases. After evaluation, the results showed that 31 proteins were found to be shared among all five diseases. CONCLUSION Although these 31 proteins regulate different factors and molecular pathways in all five diseases, they ultimately lead to the regulation of inflammatory pathways. In other words, the expression of some proteins in COPD and mustard-exposed patients increases inflammatory reactions, while in IPF, they cause lung fibrosis. Asthma, causes allergic reactions due to T-cell differentiation toward Th2.
Collapse
Affiliation(s)
- Hadi Rezaeeyan
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion MedicineIranian Blood Transfusion Organization (IBTO)TehranIran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Hamid R. Rasouli
- Trauma Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - B. Fatemeh Nobakht M. Gh
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Pérez-Gómez JM, Porcel-Pastrana F, De La Luz-Borrero M, Montero-Hidalgo AJ, Gómez-Gómez E, Herrera-Martínez AD, Guzmán-Ruiz R, Malagón MM, Gahete MD, Luque RM. LRP10, PGK1 and RPLP0: Best Reference Genes in Periprostatic Adipose Tissue under Obesity and Prostate Cancer Conditions. Int J Mol Sci 2023; 24:15140. [PMID: 37894825 PMCID: PMC10606769 DOI: 10.3390/ijms242015140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Obesity (OB) is a metabolic disorder characterized by adipose tissue dysfunction that has emerged as a health problem of epidemic proportions in recent decades. OB is associated with multiple comorbidities, including some types of cancers. Specifically, prostate cancer (PCa) has been postulated as one of the tumors that could have a causal relationship with OB. Particularly, a specialized adipose tissue (AT) depot known as periprostatic adipose tissue (PPAT) has gained increasing attention over the last few years as it could be a key player in the pathophysiological interaction between PCa and OB. However, to date, no studies have defined the most appropriate internal reference genes (IRGs) to be used in gene expression studies in this AT depot. In this work, two independent cohorts of PPAT samples (n = 20/n = 48) were used to assess the validity of a battery of 15 literature-selected IRGs using two widely used techniques (reverse transcription quantitative PCR [RT-qPCR] and microfluidic-based qPCR array). For this purpose, ΔCt method, GeNorm (v3.5), BestKeeper (v1.0), NormFinder (v.20.0), and RefFinder software were employed to assess the overall trends of our analyses. LRP10, PGK1, and RPLP0 were identified as the best IRGs to be used for gene expression studies in human PPATs, specifically when considering PCa and OB conditions.
Collapse
Grants
- PID2022-1381850B-I00 Spanish Ministry of Science, Innovation, and Universities
- PID2019-105564RB-I00 Spanish Ministry of Science, Innovation, and Universities
- FPU18-06009 Spanish Ministry of Science, Innovation, and Universities
- PRE2020-094225 Spanish Ministry of Science, Innovation, and Universities
- FPU18-02485 Spanish Ministry of Science, Innovation, and Universities
Collapse
Affiliation(s)
- Jesús M. Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Francisco Porcel-Pastrana
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Marina De La Luz-Borrero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Antonio J. Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Urology Service, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Aura D. Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Rocío Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - María M. Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| |
Collapse
|
4
|
Garsetti DE, Sahay K, Wang Y, Rogers MB. Sex and the basal mRNA synthesis machinery. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1765. [PMID: 36195437 PMCID: PMC10070566 DOI: 10.1002/wrna.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022]
Abstract
Evolution and change generated an incredible diversity of organisms on this earth. Yet, some processes are so central to life that change is strongly selected against. Synthesis of the eukaryotic messenger RNA is one example. The assemblies that carry out transcription and processing (capping, polyadenylation, and splicing) are so conserved that most genes have recognizable orthologs in yeast and humans. Naturally, most would conclude transcription and processing are identical in both sexes. However, this is an assumption. Men and women vastly differ in their physiologies. The incidence of pathologies, symptom presentation, disease outcome, and therapeutic response in each sex vary enormously. Despite the harm ignorance causes women, biological research has been historically carried out without regard to sex. The male mouse was the default mammal. A cultured cell's sex was considered irrelevant. Attempts to fill this knowledge gap have revealed molecular dissimilarities. For example, the earliest embryonic male and female transcriptomes differ long before fetal sex hormones appear. We used public data to challenge the assumption of sameness by reviewing reports of sex-biased gene expression and gene targeting. We focused on 120 genes encoding nonregulatory proteins involved in mRNA synthesis. Remarkably, genes with recognizable orthologs in yeast and thus LEAST likely to differ, did differ between the sexes. The rapidly growing public databases can be used to compare the expression of any gene in male and female tissues. Appreciating the principles that drive sex differences will enrich our understanding of RNA biology in all humans-men and women. This article is categorized under: RNA in Disease and Development > RNA in Development RNA Evolution and Genomics > Computational Analyses of RNA.
Collapse
Affiliation(s)
- Diane E Garsetti
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Khushboo Sahay
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Yue Wang
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Melissa B Rogers
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| |
Collapse
|
5
|
Song R, He S, Wu Y, Chen W, Song J, Zhu Y, Chen H, Wang Q, Wang S, Tan S, Tan S. Validation of reference genes for the normalization of the RT-qPCR in peripheral blood mononuclear cells of septic patients. Heliyon 2023; 9:e15269. [PMID: 37089378 PMCID: PMC10119759 DOI: 10.1016/j.heliyon.2023.e15269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Objective To screen and validate reference genes suitable for gene mRNA expression study in peripheral blood mononuclear cells (PBMCs) between septic patients and healthy controls (HC). Methods Total RNA in PBMCs was extracted and RT-qPCR was used to determine the mRNA expression profiles of 9 candidate genes, including ACTB, B2M, GAPDH, GUSB, HPRT1, PGK1, RPL13A, SDHA and YWHAZ. The genes expression stabilities were assessed by both geNorm and NormFinder software. Results YWHAZ was the most stable gene among the 9 candidate genes evaluated by both geNorm and NormFinder in mixed and sepsis groups. The most stable gene combination in mixed group analyzed by geNorm was the combination of GAPDH, PKG1 and YWHAZ, while that in sepsis group was the combination of ACTB, PKG1 and YWHAZ. Conclusion Our first systematic analysis of the reference genes in PBMC of septic patients suggested YWHAZ was the best candidate. The combination of ACTB, PKG1 and YWHAZ could improve RT-qPCR accuracy in septic patients. Our results identified the most stable reference genes to standardize RT-qPCR of sepsis patients, which can serve as a useful tool for gene function exploration in the future.
Collapse
Affiliation(s)
- Ruoyu Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Shijun He
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Yongbin Wu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Wanxin Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Jie Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Yaxi Zhu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Huan Chen
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Qianlu Wang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Shouman Wang
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Sichuang Tan
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
- Corresponding author.
| | - Sipin Tan
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Corresponding author.
| |
Collapse
|
6
|
Identification of Human Global, Tissue and Within-Tissue Cell-Specific Stably Expressed Genes at Single-Cell Resolution. Int J Mol Sci 2022; 23:ijms231810214. [PMID: 36142130 PMCID: PMC9499411 DOI: 10.3390/ijms231810214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Stably Expressed Genes (SEGs) are a set of genes with invariant expression. Identification of SEGs, especially among both healthy and diseased tissues, is of clinical relevance to enable more accurate data integration, gene expression comparison and biomarker detection. However, it remains unclear how many global SEGs there are, whether there are development-, tissue- or cell-specific SEGs, and whether diseases can influence their expression. In this research, we systematically investigate human SEGs at single-cell level and observe their development-, tissue- and cell-specificity, and expression stability under various diseased states. A hierarchical strategy is proposed to identify a list of 408 spatial-temporal SEGs. Development-specific SEGs are also identified, with adult tissue-specific SEGs enriched with the function of immune processes and fetal tissue-specific SEGs enriched in RNA splicing activities. Cells of the same type within different tissues tend to show similar SEG composition profiles. Diseases or stresses do not show influence on the expression stableness of SEGs in various tissues. In addition to serving as markers and internal references for data normalization and integration, we examine another possible application of SEGs, i.e., being applied for cell decomposition. The deconvolution model could accurately predict the fractions of major immune cells in multiple independent testing datasets of peripheral blood samples. The study provides a reliable list of human SEGs at the single-cell level, facilitates the understanding on the property of SEGs, and extends their possible applications.
Collapse
|
7
|
Wen X, Yang G, Dong Y, Luo L, Cao B, Mengesha BA, Zu R, Liao Y, Liu C, Li S, Deng Y, Zhang K, Ma X, Huang J, Wang D, Zhao K, Leng P, Luo H. Selection and Validation of Reference Genes for Pan-Cancer in Platelets Based on RNA-Sequence Data. Front Genet 2022; 13:913886. [PMID: 35770000 PMCID: PMC9234127 DOI: 10.3389/fgene.2022.913886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies in recent years have demonstrated that some messenger RNA (mRNA) in platelets can be used as biomarkers for the diagnosis of pan-cancer. The quantitative real-time polymerase chain reaction (RT-qPCR) molecular technique is most commonly used to determine mRNA expression changes in platelets. Accurate and reliable relative RT-qPCR is highly dependent on reliable reference genes. However, there is no study to validate the reference gene in platelets for pan-cancer. Given that the expression of some commonly used reference genes is altered in certain conditions, selecting and verifying the most suitable reference gene for pan-cancer in platelets is necessary to diagnose early stage cancer. This study performed bioinformatics and functional analysis from the RNA-seq of platelets data set (GSE68086). We generated 95 candidate reference genes after the primary bioinformatics step. Seven reference genes (YWHAZ, GNAS, GAPDH, OAZ1, PTMA, B2M, and ACTB) were screened out among the 95 candidate reference genes from the data set of the platelets’ transcriptome of pan-cancer and 73 commonly known reference genes. These candidate reference genes were verified by another platelets expression data set (GSE89843). Then, we used RT-qPCR to confirm the expression levels of these seven genes in pan-cancer patients and healthy individuals. These RT-qPCR results were analyzed using the internal stability analysis software programs (the comparative Delta CT method, geNorm, NormFinder, and BestKeeper) to rank the candidate genes in the order of decreasing stability. By contrast, the GAPDH gene was stably and constitutively expressed at high levels in all the tested samples. Therefore, GAPDH was recommended as the most suitable reference gene for platelet transcript analysis. In conclusion, our result may play an essential part in establishing a molecular diagnostic platform based on the platelets to diagnose pan-cancer.
Collapse
Affiliation(s)
- Xiaoxia Wen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guishu Yang
- Department of Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, China
| | | | - Liping Luo
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bangrong Cao
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Birga Anteneh Mengesha
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiling Zu
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yulin Liao
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chang Liu
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shi Li
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Ma
- GenomCan Inc., Chengdu, China
| | - Jian Huang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Keyan Zhao
- GenomCan Inc., Chengdu, China
- *Correspondence: Keyan Zhao, ; Ping Leng, ; Huaichao Luo,
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Keyan Zhao, ; Ping Leng, ; Huaichao Luo,
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Keyan Zhao, ; Ping Leng, ; Huaichao Luo,
| |
Collapse
|
8
|
Gu J, Dai J, Lu H, Zhao H. Comprehensive analysis of ubiquitously expressed genes in human, from a data-driven perspective. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00042-0. [PMID: 35569803 PMCID: PMC10373092 DOI: 10.1016/j.gpb.2021.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 07/18/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023]
Abstract
Comprehensive characterization of spatial and temporal gene expression patterns in humans is critical for uncovering the regulatory codes of the human genome and understanding the molecular mechanism of human disease. The ubiquitously expressed genes (UEGs) refer to those genes expressed across a majority, if not all, phenotypic and physiological conditions of an organism. It is known that many human genes are broadly expressed across tissues. However, most previous UEG studies have only focused on providing a list of UEGs without capturing their global expression patterns, thus limiting the potential use of UEG information. In this article, we proposed a novel data-driven framework to leverage the extensive collection of ∼40,000 human transcriptomes to derive a list of UEGs and their corresponding global expression patterns, which offers a valuable resource to further characterize human transcriptome. Our results suggest that about half (12,234; 49.01%) of the human genes are expressed in at least 80% of human transcriptomes, and the median size of the human transcriptome is 16,342 (65.44%). Through gene clustering, we identified a set of UEGs, named LoVarUEGs, that have stable expression across human transcriptomes and can be used as internal reference genes for expression measurement. To further demonstrate the usefulness of this resource, we evaluated the global expression patterns for 16 previously predicted disallowed genes in islets beta cells and found that seven of these genes showed relatively more varied expression patterns, suggesting that the repression of these genes may not be unique to islets beta cells.
Collapse
Affiliation(s)
- Jianlei Gu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai 200040, China; Department of Biostatistics, Yale University, New Haven, CT, 06511, United States
| | - Jiawei Dai
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai 200040, China.
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, 06511, United States.
| |
Collapse
|
9
|
Zougros A, Michelli M, Chatziandreou I, Nonni A, Gakiopoulou H, Michalopoulos NV, Lazaris AC, Saetta AA. mRNA coexpression patterns of Wnt pathway components and their clinicopathological associations in breast and colorectal cancer. Pathol Res Pract 2021; 227:153649. [PMID: 34656913 DOI: 10.1016/j.prp.2021.153649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022]
Abstract
Aberrant Wnt signaling is implicated in carcinogenesis triggering efforts for the development of new therapeutic agents, many of which have entered clinical trials. We extend our previous analysis of WNT3, FZD7, LEF1 expression levels in breast and colorectal cancer including WNT2, FZD4 and β-catenin expression, in an effort to delineate their relative expression levels along with concurrent expression patterns and possible prognostic value. We analyzed 82 breast and 102 colorectal carcinomas for relative mRNA expression levels of the investigated genes by RT-PCR relative quantification with the ΔΔCt method. Statistical analysis was performed in order to determine associations of relative mRNA expression and linear correlations. β-catenin expression was determined by immunochemistry. Regarding breast carcinomas, decreased relative mRNA expression levels of WNT2, FZD4 were found frequently and WNT2 expression was correlated with ER/ PR status (p = 0.045/p = 0.028), whereas β-catenin with grade (p = 0.026). In colorectal carcinomas, increased relative mRNA expression levels of WNT2 and FZD4 were found in 59% and 32% of cases respectively, whereas β-catenin showed decreased mRNA expression levels in 57% of cases and a correlation with pN-category (p = 0.037). Linear correlations were observed between WNT2/FZD4 (R=0.542, p < 0.001), WNT2/β-catenin (R=0.254, p = 0.010), FZD4/β-catenin (R=0.406, p < 0.001) expression and a correlation between mRNA expression and membranous/cytoplasmic β-catenin emerged (p = 0.039/0.046). Our results suggest a possible clinical significance for Wnt pathway gene expression levels in both tumour types. The concurrent expression of the investigated genes as well as the different expression profiles, underlines the complexity of this pathway and the necessity of patient selection in order to maximize the efficacy of drugs targeting Wnt pathway.
Collapse
Affiliation(s)
- Alexandros Zougros
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Maria Michelli
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Ilenia Chatziandreou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Harikleia Gakiopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Nikolaos V Michalopoulos
- Fourth Department of Surgery, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Rimini 1, Haidari, Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Angelica A Saetta
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece.
| |
Collapse
|
10
|
Zhao X, Chen H, Zhu Y, Liu Y, Gao L, Wang H, Ao Y. The selection and identification of compound housekeeping genes for quantitative real-time polymerase chain reaction analysis in rat fetal kidney. J Appl Toxicol 2021; 42:360-370. [PMID: 34374451 DOI: 10.1002/jat.4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 07/05/2021] [Indexed: 11/06/2022]
Abstract
During quantitative real-time polymerase chain reaction (RT-qPCR) data analysis, the selection of optimal housekeeping gene is necessary to ensure the accuracy of results. It is noteworthy that housekeeping genes commonly used in adult studies may not be applicable for fetus. However, the stability analysis of housekeeping gene in fetal kidney has not been reported. This study intends to screen the applicable compound housekeeping genes in rat fetal kidney. In this study, eight housekeeping genes used in kidney studies based on literature reports (GAPDH, ACTB, 18S, HPRT, YWHAZ, HMBS, PPIA, and TBP) were selected as the research object. Their expression levels in the rat fetal kidney in physiological condition and the intrauterine growth retardation (IUGR) model induced by prenatal dexamethasone exposure (PDE) (0.2 mg/kg·day from gestation Days 9 to 20) was measured. Furthermore, these eight housekeeping genes were used to conduct relative quantitative analysis of nephrin expression in the fetal kidney in PDE-induced IUGR model, to compare the influence of choosing different housekeeping gene on data analysis of nephrin expression and to verify the reliability of selected compound housekeeping genes. In this study, stable housekeeping genes of fetal kidney tissues in PDE-induced IUGR model were identified: ACTB, GAPDH, TBP, and HMBS for males; ACTB, YWHAZ, and GAPDH for females. Besides, our results suggest that ACTB + GAPDH were the best compound housekeeping genes for normalization analysis in male fetal kidney studies, and ACTB + YWHAZ in females. This study will provide an experimental evidence basis for the selection of housekeeping genes in the RT-qPCR experiment in renal development toxicology-related models.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Haiyun Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yanan Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Lili Gao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
11
|
Alvelos MI, Szymczak F, Castela Â, Marín-Cañas S, de Souza BM, Gkantounas I, Colli M, Fantuzzi F, Cosentino C, Igoillo-Esteve M, Marselli L, Marchetti P, Cnop M, Eizirik DL. A functional genomic approach to identify reference genes for human pancreatic beta cell real-time quantitative RT-PCR analysis. Islets 2021; 13:51-65. [PMID: 34241569 PMCID: PMC8280887 DOI: 10.1080/19382014.2021.1948282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Exposure of human pancreatic beta cells to pro-inflammatory cytokines or metabolic stressors is used to model events related to type 1 and type 2 diabetes, respectively. Quantitative real-time PCR is commonly used to quantify changes in gene expression. The selection of the most adequate reference gene(s) for gene expression normalization is an important pre-requisite to obtain accurate and reliable results. There are no universally applicable reference genes, and the human beta cell expression of commonly used reference genes can be altered by different stressors. Here we aimed to identify the most stably expressed genes in human beta cells to normalize quantitative real-time PCR gene expression.We used comprehensive RNA-sequencing data from the human pancreatic beta cell line EndoC-βH1, human islets exposed to cytokines or the free fatty acid palmitate in order to identify the most stably expressed genes. Genes were filtered based on their level of significance (adjusted P-value >0.05), fold-change (|fold-change| <1.5) and a coefficient of variation <10%. Candidate reference genes were validated by quantitative real-time PCR in independent samples.We identified a total of 264 genes stably expressed in EndoC-βH1 cells and human islets following cytokines - or palmitate-induced stress, displaying a low coefficient of variation. Validation by quantitative real-time PCR of the top five genes ARF1, CWC15, RAB7A, SIAH1 and VAPA corroborated their expression stability under most of the tested conditions. Further validation in independent samples indicated that the geometric mean of ACTB and VAPA expression can be used as a reliable normalizing factor in human beta cells.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- CONTACT Maria Inês Alvelos ULB Center for Diabetic Research, Medical Faculty, Université Libre De Bruxelles (ULB), Route De Lennik, 808 – CP618, B-1070 – Brussels – Belgium
| | - Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Ângela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Bianca Marmontel de Souza
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Ioannis Gkantounas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Maikel Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Cristina Cosentino
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- Welbio, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
12
|
Peixoto JF, dos Santos DG, Ribeiro L, de Oliveira VSC, Nunes-da-Fonseca R, Nepomuceno-Silva JL. Establishment of suitable reference genes for studying relative gene expression during the transition from trophozoites to cyst-like stages and first evidences of stress-induced expression of meiotic genes in Trichomonas vaginalis. Parasitology 2021; 148:934-946. [PMID: 33827719 PMCID: PMC11010144 DOI: 10.1017/s0031182021000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/07/2022]
Abstract
Trichomonas vaginalis is a parasite of the human urogenital tract and the causative agent of trichomoniasis, a sexually transmitted disease of worldwide importance. This parasite is usually found as a motile flagellated trophozoite. However, when subjected to stressful microenvironmental conditions, T. vaginalis trophozoites can differentiate into peculiar cyst-like stages, which exhibit notable physiological resistance to unfavourable conditions. Although well documented in morphological and proteomic terms, patterns of gene expression changes involved in the cellular differentiation into cyst-like stages are mostly unknown. The real-time reverse transcription polymerase chain reaction (RT-qPCR) is recognized as a sensitive and accurate method for quantification of gene expression, providing fluorescence-based data that are proportional to the amount of a target RNA. However, the reliability of relative expression studies depends on the validation of suitable reference genes, which RNAs exhibit a minimum of variation between tested conditions. Here, we attempt to determine suitable reference genes to be used as controls of invariant expression during cold-induced in vitro differentiation of T. vaginalis trophozoites into cyst-like forms. Furthermore, we reveal that the mRNA from the meiotic recombinase Dmc1 is upregulated during this process, indicating that cryptic sexual events may take place in cyst-like stages of T. vaginalis.
Collapse
Affiliation(s)
- Juliana Figueiredo Peixoto
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Daniele Graças dos Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Lupis Ribeiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Vitor Silva Cândido de Oliveira
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - José Luciano Nepomuceno-Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| |
Collapse
|
13
|
Liu L, Han H, Li Q, Chen M, Zhou S, Wang H, Chen L. Selection and Validation of the Optimal Panel of Reference Genes for RT-qPCR Analysis in the Developing Rat Cartilage. Front Genet 2020; 11:590124. [PMID: 33391345 PMCID: PMC7772434 DOI: 10.3389/fgene.2020.590124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
Real-time fluorescence quantitative PCR (RT-qPCR) is widely used to detect gene expression levels, and selection of reference genes is crucial to the accuracy of RT-qPCR results. Minimum Information for Publication of RT-qPCR Experiments (MIQE) proposes that using the panel of reference genes for RT-qPCR is conducive to obtaining accurate experimental results. However, the selection of the panel of reference genes for RT-qPCR in rat developing cartilage has not been well documented. In this study, we selected eight reference genes commonly used in rat cartilage from literature (GAPDH, ACTB, 18S, GUSB, HPRT1, RPL4, RPL5, and SDHA) as candidates. Then, we screened out the optimal panel of reference genes in female and male rat cartilage of fetus (GD20), juvenile (PW6), and puberty (PW12) in physiology with stability analysis software of genes expression. Finally, we verified the reliability of the selected panel of reference genes with the rat model of intrauterine growth retardation (IUGR) induced by prenatal dexamethasone exposure (PDE). The results showed that the optimal panel of reference genes in cartilage at GD20, PW6, and PW12 in physiology was RPL4 + RPL5, which was consistent with the IUGR model, and there was no significant gender difference. Further, the results of standardizing the target genes showed that RPL4 + RPL5 performed smaller intragroup differences than other panels of reference genes or single reference genes. In conclusion, we found that the optimal panel of reference genes in female and male rat developing cartilage was RPL4 + RPL5, and there was no noticeable difference before and after birth.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Han
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingxian Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siqi Zhou
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
14
|
Asiabi P, Ambroise J, Giachini C, Coccia ME, Bearzatto B, Chiti MC, Dolmans MM, Amorim CA. Assessing and validating housekeeping genes in normal, cancerous, and polycystic human ovaries. J Assist Reprod Genet 2020; 37:2545-2553. [PMID: 32729067 DOI: 10.1007/s10815-020-01901-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Housekeeping genes (HKGs), reference or endogenous control genes, are vital to normalize mRNA levels between different samples. Since using inappropriate HKGs can lead to unreliable results, selecting the proper ones is critical for gene expression studies. To this end, normal human ovaries, as well as those from patients diagnosed with ovarian endometrioid adenocarcinoma (OEA), ovarian mucinous adenocarcinoma (OMA), ovarian serous papillary carcinoma (OSPC), and polycystic ovary syndrome (PCOS), were used to identify the most suitable housekeeping genes. METHODS RNA was isolated from 5 normal human ovaries (52-79 years of age), 9 cancerous ovaries (3 OEA, 3 OMA, 3 OSPC; 49-75 years of age), and 4 PCOS ovaries (18-35 years of age) in women undergoing hysterectomy. cDNA was synthesized using a whole transcriptome kit, and quantitative real-time PCR was performed using TaqMan array 96-well plates containing 32 human endogenous controls in triplicate. RESULTS Among 32 HKGs studied, RPS17, RPL37A, PPIA, 18srRNA, B2M, RPLP0, RPLP30, HPRT1, POP4, CDKN1B, and ELF1 were selected as the best reference genes. CONCLUSIONS This study confirms recent investigations demonstrating that conventional HKGs, such as GAPDH and beta-actin, are not suitable reference genes for specific pathological conditions, emphasizing the importance of determining the best HKGs on a case-by-case basis and according to tissue type. Our results have identified reliable HKGs for studies of normal human ovaries and those affected by OEA, OMA, OSPC, or PCOS, as well as combined studies of control subjects vs. each cancer or PCOS group.
Collapse
Affiliation(s)
- P Asiabi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium
| | - J Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - C Giachini
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - M E Coccia
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - B Bearzatto
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - M C Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium
| | - M M Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium
- Gynecology Department, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - C A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium.
| |
Collapse
|
15
|
Michelli M, Zougros A, Chatziandreou I, Michalopoulos NV, Lazaris AC, Saetta AA. Concurrent Wnt pathway component expression in breast and colorectal cancer. Pathol Res Pract 2020; 216:153005. [PMID: 32534708 DOI: 10.1016/j.prp.2020.153005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Wnt signaling pathway regulates important cell functions such as proliferation and migration and is frequently deregulated in colorectal and breast cancer. Thus, it constitutes an attractive therapeutic target with many drugs being investigated in clinical trials. Eighty-two breast and 102 colorectal carcinomas were analyzed for: relative mRNA expression levels of Wnt pathway components namely Wnt3 ligand, Frizzled 7 receptor and LEF1 transcriptional factor, their concurrent expression patterns and their correlation with clinicopathological features. Regarding breast carcinomas, increased relative mRNA expression levels of WNT3 were found in 54 % of cases whereas decreased relative mRNA expression levels were observed in FZD7 and LEF1 in 82 % and 43 % of cases, respectively. Expression levels of WNT3 were significantly correlated with tumour grade (p = 0.021) in breast cancer. As far as colorectal carcinomas are concerned, increased relative mRNA expression levels of WNT3, FZD7 and LEF1 were found in 60 %, 37 % and 48 % of cases respectively. A statistically significant correlation emerged between LEF1expression levels and pT-category (p = 0.027), suggesting a possible association with tumour aggressiveness in colorectal carcinomas. Statistically significant linear correlations were observed between the expression of WNT3/LEF1 (R = 0.233, p = 0.035) and FZD7/LEF1 (R = 0.359, p = 0.001) in breast carcinomas as well as in colorectal carcinomas (R = 0.536, p < 0.01 and R = 0.210, p = 0.034) respectively. Our results demonstrate a possible clinical significance of Wnt pathway gene expression levels in both tumour types. The distinct expression patterns and simultaneous expression of the investigated genes underscore the complexity of this pathway in breast and colorectal carcinogenesis and highlights the necessity of patient selection with regard to the effectiveness of Wnt pathway inhibitors.
Collapse
Affiliation(s)
- Maria Michelli
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Alexandros Zougros
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Ilenia Chatziandreou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Nikolaos V Michalopoulos
- Fourth Department of Surgery, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Rimini 1, Haidari, Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Angelica A Saetta
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece.
| |
Collapse
|
16
|
Maternal Overweight Downregulates MME (Neprilysin) in Feto-Placental Endothelial Cells and in Cord Blood. Int J Mol Sci 2020; 21:ijms21030834. [PMID: 32012940 PMCID: PMC7037888 DOI: 10.3390/ijms21030834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/25/2022] Open
Abstract
Maternal overweight in pregnancy alters the metabolic environment and generates chronic low-grade inflammation. This affects fetal development and programs the offspring’s health for developing cardiovascular and metabolic disease later in life. MME (membrane-metalloendopeptidase, neprilysin) cleaves various peptides regulating vascular tone. Endothelial cells express membrane-bound and soluble MME. In adults, the metabolic environment of overweight and obesity upregulates endothelial and circulating MME. We here hypothesized that maternal overweight increases MME in the feto-placental endothelium. We used primary feto-placental endothelial cells (fpEC) isolated from placentas after normal vs. overweight pregnancies and determined MME mRNA, protein, and release. Additionally, soluble cord blood MME was analyzed. The effect of oxygen and tumor necrosis factor α (TNFα) on MME protein in fpEC was investigated in vitro. Maternal overweight reduced MME mRNA (−39.9%, p < 0.05), protein (−42.5%, p = 0.02), and MME release from fpEC (−64.7%, p = 0.02). Both cellular and released MME protein negatively correlated with maternal pre-pregnancy BMI. Similarly, cord blood MME was negatively associated with pre-pregnancy BMI (r = −0.42, p = 0.02). However, hypoxia and TNFα, potential negative regulators of MME expression, did not affect MME protein. Reduction of MME protein in fpEC and in cord blood may alter the balance of vasoactive peptides. Our study highlights the fetal susceptibility to maternal metabolism and inflammatory state.
Collapse
|
17
|
Yan L, Toohey-Kurth KL, Crossley BM, Bai J, Glaser AL, Tallmadge RL, Goodman LB. Inhibition monitoring in veterinary molecular testing. J Vet Diagn Invest 2019; 32:758-766. [PMID: 31735123 DOI: 10.1177/1040638719889315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many of the sample matrices typically used for veterinary molecular testing contain inhibitory factors that can potentially reduce analytic sensitivity or produce false-negative results by masking the signal produced by the nucleic acid target. Inclusion of internal controls in PCR-based assays is a valuable strategy not only for monitoring for PCR inhibitors, but also for monitoring nucleic acid extraction efficiency, and for identifying technology errors that may interfere with the ability of an assay to detect the intended target. The Laboratory Technology Committee of the American Association of Veterinary Laboratory Diagnosticians reviewed the different types of internal controls related to monitoring inhibition of PCR-based assays, and provides information here to encourage veterinary diagnostic laboratories to incorporate PCR internal control strategies as a routine quality management component of their molecular testing.
Collapse
Affiliation(s)
- Lifang Yan
- Mississippi Veterinary Research and Diagnostic Laboratory, Mississippi State University, Pearl, MS (Yan).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Toohey-Kurth, Crossley).,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS (Bai).,Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY (Glaser, Tallmadge, Goodman)
| | - Kathy L Toohey-Kurth
- Mississippi Veterinary Research and Diagnostic Laboratory, Mississippi State University, Pearl, MS (Yan).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Toohey-Kurth, Crossley).,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS (Bai).,Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY (Glaser, Tallmadge, Goodman)
| | - Beate M Crossley
- Mississippi Veterinary Research and Diagnostic Laboratory, Mississippi State University, Pearl, MS (Yan).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Toohey-Kurth, Crossley).,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS (Bai).,Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY (Glaser, Tallmadge, Goodman)
| | - Jianfa Bai
- Mississippi Veterinary Research and Diagnostic Laboratory, Mississippi State University, Pearl, MS (Yan).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Toohey-Kurth, Crossley).,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS (Bai).,Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY (Glaser, Tallmadge, Goodman)
| | - Amy L Glaser
- Mississippi Veterinary Research and Diagnostic Laboratory, Mississippi State University, Pearl, MS (Yan).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Toohey-Kurth, Crossley).,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS (Bai).,Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY (Glaser, Tallmadge, Goodman)
| | - Rebecca L Tallmadge
- Mississippi Veterinary Research and Diagnostic Laboratory, Mississippi State University, Pearl, MS (Yan).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Toohey-Kurth, Crossley).,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS (Bai).,Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY (Glaser, Tallmadge, Goodman)
| | - Laura B Goodman
- Mississippi Veterinary Research and Diagnostic Laboratory, Mississippi State University, Pearl, MS (Yan).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Toohey-Kurth, Crossley).,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS (Bai).,Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY (Glaser, Tallmadge, Goodman)
| |
Collapse
|
18
|
Validation of Reference Genes for Normalization of Relative qRT-PCR Studies in Papillary Thyroid Carcinoma. Sci Rep 2019; 9:15241. [PMID: 31645594 PMCID: PMC6811563 DOI: 10.1038/s41598-019-49247-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) in thyroid tumors require accurate data normalization, however, there are no sufficient studies addressing the suitable reference genes for gene expression analysis in malignant and normal thyroid tissue specimens. The purpose of this study was to identify valid internal control genes for normalization of relative qRT-PCR studies in human papillary thyroid carcinoma tissue samples. The expression characteristics of 12 candidate reference genes (GAPDH, ACTB, HPRT1, TBP, B2M, PPIA, 18SrRNA, HMBS, GUSB, PGK1, RPLP0, and PGM1) were assessed by qRT-PCR in 45 thyroid tissue samples (15 papillary thyroid carcinoma, 15 paired normal tissues and 15 multinodular goiters). These twelve candidate reference genes were selected by a systematic literature search. GeNorm, NormFinder, and BestKeeper statistical algorithms were applied to determine the most stable reference genes. The three algorithms were in agreement in identifying GUSB and HPRT1 as the most stably expressed genes in all thyroid tumors investigated. According to the NormFinder software, the pair of genes including ‘GUSB and HPRT1’ or ‘GUSB and HMBS’ or ‘GUSB and PGM1’ were the best combinations for selection of pair reference genes. The optimal number of genes required for reliable normalization of qPCR data in thyroid tissues would be three according to calculations made by GeNorm algorithm. These results suggest that GUSB and HPRT1 are promising reference genes for normalization of relative qRT-PCR studies in papillary thyroid carcinoma.
Collapse
|
19
|
Bertoni APS, Iser IC, de Campos RP, Wink MR. Normalization in Human Glioma Tissue. Methods Mol Biol 2019; 2065:175-190. [PMID: 31578695 DOI: 10.1007/978-1-4939-9833-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
For tissues obtained from glioma samples with/without nonneoplastic brain there is no consensus for universal reference gene but there are some potential genes that might have good stability, under certain conditions. Considering all points described in this work, the care with tissue collection, until gene amplification, directly impacts on the reliable characterization of its mRNA levels. Moreover, it is clear the importance of selecting the most appropriate reference genes for each experimental situation, to allow the accurate normalization of target genes, especially for genes that are subtly regulated.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Isabele Cristiana Iser
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Rafael Paschoal de Campos
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosangela Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
20
|
De Souza MF, Kuasne H, Barros-Filho MDC, Cilião HL, Marchi FA, Fuganti PE, Rogatto SR, Cólus IMDS. Circulating mRNA signature as a marker for high-risk prostate cancer. Carcinogenesis 2019; 41:139-145. [DOI: 10.1093/carcin/bgz129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Abstract
Prostate cancer (PCa) is the second most common cancer in men. The indolent course of the disease makes the treatment choice a challenge for physicians and patients. In this study, a minimally invasive method was used to evaluate the potential of molecular markers in identifying patients with aggressive disease. Cell-free plasma samples from 60 PCa patients collected before radical prostatectomy were used to evaluate the levels of expression of eight genes (AMACR, BCL2, NKX3-1, GOLM1, OR51E2, PCA3, SIM2 and TRPM8) by quantitative real-time PCR. Overexpression of AMACR, GOLM1, TRPM8 and NKX3-1 genes was significantly associated with aggressive disease characteristics, including extracapsular extension, tumor stage and vesicular seminal invasion. A trio of genes (GOLM1, NKX3-1 and TRPM8) was able to identify high-risk PCa cases (85% of sensitivity and 58% of specificity), yielding a better overall performance compared with the biopsy Gleason score and prostate-specific antigen, routinely used in the clinical practice. Although more studies are required, these circulating markers have the potential to be used as an additional test to improve the diagnosis and treatment decision of high-risk PCa patients.
Collapse
Affiliation(s)
| | - Hellen Kuasne
- International Research Center—CIPE—A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | | | | | | | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | | |
Collapse
|
21
|
Jo J, Choi S, Oh J, Lee SG, Choi SY, Kim KK, Park C. Conventionally used reference genes are not outstanding for normalization of gene expression in human cancer research. BMC Bioinformatics 2019; 20:245. [PMID: 31138119 PMCID: PMC6538551 DOI: 10.1186/s12859-019-2809-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The selection of reference genes is essential for quantifying gene expression. Theoretically they should be expressed stably and not regulated by experimental or pathological conditions. However, identification and validation of reference genes for human cancer research are still being regarded as a critical point, because cancerous tissues often represent genetic instability and heterogeneity. Recent pan-cancer studies have demonstrated the importance of the appropriate selection of reference genes for use as internal controls for the normalization of gene expression; however, no stably expressed, consensus reference genes valid for a range of different human cancers have yet been identified. RESULTS In the present study, we used large-scale cancer gene expression datasets from The Cancer Genome Atlas (TCGA) database, which contains 10,028 (9,364 cancerous and 664 normal) samples from 32 different cancer types, to confirm that the expression of the most commonly used reference genes is not consistent across a range of cancer types. Furthermore, we identified 38 novel candidate reference genes for the normalization of gene expression, independent of cancer type. These genes were found to be highly expressed and highly connected to relevant gene networks, and to be enriched in transcription-translation regulation processes. The expression stability of the newly identified reference genes across 29 cancerous and matched normal tissues were validated via quantitative reverse transcription PCR (RT-qPCR). CONCLUSIONS We reveal that most commonly used reference genes in current cancer studies cannot be appropriate to serve as representative control genes for quantifying cancer-related gene expression levels, and propose in this study three potential reference genes (HNRNPL, PCBP1, and RER1) to be the most stably expressed across various cancerous and normal human tissues.
Collapse
Affiliation(s)
- Jihoon Jo
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Ku, GwangJu, 61186, Republic of Korea
| | - Sunkyung Choi
- Department of Biochemistry, Chungnam National University, 99 Daehak-Ro, Yuseong-Ku, Daejeon, 34134, Republic of Korea
| | - Jooseong Oh
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Ku, GwangJu, 61186, Republic of Korea
| | - Sung-Gwon Lee
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Ku, GwangJu, 61186, Republic of Korea
| | - Song Yi Choi
- Department of Pathology, Chungnam National University, 282 Munhwa-Ro, Jung-Ku, Daejeon, 35015, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, 99 Daehak-Ro, Yuseong-Ku, Daejeon, 34134, Republic of Korea.
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Ku, GwangJu, 61186, Republic of Korea.
| |
Collapse
|
22
|
Bozhenko VK, Stanojevic US, Trotsenko ID, Zakharenko MV, Kiseleva YY, Solodkiy VA. [Comparison of matrix proteinase mRNA expression in morphologically normal, neoplastic, and metastatic colon tissue and colon biopsies from healthy donors]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:46-52. [PMID: 29460834 DOI: 10.18097/pbmc20186401046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Matrix metalloproteinases (MMPs) responsible for the extracellular matrix remodeling, the activation of various growth factors, and angiogenesis play an important role in the colorectal cancer (CRC) development. In the present work the comparative analysis of MMP-7, -8, -9, and -11 mRNA as well mRNA of the Ki-67 proliferation marker in tissue samples obtained from CRC patients and healthy individuals. Employing the real time PCR method the expression levels of several MMPs (MMP-7, -8, -9, and -11) and cell proliferation marker, Ki-67, were simultaneously measured in 256 tissue samples obtained from 112 patients with CRC: 112 samples of the primary tumor (CRC), 112 samples of the most distant border of morphologically normal colonic mucosa (MNT), 16 samples of liver metastases) and from 16 healthy volunteers who underwent colonoscopy and biopsy. The expression of both MMPs studied and Ki-67 was found to be elevated in CRC primary tumors and liver metastases compared with the normal mucosa. CRC tumor and metastatic cells exhibited similar proliferative activity. The metastases are characterized by the highest cross-correlation of MMPs among tissue types tested. For the first time it was shown that normal mucosa from healthy individuals and CRC patients varied in the MMP-8 expression level. They also had dissimilar MMP correlation patterns thus suggesting that epithelial cells adjusted to CRC tumor differ from mucosal epithelial cells of healthy individuals.
Collapse
Affiliation(s)
- V K Bozhenko
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - U S Stanojevic
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - I D Trotsenko
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia
| | - M V Zakharenko
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - Y Y Kiseleva
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - V A Solodkiy
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| |
Collapse
|
23
|
Nielsen S, Bassler N, Grzanka L, Swakon J, Olko P, Andreassen CN, Alsner J, Sørensen BS. Optimal reference genes for normalization of qPCR gene expression data from proton and photon irradiated dermal fibroblasts. Sci Rep 2018; 8:12688. [PMID: 30139945 PMCID: PMC6107545 DOI: 10.1038/s41598-018-30946-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/08/2018] [Indexed: 12/29/2022] Open
Abstract
The transcriptional response of cells exposed to proton radiation is not equivalent to the response induced by traditional photon beams. Changes in cellular signalling is most commonly studied using the method Quantitative polymerase chain reaction (qPCR). Stable reference genes must be used to accurately quantify target transcript expression. The study aim was to identify suitable reference genes for normalisation of gene expression levels in normal dermal fibroblasts irradiated with either proton or photon beams. The online tool RefFinder was used to analyse and identify the most stably expressed genes from a panel of 22 gene candidates. To assess the reliability of the identified reference genes, a selection of the most and least stable reference genes was used to normalise target transcripts of interest. Fold change levels varied considerably depending on the used reference gene. The top ranked genes IPO8, PUM1, MRPL19 and PSMC4 produced highly similar target gene expression, while expression using the worst ranked genes, TFRC and HPRT1, was clearly modified due to reference gene instability.
Collapse
Affiliation(s)
- Steffen Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Leszek Grzanka
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Jan Swakon
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Pawel Olko
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
The Expression of Formyl Peptide Receptor 1 is Correlated with Tumor Invasion of Human Colorectal Cancer. Sci Rep 2017; 7:5918. [PMID: 28724995 PMCID: PMC5517416 DOI: 10.1038/s41598-017-06368-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/12/2017] [Indexed: 12/18/2022] Open
Abstract
Formyl peptide receptors (FPRs) are G protein-coupled chemoattractant receptors expressed mainly in phagocytic leukocytes. High expression of FPRs has also been detected in several cancers but the functions of FPR1 in tumor invasion and metastasis is poorly understood. In this study, we investigated the expression of FPRs in primary human colorectal cancer (CRC) and analyzed the association of FPRs expression with clinicopathological parameters. The levels of FPRs mRNA, especially those of FPR1, were significantly higher in colorectal tumors than in distant normal tissues and adjacent non-tumor tissues. FPR1 mRNA expression was also associated with tumor serosal infiltration. FPR1 protein expression was both in the colorectal epitheliums and tumor infiltrating neutrophils/macrophages. Furthermore, the functions of FPR1 in tumor invasion and tissue repair were investigated using the CRC cell lines SW480 and HT29. Higher cell surface expression of FPR1 is associated with significantly increased migration in SW480 cells compared with HT29 cells that have less FPR1 membrane expression. Finally, genetic deletion of fpr1 increased the survival rate of the resulting knockout mice compared with wild type littermates in a mouse model of colitis-associated colorectal cancer. Our data demonstrate that FPR1 may play an important role in tumor cell invasion in CRC patients.
Collapse
|
25
|
Tan SC, Ismail MP, Duski DR, Othman NH, Bhavaraju VMK, Ankathil R. Identification of Optimal Reference Genes for Normalization of RT-qPCR Data in Cancerous and Non-Cancerous Tissues of Human Uterine Cervix. Cancer Invest 2017; 35:163-173. [DOI: 10.1080/07357907.2017.1278767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shing Cheng Tan
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd Pazudin Ismail
- Department of Obstetrics and Gynecology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Daniel Roza Duski
- Department of Obstetrics and Gynecology, Hospital Sultan Ismail, Johor, Malaysia
| | - Nor Hayati Othman
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Venkata Murali Krishna Bhavaraju
- Department of Nuclear Medicine, Radiotherapy and Oncology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|