1
|
Mou K, Wang H, Zhu S, Luo J, Wang J, Peng L, Lei Y, Zhang Y, Huang S, Zhao H, Li G, Xiang L, Luo Y. Comprehensive analysis of the prognostic and immunological role of cavins in non-small cell lung cancer. BMC Cancer 2024; 24:1525. [PMID: 39695458 DOI: 10.1186/s12885-024-13280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Caveolae, specialized and dynamic subdomains of the plasma membrane, have a crucial role in diverse cellular functions encompassing endocytosis, signal transduction, mechanosensation, lipid storage, and metabolism. Cavin family proteins are indispensable for caveolar formation and function. An increasing number of studies have found that cavins are involved in tumor growth, invasion, metastasis, and angiogenesis and may have dual roles in the regulation of cancer. However, the expression and prognostic value of cavins in non-small cell lung cancer (NSCLC) remain unexplored. In this study, the expression, survival data, immune infiltration, and functional enrichment of cavins in patients with NSCLC were investigated using multiple databases. Furthermore, different subtypes of cavin-binding proteins were identified through protein-protein interaction networks and k-means clustering. The results showed that the expression of Cavin-1-3 in NSCLC tissues was significantly lower than that in normal tissues, and that Cavin-2 is the major subtype of cavin that inhibits NSCLC progression. It regulates downstream signaling pathways, modulates the infiltration of immune cells and influences the prognosis of NSCLC. Related experiments also confirmed that Cavin-2 promotes the proliferation and metastasis of NSCLC cells. These findings suggest that cavins and their binding proteins may be novel biomarkers for NSCLC prognosis and immunotherapy, providing new treatment options for NSCLC.
Collapse
Affiliation(s)
- Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Siqi Zhu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yunke Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shike Huang
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Huarong Zhao
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Gang Li
- Department of Oncology, Luzhou People's Hospital, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Longo M, Bishnu A, Risiglione P, Montava-Garriga L, Cuenco J, Sakamoto K, MacKintosh C, Ganley IG. Opposing roles for AMPK in regulating distinct mitophagy pathways. Mol Cell 2024; 84:4350-4367.e9. [PMID: 39532100 DOI: 10.1016/j.molcel.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Mitophagy degrades damaged mitochondria, but we show here that it can also target functional mitochondria. This latter scenario occurs during programmed mitophagy and involves the mitophagy receptors NIX and BNIP3. Although AMP-activated protein kinase (AMPK), the energy-sensing protein kinase, can influence damaged-induced mitophagy, its role in programmed mitophagy is unclear. We found that AMPK directly inhibits NIX-dependent mitophagy by triggering 14-3-3-mediated sequestration of ULK1, via ULK1 phosphorylation at two sites: Ser556 and an additional identified site, Ser694. By contrast, AMPK activation increases Parkin phosphorylation and enhances the rate of depolarization-induced mitophagy, independently of ULK1. We show that this happens both in cultured cells and tissues in vivo, using the mito-QC mouse model. Our work unveils a mechanism whereby AMPK activation downregulates mitophagy of functional mitochondria but enhances that of dysfunctional/damaged ones.
Collapse
Affiliation(s)
- Marianna Longo
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Aniketh Bishnu
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Pierpaolo Risiglione
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Lambert Montava-Garriga
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Joyceline Cuenco
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Carol MacKintosh
- Division of Molecular Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, Scotland.
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland.
| |
Collapse
|
3
|
Rider MH, Vertommen D, Johanns M. How mass spectrometry can be exploited to study AMPK. Essays Biochem 2024; 68:283-294. [PMID: 39056150 DOI: 10.1042/ebc20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of metabolism and a recognised target for the treatment of metabolic diseases such as Type 2 diabetes (T2D). Here, we review how mass spectrometry (MS) can be used to study short-term control by AMPK via protein phosphorylation and long-term control due to changes in protein expression. We discuss how MS can quantify AMPK subunit levels in tissues from different species. We propose hydrogen-deuterium exchange (HDX)-MS to investigate molecular mechanisms of AMPK activation and thermoproteomic profiling (TPP) to assess off-target effects of pharmacological AMPK activators/inhibitors. Lastly, because large MS data sets are generated, we consider different approaches that can be used for their interpretation.
Collapse
Affiliation(s)
- Mark H Rider
- Protein Phosphorylation (PHOS) laboratory, Université catholique de Louvain and de Duve Institute, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Didier Vertommen
- Protein Phosphorylation (PHOS) laboratory, Université catholique de Louvain and de Duve Institute, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Manuel Johanns
- Protein Phosphorylation (PHOS) laboratory, Université catholique de Louvain and de Duve Institute, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| |
Collapse
|
4
|
Caba C, Black M, Liu Y, DaDalt AA, Mallare J, Fan L, Harding RJ, Wang YX, Vacratsis PO, Huang R, Zhuang Z, Tong Y. Autoinhibition of ubiquitin-specific protease 8: Insights into domain interactions and mechanisms of regulation. J Biol Chem 2024; 300:107727. [PMID: 39214302 PMCID: PMC11467669 DOI: 10.1016/j.jbc.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitin-specific proteases (USPs) are a family of multi-domain deubiquitinases (DUBs) with variable architectures, some containing regulatory auxiliary domains. Among the USP family, all occurrences of intramolecular regulation presently known are autoactivating. USP8 remains the sole exception as its putative WW-like domain, conserved only in vertebrate orthologs, is autoinhibitory. Here, we present a comprehensive structure-function analysis describing the autoinhibition of USP8 and provide evidence of the physical interaction between the WW-like and catalytic domains. The solution structure of full-length USP8 reveals an extended, monomeric conformation. Coupled with DUB assays, the WW-like domain is confirmed to be the minimal autoinhibitory unit. Strikingly, autoinhibition is only observed with the WW-like domain in cis and depends on the length of the linker tethering it to the catalytic domain. Modeling of the WW:CD complex structure and mutagenesis of interface residues suggests a novel binding site in the S1 pocket. To investigate the interplay between phosphorylation and USP8 autoinhibition, we identify AMP-activated protein kinase as a highly selective modifier of S718 in the 14-3-3 binding motif. We show that 14-3-3γ binding to phosphorylated USP8 potentiates autoinhibition in a WW-like domain-dependent manner by stabilizing an autoinhibited conformation. These findings provide mechanistic details on the autoregulation of USP8 and shed light on its evolutionary significance.
Collapse
Affiliation(s)
- Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Megan Black
- Department of Chemistry, University of Guelph, Guelph, Canada
| | - Yujue Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Ashley A DaDalt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada; Department of Biology, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Josh Mallare
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Core Facility, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Yun-Xing Wang
- Center for Structural Biology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | | | - Rui Huang
- Department of Chemistry, University of Guelph, Guelph, Canada
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada.
| |
Collapse
|
5
|
Kazyken D, Dame SG, Wang C, Wadley M, Fingar DC. Unexpected roles for AMPK in the suppression of autophagy and the reactivation of MTORC1 signaling during prolonged amino acid deprivation. Autophagy 2024; 20:2017-2040. [PMID: 38744665 PMCID: PMC11346535 DOI: 10.1080/15548627.2024.2355074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
AMPK promotes catabolic and suppresses anabolic cell metabolism to promote cell survival during energetic stress, in part by inhibiting MTORC1, an anabolic kinase requiring sufficient levels of amino acids. We found that cells lacking AMPK displayed increased apoptotic cell death during nutrient stress caused by prolonged amino acid deprivation. We presumed that impaired macroautophagy/autophagy explained this phenotype, as a prevailing view posits that AMPK initiates autophagy (often a pro-survival response) through phosphorylation of ULK1. Unexpectedly, however, autophagy remained unimpaired in cells lacking AMPK, as monitored by several autophagic readouts in several cell lines. More surprisingly, the absence of AMPK increased ULK1 signaling and MAP1LC3B/LC3B lipidation during amino acid deprivation while AMPK-mediated phosphorylation of ULK1 S555 (a site proposed to initiate autophagy) decreased upon amino acid withdrawal or pharmacological MTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted autophagy induced by amino acid withdrawal. These results demonstrate that AMPK activation and glucose deprivation suppress autophagy. As AMPK controlled autophagy in an unexpected direction, we examined how AMPK controls MTORC1 signaling. Paradoxically, we observed impaired reactivation of MTORC1 in cells lacking AMPK upon prolonged amino acid deprivation. Together these results oppose established views that AMPK promotes autophagy and inhibits MTORC1 universally. Moreover, they reveal unexpected roles for AMPK in the suppression of autophagy and the support of MTORC1 signaling in the context of prolonged amino acid deprivation. These findings prompt a reevaluation of how AMPK and its control of autophagy and MTORC1 affect health and disease.
Collapse
Affiliation(s)
- Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sydney G. Dame
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claudia Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maxwell Wadley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Diane C. Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Barnaba C, Broadbent DG, Kaminsky EG, Perez GI, Schmidt JC. AMPK regulates phagophore-to-autophagosome maturation. J Cell Biol 2024; 223:e202309145. [PMID: 38775785 PMCID: PMC11110907 DOI: 10.1083/jcb.202309145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/28/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
Autophagy is an important metabolic pathway that can non-selectively recycle cellular material or lead to targeted degradation of protein aggregates or damaged organelles. Autophagosome formation starts with autophagy factors accumulating on lipid vesicles containing ATG9. These phagophores attach to donor membranes, expand via ATG2-mediated lipid transfer, capture cargo, and mature into autophagosomes, ultimately fusing with lysosomes for their degradation. Autophagy can be activated by nutrient stress, for example, by a reduction in the cellular levels of amino acids. In contrast, how autophagy is regulated by low cellular ATP levels via the AMP-activated protein kinase (AMPK), an important therapeutic target, is less clear. Using live-cell imaging and an automated image analysis pipeline, we systematically dissect how nutrient starvation regulates autophagosome biogenesis. We demonstrate that glucose starvation downregulates autophagosome maturation by AMPK-mediated inhibition of phagophore tethering to donor membrane. Our results clarify AMPKs regulatory role in autophagy and highlight its potential as a therapeutic target to reduce autophagy.
Collapse
Affiliation(s)
- Carlo Barnaba
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - David G. Broadbent
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Emily G. Kaminsky
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Schneider C, Hilbert J, Genevaux F, Höfer S, Krauß L, Schicktanz F, Contreras CT, Jansari S, Papargyriou A, Richter T, Alfayomy AM, Falcomatà C, Schneeweis C, Orben F, Öllinger R, Wegwitz F, Boshnakovska A, Rehling P, Müller D, Ströbel P, Ellenrieder V, Conradi L, Hessmann E, Ghadimi M, Grade M, Wirth M, Steiger K, Rad R, Kuster B, Sippl W, Reichert M, Saur D, Schneider G. A Novel AMPK Inhibitor Sensitizes Pancreatic Cancer Cells to Ferroptosis Induction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307695. [PMID: 38885414 PMCID: PMC11336956 DOI: 10.1002/advs.202307695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/12/2024] [Indexed: 06/20/2024]
Abstract
Cancer cells must develop strategies to adapt to the dynamically changing stresses caused by intrinsic or extrinsic processes, or therapeutic agents. Metabolic adaptability is crucial to mitigate such challenges. Considering metabolism as a central node of adaptability, it is focused on an energy sensor, the AMP-activated protein kinase (AMPK). In a subtype of pancreatic ductal adenocarcinoma (PDAC) elevated AMPK expression and phosphorylation is identified. Using drug repurposing that combined screening experiments and chemoproteomic affinity profiling, it is identified and characterized PF-3758309, initially developed as an inhibitor of PAK4, as an AMPK inhibitor. PF-3758309 shows activity in pre-clinical PDAC models, including primary patient-derived organoids. Genetic loss-of-function experiments showed that AMPK limits the induction of ferroptosis, and consequently, PF-3758309 treatment restores the sensitivity toward ferroptosis inducers. The work established a chemical scaffold for the development of specific AMPK-targeting compounds and deciphered the framework for the development of AMPK inhibitor-based combination therapies tailored for PDAC.
Collapse
Affiliation(s)
- Carolin Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Jorina Hilbert
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Franziska Genevaux
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
| | - Stefanie Höfer
- Proteomics and BioanalyticsDepartment of Molecular Life SciencesSchool of Life SciencesTechnical University of Munich85354FreisingGermany
| | - Lukas Krauß
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Felix Schicktanz
- Institute of PathologyTechnical University of Munich81675MunichGermany
| | - Constanza Tapia Contreras
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Shaishavi Jansari
- Department of Gynecology and ObstetricsUniversity Medical Center GöttingenGöttingenGermany
| | - Aristeidis Papargyriou
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Institute of Stem Cell ResearchHelmholtz Zentrum MuenchenD‐85764NeuherbergGermany
- Translational Pancreatic Research Cancer CenterMedical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Center for Organoid Systems (COS)Technical University of Munich85747GarchingGermany
| | - Thorsten Richter
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Abdallah M. Alfayomy
- Department of Medicinal ChemistryInstitute of PharmacyMartin‐Luther University Halle‐Wittenberg06120Halle (Saale)Germany
- Department of Pharmaceutical ChemistryAl‐Azhar UniversityAssiut71524Egypt
| | - Chiara Falcomatà
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Christian Schneeweis
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
| | - Felix Orben
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
| | - Ruppert Öllinger
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of Munich81675MunichGermany
| | - Florian Wegwitz
- Department of Gynecology and ObstetricsUniversity Medical Center GöttingenGöttingenGermany
| | - Angela Boshnakovska
- Department of Cellular BiochemistryUniversity Medical Center37073GöttingenGermany
| | - Peter Rehling
- Department of Cellular BiochemistryUniversity Medical Center37073GöttingenGermany
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Denise Müller
- Institute of PathologyUniversity Medical Center37075GöttingenGermany
| | - Philipp Ströbel
- Institute of PathologyUniversity Medical Center37075GöttingenGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Volker Ellenrieder
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medical Center Göttingen37075GöttingenGermany
| | - Lena Conradi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Elisabeth Hessmann
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medical Center Göttingen37075GöttingenGermany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Marian Grade
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Matthias Wirth
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Department of HematologyOncology and Cancer ImmunologyCampus Benjamin FranklinCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin12203BerlinGermany
| | - Katja Steiger
- Institute of PathologyTechnical University of Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Bernhard Kuster
- Proteomics and BioanalyticsDepartment of Molecular Life SciencesSchool of Life SciencesTechnical University of Munich85354FreisingGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Wolfgang Sippl
- Department of Medicinal ChemistryInstitute of PharmacyMartin‐Luther University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Translational Pancreatic Research Cancer CenterMedical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Center for Organoid Systems (COS)Technical University of Munich85747GarchingGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
- Center for Protein Assemblies (CPA)Technical University of Munich85747GarchingGermany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Günter Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| |
Collapse
|
8
|
Jia J, Ji W, Saliba AN, Csizmar CM, Ye K, Hu L, Peterson KL, Schneider PA, Meng XW, Venkatachalam A, Patnaik MM, Webster JA, Smith BD, Ghiaur G, Wu X, Zhong J, Pandey A, Flatten KS, Deng Q, Wang H, Kaufmann SH, Dai H. AMPK inhibition sensitizes acute leukemia cells to BH3 mimetic-induced cell death. Cell Death Differ 2024; 31:405-416. [PMID: 38538744 PMCID: PMC11043078 DOI: 10.1038/s41418-024-01283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.
Collapse
Affiliation(s)
- Jia Jia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wenbo Ji
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Antoine N Saliba
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Clifford M Csizmar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lei Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Kevin L Peterson
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Paula A Schneider
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - X Wei Meng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Annapoorna Venkatachalam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jonathan A Webster
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - B Douglas Smith
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Gabriel Ghiaur
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Xinyan Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Manipal Academy of Higher Education, Manipal, 576104, Kamataka, India
| | - Karen S Flatten
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qingmei Deng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Scott H Kaufmann
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Kazyken D, Dame SG, Wang C, Wadley M, Fingar DC. Unexpected roles for AMPK in the suppression of autophagy and the reactivation of mTORC1 signaling during prolonged amino acid deprivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572593. [PMID: 38187762 PMCID: PMC10769220 DOI: 10.1101/2023.12.20.572593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
AMPK promotes catabolic and suppresses anabolic cell metabolism to promote cell survival during energetic stress, in part by inhibiting mTORC1, an anabolic kinase requiring sufficient levels of amino acids. We found that cells lacking AMPK displayed increased apoptotic cell death during nutrient stress caused by prolonged amino acid deprivation. We presumed that impaired autophagy explained this phenotype, as a prevailing view posits that AMPK initiates autophagy (often a pro-survival response) through phosphorylation of ULK1. Unexpectedly, however, autophagy remained unimpaired in cells lacking AMPK, as monitored by several autophagic readouts in several cell lines. More surprisingly, the absence of AMPK increased ULK1 signaling and LC3b lipidation during amino acid deprivation while AMPK-mediated phosphorylation of ULK1 S555 (a site proposed to initiate autophagy) decreased upon amino acid withdrawal or pharmacological mTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted autophagy induced by amino acid withdrawal. These results demonstrate that AMPK activation and glucose deprivation suppress autophagy. As AMPK controlled autophagy in an unexpected direction, we examined how AMPK controls mTORC1 signaling. Paradoxically, we observed impaired reactivation of mTORC1 in cells lacking AMPK upon prolonged amino acid deprivation. Together these results oppose established views that AMPK promotes autophagy and inhibits mTORC1 universally. Moreover, they reveal unexpected roles for AMPK in the suppression of autophagy and the support of mTORC1 signaling in the context of prolonged amino acid deprivation. These findings prompt a reevaluation of how AMPK and its control of autophagy and mTORC1 impact health and disease.
Collapse
|
10
|
Hawley SA, Russell FM, Ross FA, Hardie DG. BAY-3827 and SBI-0206965: Potent AMPK Inhibitors That Paradoxically Increase Thr172 Phosphorylation. Int J Mol Sci 2023; 25:453. [PMID: 38203624 PMCID: PMC10778976 DOI: 10.3390/ijms25010453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is the central component of a signalling pathway that senses energy stress and triggers a metabolic switch away from anabolic processes and towards catabolic processes. There has been a prolonged focus in the pharmaceutical industry on the development of AMPK-activating drugs for the treatment of metabolic disorders such as Type 2 diabetes and non-alcoholic fatty liver disease. However, recent findings suggest that AMPK inhibitors might be efficacious for treating certain cancers, especially lung adenocarcinomas, in which the PRKAA1 gene (encoding the α1 catalytic subunit isoform of AMPK) is often amplified. Here, we study two potent AMPK inhibitors, BAY-3827 and SBI-0206965. Despite not being closely related structurally, the treatment of cells with either drug unexpectedly caused increases in AMPK phosphorylation at the activating site, Thr172, even though the phosphorylation of several downstream targets in different subcellular compartments was completely inhibited. Surprisingly, the two inhibitors appear to promote Thr172 phosphorylation by different mechanisms: BAY-3827 primarily protects against Thr172 dephosphorylation, while SBI-0206965 also promotes phosphorylation by LKB1 at low concentrations, while increasing cellular AMP:ATP ratios at higher concentrations. Due to its greater potency and fewer off-target effects, BAY-3827 is now the inhibitor of choice for cell studies, although its low bioavailability may limit its use in vivo.
Collapse
Affiliation(s)
| | | | | | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; (S.A.H.); (F.A.R.)
| |
Collapse
|
11
|
Barnaba C, Broadbent DG, Perez GI, Schmidt JC. AMPK Regulates Phagophore-to-Autophagosome Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559981. [PMID: 37808644 PMCID: PMC10557706 DOI: 10.1101/2023.09.28.559981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Autophagy is an important metabolic pathway that can non-selectively recycle cellular material or lead to targeted degradation of protein aggregates or damaged organelles. Autophagosome formation starts with autophagy factors accumulating on lipid vesicles containing ATG9. These phagophores attach to donor membranes, expand via ATG2-mediated lipid transfer, capture cargo, and mature into autophagosomes, ultimately fusing with lysosomes for their degradation. Autophagy can be activated by nutrient stress, for example by a reduction in the cellular levels of amino acids. In contrast, how autophagy is regulated by low cellular ATP levels via the AMP-activated protein kinase (AMPK), an important therapeutic target, is less clear. Using live-cell imaging and an automated image analysis pipeline, we systematically dissect how nutrient starvation regulates autophagosome biogenesis. We demonstrate that glucose starvation downregulates autophagosome maturation by AMPK mediated inhibition of phagophores tethering to donor membranes. Our results clarify AMPK's regulatory role in autophagy and highlight its potential as a therapeutic target to reduce autophagy.
Collapse
Affiliation(s)
- Carlo Barnaba
- Institute for Quantitative Health Science and Engineering
| | - David G. Broadbent
- Institute for Quantitative Health Science and Engineering
- College of Osteopathic Medicine
- Department of Physiology
| | | | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, USA
| |
Collapse
|
12
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
13
|
Ouyang Q, Chen Q, Ke S, Ding L, Yang X, Rong P, Feng W, Cao Y, Wang Q, Li M, Su S, Wei W, Liu M, Liu J, Zhang X, Li JZ, Wang HY, Chen S. Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle. Dev Cell 2023; 58:289-305.e6. [PMID: 36800997 DOI: 10.1016/j.devcel.2023.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/17/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Dynamic interaction between lipid droplets (LDs) and mitochondria controls the mobilization of long-chain fatty acids (LCFAs) from LDs for mitochondrial β-oxidation in skeletal muscle in response to energy stress. However, little is known about the composition and regulation of the tethering complex mediating LD-mitochondrion interaction. Here, we identify Rab8a as a mitochondrial receptor for LDs forming the tethering complex with the LD-associated PLIN5 in skeletal muscle. In rat L6 skeletal muscle cells, the energy sensor AMPK increases the GTP-bound active Rab8a that promotes LD-mitochondrion interaction through binding to PLIN5 upon starvation. The assembly of the Rab8a-PLIN5 tethering complex also recruits the adipose triglyceride lipase (ATGL), which couples LCFA mobilization from LDs with its transfer into mitochondria for β-oxidation. Rab8a deficiency impairs fatty acid utilization and decreases endurance during exercise in a mouse model. These findings may help to elucidate the regulatory mechanisms underlying the beneficial effects of exercise on lipid homeostasis control.
Collapse
Affiliation(s)
- Qian Ouyang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China; Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China; Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Shunyuan Ke
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Longfei Ding
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Xinyu Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Ping Rong
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Weikuan Feng
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Ye Cao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Qi Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Min Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Shu Su
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Wen Wei
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Minjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jin Liu
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hong-Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China; Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China; Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| |
Collapse
|
14
|
Raith F, O’Donovan DH, Lemos C, Politz O, Haendler B. Addressing the Reciprocal Crosstalk between the AR and the PI3K/AKT/mTOR Signaling Pathways for Prostate Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032289. [PMID: 36768610 PMCID: PMC9917236 DOI: 10.3390/ijms24032289] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The reduction in androgen synthesis and the blockade of the androgen receptor (AR) function by chemical castration and AR signaling inhibitors represent the main treatment lines for the initial stages of prostate cancer. Unfortunately, resistance mechanisms ultimately develop due to alterations in the AR pathway, such as gene amplification or mutations, and also the emergence of alternative pathways that render the tumor less or, more rarely, completely independent of androgen activation. An essential oncogenic axis activated in prostate cancer is the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, as evidenced by the frequent alterations of the negative regulator phosphatase and tensin homolog (PTEN) and by the activating mutations in PI3K subunits. Additionally, crosstalk and reciprocal feedback loops between androgen signaling and the PI3K/AKT/mTOR signaling cascade that activate pro-survival signals and play an essential role in disease recurrence and progression have been evidenced. Inhibitors addressing different players of the PI3K/AKT/mTOR pathway have been evaluated in the clinic. Only a limited benefit has been reported in prostate cancer up to now due to the associated side effects, so novel combination approaches and biomarkers predictive of patient response are urgently needed. Here, we reviewed recent data on the crosstalk between AR signaling and the PI3K/AKT/mTOR pathway, the selective inhibitors identified, and the most advanced clinical studies, with a focus on combination treatments. A deeper understanding of the complex molecular mechanisms involved in disease progression and treatment resistance is essential to further guide therapeutic approaches with improved outcomes.
Collapse
Affiliation(s)
- Fabio Raith
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Daniel H. O’Donovan
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Clara Lemos
- Bayer Research and Innovation Center, Bayer US LLC, 238 Main Street, Cambridge, MA 02142, USA
| | - Oliver Politz
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Bernard Haendler
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-2215-41198
| |
Collapse
|
15
|
Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N, Anto RJ. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol 2023; 14:1114582. [PMID: 36875093 PMCID: PMC9975160 DOI: 10.3389/fimmu.2023.1114582] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. AMPK contributes to diverse metabolic and physiological effects besides its fundamental role in glucose and lipid metabolism. Aberrancy in AMPK signaling is one of the determining factors which lead to the development of chronic diseases such as obesity, inflammation, diabetes, and cancer. The activation of AMPK and its downstream signaling cascades orchestrate dynamic changes in the tumor cellular bioenergetics. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways. In addition, AMPK plays a central role in potentiating the phenotypic and functional reprogramming of various classes of immune cells which reside in the tumor microenvironment (TME). Furthermore, AMPK-mediated inflammatory responses facilitate the recruitment of certain types of immune cells to the TME, which impedes the development, progression, and metastasis of cancer. Thus, AMPK appears to play an important role in the regulation of anti-tumor immune response by regulating the metabolic plasticity of various immune cells. AMPK effectuates the metabolic modulation of anti-tumor immunity via nutrient regulation in the TME and by virtue of its molecular crosstalk with major immune checkpoints. Several studies including that from our lab emphasize on the role of AMPK in regulating the anticancer effects of several phytochemicals, which are potential anticancer drug candidates. The scope of this review encompasses the significance of the AMPK signaling in cancer metabolism and its influence on the key drivers of immune responses within the TME, with a special emphasis on the potential use of phytochemicals to target AMPK and combat cancer by modulating the tumor metabolism.
Collapse
Affiliation(s)
- Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kalishwaralal Kalimuthu
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
16
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
17
|
Abstract
In 2011, CAMKK2, the gene encoding calcium/calmodulin-dependent kinase kinase 2 (CAMKK2), was demonstrated to be a direct target of the androgen receptor and a driver of prostate cancer progression. Results from multiple independent studies have confirmed these findings and demonstrated the potential role of CAMKK2 as a clinical biomarker and therapeutic target in advanced prostate cancer using a variety of preclinical models. Drug development efforts targeting CAMKK2 have begun accordingly. CAMKK2 regulation can vary across disease stages, which might have important implications in the use of CAMKK2 as a biomarker. Moreover, new non-cell-autonomous roles for CAMKK2 that could affect tumorigenesis, metastasis and possible comorbidities linked to disease and treatment have emerged and could present novel treatment opportunities for prostate cancer.
Collapse
|
18
|
Pandey M, Cuddihy G, Gordon JA, Cox ME, Wasan KM. Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer. Pharmaceutics 2021; 13:1509. [PMID: 34575583 PMCID: PMC8467449 DOI: 10.3390/pharmaceutics13091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
There have been several studies that have linked elevated scavenger receptor class b type 1 (SR-B1) expression and activity to the development and progression of castration-resistant prostate cancer (CRPC). SR-B1 facilitates the influx of cholesterol to the cell from lipoproteins in systemic circulation. This influx of cholesterol may be important for many cellular functions, including the synthesis of androgens. Castration-resistant prostate cancer tumors can synthesize androgens de novo to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-B1 may impact the ability of prostate cancer cells, particularly those of the castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. SR-B1 expression is elevated in CRPC models and has been linked to poor survival of patients. The overarching belief has been that cholesterol modulation, through either synthesis or uptake inhibition, will impact essential signaling processes, impeding the proliferation of prostate cancer. The reduction in cellular cholesterol availability can impede prostate cancer proliferation through both decreased steroid synthesis and steroid-independent mechanisms, providing a potential therapeutic target for the treatment of prostate cancer. In this article, we discuss and highlight the work on SR-B1 as a potential novel drug target for CRPC management.
Collapse
Affiliation(s)
- Mitali Pandey
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Grace Cuddihy
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Jacob A. Gordon
- Oncology Bioscience, Oncology R&D, AstraZeneca, Boston, MA 02451, USA;
| | - Michael E. Cox
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Kishor M. Wasan
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| |
Collapse
|