1
|
Li SY, Guo JS, Yang YJ. Design, synthesis and biological activity of oxyevodiamine-based histone deacetylase 6 inhibitors. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1328-1338. [PMID: 38945152 DOI: 10.1080/10286020.2024.2362383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Histone deacetylase 6 (HDAC6) was a potential target for Alzheimer's disease (AD). In this study, a series of novel oxyevodiamine-based HDAC6 inhibitors with a variety of linker moieties were designed, synthesized and evaluated. Compound 12 with a benzyl linker was identified as a high potent and selective HDAC6 inhibitor. It inhibited HDAC6 with an IC50 value of 6.2 nM and was more than 200 fold selectivity over HDAC1. It also had lower cytotoxicity and higher anti-H2O2 activity in vitro comparing with other derivatives. Compound 12 might be a good lead as novel HDAC6 inhibitor for the treatment of AD.
Collapse
Affiliation(s)
- Si-Yuan Li
- Beijing Key Laboratory of Active Substance Discovery and Drug ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiang-Shan Guo
- Beijing Key Laboratory of Active Substance Discovery and Drug ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Jun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Hu N, Liu J, Luo Y, Li Y. A comprehensive review of traditional Chinese medicine in treating neuropathic pain. Heliyon 2024; 10:e37350. [PMID: 39296122 PMCID: PMC11407996 DOI: 10.1016/j.heliyon.2024.e37350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Neuropathic pain (NP) is a common, intractable chronic pain caused by nerve dysfunction and primary lesion of the nervous system. The etiology and pathogenesis of NP have not yet been clarified, so there is a lack of precise and effective clinical treatments. In recent years, traditional Chinese medicine (TCM) has shown increasing advantages in alleviating NP. Our review aimed to define the therapeutic effect of TCM (including TCM prescriptions, TCM extracts and natural products from TCM) on NP and reveal the underlying mechanisms. Literature from 2018 to 2024 was collected from databases including Web of Science, PubMed, ScienceDirect, Google academic and CNKI databases. Herbal medicine, Traditional Chinese medicines (TCM), neuropathic pain, neuralgia and peripheral neuropathy were used as the search terms. The anti-NP activity of TCM is clarified to propose strategies for discovering active compounds against NP, and provide reference to screen anti-NP drugs from TCM. We concluded that TCM has the characteristics of multi-level, multi-component, multi-target and multi-pathway, which can alleviate NP through various pathways such as anti-inflammation, anti-oxidant, anti-apoptotic pathway, regulating autophagy, regulating intestinal flora, and influencing ion channels. Based on the experimental study and anti-NP mechanism of TCM, this paper can offer analytical evidence to support the effectiveness in treating NP. These references will be helpful to the research and development of innovative TCM with multiple levels and multiple targets. TCM can be an effective treatment for NP and can serve as a treasure house for new drug development.
Collapse
Affiliation(s)
- Naihua Hu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Jie Liu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yong Luo
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yunxia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
3
|
Fan Q, Liang R, Chen M, Li Z, Tao X, Ren H, Sheng Y, Li J, Lin R, Zhao C, She G. Metabolic characteristics of evodiamine were associated with its hepatotoxicity via PPAR/PI3K/AKT/NF-кB/tight junction pathway-mediated apoptosis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116448. [PMID: 38754199 DOI: 10.1016/j.ecoenv.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Evodiae Fructus (EF), an herbal medicine, possesses remarkable anti-inflammatory and analgesic properties. It exhibits insecticidal activity as a potent insecticide candidate. However, the toxic characteristics of EF and the underlying mechanisms have not been comprehensively elucidated comprehensively. Thus, we comprehensively explored the toxic components of EF and established the relationship between the therapeutic and toxic effects of EF, encouraging its therapeutic use. We found that evodiamine (EVO), one of the main ingredients of EF, can truly reflect its analgesic properties. In phenotype observation trials, low doses of EVO (< 35 ng/mL) exhibited distinct analgesic activity without any adverse effects in zebrafish. However, EVO dose-dependently led to gross morphological abnormalities in the liver, followed by pericardial edema, and increased myocardial concentrations. Furthermore, the toxic effects of EVO decreased after processing in liver microsomes but increased after administering CYP450 inhibitors in zebrafish, highlighting the prominent effect of CYP450s in EVO-mediated hepatotoxicity. EVO significantly changed the expression of genes enriched in multiple pathways and biological processes, including lipid metabolism, inflammatory response, tight junction damage, and cell apoptosis. Importantly, the PPAR/PI3K/AKT/NF-кB/tight junction-mediated apoptosis pathway was confirmed as a critical functional signaling pathway inducing EVO-mediated hepatotoxicity. This study provided a typical example of the overall systematic evaluation of traditional Chinese medicine (TCM) and its active ingredients with significant therapeutic effects and simultaneous toxicities, especially metabolic toxicities.
Collapse
Affiliation(s)
- Qiqi Fan
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Ruiqiang Liang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Meilin Chen
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Zhiqi Li
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Xiaoyu Tao
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Hongmin Ren
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Yuhan Sheng
- Beijing University of Chinese Medicine, Beijing 100102,China
| | - Jiaqi Li
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Ruichao Lin
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China.
| | - Chongjun Zhao
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China.
| | - Gaimei She
- Beijing University of Chinese Medicine, Beijing 100102,China.
| |
Collapse
|
4
|
Xie T, Gu X, Pan R, Huang W, Dong S. Evodiamine ameliorates intervertebral disc degeneration through the Nrf2 and MAPK pathways. Cytotechnology 2024; 76:153-166. [PMID: 38495298 PMCID: PMC10940566 DOI: 10.1007/s10616-023-00605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/28/2023] [Indexed: 03/19/2024] Open
Abstract
Degradation of extracellular matrix (ECM), reactive oxygen species (ROS) production, and inflammation are critical players in the pathogenesis of intervertebral disc degeneration (IDD). Evodiamine exerts functions in inhibiting inflammation and maintaining mitochondrial antioxidant functions. However, the biological functions of evodiamine and its related mechanisms in IDD progression remain unknown. The IDD-like conditions in vivo were stimulated via needle puncture. Hematoxylin and eosin staining, Safranin O/Fast Green staining and Alcian staining were performed to determine the degenerative status. The primary nucleus pulposus cells (NPCs) were isolated from Sprague-Dawley rats and then treated with tert-butyl peroxide (TBHP) to induce cellular senescence and oxidative stress. The cell viability was assessed by cell counting kit-8 assays. The mitochondria-derived ROS in NPCs was evaluated by MitoSOX staining. The mitochondrial membrane potential in NPCs was identified by JC-1 staining and flow cytometry. The expression of collagen II in NPCs was measured by immunofluorescence staining. The levels of mRNAs and proteins were measured by RT-qPCR and western blotting. The Nrf2 expression in rat nucleus pulposus tissues was measured by immunohistochemistry staining. Evodiamine alleviated TBHP-induced mitochondrial dysfunctions in NPCs. The enhancing effect of TBHP on the ECM degradation was reversed by evodiamine. The TBHP-stimulated inflammatory response was ameliorated by evodiamine. Evodiamine alleviated the IDD process in the puncture-induced rat model. Evodiamine promoted the activation of Nrf2 pathway and inactivated the MAPK pathway in NPCs. In conclusion, evodiamine ameliorates the progression of IDD by inhibiting mitochondrial dysfunctions, ECM degradation and inflammation via the Nrf2/HO-1 and MAPK pathways.
Collapse
Affiliation(s)
- Tian Xie
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, No. 49 Lihuangpi Road, Jiang’an District, Wuhan, 430014 China
| | - Xi Gu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, No. 49 Lihuangpi Road, Jiang’an District, Wuhan, 430014 China
| | - Ruijie Pan
- College of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, 430061 China
| | - Wenzhuo Huang
- College of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, 430061 China
| | - Sheng Dong
- College of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, 430061 China
| |
Collapse
|
5
|
Dekamin S, Ghasemi M, Dehpour AR, Ghazi-Khansari M, Shafaroodi H. Protective Effects of Glatiramer Acetate Against Paclitaxel-Induced Peripheral Neuropathy in Rats: A Role for Inflammatory Cytokines and Oxidative Stress. Neurochem Res 2024; 49:1049-1060. [PMID: 38252396 DOI: 10.1007/s11064-023-04088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major challenge for cancer patients who undergo chemotherapy with paclitaxel. Therefore, finding effective therapies for CIPN is crucial. Glatiramer acetate is used to treat multiple sclerosis that exerts neuroprotective properties in various studies. We hypothesized that glatiramer acetate could also improve the paclitaxel-induced peripheral neuropathy. We used a rat model of paclitaxel (2 mg/kg/every other day for 7 doses)-induced peripheral neuropathy. Rats were treated with either different doses of glatiramer acetate (1, 2, 4 mg/kg/day) or its vehicle for 14 days in separate groups. The mechanical and thermal sensitivity of the rats by using the Von Frey test and the Hot Plate test, respectively, were assessed during the study. The levels of oxidative stress (malondialdehyde and superoxide dismutase), inflammatory markers (TNF-α, IL-10, NF-kB), and nerve damage (H&E and S100B staining) in the sciatic nerves of the rats were also measured at the end of study. Glatiramer acetate (2 and 4 mg/kg) exerted beneficial effects on thermal and mechanical allodynia tests. It also modulated the inflammatory response by reducing TNF-α and NF-κB levels, enhancing IL-10 production, and improving the oxidative stress status by lowering malondialdehyde and increasing superoxide dismutase activity in the sciatic nerve of the rats. Furthermore, glatiramer acetate enhanced nerve conduction velocity in all treatment groups. Histological analysis revealed that glatiramer acetate (2 and 4 mg/kg) prevented paclitaxel-induced damage to the nerve structure. These results suggest that glatiramer acetate can alleviate the peripheral neuropathy induced by paclitaxel.
Collapse
Affiliation(s)
- Sajad Dekamin
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, Burlington, MA, 01803, USA
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Tang Y, Gu W, Cheng L. Evodiamine attenuates oxidative stress and ferroptosis by inhibiting the MAPK signaling to improve bortezomib-induced peripheral neurotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:1556-1566. [PMID: 38010754 DOI: 10.1002/tox.24035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Bortezomib (BTZ) is a commonly used antitumor drug, but its peripheral neuropathy side effect poses a limitation on its dosage. Evodiamine (EVO) exhibits various biological activities, including antioxidant, anti-inflammatory, and anticancer effects. The purpose of this investigation is to confirm the impact of EVO on BTZ-induced peripheral neurotoxicity. METHODS GeneCards and HERB were applied to analyze the targets of peripheral neurotoxicity and EVO. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis of the hub genes were identified by DAVID. Rat dorsal root ganglion neurons (DRGs) and rat RSC96 Schwann cells (SCs) were treated with BTZ to simulate peripheral neurotoxicity. BTZ-induced peripheral neurotoxicity was assessed by detecting cell viability, proliferation, oxidative stress, and ferroptosis in DRGs and SCs. The mitogen-activated protein kinase (MAPK) signaling was scrutinized by Western blot assay. RESULTS The Venn diagram for the overlapping targets of EVO and peripheral neurotoxicity showed that EVO might regulate peripheral neurotoxicity by influencing cell oxidative stress, ferroptosis, and MAPK signaling pathway. EVO attenuated BTZ-induced toxicity in DRGs and SCs. EVO attenuated BTZ-induced oxidative stress damage in DRGs and SCs by reducing reactive oxygen species and malondialdehyde levels and enhancing glutathione level. EVO attenuated BTZ-induced ferroptosis in DRGs and SCs. EVO inhibited BTZ-induced activation of the MAPK signaling in DRGs and SCs. Activation of the MAPK signaling reversed the neuroprotective effect of EVO on BTZ-induced oxidative stress injury and ferroptosis. CONCLUSION EVO attenuated oxidative stress and ferroptosis by inhibiting the MAPK signaling to improve BTZ-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Yunlong Tang
- Department of Hematology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lingling Cheng
- Department of Oncology, Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| |
Collapse
|
7
|
Solanki R, Rajput PK, Jodha B, Yadav UCS, Patel S. Enhancing apoptosis-mediated anticancer activity of evodiamine through protein-based nanoparticles in breast cancer cells. Sci Rep 2024; 14:2595. [PMID: 38297059 PMCID: PMC10830498 DOI: 10.1038/s41598-024-51970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
In the cutting-edge era of developing precision therapeutics, nanoparticles have emerged as a potent drug delivery system. Altering the size of poorly water-soluble drugs to nanoscale could confer change in their physical properties, including enhanced water solubility and bioavailability. Evodiamine (EVO), a natural indolequinone alkaloid extract from Evodia rutaecarpa, has shown several important pharmacological applications, anti-cancer being one of them. Protein-based nano-drug delivery systems have gained the interest of researchers due to their better biocompatibility, biodegradability, non-immunogenicity and non-toxicity. In the present study, EVO encapsulated BSA nanoparticles (ENPs) were synthesized and characterized, which were nanoscale-sized (~ 150 nm), monodispersed, spherical shaped, and showed high entrapment efficiency (~ 86%) and controlled drug release. The in-vitro anti-cancer activity of ENPs on human breast cancer cells was dose- and time-dependent. The apoptotic molecular mechanism investigated using FACS, qRT-PCR, and western blotting analysis, revealed increased expression of p53 and Bax and decreased expression of Bcl-2. Biological studies demonstrated comparatively more efficient and targeted delivery of ENPs than pure EVO. The comprehensive physiochemical characterization and in-vitro validation collectively pinpoint ENPs as a promising avenue for harnessing the therapeutic potential of the natural anti-cancer compound EVO. The findings indicate improved cytotoxicity, positioning ENPs as a propitious strategy for advancing breast cancer treatment.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Pradeep Kumar Rajput
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Bhavana Jodha
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Umesh C S Yadav
- Special Centre for Medicine and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
8
|
Han J, Wu P, Wen Y, Liu C, Liu X, Tao H, Zhang F, Zhang X, Ye Q, Shen T, Chen X, Yu H. The zhuyu pill relieves rat cholestasis by regulating the mRNA expression of lipid and bile metabolism associated genes. Front Pharmacol 2023; 14:1280864. [PMID: 37881184 PMCID: PMC10597705 DOI: 10.3389/fphar.2023.1280864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
Background: The Zhuyu pill (ZYP), composed of Coptis chinensis Franch. and Tetradium ruticarpum (A. Jussieu) T. G. Hartley, is an effective traditional Chinese medicine with potential anti-cholestatic effects. However, the underlying mechanisms of ZYP remain unknown. Objective: To investigate the mechanism underlying the interventional effect of ZYP on mRNA-seq analysis in cholestasis rat models. Materials and methods: This study tested the effects of a low-dose (0.6 g/kg) and high-dose (1.2 g/kg) of ZYP on a cholestasis rat model induced by α-naphthyl-isothiocyanate (ANIT, 50 mg/kg). Serum biochemistry and histopathology results were used to evaluate the therapeutic effect of ZYP, and mRNA-Seq analysis was performed and verified using real-time fluorescence quantitative PCR (qRT-PCR). GO, KEGG, and GSEA analyses were integrated to identify the mechanism by which ZYP impacted cholestatic rats. Results: ZYP was shown to significantly improve abnormal changes in the biochemical blood indexes and liver histopathology of cholestasis rats and regulate pathways related to bile and lipid metabolism, including fatty acid metabolism, retinol metabolism, and steroid hormone biosynthesis, to alleviate inflammation, cholestasis, and lipid metabolism disorders. Relative expression of the essential genes Cyp2a1, Ephx2, Acox2, Cyp1a2, Cyp2c11, and Sult2a1 was verified by qRT-PCR and showed the same trend as mRNA-seq analysis. Conclusion: ZYP has a significant anti-cholestatic effect by regulating bile metabolism and lipid metabolism related pathways. These findings indicate that ZYP is a novel and promising prospect for treating cholestasis.
Collapse
Affiliation(s)
- Jun Han
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijie Wu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pediatrics, Guang’an Traditional Chinese Medicine Hospital, Guang’an, China
| | - Chao Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinglong Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Tao
- Department of Dermatology, Cangxi Traditional Chinese Medicine Hospital, Guangyuan, China
| | - Fenghua Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaodan Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaobo Ye
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofeng Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Lei Y, Xu T, Sun W, Wang X, Gao M, Lin H. Evodiamine alleviates DEHP-induced hepatocyte pyroptosis, necroptosis and immunosuppression in grass carp through ROS-regulated TLR4 / MyD88 / NF-κB pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108995. [PMID: 37573970 DOI: 10.1016/j.fsi.2023.108995] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a neuroendocrine disruptor that can cause multi-tissue organ damage by inducing oxidative stress. Evodiamine (EVO) is an indole alkaloid with anti-inflammatory, antitumor, and antioxidant pharmacological activity. In this manuscript, the effects of DEHP and EVO on the pyroptosis, necroptosis and immunology of grass carp hepatocytes (L8824) were investigated using DCFH-DA staining, PI staining, IF staining, AO/EB staining, LDH kit, qRT-PCR and protein Western blot. The results showed that DEHP exposure upregulated reactive oxygen species (ROS) levels, promoted the expression of TLR4/MyD88/NF-κB pathway, increased the expression of genes involved in cell pyroptosis pathway (LDH, NLRP3, ASC, caspase1, IL-1β, IL-18 and GSDMD) and necroptosis-related genes (RIPK1, RIPK3 and MLKL). The expression of DEHP can also affect immune function, which can be demonstrated by variationsin the activation of antimicrobial peptides (LEAP2, HEPC, and β-defensin) and inflammatory cytokines (TNF-α, IL-2, IL-6 and IL-10). EVO regulates cellular antioxidant capacity by inhibiting ROS burst, reduces DEHP-induced cell pyroptosis and necroptosis to some extent, and restores cellular immune function, after co-exposure with EVO. The TLR4 pathway was inhibited by the co-treatment of TLR4 inhibitor TLR-IN-C34 and DEHP, which attenuated the expression of cell pyroptosis, necroptosis, and immunosuppression. Thus, DEHP induced pyroptosis, necroptosis and abnormal immune function in L8824 cells by activating TLR4/MyD88/NF-κB pathway. In addition, EVO has a therapeutic effect on DEHP-induced toxic injury. This study further provides a theoretical basis for the risk assessment of plasticizer DEHP on aquatic organisms.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaodan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Jiang H, Qiu J, Deng X, Li D, Tao T. Potential active compounds and common mechanisms of Evodia rutaecarpa for Alzheimer's disease comorbid pain by network pharmacology analysis. Heliyon 2023; 9:e18455. [PMID: 37529338 PMCID: PMC10388172 DOI: 10.1016/j.heliyon.2023.e18455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Evodia rutaecarpa (Evodia) is a Chinese herbal medicine with analgesic and anti-neurodegenerative properties. However, whether Evodia compounds can be applied for the comorbid pain of Alzheimer's disease (AD) and the underlying mechanisms remain unclear. Herein, 137 common targets of Evodia between AD and pain were predicted from drug and disease target databases. Subsequently, protein-protein interaction (PPI) network, protein function module construction, and bioinformatics analyses were used to analyze the potential relationship among targets, pathways, and diseases. Evodia could simultaneously treat AD comorbid pain through multi-target, multi-component, and multi-pathway mechanisms, and inflammation was an important common phenotype of AD and pain. The relationship between important transcription factors such as RELA, NF-κB1, SP1, STAT3, and JUN on IL-17, TNF, and MAPK signaling pathways might be potential mechanisms of Evodia. Additionally, 10 candidate compounds were predicted, and evodiamine might be the effective active ingredient of Evodia in treating AD or pain. In summary, this study provided a reference for subsequent research and a novel understanding and direction for the clinical use of evodiamine to treat AD patients with comorbid pain.
Collapse
Affiliation(s)
- Huiyi Jiang
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Jiamin Qiu
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Xin Deng
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Danping Li
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Tao Tao
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Department of Anesthesiology, Zhujiang hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
11
|
Zafar S, Luo Y, Zhang L, Li CH, Khan A, Khan MI, Shah K, Seo EK, Wang F, Khan S. Daidzein attenuated paclitaxel-induced neuropathic pain via the down-regulation of TRPV1/P2Y and up-regulation of Nrf2/HO-1 signaling. Inflammopharmacology 2023:10.1007/s10787-023-01225-w. [PMID: 37145202 DOI: 10.1007/s10787-023-01225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Paclitaxel (PTX) is an anti-microtubule agent, used for the treatment of various types of cancers; however, it produces painful neuropathy which limits its use. Many neuroprotective agents have been introduced to mitigate PTX-induced neuropathic pain (PINP), but they pose many adverse effects. The purpose of this study was to evaluate the pharmacological characteristics of soy isoflavone, and daidzein (DZ) in attenuating PINP. At the beginning of the investigation, the effect of DZ was confirmed through behavioral analysis, as it reduced pain hypersensitivity. Moreover, changes in the histological parameters were reversed by DZ administration along with vascular permeability. PTX administration upregulated transient receptor potential vanilloid 1 (TRPV1) channels and purinergic receptors (P2Y), contributing to hyperalgesia; but administration of DZ downregulated the TRPV1 and P2Y, thus reducing hyperalgesia. DZ increased nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), playing a pivotal role in the activation of the antioxidant pathway. DZ also decreased neuronal apoptosis by decreasing caspase-3 and Bcl2-associated X-protein (Bax), while simultaneously, increasing Bcl-2. PTX administration produced severe DNA damage, which was mitigated by DZ. Similarly, DZ administration resulted in inhibition of neuroinflammation by increasing antioxidant enzymes and reducing oxidative stress markers. PTX caused increased in production of pro-inflammatory mediators such as the cytokines production, while DZ inhibited the pro-inflammatory mediators. Additionally, in silico pharmacokinetic and toxicodynamic study of DZ was also conducted. In summary, DZ demonstrated significant neuroprotective activity against PTX induced neuropathic pain.
Collapse
Affiliation(s)
- Sana Zafar
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yong Luo
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, People's Republic of China
| | - Chang Hu Li
- Division of Radiation Physics, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- DHQ Teaching Hospital Timergara, Lower Dir, Timergara, KPK, Pakistan
| | - Muhammad Ibrar Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kifayatullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Feng Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, People's Republic of China.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
12
|
Zhai M, Hu H, Zheng Y, Wu B, Sun W. PGC1α: an emerging therapeutic target for chemotherapy-induced peripheral neuropathy. Ther Adv Neurol Disord 2023; 16:17562864231163361. [PMID: 36993941 PMCID: PMC10041632 DOI: 10.1177/17562864231163361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/25/2023] [Indexed: 03/29/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN)-mediated paresthesias are a common complication in cancer patients undergoing chemotherapy. There are currently no treatments available to prevent or reverse CIPN. Therefore, new therapeutic targets are urgently needed to develop more effective analgesics. However, the pathogenesis of CIPN remains unclear, and the prevention and treatment strategies of CIPN are still unresolved issues in medicine. More and more studies have demonstrated that mitochondrial dysfunction has become a major factor in promoting the development and maintenance of CIPN, and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC1α) plays a significant role in maintaining the mitochondrial function, protecting peripheral nerves, and alleviating CIPN. In this review, we highlight the core role of PGC1α in regulating oxidative stress and maintaining normal mitochondrial function and summarize recent advances in its therapeutic effects and mechanisms in CIPN and other forms of peripheral neuropathy. Emerging studies suggest that PGC1α activation may positively impact CIPN mitigation by modulating oxidative stress, mitochondrial dysfunction, and inflammation. Therefore, novel therapeutic strategies targeting PGC1α could be a potential therapeutic target in CIPN.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
- Yantian Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Haibei Hu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Yi Zheng
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Benqing Wu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518016, China
| | | |
Collapse
|
13
|
Ren K, Wang R, Fang S, Ren S, Hua H, Wang D, Pan Y, Liu X. Effect of CYP3A inducer/inhibitor and licorice on hepatotoxicity and in vivo metabolism of main alkaloids of Euodiae Fructus based on UPLC-Q-Exactive-MS. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116005. [PMID: 36516906 DOI: 10.1016/j.jep.2022.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, Euodiae Fructus (EF) has been used to treat stomachache, belching, and emesis for more than a thousand years. Ancient records and modern research have shown that EF has mild toxicity, which needs to be processed with licorice juice to reduce its toxicity. Research suggested that the toxicity of EF can be caused by in vivo metabolism, but whether its metabolites are related to hepatotoxicity and whether licorice can affect the metabolism of EF have not been reported, which needed an effective strategy to clarify the correlation between metabolites and toxicity and the attenuation mechanism of licorice processing. AIM OF THE STUDY The poisonous substances and metabolic pathways were clarified by comparing the mechanism in vivo process of the main alkaloids of EF in normal rats and rats treated with dexamethasone (DXMS), ketoconazole (KTC), and EF processed with licorice (EFP). MATERIALS AND METHODS Rats were given EF and EFP by oral administration, respectively. The EF + DXMS and EF + KTC groups were pretreated with DXMS and KTC, respectively, by i. p. for seven days, and their toxicity differences were compared. The comprehensive strategy based on UPLC-Q-Exactive-MS and Orthogonal Partial Least Squares Discriminant Analysis was developed to compare the types and contents of metabolites and clarify the metabolic pathways of alkaloids among EF, EFP, EF + KTC, and EF + DXMS groups. RESULTS EF + DXMS group significantly increased the hepatotoxicity, whereas the EF + KTC and EFP groups reduced the hepatotoxicity compared with the EF group. One hundred and thirty-five metabolites were detected, and the metabolic pathways of the main alkaloid components related to toxicity were inferred in the plasma, urine, feces, and bile of rats. KTC and licorice similarly inhibited the production of toxic metabolites, changed metabolism in vivo, and produced many new II and a few phases I metabolites, while the contents of toxic metabolites increased in the DXMS group. CONCLUSION Licorice and KTC could inhibit the production of metabolites of EF related to toxicity, increase the production of other metabolites and promote the excretion of alkaloids, which may be why licorice and KTC can minimize EF toxicity.
Collapse
Affiliation(s)
- Kun Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Ruijie Wang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Shinuo Fang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Shumeng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Huiming Hua
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Yingni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
14
|
Xiao SJ, Xu XK, Chen W, Xin JY, Yuan WL, Zu XP, Shen YH. Traditional Chinese medicine Euodiae Fructus: botany, traditional use, phytochemistry, pharmacology, toxicity and quality control. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:6. [PMID: 36790599 PMCID: PMC9931992 DOI: 10.1007/s13659-023-00369-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Euodiae Fructus, referred to as "Wuzhuyu" in Chinese, has been used as local and traditional herbal medicines in many regions, especially in China, Japan and Korea, for the treatment of gastrointestinal disorders, headache, emesis, aphtha, dermatophytosis, dysentery, etc. Substantial investigations into their chemical and pharmacological properties have been performed. Recently, interest in this plant has been focused on the different structural types of alkaloids like evodiamine, rutaecarpine, dehydroevodiamine and 1-methyl-2-undecyl-4(1H)-quinolone, which exhibit a wide range of pharmacological activities in preclinical models, such as anticancer, antibacterial, anti-inflammatory, anti-cardiovascular disease, etc. This review summarizes the up-to-date and comprehensive information concerning the botany, traditional uses, phytochemistry, pharmacology of Euodiae Fructus together with the toxicology and quality control, and discusses the possible direction and scope for future research on this plant.
Collapse
Affiliation(s)
- Si-Jia Xiao
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xi-Ke Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Jia-Yun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wen-Lin Yuan
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xian-Peng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| | - Yun-Heng Shen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
15
|
Wang Z, Xiong Y, Peng Y, Zhang X, Li S, Peng Y, Peng X, Zhuo L, Jiang W. Natural product evodiamine-inspired medicinal chemistry: Anticancer activity, structural optimization and structure-activity relationship. Eur J Med Chem 2023; 247:115031. [PMID: 36549115 DOI: 10.1016/j.ejmech.2022.115031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
It is a well-known phenomenon that natural products can serve as powerful drug leads to generate new molecular entities with novel therapeutic utility. Evodiamine (Evo), a major alkaloid component in traditional Chinese medicine Evodiae Fructus, is considered a desirable lead scaffold as its multifunctional pharmacological properties. Although natural Evo has suboptimal biological activity, poor pharmacokinetics, low water solubility, and chemical instability, medicinal chemists have succeeded in producing synthetic analogs that overshadow the deficiency of Evo in terms of further clinical application. Recently, several reviews on the synthesis, structural modification, mechanism pharmacological actions, structure-activity relationship (SAR) of Evo have been published, while few reviews that incorporates intensive structural basis and extensive SAR are reported. The purpose of this article is to review the structural basis, anti-cancer activities, and mechanisms of Evo and its derivatives. Emphasis will be placed on the optimizing strategies to improve the anticancer activities, such as structural modifications, pharmacophore combination and drug delivery systems. The current review would benefit further structural modifications of Evo to discover novel anticancer drugs.
Collapse
Affiliation(s)
- Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yongxia Xiong
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Zhang
- School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuang Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
16
|
Velasco-González R, Coffeen U. Neurophysiopathological Aspects of Paclitaxel-induced Peripheral Neuropathy. Neurotox Res 2022; 40:1673-1689. [PMID: 36169871 DOI: 10.1007/s12640-022-00582-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
Chemotherapy is widely used as a primary treatment or adjuvant therapy for cancer. Anti-microtubule agents (such as paclitaxel and docetaxel) are used for treating many types of cancer, either alone or in combination. However, their use has negative consequences that restrict the treatment's ability to continue. The principal negative effect is the so-called chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a complex ailment that depends on diversity in the mechanisms of action of the different chemotherapy drugs, which are not fully understood. In this paper, we review several neurophysiological and pathological characteristics, such as morphological changes, changes in ion channels, mitochondria and oxidative stress, cell death, changes in the immune response, and synaptic control, as well as the characteristics of neuropathic pain produced by paclitaxel.
Collapse
Affiliation(s)
- Roberto Velasco-González
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.,Maestría en Ciencias Biológicas, UNAM, Ciudad de México, México
| | - Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.
| |
Collapse
|
17
|
Liang R, Ge W, Li B, Cui W, Ma X, Pan Y, Li G. Evodiamine decreased the systemic exposure of pravastatin in non-alcoholic steatohepatitis rats due to the up-regulation of hepatic OATPs. PHARMACEUTICAL BIOLOGY 2022; 60:359-373. [PMID: 35171063 PMCID: PMC8856114 DOI: 10.1080/13880209.2022.2036767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Patients with non-alcoholic steatohepatitis (NASH) may have a simultaneous intake of pravastatin and evodiamine-containing herbs. OBJECTIVE The effect of evodiamine on the pharmacokinetics of pravastatin and its potential mechanisms were investigated in NASH rats. MATERIALS AND METHODS The NASH model was conducted with feeding a methionine choline-deficient (MCD) diet for 8 weeks. Sprague-Dawley rats were randomised equally (n = 6) into NASH group, evodiamine group (10 mg/kg), pravastatin group (10 mg/kg), and evodiamine (10 mg/kg) + pravastatin (10 mg/kg) group. Normal control rats were fed a standard diet. Effects of evodiamine on the pharmacokinetics, distribution, and uptake of pravastatin were investigated. RESULTS Evodiamine decreased Cmax (159.43 ± 26.63 vs. 125.61 ± 22.17 μg/L), AUC0-t (18.17 ± 2.52 vs. 14.91 ± 2.03 mg/min/L) and AUC0-∞ (22.99 ± 2.62 vs. 19.50 ± 2.31 mg/min/L) of orally administered pravastatin in NASH rats, but had no significant effect in normal rats. Evodiamine enhanced the uptake (from 154.85 ± 23.17 to 198.48 ± 26.31 pmol/mg protein) and distribution (from 736.61 ± 108.07 to 911.89 ± 124.64 ng/g tissue) of pravastatin in NASH rat liver. The expression of Oatp1a1, Oatp1a4, and Oatp1b2 was up-regulated 1.48-, 1.38-, and 1.51-fold by evodiamine. Evodiamine decreased the levels of IL-1β, IL-6, and TNF-α by 27.82%, 24.76%, and 29.72% in NASH rats, respectively. DISCUSSION AND CONCLUSIONS Evodiamine decreased the systemic exposure of pravastatin by up-regulating the expression of OATPs. These results provide a reference for further validation of this interaction in humans.
Collapse
Affiliation(s)
- Ruifeng Liang
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
- School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wenjing Ge
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Bingjie Li
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
- School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Weifeng Cui
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiaofan Ma
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuying Pan
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Gengsheng Li
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
18
|
Santos WBDR, Guimarães JO, Pina LTS, Serafini MR, Guimarães AG. Antinociceptive effect of plant-based natural products in chemotherapy-induced peripheral neuropathies: A systematic review. Front Pharmacol 2022; 13:1001276. [PMID: 36199686 PMCID: PMC9527321 DOI: 10.3389/fphar.2022.1001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/19/2022] [Indexed: 12/09/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most prevalent and difficult-to-treat symptoms in cancer patients. For this reason, the explore for unused helpful choices able of filling these impediments is essential. Natural products from plants stand out as a valuable source of therapeutic agents, being options for the treatment of this growing public health problem. Therefore, the objective of this study was to report the effects of natural products from plants and the mechanisms of action involved in the reduction of neuropathy caused by chemotherapy. The search was performed in PubMed, Scopus and Web of Science in March/2021. Two reviewers independently selected the articles and extracted data on characteristics, methods, study results and methodological quality (SYRCLE). Twenty-two studies were selected, describing the potential effect of 22 different phytochemicals in the treatment of CIPN, with emphasis on terpenes, flavonoids and alkaloids. The effect of these compounds was demonstrated in different experimental protocols, with several action targets being proposed, such as modulation of inflammatory mediators and reduction of oxidative stress. The studies demonstrated a predominance of the risk of uncertain bias for randomization, baseline characteristics and concealment of the experimental groups. Our findings suggest a potential antinociceptive effect of natural products from plants on CIPN, probably acting in several places of action, being strategic for the development of new therapeutic options for this multifactorial condition.
Collapse
Affiliation(s)
- Wagner Barbosa Da Rocha Santos
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Juliana Oliveira Guimarães
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Mairim Russo Serafini
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Adriana Gibara Guimarães
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- *Correspondence: Adriana Gibara Guimarães,
| |
Collapse
|
19
|
Mechanisms underlying paclitaxel-induced neuropathic pain: Channels, inflammation and immune regulations. Eur J Pharmacol 2022; 933:175288. [PMID: 36122757 DOI: 10.1016/j.ejphar.2022.175288] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Paclitaxel is a chemotherapeutic agent widely used for many types of malignancies. However, when paclitaxel is used to treat tumors, patients commonly experience severe neuropathic pain that is difficult to manage. The mechanism underlying paclitaxel-induced neuropathic pain remains unclear. Evidence demonstrates correlations between mechanisms of paclitaxel-mediated pain and associated actions of ion channels, neuroinflammation, mitochondrial damage, and other factors. This review provides a comprehensive analysis of paclitaxel-induced neuropathic pain mechanisms and suggestions for effective interventions.
Collapse
|
20
|
Xu M, Wang W, Lu W, Ling X, Rui Q, Ni H. Evodiamine prevents traumatic brain injury through inhibiting oxidative stress via PGK1/NRF2 pathway. Biomed Pharmacother 2022; 153:113435. [DOI: 10.1016/j.biopha.2022.113435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
|
21
|
Yang X, Leng M, Yang L, Peng Y, Wang J, Wang Q, Wu K, Zou J, Wan W, Li L, Ye Y, Meng Z. Effect of Evodiamine on Collagen-Induced Platelet Activation and Thrombosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4893859. [PMID: 35937403 PMCID: PMC9348926 DOI: 10.1155/2022/4893859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
Evodia rutaecarpa has multiple pharmacological effects and is widely used in the prevention and treatment of migraine, diabetes, cardiovascular disease, cancer, and other chronic diseases; however, the pharmacological effects of its active compound evodiamine (Evo) have not been thoroughly investigated. The purpose of this study was to investigate the effects of Evo on antiplatelet activation and thrombosis. We discovered that Evo effectively inhibited collagen-induced platelet activation but had no effect on platelet aggregation caused by activators such as thrombin, ADP, and U46619. Second, we found that Evo effectively inhibited the release of platelet granules induced by collagen. Finally, evodiamine inhibits the transduction of the SFKs/Syk/Akt/PLCγ2 activation pathway in platelets. According to in vivo studies, Evo significantly prolonged the mesenteric thromboembolism induced by ferric chloride and had no discernible effect on the coagulation function of mice. In conclusion, the antiplatelet and thrombotic effects of Evo discovered in this study provide an experimental basis for the investigation of the pharmacological mechanisms of Evo and the development of antiplatelet drugs.
Collapse
Affiliation(s)
- Xiaona Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Leng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihong Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhu Peng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Wu
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junhua Zou
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen Wan
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Longjun Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yujia Ye
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
22
|
Xian S, Lin Z, Zhou C, Wu X. The Protective Effect of Evodiamine in Osteoarthritis: An In Vitro and In Vivo Study in Mice Model. Front Pharmacol 2022; 13:899108. [PMID: 35795554 PMCID: PMC9251407 DOI: 10.3389/fphar.2022.899108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a chronic disease with high economic burden characterized by cartilage degradation and joint inflammation. Evodiamine (EV), which can be extracted from Evodia rutaecarpa (Rutaceae), is a traditional Chinese medicine to treat inflammation, cardiovascular disorders, infection, and obesity. Studies have shown that EV can suppress the activation of immune cells and restrain the secretion of pro-inflammatory cytokines. However, it is still not well known about its role in the treatment of OA. In this study, we utilized interleukin-1β (IL-1β)–stimulated mouse chondrocytes in vitro and the destabilization of the medial meniscus (DMM) model in vivo to demonstrate the anti-inflammatory properties of EV in OA. The results suggested that EV decreased the generation of NO, IL-6, TNF-α, and PGE2. Meanwhile, the increased expression of iNOS, COX-2, and MMP-13 and the degradation of aggrecan and Col-II were significantly alleviated by EV in IL-1β–activated mouse chondrocytes. Moreover, EV can inhibit the considerable IL-1β–stimulated phosphorylation of the NF-κB signaling pathway and nuclear translocation of p65, compared with the control group. Furthermore, EV alleviated cartilage degeneration and reversed the increased Osteoarthritis Research Society International (OARSI) scores in the OA model in vivo. Our study demonstrates that EV can suppress inflammation in vitro and cartilage degeneration in vivo in OA, which implies that EV may be a potential candidate for the treatment of OA.
Collapse
Affiliation(s)
- Shuyuan Xian
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zeng Lin
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Zhou
- Department of Orthopaedics, Yinshanhu Hospital of Wuzhong District, Suzhou, China
- *Correspondence: Chao Zhou, ; Xing Wu,
| | - Xing Wu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Chao Zhou, ; Xing Wu,
| |
Collapse
|
23
|
Mammalian Sterile 20-Like Kinase 1 Mediates Neuropathic Pain Associated with Its Effects on Regulating Mitophagy in Schwann Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3458283. [PMID: 35656021 PMCID: PMC9155917 DOI: 10.1155/2022/3458283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
Myelin degradation initiated by Schwann cells (SCs) after nerve injury is connected to the induction and chronicity of neuropathic pain (NP). Mitophagy, a selective clearance of damaged mitochondria via autophagy, contributes to the maintenance of normal function in SCs. Mitochondrial function and mitophagy activity are highly modulated by mammalian ste20-like kinase1 (Mst1). However, whether Mst1 can regulate mitophagy in SCs to play a role in NP remains poorly understood. In the present study, Sprague-Dawley rats were subjected to chronic constriction injury (CCI) on the sciatic nerve to induce NP. Small interfering RNA of Mst1 was applied to the injured sciatic nerve to knockdown Mst1. Behavioral tests were performed to evaluate NP, and myelin degeneration was assessed by transmission electron microscope and immunofluorescence. Autophagy and mitophagy were detected in the injured sciatic nerve and cultured SCs (RSC96 cells) by Western blot. ROS level, mitochondria membrane potential, and apoptosis were assessed in vitro via flow cytometry and Western blot. Mst1 knockdown alleviated mechanical allodynia and thermal hyperalgesia in the CCI-induced NP model and rescued myelin degeneration of the injured nerve. Meanwhile, CCI-increased levels of Parkin and p62 were reversed by Mst1 knockdown. In vitro RSC96 cells were subjected to starvation to induce mitophagy. Protein levels of mitochondrial Parkin and mitochondrial p62 significantly increased after Mst1 knockdown, while those in the cytosol diminished indicate that the translocation of Parkin and p62 from the cytosol to the mitochondria was promoted by the knockdown of Mst1. In addition, Mst1 knockdown reduced ROS level and apoptosis activity, while enhancing mitochondria membrane potential in RSC96 cells. The study showed that Mst1 knockdown alleviated CCI-induced NP, associated with enhanced Parkin recruitment to mitochondria and subsequent mitophagy degradation, thus preserving mitochondrial function and myelin integrity.
Collapse
|
24
|
Jiang W, Tang M, Yang L, Zhao X, Gao J, Jiao Y, Li T, Tie C, Gao T, Han Y, Jiang JD. Analgesic Alkaloids Derived From Traditional Chinese Medicine in Pain Management. Front Pharmacol 2022; 13:851508. [PMID: 35620295 PMCID: PMC9127080 DOI: 10.3389/fphar.2022.851508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain is one of the most prevalent health problems. The establishment of chronic pain is complex. Current medication for chronic pain mainly dependent on anticonvulsants, tricyclic antidepressants and opioidergic drugs. However, they have limited therapeutic efficacy, and some even with severe side effects. We turned our interest into alkaloids separated from traditional Chinese medicine (TCM), that usually act on multiple drug targets. In this article, we introduced the best-studied analgesic alkaloids derived from TCM, including tetrahydropalmatine, aloperine, oxysophocarpine, matrine, sinomenine, ligustrazine, evodiamine, brucine, tetrandrine, Stopholidine, and lappaconitine, focusing on their mechanisms and potential clinical applications. To better describe the mechanism of these alkaloids, we adopted the concept of drug-cloud (dCloud) theory. dCloud illustrated the full therapeutic spectrum of multitarget analgesics with two dimensions, which are “direct efficacy”, including inhibition of ion channels, activating γ-Aminobutyric Acid/opioid receptors, to suppress pain signal directly; and “background efficacy”, including reducing neuronal inflammation/oxidative stress, inhibition of glial cell activation, restoring the balance between excitatory and inhibitory neurotransmission, to cure the root causes of chronic pain. Empirical evidence showed drug combination is beneficial to 30–50% chronic pain patients. To promote the discovery of effective analgesic combinations, we introduced an ancient Chinese therapeutic regimen that combines herbal drugs with “Jun”, “Chen”, “Zuo”, and “Shi” properties. In dCloud, “Jun” drug acts directly on the major symptom of the disease; “Chen” drug generates major background effects; “Zuo” drug has salutary and supportive functions; and “Shi” drug facilitates drug delivery to the targeted tissue. Subsequently, using this concept, we interpreted the therapeutic effect of established analgesic compositions containing TCM derived analgesic alkaloids, which may contribute to the establishment of an alternative drug discovery model.
Collapse
Affiliation(s)
- Wei Jiang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Mingze Tang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Limin Yang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Xu Zhao
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medicine Sciences & Peking Union Medical College, Beijing, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cai Tie
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Beijing, China.,School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| | - Tianle Gao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Peripheral Nerve Disorders. Pharmaceuticals (Basel) 2022; 15:ph15050607. [PMID: 35631433 PMCID: PMC9144529 DOI: 10.3390/ph15050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral nerve disorders are caused by a range of different aetiologies. The range of causes include metabolic conditions such as diabetes, obesity and chronic kidney disease. Diabetic neuropathy may be associated with severe weakness and the loss of sensation, leading to gangrene and amputation in advanced cases. Recent studies have indicated a high prevalence of neuropathy in patients with chronic kidney disease, also known as uraemic neuropathy. Immune-mediated neuropathies including Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy may cause significant physical disability. As survival rates continue to improve in cancer, the prevalence of treatment complications, such as chemotherapy-induced peripheral neuropathy, has also increased in treated patients and survivors. Notably, peripheral neuropathy associated with these conditions may be chronic and long-lasting, drastically affecting the quality of life of affected individuals, and leading to a large socioeconomic burden. This review article explores some of the major emerging clinical and experimental therapeutic agents that have been investigated for the treatment of peripheral neuropathy due to metabolic, toxic and immune aetiologies.
Collapse
|
26
|
Chiang JCB, Goldstein D, Tavakoli A, Trinh T, Klisser J, Lewis CR, Friedlander M, Naduvilath TJ, Au K, Park SB, Krishnan AV, Markoulli M. Corneal dendritic cells and the subbasal nerve plexus following neurotoxic treatment with oxaliplatin or paclitaxel. Sci Rep 2021; 11:22884. [PMID: 34819589 PMCID: PMC8613280 DOI: 10.1038/s41598-021-02439-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
Abstract
Immune cell infiltration has been implicated in neurotoxic chemotherapy for cancer treatment. However, our understanding of immune processes is still incomplete and current methods of observing immune cells are time consuming or invasive. Corneal dendritic cells are potent antigen-presenting cells and can be imaged with in-vivo corneal confocal microscopy. Corneal dendritic cell densities and nerve parameters in patients treated with neurotoxic chemotherapy were investigated. Patients treated for cancer with oxaliplatin (n = 39) or paclitaxel (n = 48), 3 to 24 months prior to assessment were recruited along with 40 healthy controls. Immature (ImDC), mature (MDC) and total dendritic cell densities (TotalDC), and corneal nerve parameters were analyzed from in-vivo corneal confocal microscopy images. ImDC was increased in the oxaliplatin group (Median, Md = 22.7 cells/mm2) compared to healthy controls (Md = 10.1 cells/mm2, p = 0.001), but not in the paclitaxel group (Md = 10.6 cells/mm2). ImDC was also associated with higher oxaliplatin cumulative dose (r = 0.33, p = 0.04) and treatment cycles (r = 0.40, p = 0.01). There was no significant difference in MDC between the three groups (p > 0.05). Corneal nerve parameters were reduced in both oxaliplatin and paclitaxel groups compared to healthy controls (p < 0.05). There is evidence of elevation of corneal ImDC in oxaliplatin-treated patients. Further investigation is required to explore this potential link through longitudinal studies and animal or laboratory-based immunohistochemical research.
Collapse
Affiliation(s)
- Jeremy Chung Bo Chiang
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Azadeh Tavakoli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Terry Trinh
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Jacob Klisser
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Craig R Lewis
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Michael Friedlander
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Thomas J Naduvilath
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Kimberley Au
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
27
|
Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol 2021; 60:1369-1382. [PMID: 34313190 DOI: 10.1080/0284186x.2021.1954241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Paclitaxel is a taxane-based chemotherapeutic agent used as a treatment in breast cancer. There is no effective prevention or treatment strategy for the most common side effect of peripheral neuropathy. In this manuscript, we reviewed the molecular mechanisms that contribute to paclitaxel-induced peripheral neuropathy (PIPN) with an emphasis on immune-related processes. METHODS A systematic search of the literature was conducted in PubMed, EMBASE and Cochrane Library. The SYRCLE's risk of bias tool was used to assess internal validity. RESULTS 156 studies conducted with rodent models were included. The risk of bias was high due to unclear methodology. Paclitaxel induces changes in myelinated axons, mitochondrial dysfunction, and mechanical hypersensitivity by affecting ion channels expression and function and facilitating spinal transmission. Paclitaxel-induced inflammatory responses are important contributors to PIPN. CONCLUSION Immune-related processes are an important mechanism contributing to PIPN. Studies in humans that validate these mechanistic data are highly needed to facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Cornelia J. C. Vermeer
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anouk E. Hiensch
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurence Cleenewerk
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Yang J, Fang C, Liu H, Wu M, Tao S, Tan Q, Chen Y, Wang T, Li K, Zhong C, Zhang J. Ternary supramolecular nanocomplexes for superior anticancer efficacy of natural medicines. NANOSCALE 2021; 13:15085-15099. [PMID: 34533154 DOI: 10.1039/d1nr02791c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The discovery of effective anticancer drug delivery systems and elucidation of the mechanism are enormous challenges. Using two drug administration-approved biomaterials, we constructed a natural medicine (NM)-loaded ternary supramolecular nanocomplex (TSN) suitable for large-scale production. The TSN has a better effect against cancer cells/stem cells than NM with differentially upregulated (27 versus 59) and downregulated (165 versus 66) proteins, respectively. Treatment with the TSN induced apoptosis and G2/M arrest, inhibited cell proliferation, metastasis and invasion, reduced colony/sphere formation, and decreased the frequency of side population cells and CD133+CD44+ABCG2+ cells. These results were revealed by multiple analyses (proteomic analysis, transwell migration and colony/sphere formation assays, biomarker profiling, etc.). We first reported the proteomic analysis of small lung cancer cells responding to a drug or its nanovesicles. We first conducted a proteomic evaluation of tumor cells responding to a drug supramolecular nanosystem. The supramolecular conformation of the TSN and the interactions of the TSN with albumin were verified by molecular docking experiments. The dominant binding forces in the TSN complexation process were electrostatic interactions, van der Waalsinteractions and bond stretching. The TSN binds to albumin more readily than NM does. The TSN has good in situ absorptive and in vitro/vivo kinetic properties. The relative bioavailability of the TSN to EA was 458.39%. The NM-loaded TSN is a supramolecular vesicle that can be produced at an industrial scale for efficient cancer therapy.
Collapse
Affiliation(s)
- Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Chunshu Fang
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China
| | - Hongming Liu
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Shaolin Tao
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China
| | - Yun Chen
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400036, China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
29
|
Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms22168733. [PMID: 34445439 PMCID: PMC8396047 DOI: 10.3390/ijms22168733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Paclitaxel is an essential drug in the chemotherapy of ovarian, non-small cell lung, breast, gastric, endometrial, and pancreatic cancers. However, it frequently causes peripheral neuropathy as a dose-limiting factor. Animal models of paclitaxel-induced peripheral neuropathy (PIPN) have been established. The mechanisms of PIPN development have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory PIPN effects. This review summarizes the basic and clinical evidence for therapeutic or prophylactic effects for PIPN. In pre-clinical research, many reports exist of neuropathy inhibitors that target oxidative stress, inflammatory response, ion channels, transient receptor potential (TRP) channels, cannabinoid receptors, and the monoamine nervous system. Alternatively, very few drugs have demonstrated PIPN efficacy in clinical trials. Thus, enhancing translational research to translate pre-clinical research into clinical research is important.
Collapse
|
30
|
Akin EJ, Alsaloum M, Higerd GP, Liu S, Zhao P, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7. Brain 2021; 144:1727-1737. [PMID: 33734317 PMCID: PMC8320304 DOI: 10.1093/brain/awab113] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/09/2021] [Accepted: 03/04/2021] [Indexed: 01/15/2023] Open
Abstract
The microtubule-stabilizing chemotherapy drug paclitaxel (PTX) causes dose-limiting chemotherapy-induced peripheral neuropathy (CIPN), which is often accompanied by pain. Among the multifaceted effects of PTX is an increased expression of sodium channel Nav1.7 in rat and human sensory neurons, enhancing their excitability. However, the mechanisms underlying this increased Nav1.7 expression have not been explored, and the effects of PTX treatment on the dynamics of trafficking and localization of Nav1.7 channels in sensory axons have not been possible to investigate to date. In this study we used a recently developed live imaging approach that allows visualization of Nav1.7 surface channels and long-distance axonal vesicular transport in sensory neurons to fill this basic knowledge gap. We demonstrate concentration and time-dependent effects of PTX on vesicular trafficking and membrane localization of Nav1.7 in real-time in sensory axons. Low concentrations of PTX increase surface channel expression and vesicular flux (number of vesicles per axon). By contrast, treatment with a higher concentration of PTX decreases vesicular flux. Interestingly, vesicular velocity is increased for both concentrations of PTX. Treatment with PTX increased levels of endogenous Nav1.7 mRNA and current density in dorsal root ganglion neurons. However, the current produced by transfection of dorsal root ganglion neurons with Halo-tag Nav1.7 was not increased after exposure to PTX. Taken together, this suggests that the increased trafficking and surface localization of Halo-Nav1.7 that we observed by live imaging in transfected dorsal root ganglion neurons after treatment with PTX might be independent of an increased pool of Nav1.7 channels. After exposure to inflammatory mediators to mimic the inflammatory condition seen during chemotherapy, both Nav1.7 surface levels and vesicular transport are increased for both low and high concentrations of PTX. Overall, our results show that PTX treatment increases levels of functional endogenous Nav1.7 channels in dorsal root ganglion neurons and enhances trafficking and surface distribution of Nav1.7 in sensory axons, with outcomes that depend on the presence of an inflammatory milieu, providing a mechanistic explanation for increased excitability of primary afferents and pain in CIPN.
Collapse
Affiliation(s)
- Elizabeth J Akin
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Matthew Alsaloum
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.,MD/PhD Program, Yale University, New Haven, CT 06510, USA
| | - Grant P Higerd
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.,MD/PhD Program, Yale University, New Haven, CT 06510, USA
| | - Shujun Liu
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Peng Zhao
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Fadia B Dib-Hajj
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
31
|
Ye C, Zhang N, Zhao Q, Xie X, Li X, Zhu HP, Peng C, Huang W, Han B. Evodiamine alleviates lipopolysaccharide-induced pulmonary inflammation and fibrosis by activating apelin pathway. Phytother Res 2021; 35:3406-3417. [PMID: 33657655 DOI: 10.1002/ptr.7062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/25/2023]
Abstract
Inflammation can cause a series of inflammatory lung disease, which seriously endangers human health. Pulmonary fibrosis is a kind of inflammatory disease with end-stage lung pathological changes. It has complicated and unknown pathogenesis and is still lack of effective therapeutic drugs. LPS-induced inflammation is a common feature of many infectious inflammations such as pneumonia, bacteremia, glomerulonephritis, etc. Evodiamine, one of the main components of Evodia rutaecarpa, is an alkaloid with excellent antiinflammatory effects. In this study, we evaluated the protective capacities of evodiamine on LPS-induced inflammatory damages in vitro and in vivo. MTT method, flow cytometry, immunofluorescence, and other methods were used for in vitro study to determine the protective capacities of evodiamine. The results suggest that evodiamine can protect murine macrophages from the LPS-nigericin-induced damages by (a) inhibiting cellular apoptosis, (b) inhibiting inflammatory cytokines releasing, and (c) activating the apelin pathway. We also used the exogenous apelin-13 peptide co-cultured with LPS-nigericin in RAW264.7 cells and found that apelin-13 contributes to protecting the effects of evodiamine. In vivo, the ELISA method and immunohistochemistry were used to examine inflammatory cytokines, apelin, and histological changes. BALB/c mice were exposed to LPS and subsequent administration of evodiamine (p.o.)for some time, the results of the alveolar lavage fluid and the tissue slices showed that evodiamine treatment alleviated the pulmonary inflammation and fibrosis, stimulated apelin expression and inhibited the inflammatory cytokines. These results provide a basis for the protective effect and mechanism of evodiamine in LPS-induced inflammation and suggest that it might be potential therapeutics in human pulmonary infections.
Collapse
Affiliation(s)
- Cui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
32
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
33
|
Ben Y, Hao J, Zhang Z, Xiong Y, Zhang C, Chang Y, Yang F, Li H, Zhang T, Wang X, Xu Q. Astragaloside IV Inhibits Mitochondrial-Dependent Apoptosis of the Dorsal Root Ganglion in Diabetic Peripheral Neuropathy Rats Through Modulation of the SIRT1/p53 Signaling Pathway. Diabetes Metab Syndr Obes 2021; 14:1647-1661. [PMID: 33883914 PMCID: PMC8055373 DOI: 10.2147/dmso.s301068] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To investigate the effect of astragaloside IV (AS-IV) on mitochondrial-dependent apoptosis in the dorsal root ganglion of diabetic peripheral neuropathy (DPN) rats through the SIRT1/p53 pathway. METHODS Diabetic rat model was induced by high-carbohydrate/high-fat diet and intraperitoneal injection of STZ. Diabetic rats were divided into three groups (n =16 per group): DPN group, AS-IV group (60mg/kg/d) and α-lipoic acid (ALA) group (60mg/kg/d). Weight and blood glucose levels were monitored every 4 weeks for 12 weeks. DPN was evaluated using the Von Frey Filaments Test and nerve conduction velocity. The dorsal root ganglia of rats were isolated and the pathological changes of mitochondria were observed by electron microscopy. The activity of mitochondrial electron transport chain complex, mitochondrial membrane potential, malonaldehyde (MDA) and glutathione (GSH) levels were measured. Neural apoptosis was detected using the Terminal Deoxynucleotidyl Nick-End Labeling (TUNEL) assay kit. The cleaved caspase-3, major proteins in the SIRT1/p53 pathway, including SIRT1, acetyl p53, Drp1, BAX, and BCL-2, were detected using immunohistochemistry and Western blot. Gene expression of major proteins in the SIRT1/p53 pathway was also detected. RESULTS After 12 weeks of treatment, AS-IV and ALA did not significantly affect body weight or fasting glucose levels, but reduced mechanical abnormal pain in DPN and improved nerve conduction velocity. AS-IV and ALA increased the level of GSH and decreased the level of MDA. Both AS-IV and ALA can reduce mitochondrial damage, improve mitochondrial electron transport chain complex activity and mitochondrial membrane potential, and reduce the percentages of positive cells with DNA fragmentation and the expression of cleaved caspase-3 protein. AS-IV and ALA up-regulated the expression of SIRT1 and down-regulated the expression of acetyl-p53, Drp1 and the ratio of BAX to BCL-2. Changes in gene expression were similar. CONCLUSION AS-IV can reduce the occurrence of mitochondrial-dependent apoptosis by regulating the SIRT1/p53 pathway. It has a similar therapeutic effect as ALA and is therefore a promising drug for the potential treatment of DPN.
Collapse
Affiliation(s)
- Ying Ben
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Juan Hao
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhihong Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Yunzhao Xiong
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Cuijuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Yi Chang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Fan Yang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Hui Li
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Tianya Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiangting Wang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Qingyou Xu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Correspondence: Qingyou Xu Hebei University of Chinese Medicine, No. 326 Xinshinan Road, Qiaoxi District, Shijiazhuang, Hebei Province, 050090, People’s Republic of ChinaTel +86 13832368865Fax +86 311 89926000 Email
| |
Collapse
|
34
|
Sun Q, Xie L, Song J, Li X. Evodiamine: A review of its pharmacology, toxicity, pharmacokinetics and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113164. [PMID: 32738391 DOI: 10.1016/j.jep.2020.113164] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evodia rutaecarpa, a well-known herb medicine in China, is extensively applied in traditional Chinese medicine (TCM). The plant has the effects of dispersing cold and relieving pain, arresting vomiting, and helping Yang and stopping diarrhea. Modern research demonstrates that evodiamine, the main component of Evodia rutaecarpa, is the material basis for its efficacy. AIMS OF THE REVIEW This paper is primarily addressed to summarize the current studies on evodiamine. The progress in research on the pharmacology, toxicology, pharmacokinetics, preparation researches and clinical application are reviewed. Moreover, outlooks and directions for possible future studies concerning it are also discussed. MATERIALS AND METHODS The information of this systematic review was conducted with resources of multiple literature databases including PubMed, Google scholar, Web of Science and Wiley Online Library and so on, with employing a combination of keywords including "pharmacology", "toxicology", "pharmacokinetics" and "clinical application", etc. RESULTS: As the main component of Evodia rutaecarpa, evodiamine shows considerable pharmacological activities, such as analgesic, anti-inflammatory, anti-tumor, anti-microbial, heart protection and metabolic disease regulation. However, it is also found that it has significant hepatotoxicity and cardiotoxicity, thereby it should be monitored in clinical. In addition, available data demonstrate that the evodiamine has a needy solubility in aqueous medium. Scientific and reasonable pharmaceutical strategies should be introduced to improve the above defects. Meanwhile, more efforts should be made to develop novel efficient and low toxic derivatives. CONCLUSIONS This review summarizes the results from current studies of evodiamine, which is one of the valuable medicinal ingredients from Evodia rutaecarpa. With the assistance of relevant pharmacological investigation, some conventional application and problems in pharmaceutical field have been researched in recent years. In addition, unresolved issues include toxic mechanisms, pharmacokinetics, novel pharmaceutical researches and relationship between residues and intestinal environment, which are still being explored and excavate before achieving integration into clinical practice.
Collapse
Affiliation(s)
- Qiang Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
35
|
Zhu C, Liu N, Tian M, Ma L, Yang J, Lan X, Ma H, Niu J, Yu J. Effects of alkaloids on peripheral neuropathic pain: a review. Chin Med 2020; 15:106. [PMID: 33024448 PMCID: PMC7532100 DOI: 10.1186/s13020-020-00387-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain is a debilitating pathological pain condition with a great therapeutic challenge in clinical practice. Currently used analgesics produce deleterious side effects. Therefore, it is necessary to investigate alternative medicines for neuropathic pain. Chinese herbal medicines have been widely used in treating intractable pain. Compelling evidence revealed that the bioactive alkaloids of Chinese herbal medicines stand out in developing novel drugs for neuropathic pain due to multiple targets and satisfactory efficacy. In this review, we summarize the recent progress in the research of analgesic effects of 20 alkaloids components for peripheral neuropathic pain and highlight the potential underlying molecular mechanisms. We also point out the opportunities and challenges of the current studies and shed light on further in-depth pharmacological and toxicological studies of these bioactive alkaloids. In conclusion, the alkaloids hold broad prospects and have the potentials to be novel drugs for treating neuropathic pain. This review provides a theoretical basis for further applying some alkaloids in clinical trials and developing new drugs of neuropathic pain.
Collapse
Affiliation(s)
- Chunhao Zhu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Miaomiao Tian
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004 Ningxia China
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| |
Collapse
|
36
|
da Costa R, Passos GF, Quintão NL, Fernandes ES, Maia JRL, Campos MM, Calixto JB. Taxane-induced neurotoxicity: Pathophysiology and therapeutic perspectives. Br J Pharmacol 2020; 177:3127-3146. [PMID: 32352155 PMCID: PMC7312267 DOI: 10.1111/bph.15086] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022] Open
Abstract
Taxane-derived drugs are antineoplastic agents used for the treatment of highly common malignancies. Paclitaxel and docetaxel are the most commonly used taxanes; however, other drugs and formulations have been used, such as cabazitaxel and nab-paclitaxel. Taxane treatment is associated with neurotoxicity, a well-known and relevant side effect, very prevalent amongst patients undergoing chemotherapy. Painful peripheral neuropathy is the most dose-limiting side effect of taxanes, affecting up to 97% of paclitaxel-treated patients. Central neurotoxicity is an emerging side effect of taxanes and it is characterized by cognitive impairment and encephalopathy. Besides impairing compliance to chemotherapy treatment, taxane-induced neurotoxicity (TIN) can adversely affect the patient's life quality on a long-term basis. Despite the clinical relevance, not many reviews have comprehensively addressed taxane-induced neurotoxicity when they are used therapeutically. This article provides an up-to-date review on the pathophysiology of TIN and the novel potential therapies to prevent or treat this side effect.
Collapse
Affiliation(s)
- Robson da Costa
- Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | - Giselle F. Passos
- Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | - Nara L.M. Quintão
- Programa de Pós‐graduação em Ciências FarmacêuticasUniversidade do Vale do ItajaíItajaíSCBrazil
| | - Elizabeth S. Fernandes
- Instituto Pelé Pequeno PríncipeCuritibaPRBrazil
- Programa de Pós‐graduação em Biotecnologia Aplicada à Saúde da Criança e do AdolescenteFaculdades Pequeno PríncipeCuritibaPRBrazil
| | | | - Maria Martha Campos
- Escola de Ciências da Saúde e da VidaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreRSBrazil
| | - João B. Calixto
- Centro de Inovação e Ensaios Pré‐clínicos ‐ CIEnPFlorianópolisSCBrazil
| |
Collapse
|
37
|
Lin J, Zhang X, Li C, Zhang Y, Lu H, Chen J, Li Z, Yang X, Wu Z. Evodiamine via targeting nNOS and AMPA receptor GluA1 inhibits nitroglycerin-induced migraine-like response. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112727. [PMID: 32147481 DOI: 10.1016/j.jep.2020.112727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evodiamine (EVO) is a natural compound derived from Tetradium ruticarpum (A.Juss.) T.G.Hartley used to treat pain and migraine in traditional Chinese medicine. EVO is the primary active ingredient of Tetradium ruticarpum. However, the preventive effect of EVO against migraine remains unexplored. AIM OF THE STUDY To investigate the preventive effect of EVO against nitroglycerin (NTG)-induced acute migraine in rats. MATERIALS AND METHODS Male Sprague-Dawley rats were intragastrically administered EVO (45 or 90 mg/kg) for nine days. To establish an acute migraine model, we subcutaneously injected rats with a 10 mg/kg NTG solution. The migraine-like behavior of the rats was evaluated via the formalin test and the warm water tail-withdrawal assay. The periaqueductal gray (PAG) and serum samples were collected from the rats and used to determine the effect of EVO on the levels of serum nitric oxide (NO), CGRP, c-Fos, neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor GluA1. RESULTS The formalin test and the warm water tail-withdrawal assay showed that EVO inhibited the licking foot/shaking response and reversed the shortened tail-withdrawal latency in NTG-treated rats. Additionally, EVO suppressed serum NO levels and reduced the mRNA/protein expression of c-Fos and nNOS, but not iNOS, in the PAG. Furthermore, EVO suppressed total protein expression of the AMPA receptor GluA1 and its phosphorylation at Ser831 and Ser845. CONCLUSIONS This study showed that EVO inhibits the migraine-like pain response and that this beneficial effect might be attributed to the regulation of nNOS and suppression of the AMPA receptor GluA1. We suggest that EVO has the potential to treat migraine as a lead compound of natural origin.
Collapse
Affiliation(s)
- Jiacheng Lin
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Xu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Chaotong Li
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Yingyan Zhang
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Hanzhi Lu
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Jiwei Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Zeyu Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Xuejun Yang
- Institute of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, China.
| | - Zhongping Wu
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China.
| |
Collapse
|
38
|
Wang S, Li X, Zang J, Liu M, Zhang S, Jiang G, Ji F. Palladium-Catalyzed Multistep Tandem Carbonylation/N-Dealkylation/Carbonylation Reaction: Access to Isatoic Anhydrides. J Org Chem 2020; 85:2672-2679. [PMID: 31887040 DOI: 10.1021/acs.joc.9b02771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel and efficient synthesis of isatoic anhydride derivatives was developed via palladium-catalyzed multistep tandem carbonylation/N-dealkylation/carbonylation reaction with alkyl as the leaving group and tertiary anilines as nitrogen nucleophiles. This approach features good functional group compatibility and readily available starting materials. Furthermore, it provided a convenient approach for the synthesis of biologically and medicinally useful evodiamine.
Collapse
Affiliation(s)
- Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Xuan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Jiawang Zang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Meichen Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Siyu Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| |
Collapse
|
39
|
Liu C, Yang S, Wang K, Bao X, Liu Y, Zhou S, Liu H, Qiu Y, Wang T, Yu H. Alkaloids from Traditional Chinese Medicine against hepatocellular carcinoma. Biomed Pharmacother 2019; 120:109543. [PMID: 31655311 DOI: 10.1016/j.biopha.2019.109543] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become one of the major diseases that are threatening human health in the 21st century. Currently there are many approaches to treat liver cancer, but each has its own advantages and disadvantages. Among various methods of treating liver cancer, natural medicine treatment has achieved promising results because of their superiorities of high efficiency and availability, as well as low side effects. Alkaloids, as a class of natural ingredients derived from traditional Chinese medicines, have previously been shown to exert prominent anti-hepatocarcinogenic effects, through various mechanisms including inhibition of proliferation, metastasis and angiogenesis, changing cell morphology, promoting apoptosis and autophagy, triggering cell cycle arrest, regulating various cancer-related genes as well as pathways and so on. As a consequence, alkaloids suppress the development and progression of liver cancer. In this study, the mechanisms of representative alkaloids against hepatocarcinoma in each class are described systematically according to the structure classification, which mainly divides alkaloids into piperidine alkaloids, isoquinoline alkaloids, indole alkaloids, terpenoids alkaloids, steroidal alkaloids and other alkaloids. Besides using them alone, synergistic effects created together with other chemotherapy drugs and some special preparation methods also have been demonstrated. In this review, we have summarized the potential roles of several common alkaloids in the prevention and treatment of HCC, by revising the preclinical studies, highlighting the potential applications of alkaloids when they function as a therapeutic choice for HCC treatment, and integrating them into clinical practices.
Collapse
Affiliation(s)
- Caiyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shiyue Zhou
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|