1
|
Muhammad S, Zahir N, Bibi S, Alshahrani MY, Shafiq-urRehman, Chaudhry AR, Sarwar F, Tousif MI. Computational prediction for designing novel ketonic derivatives as potential inhibitors for breast cancer: A trade-off between drug likeness and inhibition potency. Comput Biol Chem 2024; 109:108020. [PMID: 38286082 DOI: 10.1016/j.compbiolchem.2024.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/31/2024]
Abstract
Unlike simple molecular screening, a combined hybrid computational methodology has been applied which includes quantum chemical methods, molecular docking, and molecular dynamics simulations to design some novel ketonic derivatives. The current study contains the derivatives of an experimental ligand which are designed as a trade-off between drug likeness and inhibition strength. We investigate the interaction of various newly designed ketonic compounds with the breast cancer receptor known as the Estrogen Receptor Alpha (ERα). The molecular structures of all newly designed ligands were studied quantum chemically in terms of their fully optimized structures, 3-D molecular orbital distributions, global chemical descriptors, molecular electrostatic potentials and energies of frontier molecular orbitals (FMOs). All ligands under study show good binding affinities with the ERα protein. The ligands CMR2 and CMR4 exhibit improved molecular docking interactions. The intermolecular interactions indicate that CMR4 demonstrates better hydrophobic and hydrogen bonding interactions with protein (ERα). Furthermore, molecular dynamics simulations were conducted on ligands and reference drugs interacting with the ERα protein over a time span of 120 nanoseconds. The molecular dynamics results are interpreted in terms of ligand-protein stability and flexible behaviour based on their respective values of RMSD, RMSF, H-bonds, the radius of gyration, and SASA graphs. To analyse ligand-protein interactions throughout the entire 120 ns trajectory, a more advanced MM/PBSA method is utilized, where six selected ligands (CMR1, CMR2, CMR3, CMR4, CMR5 and CMR9) illustrate promising results for inhibition of the ERα receptor as assessed through MM/BBSA analysis. The CMR9 has the highest MM/BBSA binding free energy (-14.46 kcal/mol). The ADMET analysis reveals that CMR4 has maximum intestinal absorption (6.68) and clearance rate (0.1). All the compounds are non-toxic and safe to use. These findings indicate the potential of involving different computational techniques to design the ligand structures and to study the ligand-protein interactions for better understanding and achieving more potent synthetic inhibitors for breast cancer.
Collapse
Affiliation(s)
- Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Nimra Zahir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Shafiq-urRehman
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Fatima Sarwar
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| |
Collapse
|
2
|
Rauf U, Shabir G, Bukhari S, Albericio F, Saeed A. Contemporary Developments in Ferrocene Chemistry: Physical, Chemical, Biological and Industrial Aspects. Molecules 2023; 28:5765. [PMID: 37570735 PMCID: PMC10420780 DOI: 10.3390/molecules28155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Ferrocenyl-based compounds have many applications in diverse scientific disciplines, including in polymer chemistry as redox dynamic polymers and dendrimers, in materials science as bioreceptors, and in pharmacology, biochemistry, electrochemistry, and nonlinear optics. Considering the horizon of ferrocene chemistry, we attempted to condense the neoteric advancements in the synthesis and applications of ferrocene derivatives reported in the literature from 2016 to date. This paper presents data on the progression of the synthesis of diverse classes of organic compounds having ferrocene scaffolds and recent developments in applications of ferrocene-based organometallic compounds, with a special focus on their biological, medicinal, bio-sensing, chemosensing, asymmetric catalysis, material, and industrial applications.
Collapse
Affiliation(s)
- Umair Rauf
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Saba Bukhari
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| |
Collapse
|
3
|
Esam Z, Akhavan M, Lotfi M, Bekhradnia A. Synthesis and In Silico Investigation of Isatin-Based Schiff Bases as Potential Inhibitors for Promising Targets against SARS-CoV-2. ChemistrySelect 2022; 7:e202201983. [PMID: 36718466 PMCID: PMC9878032 DOI: 10.1002/slct.202201983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Despite the significant development in vaccines and therapeutics cocktails, there is no specific treatment available for coronavirus disease 2019 (COVID-19), caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Targeting the main protease (Mpro) of SARS-CoV-2, which possesses a key role in producing the essential viral structural and functional proteins, can be considered an efficient way to control this potentially lethal infection. Recently, some of Michael acceptor-pharmacophore containing inhibitors have been suggested as successful suppressors of the main protease. Here, we synthesized the Isatin-based Schiff bases possessing the structural pattern of a Michael acceptor-like portion employing synthesis procedures. In silico investigation of these compounds was not limited to the main protease. We have also evaluated their possible inhibitory activity against the other identified druggable targets using homology modeling, molecular docking, and molecular dynamics simulations. Our investigations revealed that the dimethyl biguanide carrying Schiff bases of Isatin-derivatives have the best binding mode and interaction energy. The dimethyl biguanide moiety-containing compounds have formed promising interactions with the key amino acid residues Cys145 and HIS41 of Mpro with a binding free energy of -7.6 kcal/mol which was lower than the positive control compound Carmofur (-6.3 kcal/mol). It also leads to the higher affinity and the much inhibitory potential against the SARS-CoV-2 RdRp and Spike glycoproteins, human TMPRSS2, and ACE2 receptors.
Collapse
Affiliation(s)
- Zohreh Esam
- Pharmaceutical Sciences Research CenterDepartment of Medicinal ChemistryFaculty of PharmacyMazandaran University of Medical SciencesSariIran
| | - Malihe Akhavan
- Pharmaceutical Sciences Research CenterDepartment of Medicinal ChemistryFaculty of PharmacyMazandaran University of Medical SciencesSariIran
| | - Maryam Lotfi
- The Multiscale Modeling Lab, ITQB NOVAAv. da Republica2780-157OeirasPortugal
| | - Ahmadreza Bekhradnia
- Pharmaceutical Sciences Research CenterDepartment of Medicinal ChemistryFaculty of PharmacyMazandaran University of Medical SciencesSariIran
- Department of chemistry and biochemistry103CBBMontana State UniversityBozemanMT59717USA
| |
Collapse
|
4
|
Emam SM, Bondock S, Aldaloa AA. Schiff Base Coordination Compounds Including Thiosemicarbazide Derivative and 4-Benzoyl-1, 3-Diphenyl-5-Pyrazolone: Synthesis, Structural Spectral Characterization and Biological Activity. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
5
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Hammoud MM, Khattab M, Abdel-Motaal M, Van der Eycken J, Alnajjar R, Abulkhair HS, Al-Karmalawy AA. Synthesis, structural characterization, DFT calculations, molecular docking, and molecular dynamics simulations of a novel ferrocene derivative to unravel its potential antitumor activity. J Biomol Struct Dyn 2022:1-18. [PMID: 35674744 DOI: 10.1080/07391102.2022.2082533] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this article, we describe a set of subsequent five-steps chemical reactions to synthesize a ferrocene derivative named 1-(5-(diphenylphosphaneyl)cyclopenta-1,3-dien-1-yl)ethyl)imino)-1,3-dihydroisobenzofuran-5-yl)methanol (compound 10). Structural characterization of 10 and its intermediate products was also performed and reported to attest to their formation. A molecular docking study was performed to propose the novel synthesized ferrocene derivative (10) as a potential antitumor candidate targeting the mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1. The computed docking score of (10) at -9.50 kcal/mol compared to the native anticancer staurosporine at -8.72 kcal/mol postulated a promising anticancer activity. Also, molecular dynamics (MD) simulations were carried out for 500 ns followed by MM-GBSA-binding free energy calculations for both the docked complexes of ferrocene and staurosporine to give more deep insights into their dynamic behavior in physiological conditions. Furthermore, DFT calculations were performed to unravel some of the physiochemical characteristics of the ferrocene derivative (10). The quantum mechanics calculations shed the light on some of the structural and electrochemical configurations of (10) which would open the horizon for further investigation. HighlightsThe synthesis of a ferrocene derivative named 1-(5-(diphenylphosphaneyl)cyclopenta-1,3-dien-1-yl)ethyl)imino)-1,3-dihydroisobenzofuran-5-yl)methanol (compound 10) was described.Structural characterizations of ferrocene derivative (10) and its intermediate products were also performed.DFT calculations, molecular docking, molecular dynamics, and MM-GBSA calculations were carried out.Computational studies revealed the antitumor potential of ferrocene derivative (10) through targeting and inhibiting mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed M Hammoud
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.,Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute National Research Centre, Dokki, Cairo, Egypt
| | - Marwa Abdel-Motaal
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.,Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Johan Van der Eycken
- Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya.,Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Ahmed Ali Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
7
|
Chaudhry AR, Alhujaily M, Muhammad S, Elbadri GA, Belali TM, Al-Sehemi AG. Insighting the optoelectronic, charge transfer and biological potential of benzo-thiadiazole and its derivatives. Z NATURFORSCH C 2022; 77:403-415. [PMID: 35438853 DOI: 10.1515/znc-2021-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/17/2022] [Indexed: 11/15/2022]
Abstract
The current investigation applies the dual approach containing quantum chemical and molecular docking techniques to explore the potential of benzothiadiazole (BTz) and its derivatives as efficient electronic and bioactive materials. The charge transport, electronic and optical properties of BTz derivatives are explored by quantum chemical techniques. The density functional theory (DFT) and time dependent DFT (TD-DFT) at B3LYP/6-31G** level of theory utilized to optimize BTz and newly designed ligands at the ground and first excited states, respectively. The heteroatoms substitution effects on different properties of 4,7-bis(4-methylthiophene-2yl) benzo[c] [1,2,5]thiadiazole (BTz2T) as initial compound are studied at molecular level. Additionally, we also study the possible inhibition potential of COVID-19 from benzothiadiazole (BTz) containing derivatives by implementing the grid based molecular docking methods. All the newly designed ligands docked with the main protease (MPRO:PDB ID 6LU7) protein of COVID-19 through molecular docking methods. The studied compounds showed strong binding affinities with the binding site of MPRO ranging from -6.9 to -7.4 kcal/mol. Furthermore, the pharmacokinetic properties of the ligands are also studied. The analysis of these results indicates that the studied ligands might be promising drug candidates as well as suitable for photovoltaic applications.
Collapse
Affiliation(s)
- Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, Bisha 61922, P.O. Box 334, Saudi Arabia.,Deanship of Scientific Research, University of Bisha, Bisha 61922, P.O. Box 551, Saudi Arabia
| | - Muhanad Alhujaily
- Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Gamal A Elbadri
- Department of Biology, College of Science, University of Bisha, Bisha 61922, P.O. Box 334, Saudi Arabia
| | - Tareg M Belali
- Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| |
Collapse
|
8
|
Ashfaq M, Tahir MN, Muhammad S, Munawar KS, Ali S, Ahmed G, Al-Sehemi AG, Alarfaji SS, Ibraheem Khan ME. Shedding Light on the Synthesis, Crystal Structure, Characterization, and Computational Study of Optoelectronic Properties and Bioactivity of Imine derivatives. ACS OMEGA 2022; 7:5217-5230. [PMID: 35187337 PMCID: PMC8851652 DOI: 10.1021/acsomega.1c06325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Two imine compounds named as (E)-2-(((3,4-dichlorophenyl)imino)methyl)phenol (DC2H) and (E)-4-(((2,4-dimethylphenyl)imino)methyl)phenol (DM4H) are synthesized, and their crystal structures are verified using the single-crystal X-ray diffraction (XRD) technique. The crystal structures of the compounds are compared with the closely related crystal structures using the Cambridge Structural Database (CSD). The crystal packing in terms of intermolecular interactions is fully explored by Hirshfeld surface analysis. Void analysis is carried out for both compounds to check the strength of the crystal packing. Furthermore, a state-of-the-art dual computational technique consisting of quantum chemical and molecular docking methods is used to shed light on the molecular structure, optoelectronic properties, and bioactivity of indigenously synthesized compounds. The optimized molecular geometries are compared with their counterpart experimental values. Based on previous reports of biofunctions of the indigenously synthesized imine derivatives, they are explored for their potential inhibition properties against two very crucial proteins (main protease (Mpro) and nonstructural protein 9 (NSP9)) of SARS-CoV-2. The calculated interaction energy values of DC2H and DM4H with Mpro are found to be -6.3 and -6.6 kcal/mol, respectively, and for NSP9, the calculated interaction energy value is found to be -6.5 kcal/mol. We believe that the current combined study through experiments and computational techniques will not only pique the interest of the broad scientific community but also evoke interest in their further in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Saqib Ali
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Gulzar Ahmed
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Abdullah G. Al-Sehemi
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Saleh S. Alarfaji
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | |
Collapse
|
9
|
Mutlu G, Okumuş A, Elmas G, Kılıç Z, Guzel R, Sabah BN, Açık L, Mergen H, Hökelek T. Phosphorus-Nitrogen Compounds. Part 65. Novel diansa-spiro-cyclotetraphosphazenes: synthesis, characterization, bioactivity and electrochemical properties, fabrication of dye-sensitized solar cell studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj03001b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this investigation, the substitution reaction of octachlorocyclotetraphosphazene, N4P4Cl8 (tetramer, OCCP, 1) with sodium 3-(N-ferrocenylmethylamino)-1-propanoxide (L1) was found to yield the compounds, 2,4-ansa- (2) and spiro- (2) cyclotetraphosphazene derivatives. The...
Collapse
|