1
|
Sutanto H, Elisa E, Rachma B, Fetarayani D. Gut Microbiome Modulation in Allergy Treatment: The Role of Fecal Microbiota Transplantation. Am J Med 2025:S0002-9343(25)00033-6. [PMID: 39855612 DOI: 10.1016/j.amjmed.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
The prevalence of allergic diseases has been rising, paralleling lifestyle changes and environmental exposures that have altered human microbiome composition. This review article examines the intricate relationship between the gut microbiome and allergic diseases, emphasizing the potential of fecal microbiota transplantation as a promising novel treatment approach. It explains how reduced microbial exposure in modern societies contributes to immune dysregulation and the increasing incidence of allergies. The discussion also addresses immune homeostasis and its modulation by the gut microbiome, highlighting the shift from eubiosis to dysbiosis in allergic conditions. Furthermore, this article reviews existing studies and emerging research on the role of fecal microbiota transplantation in restoring microbial balance, providing insights into its mechanisms, efficacy, and safety.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Elisa Elisa
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Betty Rachma
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Fetarayani
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia; Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
2
|
Tafader A, Bajaj JS. Present and future of fecal microbiome transplantation in cirrhosis. Liver Transpl 2024:01445473-990000000-00519. [PMID: 39591377 DOI: 10.1097/lvt.0000000000000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Over the last few decades, there have been tremendous advances in our understanding of the role of the gut microbiome in cirrhosis and the clinical sequelae that follow. Progressive dysbiosis and immune dysregulation occur in patients with cirrhosis. In fact, alterations in the gut microbiome occur long before a diagnosis of cirrhosis is made. Understandably, our attention has recently been diverted toward potential modulators of the gut microbiome and the gut-liver axis as targets for treatment. The goal of this review is to highlight the utility of manipulating the gut microbiome with a focus on fecal microbiome transplantation (FMT) in patients with cirrhosis. In addition, we will provide an overview of disease-specific microbial alterations and the resultant impact this has on cirrhosis-related complications.
Collapse
Affiliation(s)
- Asiya Tafader
- Department of Medicine, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | | |
Collapse
|
3
|
Zhou F, Ma Z, Rashwan AK, Khaskheli MB, Abdelrady WA, Abdelaty NS, Hassan Askri SM, Zhao P, Chen W, Shamsi IH. Exploring the Interplay of Food Security, Safety, and Psychological Wellness in the COVID-19 Era: Managing Strategies for Resilience and Adaptation. Foods 2024; 13:1610. [PMID: 38890839 PMCID: PMC11172172 DOI: 10.3390/foods13111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The global population surge presents a dual challenge and opportunity in the realms of food consumption, safety, and mental well-being. This necessitates a projected 70% increase in food production to meet growing demands. Amid this backdrop, the ongoing COVID-19 pandemic exacerbates these issues, underscoring the need for a deeper understanding of the intricate interplay between food consumption patterns and mental health dynamics during this crisis. Mitigating the spread of COVID-19 hinges upon rigorous adherence to personal hygiene practices and heightened disease awareness. Furthermore, maintaining stringent food quality and safety standards across both public and private sectors is imperative for safeguarding public health and containing viral transmission. Drawing upon existing research, this study delves into the pandemic's impact on mental health, food consumption habits, and food safety protocols. Through a comprehensive analysis, it aims to elucidate the nuanced relationship among food, food safety, and mental well-being amid the COVID-19 pandemic, highlighting synergistic effects and dynamics that underpin holistic human welfare. Our study offers a novel approach by integrating psychological wellness with food security and safety. In conceiving this review, we aimed to comprehensively explore the intricate interplay among food security, safety, and psychological wellness amid the backdrop of the COVID-19 pandemic. Our review is structured to encompass a thorough examination of existing research, synthesizing insights into the multifaceted relationships among food consumption patterns, mental health dynamics, and food safety protocols during the crisis. Our findings provide valuable insights and practical recommendations for enhancing food security and psychological well-being, thus supporting both academic research and real-world applications in crisis management and policy development.
Collapse
Affiliation(s)
- Fanrui Zhou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Zhengxin Ma
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | | | - Wessam A. Abdelrady
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Agronomy, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Nesma S. Abdelaty
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Dairy Science, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Reygner J, Delannoy J, Barba-Goudiaby MT, Gasc C, Levast B, Gaschet E, Ferraris L, Paul S, Kapel N, Waligora-Dupriet AJ, Barbut F, Thomas M, Schwintner C, Laperrousaz B, Corvaïa N. Reduction of product composition variability using pooled microbiome ecosystem therapy and consequence in two infectious murine models. Appl Environ Microbiol 2024; 90:e0001624. [PMID: 38651930 PMCID: PMC11107171 DOI: 10.1128/aem.00016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Growing evidence demonstrates the key role of the gut microbiota in human health and disease. The recent success of microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on its potential in conditions associated with gut dysbiosis, such as acute graft-versus-host disease, intestinal bowel diseases, neurodegenerative diseases, or even cancer. However, the difficulty in defining a "good" donor as well as the intrinsic variability of donor-derived products' taxonomic composition limits the translatability and reproducibility of these studies. Thus, the pooling of donors' feces has been proposed to homogenize product composition and achieve higher taxonomic richness and diversity. In this study, we compared the metagenomic profile of pooled products to corresponding single donor-derived products. We demonstrated that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria known to produce anti-inflammatory short chain fatty acids compared to single donor-derived products. We then evaluated pooled products' efficacy compared to corresponding single donor-derived products in Salmonella and C. difficile infectious mouse models. We were able to demonstrate that pooled products decreased pathogenicity by inducing a structural change in the intestinal microbiota composition. Single donor-derived product efficacy was variable, with some products failing to control disease progression. We further performed in vitro growth inhibition assays of two extremely drug-resistant bacteria, Enterococcus faecium vanA and Klebsiella pneumoniae oxa48, supporting the use of pooled microbiotherapies. Altogether, these results demonstrate that the heterogeneity of donor-derived products is corrected by pooled fecal microbiotherapies in several infectious preclinical models.IMPORTANCEGrowing evidence demonstrates the key role of the gut microbiota in human health and disease. Recent Food and Drug Administration approval of fecal microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on their potential to treat pathological conditions associated with gut dysbiosis. In this study, we combined metagenomic analysis with in vitro and in vivo studies to compare the efficacy of pooled microbiotherapy products to corresponding single donor-derived products. We demonstrate that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria compared to single donor-derived products. We further reveal that pooled products decreased Salmonella and Clostridioides difficile pathogenicity in mice, while single donor-derived product efficacy was variable, with some products failing to control disease progression. Altogether, these findings support the development of pooled microbiotherapies to overcome donor-dependent treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stéphane Paul
- Team GIMAP, Centre International de Recherche en Infectiologie, Université Jean Monnet, Saint-Etienne, France
- Inserm, Université Claude Bernard Lyon, Lyon, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Nathalie Kapel
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- Service de Coprologie fonctionnelle, Hôpital de la Pitié-Salpêtrière-Charles Foix, AP-HP, Paris, France
| | | | - Frederic Barbut
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- National Reference Laboratory for Clostridioides difficile, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- The European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridioides difficile, Basel, Switzerland
| | - Muriel Thomas
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
5
|
Gyriki D, Nikolaidis C, Stavropoulou E, Bezirtzoglou I, Tsigalou C, Vradelis S, Bezirtzoglou E. Exploring the Gut Microbiome's Role in Inflammatory Bowel Disease: Insights and Interventions. J Pers Med 2024; 14:507. [PMID: 38793089 PMCID: PMC11122163 DOI: 10.3390/jpm14050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammatory Bowel Disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic and relapsing inflammatory condition of the intestine that significantly impairs quality of life and imposes a heavy burden on healthcare systems globally. While the exact etiology of IBD is unclear, it is influenced by genetic, environmental, immunological, and microbial factors. Recent advances highlight the gut microbiome's pivotal role in IBD pathogenesis. The microbial dysbiosis characteristic of IBD, marked by a decline in beneficial bacteria and an increase in pathogenic microbes, suggests a profound connection between microbial imbalance and disease mechanisms. This review explores diagnostic approaches to IBD that integrate clinical assessment with advanced microbiological analyses, highlighting the potential of microbiome profiling as a non-invasive diagnostic tool. In addition, it evaluates conventional and emerging treatments and discusses microbiome-targeted intervention prospects, such as probiotics, symbiotics, and faecal microbiota transplantation. The necessity for future research to establish their efficacy and safety is emphasised.
Collapse
Affiliation(s)
- Despoina Gyriki
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.); (E.B.)
- Internal Medicine Department, Vostaneio-General Hospital of Mytilene, 81100 Mytilene, Greece;
| | - Christos Nikolaidis
- Internal Medicine Department, Vostaneio-General Hospital of Mytilene, 81100 Mytilene, Greece;
| | - Elisavet Stavropoulou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.); (E.B.)
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.); (E.B.)
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.); (E.B.)
- Department of Gastroenterology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.); (E.B.)
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
6
|
Abdullah ST, Abdullah SR, Hussen BM, Younis YM, Rasul MF, Taheri M. Role of circular RNAs and gut microbiome in gastrointestinal cancers and therapeutic targets. Noncoding RNA Res 2024; 9:236-252. [PMID: 38192436 PMCID: PMC10771991 DOI: 10.1016/j.ncrna.2023.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
Gastrointestinal cancers are a huge worldwide health concern, which includes a wide variety of digestive tract cancers. Circular RNAs (circRNAs), a kind of non-coding RNA (ncRNAs), are a family of single-stranded, covalently closed RNAs that have become recognized as crucial gene expression regulators, having an impact on several cellular functions in cancer biology. The gut microbiome, which consists of several different bacteria, actively contributes to the regulation of host immunity, inflammation, and metabolism. CircRNAs and the gut microbiome interact significantly to greatly affect the growth of GI cancer. Several studies focus on the complex functions of circRNAs and the gut microbiota in GI cancers, including esophageal cancer, colorectal cancer, gastric cancer, hepatocellular cancer, and pancreatic cancer. It also emphasizes how changed circRNA expression profiles and gut microbiota affect pathways connected to malignancy as well as how circRNAs affect hallmarks of gastrointestinal cancers. Furthermore, circRNAs and gut microbiota have been recommended as biological markers for therapeutic targets as well as diagnostic and prognostic purposes. Targeting circRNAs and the gut microbiota for the treatment of gastrointestinal cancers is also being continued to study. Despite significant initiatives, the connection between circRNAs and the gut microbiota and the emergence of gastrointestinal cancers remains poorly understood. In this study, we will go over the most recent studies to emphasize the key roles of circRNAs and gut microbiota in gastrointestinal cancer progression and therapeutic options. In order to create effective therapies and plan for the future gastrointestinal therapy, it is important to comprehend the functions and mechanisms of circRNAs and the gut microbiota.
Collapse
Affiliation(s)
- Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Yousif Mohammed Younis
- Department of Nursing, College of Nursing, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Tikunov AY, Fedorets VA, Shrainer EV, Morozov VV, Bystrova VI, Tikunova NV. Intestinal Microbiome Changes and Clinical Outcomes of Patients with Ulcerative Colitis after Fecal Microbiota Transplantation. J Clin Med 2023; 12:7702. [PMID: 38137770 PMCID: PMC10743744 DOI: 10.3390/jcm12247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND AIMS Ulcerative colitis (UC) is a chronic inflammatory disease that affects many people. One of the possible ways to treat UC is fecal microbiota transplantation (FMT). In this study, changes in the intestinal microbiome and clinical outcomes of 20 patients with UC after FMT were estimated. METHODS FMT enemas were administrated ten times, once a day, and fecal microbiota from three donors was used for each enema. The clinical outcomes were assessed after eight weeks and then via a patient survey. The 16S rRNA profiles of the gut microbiota were compared between three samplings: samples from 20 patients with UC before and after FMT and samples from 18 healthy volunteers. RESULTS Clinical remission was achieved in 19 (95%) patients at week 8. Adverse events occurred in five patients, including one non-responder. A significant increase in average biodiversity was shown in samples after FMT compared to samples before FMT, as well as a decrease in the proportion of some potentially pathogenic bacteria. CONCLUSION The efficacy of FMT for UC treatment was confirmed; however, the duration of remission varied substantially, possibly due to different characteristics of the initial microbiota of patients. Targeted analysis of a patient's microbiome before FMT could increase the treatment efficacy.
Collapse
Affiliation(s)
- Artem Y. Tikunov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria A. Fedorets
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Evgenia V. Shrainer
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Vitaliy V. Morozov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria I. Bystrova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Nina V. Tikunova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| |
Collapse
|
8
|
Lavoie T, Appaneal HJ, LaPlante KL. Advancements in Novel Live Biotherapeutic Products for Clostridioides difficile Infection Prevention. Clin Infect Dis 2023; 77:S447-S454. [PMID: 38051964 DOI: 10.1093/cid/ciad639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
The profound impact of the human microbiome on health and disease has captivated the interest of clinical and scientific communities. The human body hosts a vast array of microorganisms collectively forming the human microbiome, which significantly influences various physiological processes and profoundly shapes overall well-being. Notably, the gut stands out as an exceptional reservoir, harboring the most significant concentration of microorganisms, akin to an organ in itself. The gut microbiome's composition and function are influenced by genetics, environment, age, underlying conditions, and antibiotic usage, leading to dysbiosis and pathogenesis, such as Clostridioides difficile infection (CDI). Conventional CDI treatment, involving antibiotics like oral vancomycin and fidaxomicin, fails to address dysbiosis and may further disrupt gut microbial communities. Consequently, emerging therapeutic strategies are focused on targeting dysbiosis and restoring gut microbiota to advance CDI therapeutics. Fecal microbiota transplantation (FMT) has demonstrated remarkable efficacy in treating recurrent CDI by transferring processed stool from a healthy donor to a recipient, restoring gut dysbiosis and enhancing bacterial diversity. Moreover, 2 newer Food and Drug Administration (FDA)-approved live biotherapeutic products (LBP), namely, Fecal Microbiota Live-JSLM and Fecal Microbiota Spores Live-BRPK, have shown promise in preventing CDI recurrence. This review explores the role of the gut microbiota in preventing and treating CDI, with an emphasis on gut-based interventions like FMT and fecal microbiota-based products that hold potential for gut restoration and prevention of CDI recurrence. Understanding the microbiome's impact on CDI prevention and treatment offers valuable insights for advancing future CDI therapeutics.
Collapse
Affiliation(s)
- Thomas Lavoie
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Haley J Appaneal
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- Center of Innovation in Long-Term Support Services, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kerry L LaPlante
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- Center of Innovation in Long-Term Support Services, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- Warren Alpert Medical School of Brown University, Division of Infectious Diseases, Providence, Rhode Island, USA
- School of Public Health, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
9
|
Gu X, Chen ZH, Zhang SC. Fecal microbiota transplantation in childhood: past, present, and future. World J Pediatr 2023; 19:813-822. [PMID: 36484871 PMCID: PMC9734408 DOI: 10.1007/s12519-022-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/13/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has been well described in the treatment of pediatric diseases; however, the latest updates regarding its use in children are unclear and the concepts involved need to be revisited. DATA SOURCES We performed advanced searches in the MEDLINE, EMBASE, and Cochrane databases using the keywords "Fecal microbiota transplantation OR Fecal microbiota transfer" in the [Title/Abstract] to identify relevant articles published in English within the last five years. To identify additional studies, reference lists of review articles and included studies were manually searched. Retrieved manuscripts (case reports, reviews, and abstracts) were assessed by the authors. RESULTS Among the articles, studies were based on the mechanism (n = 28), sample preparation (n = 9), delivery approaches (n = 23), safety (n = 26), and indications (n = 67), including Clostridium difficile infection (CDI) and recurrent C. difficile infection (rCDI; n = 21), non-alcoholic fatty liver disease (NAFLD; n = 10), irritable bowel syndrome (IBS; n = 5), inflammatory bowel disease (IBD; n = 15), diabetes (n = 5), functional constipation (FC; n = 4), and autism spectrum disorder (ASD; n = 7). CONCLUSIONS Concepts of FMT in pediatric diseases have been updated with respect to underlying mechanisms, methodology, indications, and safety. Evidence-based clinical trials for the use of FMT in pediatric diseases should be introduced to resolve the challenges of dosage, duration, initiation, and the end point of treatment.
Collapse
Affiliation(s)
- Xu Gu
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Heping District, Shenyang, 110004, China
| | - Zhao-Hong Chen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shu-Cheng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Heping District, Shenyang, 110004, China.
| |
Collapse
|
10
|
Kwak MJ, Kim SH, Kim HH, Tanpure R, Kim JI, Jeon BH, Park HK. Psychobiotics and fecal microbial transplantation for autism and attention-deficit/hyperactivity disorder: microbiome modulation and therapeutic mechanisms. Front Cell Infect Microbiol 2023; 13:1238005. [PMID: 37554355 PMCID: PMC10405178 DOI: 10.3389/fcimb.2023.1238005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 08/10/2023] Open
Abstract
Dysbiosis of the gut microbiome is thought to be the developmental origins of the host's health and disease through the microbiota-gut-brain (MGB) axis: such as immune-mediated, metabolic, neurodegenerative, and neurodevelopmental diseases. Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are common neurodevelopmental disorders, and growing evidence indicates the contribution of the gut microbiome changes and imbalances to these conditions, pointing to the importance of considering the MGB axis in their treatment. This review summarizes the general knowledge of gut microbial colonization and development in early life and its role in the pathogenesis of ASD/ADHD, highlighting a promising therapeutic approach for ASD/ADHD through modulation of the gut microbiome using psychobiotics (probiotics that positively affect neurological function and can be applied for the treatment of psychiatric diseases) and fecal microbial transplantation (FMT).
Collapse
Affiliation(s)
- Min-jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hoo Hugo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Rahul Tanpure
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
11
|
Hocking L, Ianiro G, Leong RW, Iqbal T, Kao D, Cabling M, Stockwell S, Romanelli RJ, Marjanovic S. Faecal microbiota transplantation for recurrent C. difficile infections: challenges and improvement opportunities for clinical practice and healthcare systems. Aliment Pharmacol Ther 2023; 57:549-564. [PMID: 36495561 DOI: 10.1111/apt.17309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND There is growing interest in faecal microbiota transplantation (FMT) as a treatment for recurrent Clostridioides difficile infection (CDI), but evidence on the diverse requirements for safe, effective and accessible services is fragmented and limited. AIMS To identify key components of FMT provision relating to the patient care pathway, stool donor pathway and wider healthcare system, and to explore variation in practice METHODS: We conducted a narrative review of the literature and consultations with key clinical experts in the field. Evidence is drawn from high-income country contexts, with an emphasis on Australia, Canada, Italy and the United Kingdom as case example countries. RESULTS We identify and discuss key challenges to do with healthcare capacity (workforce, FMT and stool banking facilities), donors and donations, patient access and choice of FMT delivery routes, regulation, costs and reimbursement. We also identify improvement opportunities to increase awareness of FMT and referral processes, physician training, maintaining patient registries and outcome monitoring metrics, in-country regulatory harmonisation and tackling reimbursement challenges and discuss future research needs. CONCLUSION Effectively bringing FMT to patients in a healthcare system requires much more than just the existence of a clinically effective procedure. With FMT being a potentially effective treatment option for recurrent CDI for many patients, a well-rounded understanding of how appropriate FMT capacity can be built and nurtured is important for both healthcare providers and policymakers seeking to improve patient care.
Collapse
Affiliation(s)
| | - Gianluca Ianiro
- Gastroenterology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS and Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rupert W Leong
- Macquarie University Hospital and Concord Hospital, Sydney, Australia
| | | | - Dina Kao
- University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
12
|
Zain NMM, Ter Linden D, Lilley AK, Royall PG, Tsoka S, Bruce KD, Mason AJ, Hatton GB, Allen E, Goldenberg SD, Forbes B. Design and manufacture of a lyophilised faecal microbiota capsule formulation to GMP standards. J Control Release 2022; 350:324-331. [PMID: 35963468 DOI: 10.1016/j.jconrel.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Faecal microbiota transplant (FMT) is an established and effective treatment for recurrent Clostridioides difficile infection (CDI) and has many other potential clinical applications. However, preparation and quality of FMT is poorly standardised and clinical studies are hampered by a lack of well-defined FMT formulations that meet regulatory standards for medicines. As an alternative to FMT suspensions for administration by nasojejunal tube or colonoscopy, which is invasive and disliked by many patients, this study aimed to develop a well-controlled, standardised method for manufacture of lyophilised FMT capsules and to provide stability data allowing storage for extended time periods. Faecal donations were collected from healthy, pre-screened individuals, homogenised, filtered and centrifuged to remove dietary matter. The suspension was centrifuged to pellet bacteria, which were resuspended with trehalose and lyophilised to produce a powder which was filled into 5 enteric-coated capsules (size 0). Live-dead bacterial cell quantitative PCR assay showed <10 fold viable bacterial load reduction through the manufacturing process. No significant loss of viable bacterial load was observed after storage at -80 °C for 36 weeks (p = 0.24, n = 5). Initial clinical experience demonstrated that the capsules produced clinical cure in patients with CDI with no adverse events reported (n = 7). We provide the first report of a detailed manufacturing protocol and specification for an encapsulated lyophilised formulation of FMT. As clinical trials into intestinal microbiota interventions proceed, it is important to use a well-controlled investigational medicinal product in the studies so that any beneficial results can be replicated in clinical practice.
Collapse
Affiliation(s)
- Nur Masirah M Zain
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Daniëlle Ter Linden
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Andrew K Lilley
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Paul G Royall
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, United Kingdom
| | - Kenneth D Bruce
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Grace B Hatton
- Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elizabeth Allen
- Early Clinical Development Centre of Excellence, IQVIA, Reading, United Kingdom
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
13
|
Gulliver EL, Young RB, Chonwerawong M, D'Adamo GL, Thomason T, Widdop JT, Rutten EL, Rossetto Marcelino V, Bryant RV, Costello SP, O'Brien CL, Hold GL, Giles EM, Forster SC. Review article: the future of microbiome-based therapeutics. Aliment Pharmacol Ther 2022; 56:192-208. [PMID: 35611465 PMCID: PMC9322325 DOI: 10.1111/apt.17049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND From consumption of fermented foods and probiotics to emerging applications of faecal microbiota transplantation, the health benefit of manipulating the human microbiota has been exploited for millennia. Despite this history, recent technological advances are unlocking the capacity for targeted microbial manipulation as a novel therapeutic. AIM This review summarises the current developments in microbiome-based medicines and provides insight into the next steps required for therapeutic development. METHODS Here we review current and emerging approaches and assess the capabilities and weaknesses of these technologies to provide safe and effective clinical interventions. Key literature was identified through Pubmed searches with the following key words, 'microbiome', 'microbiome biomarkers', 'probiotics', 'prebiotics', 'synbiotics', 'faecal microbiota transplant', 'live biotherapeutics', 'microbiome mimetics' and 'postbiotics'. RESULTS Improved understanding of the human microbiome and recent technological advances provide an opportunity to develop a new generation of therapies. These therapies will range from dietary interventions, prebiotic supplementations, single probiotic bacterial strains, human donor-derived faecal microbiota transplants, rationally selected combinations of bacterial strains as live biotherapeutics, and the beneficial products or effects produced by bacterial strains, termed microbiome mimetics. CONCLUSIONS Although methods to identify and refine these therapeutics are continually advancing, the rapid emergence of these new approaches necessitates accepted technological and ethical frameworks for measurement, testing, laboratory practices and clinical translation.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Remy B. Young
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Gemma L. D'Adamo
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Tamblyn Thomason
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - James T. Widdop
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Emily L. Rutten
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Vanessa Rossetto Marcelino
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Robert V. Bryant
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Samuel P. Costello
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Georgina L. Hold
- Microbiome Research Centre, St George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Edward M. Giles
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
14
|
Recurrent Campylobacter jejuni Infection in an Immunodeficient Patient Treated with Repeated Faecal Microbiota Transplant (FMT)—A Case Report. Infect Dis Rep 2022; 14:56-62. [PMID: 35076517 PMCID: PMC8788277 DOI: 10.3390/idr14010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
There is limited evidence to guide successful treatment of recurrent Campylobacter infection in patients with common variable immunodeficiency (CVID) already managed on regular immunoglobulin therapy. The role of faecal microbiota transplant (FMT) is uncertain. We report a case of recurrent Campylobacter jejuni infection in a patient with CVID treated with repeated FMT with 18 months of symptom resolution prior to relapse.
Collapse
|
15
|
Michailidis L, Currier AC, Le M, Flomenhoft DR. Adverse events of fecal microbiota transplantation: a meta-analysis of high-quality studies. Ann Gastroenterol 2021; 34:802-814. [PMID: 34815646 PMCID: PMC8596209 DOI: 10.20524/aog.2021.0655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has shown excellent efficacy in treating Clostridioides difficile infection, as well as promise in several other diseases. The heightened interest is accompanied by concerns over adverse events (AE) and safety. To further understand that in FMT, we performed a systematic review of the literature and a meta-analysis of high-quality, prospective randomized controlled trials FMT. METHODS Studies were selected based on predefined exclusion criteria and were assessed for quality. Only prospective, randomized, controlled studies of high quality were included in the final analysis. Data were extracted on demographics, AE, indication, delivery method and follow-up duration. RESULTS Out of 334 articles reviewed, 9 high quality studies with 756 FMTs were selected for final analysis. The pooled rate of AE was 39.3% (95% confidence interval [CI] 0.19-0.642) as they were reported by 112 patients who received FMT. The SAE rate was 5.3% (95%CI 3.1-8.8%). The most common AE reported was abdominal pain, followed by diarrhea. The most common SAE was Clostridium difficile infection. Upper gastrointestinal tract delivery was associated with a higher rate of total AE, but not SAE. CONCLUSIONS Based on the selected studies, the AE rate of FMT is 39.3%, with most AE being mild and self-limiting. SAE were uncommon at 5.3%, and many were only possibly related to the FMT. Adherence to standardized reporting of AE as well as longitudinal studies and registries will help further clarify the safety of FMT in the future.
Collapse
Affiliation(s)
- Lamprinos Michailidis
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Correspondence to: Lamprinos Michailidis, MD, University of Kentucky College of Medicine 800 Rose Street Room MN649, Lexington, KY 40536, USA, e-mail:
| | - Alden C. Currier
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Michelle Le
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Deborah R. Flomenhoft
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
16
|
Varga A, Kocsis B, Sipos D, Kása P, Vigvári S, Pál S, Dembrovszky F, Farkas K, Péterfi Z. How to Apply FMT More Effectively, Conveniently and Flexible - A Comparison of FMT Methods. Front Cell Infect Microbiol 2021; 11:657320. [PMID: 34150673 PMCID: PMC8213398 DOI: 10.3389/fcimb.2021.657320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose Metronidazol and vancomycin were long the two best options against Clostridioides (formerly Clostridium) difficile infections (CDI). Now, the cost of new drugs such as fidaxomicin directs us towards alternative treatment options, such as faecal microbiota transplant (FMT). Its effectiveness is similar to fidaxomicin. There are questions regarding its safety, but the biggest challenges are prejudice and inconvenience. Most protocols refer to FMT applied in the form of a solution. We investigated different modalities of FMT. Methods Instead of using nasoenteric tubes or colonoscopy, we place frozen or lyophilised stool in non-coated, size “00”, hard gelatine capsules or enterosolvent, size “0” capsules. Results We found that non-coated, size “00”, hard gelatine capsules are appropriate for conducting FMT. Capsules containing lyophilised supernatant with a low number of bacteria have been proven to be non-inferior to other FMT modalities. The primary cure rate in the supernatant group was 93.75%, and 66.67% in the sediment group. The overall cure rate was 82.14%. Depending on the protocol, 4–7 capsules are sufficient per patient. Capsules can be stored for up to one year at -20°C. Conclusions FMT is a feasible alternative to antibiotic treatments in CDI. Our method makes the process flexible and less inconvenient to patients. Long storage time allows a consistent supply of capsules, while small volume and formulation make the procedure tolerable.
Collapse
Affiliation(s)
- Adorján Varga
- Department of Medical Microbiology and Immunology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Dávid Sipos
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Péter Kása
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs Faculty of Pharmacy, Pécs, Hungary
| | - Szabolcs Vigvári
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Szilárd Pál
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs Faculty of Pharmacy, Pécs, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, University of Pécs Medical School, Pécs, Hungary
| | - Kornélia Farkas
- Institute of Bioanalysis, University of Pécs Medical School, Pécs, Hungary
| | - Zoltán Péterfi
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| |
Collapse
|
17
|
Agarwal A, Maheshwari A, Verma S, Arrup D, Phillips L, Vinayek R, Nair P, Hagan M, Dutta S. Superiority of Higher-Volume Fresh Feces Compared to Lower-Volume Frozen Feces in Fecal Microbiota Transplantation for Recurrent Clostridioides Difficile Colitis. Dig Dis Sci 2021; 66:2000-2004. [PMID: 32656604 DOI: 10.1007/s10620-020-06459-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/28/2020] [Indexed: 01/26/2023]
Abstract
GOALS To compare the clinical outcomes of different protocols for fecal microbiota transplantation (FMT) in two community hospitals with similar patient demographics. BACKGROUND FMT is commonly performed for recurrent or refractory Clostridioides difficile infection (rCDI). The clinical efficacy of FMT for this indication has been well established. However, there has been no standardization or optimization of the amount of fecal material, method of feces preparation, or route of delivery for FMT. STUDY In this retrospective study, patients with rCDI received FMT using commercially available frozen fecal preparation (22.7 g) at Center A and locally prepared fresh fecal filtrate (30-50 g) at Center B. The primary outcome was defined as complete resolution of clinical symptoms related to rCDI after at least 8 weeks of follow-up. RESULTS Fifty patients from each center were included in the study. Clinical success after initial FMT with lower-volume frozen fecal preparation at Center A was 32/50 (64.0%) compared to 49/50 (98.0%) with higher-volume fresh fecal filtrate at Center B (p < 0.0001). Seventeen patients in Center A and 1 patient in Center B underwent at least one repeat FMT. Overall clinical success was achieved in 43/50 (86%) of patients in Center A and 50/50 (100%) in Center B (p = 0.012). CONCLUSIONS Our results suggest superior clinical efficacy of a larger amount of fresh fecal filtrate over a smaller amount of commercially available frozen fecal preparation. Further studies are needed to examine the effect of varying amounts of feces and the optimal protocol for FMT in patients with rCDI.
Collapse
Affiliation(s)
- Amol Agarwal
- Mercy Medical Center, 301 St Paul Pl, Physician's Office Building, 7th Floor, Baltimore, MD, 21202, USA
| | - Anurag Maheshwari
- Mercy Medical Center, 301 St Paul Pl, Physician's Office Building, 7th Floor, Baltimore, MD, 21202, USA.
| | | | | | | | | | | | - Matilda Hagan
- Mercy Medical Center, 301 St Paul Pl, Physician's Office Building, 7th Floor, Baltimore, MD, 21202, USA
| | | |
Collapse
|
18
|
Terveer EM, van Gool T, Ooijevaar RE, Sanders IMJG, Boeije-Koppenol E, Keller JJ, Bart A, Kuijper EJ. Human Transmission of Blastocystis by Fecal Microbiota Transplantation Without Development of Gastrointestinal Symptoms in Recipients. Clin Infect Dis 2021; 71:2630-2636. [PMID: 31728525 PMCID: PMC7745006 DOI: 10.1093/cid/ciz1122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Patients with multiple recurrent Clostridioides difficile infections (rCDI) are treated with fecal microbiota transplantation (FMT), using feces provided by healthy donors. Blastocystis colonization of donors is considered an exclusion criterion, whereas its pathogenicity is still under debate. Methods The introduction of molecular screening for Blastocystis sp. at our stool bank identified 2 donors with prior negative microscopies but positive polymerase chain reactions (PCRs). Potential transmission of Blastocystis sp. to patients was assessed on 16 fecal patient samples, pre- and post-FMT, by PCR and subtype (ST) analyses. In addition, clinical outcomes for the treatment of rCDI (n = 31), as well as the development of gastrointestinal symptoms, were assessed. Results There was 1 donor who carried Blastocystis ST1, and the other contained ST3. All patients tested negative for Blastocystis prior to FMT. With a median diagnosis at 20.5 days after FMT, 8 of 16 (50%) patients developed intestinal colonization with Blastocystis, with identical ST sequences as their respective donors. Blastocystis-containing fecal suspensions were used to treat 31 rCDI patients, with an FMT success rate of 84%. This success rate was not statistically different from patients transferred with Blastocystis sp.–negative donor feces (93%, 76/82). Patients transferred with Blastocystis sp.–positive donor feces did not report any significant differences in bowel complaints in the first week, after 3 weeks, or in the months following FMT. Conclusions We demonstrated the first transmission of Blastocystis ST1 and ST3 from donors to patients by FMT. This did not result in gastrointestinal symptomatology or have any significant effect on rCDI treatment outcomes.
Collapse
Affiliation(s)
- Elisabeth M Terveer
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.,Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Gool
- Section Clinical Parasitology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Rogier E Ooijevaar
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Ingrid M J G Sanders
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Eline Boeije-Koppenol
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.,Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, The Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, The Netherlands.,Department of Gastroenterology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Gastroenterology, Haaglanden Medical Center, Den Haag, The Netherlands
| | - Aldert Bart
- Section Clinical Parasitology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.,Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
19
|
Тикунов АЮ, Морозов ВВ, Швалов АН, Бардашева АВ, Шрайнер ЕВ, Максимова ОА, Волошина ИО, Морозова ВВ, Власов ВВ, Тикунова НВ. [Fecal microbiome change in patients with ulcerative colitis after fecal microbiota transplantation]. Vavilovskii Zhurnal Genet Selektsii 2021; 24:168-175. [PMID: 33659796 PMCID: PMC7716530 DOI: 10.18699/vj20.610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Intestinal human microbiota is a dynamic system that is under the pressures of its host organism and external factors. Microbiota disruption caused by these factors can lead to severe diseases including inflammatory and oncological diseases of the gastrointestinal tract. One of the possible approaches in managing the intestinal microbiota is fecal microbiota transplantation (FT) - transfer of the microbiota from the stool of a healthy donor to the intestinal tract of a recipient patient. Currently, this procedure is recognized as an efficacious method to normalize the intestinal microbiota mainly in inflammatory diseases of the gastrointestinal tract. In Russia, pilot studies of the effectiveness of FT in patients with ulcerative colitis have been conducted for several years, and these studies were started in Novosibirsk. The aim of this study was to assess the change of intestinal microbiome in 20 patients with ulcerative colitis after a single FT procedure. The main method is a comparative analysis of 16S ribosomal RNA sequence libraries constructed using fecal samples obtained from patients with ulcerative colitis before and after FT and sequenced on the Illumina MiSeq platform. The obtained results showed that FT led to an increase in average biodiversity in samples after FT compared to samples before FT; however, the difference was not significant. In the samples studied, the proportion of Firmicutes sequences, the major gastrointestinal microbiota of healthy people, was decreased (~32 % vs. >70 %), while the proportion of Proteobacteria sequences was increased (>9 % vs. <5 %). In some samples collected before FT, sequences of pathogenic Firmicutes and Proteobacteria were detected, including Acinetobacter spp., Enterococcus spp., Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Stenotrophomonas maltophylia, Streptococcus spp. In most cases, the proportion of such sequences after FT substantially decreased in appropriate samples. The exception was the Clostridium difficile sequences, which accounted for <0.5 % of the sequences in samples from almost half of the patients and after FT, the share of such C. difficile sequences was significantly reduced only in samples from three patients. It should be noted that the proportion of Lactobacillus spp. increased ten-fold and their species composition significantly expanded. According to the obtained results, a preliminary conclusion can be made that even a single FT procedure can lead to an increase in the biodiversity of the gastrointestinal microbiota in patients and to the optimization of the taxonomic composition of the microbiota.
Collapse
Affiliation(s)
- А Ю Тикунов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - В В Морозов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - А Н Швалов
- Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора Российской Федерации, р. п. Кольцово, Новосибирская область, Россия 3 ООО «Центр персонализированной
| | - А В Бардашева
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - Е В Шрайнер
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - О А Максимова
- ООО «Центр персонализированной медицины», Новосибирск, Россия
| | - И О Волошина
- ООО «Центр персонализированной медицины», Новосибирск, Россия
| | - В В Морозова
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - В В Власов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - Н В Тикунова
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| |
Collapse
|
20
|
Keller JJ, Ooijevaar RE, Hvas CL, Terveer EM, Lieberknecht SC, Högenauer C, Arkkila P, Sokol H, Gridnyev O, Mégraud F, Kump PK, Nakov R, Goldenberg SD, Satokari R, Tkatch S, Sanguinetti M, Cammarota G, Dorofeev A, Gubska O, Laniro G, Mattila E, Arasaradnam RP, Sarin SK, Sood A, Putignani L, Alric L, Baunwall SMD, Kupcinskas J, Link A, Goorhuis AG, Verspaget HW, Ponsioen C, Hold GL, Tilg H, Kassam Z, Kuijper EJ, Gasbarrini A, Mulder CJJ, Williams HRT, Vehreschild MJGT. A standardised model for stool banking for faecal microbiota transplantation: a consensus report from a multidisciplinary UEG working group. United European Gastroenterol J 2021; 9:229-247. [PMID: 33151137 PMCID: PMC8259288 DOI: 10.1177/2050640620967898] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Faecal microbiota transplantation is an emerging therapeutic option, particularly for the treatment of recurrent Clostridioides difficile infection. Stool banks that organise recruitment and screening of faeces donors are being embedded within the regulatory frameworks described in the European Union Tissue and Cells Directive and the technical guide to the quality and safety of tissue and cells for human application, published by the European Council. OBJECTIVE Several European and international consensus statements concerning faecal microbiota transplantation have been issued. While these documents provide overall guidance, we aim to provide a detailed description of all processes that relate to the collection, handling and clinical application of human donor stool in this document. METHODS Collaborative subgroups of experts on stool banking drafted concepts for all domains pertaining to stool banking. During a working group meeting in the United European Gastroenterology Week 2019 in Barcelona, these concepts were discussed and finalised to be included in our overall guidance document about faecal microbiota transplantation. RESULTS A guidance document for all domains pertaining to stool banking was created. This document includes standard operating manuals for several processes involved with stool banking, such as handling of donor material, storage and donor screening. CONCLUSION The implementation of faecal microbiota transplantation by stool banks in concordance with our guidance document will enable quality assurance and guarantee the availability of donor faeces preparations for patients.
Collapse
|
21
|
Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol 2021; 18:67-80. [PMID: 32843743 DOI: 10.1038/s41575-020-0350-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Faecal microbiota transplantation (FMT) has emerged as a remarkably successful treatment for recurrent Clostridioides difficile infection that cannot be cured with antibiotics alone. Understanding the complex biology and pathogenesis of C. difficile infection, which we discuss in this Perspective, is essential for understanding the potential mechanisms by which FMT cures this disease. Although FMT has already entered clinical practice, different microbiota-based products are currently in clinical trials and are vying for regulatory approval. However, all these therapeutics belong to an entirely new class of agents that require the development of a new branch of pharmacology. Characterization of microbiota therapeutics uses novel and rapidly evolving technologies and requires incorporation of microbial ecology concepts. Here, we consider FMT within a pharmacological framework, including its essential elements: formulation, pharmacokinetics and pharmacodynamics. From this viewpoint, multiple gaps in knowledge become apparent, identifying areas that require systematic research. This knowledge is needed to help clinical providers use microbiota therapeutics appropriately and to facilitate development of next-generation microbiota products with improved safety and efficacy. The discussion here is limited to FMT as a representative of microbiota therapeutics and recurrent C. difficile as the indication; however, consideration of the intrinsic basic principles is relevant to this entire class of microbiota-based therapeutics.
Collapse
|
22
|
Park JC, Im SH. Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp Mol Med 2020; 52:1383-1396. [PMID: 32908211 PMCID: PMC8080820 DOI: 10.1038/s12276-020-0473-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Considerable evidence points to the critical role of the gut microbiota in physiology and disease. The administration of live microbes as a therapeutic modality is increasingly being considered. However, key questions such as how to identify candidate microorganisms and which preclinical models are relevant to recapitulate human microbiota remain largely unanswered. The establishment of a humanized gnotobiotic mouse model through the fecal microbiota transplantation of human feces into germ-free mice provides an innovative and powerful tool to mimic the human microbial system. However, numerous considerations are required in designing such a model, as various elements, ranging from the factors pertaining to human donors to the mouse genetic background, affect how microbes colonize the gut. Thus, it is critical to match the murine context to that of human donors to provide a continuous and faithful progression of human flora in mice. This is of even greater importance when the need for accuracy and reproducibility across global research groups are taken into account. Here, we review the key factors that affect the formulation of a humanized mouse model representative of the human gut flora and propose several approaches as to how researchers can effectively design such models for clinical relevance.
Collapse
Affiliation(s)
- John Chulhoon Park
- Department of Life Sciences, Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.
- ImmunoBiome Inc. POSTECH Biotech Center, Pohang, 37673, Republic of Korea.
| |
Collapse
|
23
|
Abdali ZI, Roberts TE, Barton P, Hawkey PM. Economic evaluation of Faecal microbiota transplantation compared to antibiotics for the treatment of recurrent Clostridioides difficile infection. EClinicalMedicine 2020; 24:100420. [PMID: 32637898 PMCID: PMC7327885 DOI: 10.1016/j.eclinm.2020.100420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is a hospital acquired disease associated with significant morbidity, hospitalisation and mortality. Almost 30% of treated patients experience at least one recurrence after treatment of their first episode. Treatment of recurrent CDI (rCDI) utilises vancomycin or fidaxomicin, however, a newer treatment option is faecal microbial transplantation (FMT) administered by nasogastric tube (NGT) or colonoscopy. It is associated with higher cure and lower recurrence rates than fidaxomicin or vancomycin. The aim of this analysis is to evaluate the cost effectiveness of FMT for rCDI using the latest and best evidence. METHOD A cost utility analysis was conducted using a decision model representing the cost per additional Quality Adjusted Life Year (QALY) from a National Health Service (NHS) perspective. A Markov model was constructed to compare FMT NGT and colonoscopy to antibiotic treatment (fidaxomicin or vancomycin). The model was informed by a literature review of clinical evidence, specifically focussing on hospitalised patients with rCDI over 65 years. Both deterministic and probabilistic sensitivity analyses were performed to assess uncertainties around the model inputs and assumptions. FINDINGS The base case analysis showed that FMT is a less costly and more effective treatment than either fidaxomicin or vancomycin. FMT colonoscopy was slightly more effective than FMT NGT leading to an additional 0.012 QALYs but more expensive and the incremental cost effectiveness ratio (ICER) was £242,514/QALY. The Probabilistic sensitivity analysis based on 10,000 simulations suggested the probability of FMT NGT being cost effective was almost 78% at £20,000/QALY Willingness-To-Pay (WTP) threshold. INTERPRETATION FMT is both more effective and less costly option than antimicrobial therapy. FMT NGT was the preferred route of administration and is likely to be considered the most cost-effective strategy by decision makers given current acceptable thresholds.
Collapse
Affiliation(s)
- Zainab I Abdali
- Health Economics Unit, Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Tracy E Roberts
- Health Economics Unit, Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Pelham Barton
- Health Economics Unit, Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Peter M Hawkey
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
- Queen Elizabeth Hospital, University Hospitals Birmingham, NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
24
|
Ojima MN, Gotoh A, Takada H, Odamaki T, Xiao JZ, Katoh T, Katayama T. Bifidobacterium bifidum Suppresses Gut Inflammation Caused by Repeated Antibiotic Disturbance Without Recovering Gut Microbiome Diversity in Mice. Front Microbiol 2020; 11:1349. [PMID: 32625197 PMCID: PMC7314955 DOI: 10.3389/fmicb.2020.01349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is a dynamic community that significantly affects host health; it is frequently disturbed by medications such as antibiotics. Recently, probiotics have been proposed as a remedy for antibiotic-induced dysbiosis, but the efficacy of such treatments remains uncertain. Thus, the effect of specific antibiotic-probiotic combinations on the gut microbiome and host health warrants further research. We tested the effect vancomycin, amoxicillin, and ciprofloxacin on mice. Antibiotic administration was followed by one of the following recovery treatments: Bifidobacterium bifidum JCM 1254 as a probiotic (PR); fecal transplant (FT); or natural recovery (NR). Each antibiotic administration and recovery treatment was repeated three times over 9 weeks. We used the Shannon Index and Chao1 Index to determine gut microbiome diversity and assessed recovery by quantifying the magnitude of microbial shift using the Bray-Curtis Index of Dissimilarity. We determined the community composition by sequencing the V3-V4 regions of the 16S ribosomal RNA gene. To assess host health, we measured body weight and cecum weight, as well as mRNA expression of inflammation-related genes by reverse-transcription quantitative PCR. Our results show that community response varied by the type of antibiotic used, with vancomycin having the most significant effects. As a result, the effect of probiotics and fecal transplants also varied by antibiotic type. For vancomycin, the first antibiotic disturbance substantially increased the relative abundance of inflammatory species in the phylum Proteobacteria, such as Proteus, but the effect of subsequent disturbances was less pronounced, suggesting that the gut microbiome is affected by past disturbance events. Furthermore, although gut microbiome diversity did not recover, probiotic supplementation was effective in limiting cecum size enlargement and colonic inflammation caused by vancomycin. However, for amoxicillin and ciprofloxacin, the relative abundances of proinflammatory species were not greatly affected, and consequently, the effect of probiotic supplementation on community structure, cecum weight, and expression of inflammation-related genes was comparatively negligible. These results indicate that probiotic supplementation is effective, but only when antibiotics cause proinflammatory species-induced gut inflammation, suggesting that the necessity of probiotic supplementation is strongly influenced by the type of disturbance introduced to the community.
Collapse
Affiliation(s)
- Miriam N. Ojima
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Aina Gotoh
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiromi Takada
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Toshihiko Katoh
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Merrick B, Allen L, Masirah M Zain N, Forbes B, Shawcross DL, Goldenberg SD. Regulation, risk and safety of Faecal Microbiota Transplant. Infect Prev Pract 2020; 2:100069. [PMID: 34316559 PMCID: PMC7280140 DOI: 10.1016/j.infpip.2020.100069] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
From its origins as a left-field, experimental, and even “maverick” intervention, faecal microbiota transplantation (FMT) is now a well-recognised, accepted, and potentially life-saving therapeutic strategy, for the management of recurrent Clostridiodes difficile infection (rCDI). It is being investigated as a treatment for a growing number of diseases including hepatic encephalopathy and eradication of antimicrobial resistant organisms, and the list of indications will likely expand in the future. There is no universally accepted definition of what FMT is, and its mechanism of action remains incompletely understood; this has likely contributed to the breadth of approaches to regulation depending on interpretation. In the UK FMT is considered a medicinal product, in North America, a biological product, whereas in parts of Europe, it is considered a human cell/tissue product. Regulation seeks to improve quality and safety, however, lack of standardisation creates confusion, and overly restrictive regulation may hamper widespread access and discourage research using FMT. FMT is generally considered safe, especially if rigorous donor screening and testing is conducted. Most short-term risks are associated with the delivery method (e.g. colonoscopy). Longer term risks are less well described but longitudinal follow-up of treated cohorts is in place to assess for this, and no signal towards harm has been found to date. Rarely it has been associated with adverse outcomes including the transmission of antibiotic resistant bacteria, and even death. It is vital patients undergoing FMT are well informed to the currently appreciated risks and benefits before proceeding.
Collapse
Affiliation(s)
- Blair Merrick
- Centre for Clinical Infection and Diagnostics Research (CIDR), King's College, London and Guy's & St. Thomas' NHS Foundation Trust, UK
| | - Liz Allen
- Early Clinical Development Centre of Excellence, IQVIA, Reading, UK.,Department of Pharmacy, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Nur Masirah M Zain
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Debbie L Shawcross
- Institute of Liver Studies, Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research (CIDR), King's College, London and Guy's & St. Thomas' NHS Foundation Trust, UK
| |
Collapse
|
26
|
Merrick B, Robinson E, Bunce C, Allen L, Bisnauthsing K, Izundu CC, Bell J, Amos G, Shankar-Hari M, Goodman A, Shawcross DL, Goldenberg SD. Faecal microbiota transplant to ERadicate gastrointestinal carriage of Antibiotic Resistant Organisms (FERARO): a prospective, randomised placebo-controlled feasibility trial. BMJ Open 2020; 10:e038847. [PMID: 32457083 PMCID: PMC7252984 DOI: 10.1136/bmjopen-2020-038847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Antimicrobial resistance is rising, largely due to the indiscriminate use of antimicrobials. The human gut is the largest reservoir of antibiotic resistant bacteria (ARB). Individuals colonised with ARB have the potential to spread these organisms both in the community and hospital settings. Infections with ARB such as extended spectrum beta-lactamase producing enterobacteriales (ESBL-E) and carbapenemase producing enterobacteriales (CPE) are more difficult to treat and are associated with an increased morbidity and mortality. Presently, there is no effective decolonisation strategy for these ARB. Faecal microbiota transplant (FMT) has emerged as a potential strategy for decolonisation of ARB from the human gut, however there is significant uncertainty about the feasibility, effectiveness and safety of using this approach. METHODS AND ANALYSIS Prospective, randomised, patient-blinded, placebo-controlled feasibility trial of FMT to eradicate gastrointestinal carriage of ARB. Eighty patients with a recent history of invasive infection secondary to ESBL-E or CPE and persistent gastrointestinal carriage will be randomised 1:1 to receive encapsulated FMT or placebo. The primary outcome measure is consent rate (as a proportion of patients who fulfil inclusion/exclusion criteria); this will be used to determine if a substantive trial is feasible. Participants will be followed up at 1 week, 1 month, 3 months and 6 months and monitored for adverse events as well as gastrointestinal carriage rates of ARB after intervention. ETHICS AND DISSEMINATION Research ethics approval was obtained by London-City and East Research Ethics Committee (ref 20/LO/0117). Trial results will be published in a peer-reviewed journal and presented at international conferences. TRIAL REGISTRATION NUMBER ISRCTN registration number 34 467 677 and EudraCT number 2019-001618-41.
Collapse
Affiliation(s)
- Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Emily Robinson
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Catey Bunce
- Primary Care and Public Health Sciences, King's College London, London, UK
| | - Liz Allen
- Pharmacy Department, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
- Early Clinical Development Centre of Excellence, IQVIA, Reading, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
| | | | - Jordana Bell
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Gregory Amos
- National Institute for Biological Standards and Control, Potters Bar, UK
| | - Manu Shankar-Hari
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Intensive Care Unit, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
| | - Anna Goodman
- Centre for Clinical Infection and Diagnostics Research, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Debbie L Shawcross
- Institute of Liver Studies, Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
27
|
Bajaj JS, Khoruts A. Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis. J Hepatol 2020; 72:1003-1027. [PMID: 32004593 DOI: 10.1016/j.jhep.2020.01.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Patients with chronic liver disease and cirrhosis demonstrate a global mucosal immune impairment, which is associated with altered gut microbiota composition and functionality. These changes progress along with the advancing degree of cirrhosis and can be linked with hepatic encephalopathy, infections and even prognostication independent of clinical biomarkers. Along with compositional changes, functional alterations to the microbiota, related to short-chain fatty acids, bioenergetics and bile acid metabolism, are also associated with cirrhosis progression and outcomes. Altering the functional and structural profile of the microbiota is partly achieved by medications used in patients with cirrhosis such as rifaximin, lactulose, proton pump inhibitors and other antibiotics. However, the role of faecal or intestinal microbiota transplantation is increasingly being recognised. Herein, we review the challenges, opportunities and road ahead for the appropriate and safe use of intestinal microbiota transplantation in liver disease.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia, USA.
| | - Alexander Khoruts
- Division of Gastroenterology Hepatology and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
28
|
Fadda HM. The Route to Palatable Fecal Microbiota Transplantation. AAPS PharmSciTech 2020; 21:114. [PMID: 32296975 DOI: 10.1208/s12249-020-1637-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
The community of symbiotic microorganisms that reside in our gastrointestinal tract is integral to human health. Fecal microbiota transplantation (FMT) has been shown to be highly effective in treating recurrent Clostridioides difficile infection (rCDI) and is now recommended by medical societies for patients suffering from rCDI who have failed to respond to conventional therapy. The main challenges with FMT are its accessibility, acceptability, lack of standardization, and regulatory complexity, which will be discussed in this review. Access to FMT is being addressed through the development of frozen and lyophilized FMT preparations that can be prepared at stool banks and shipped to the point of care. Both access and patient acceptance would be enhanced by oral FMT capsules, and there is potential to reduce capsule burden by utilizing colonic release capsules, targeting the site of disease. This review compares the efficacy of different FMT routes of administration: capsules, nasal feeding tubes, enemas, and colonoscopic infusions. FMT is considered investigational by the Food and Drug Administration. In effort to improve access to FMT, physicians may perform FMT outside of an investigational new drug application for treating CDI infections not responsive to standard therapies. The majority of FMT studies report only minor adverse effects; however, there is risk of transmission of infections.
Collapse
|
29
|
Nicco C, Paule A, Konturek P, Edeas M. From Donor to Patient: Collection, Preparation and Cryopreservation of Fecal Samples for Fecal Microbiota Transplantation. Diseases 2020; 8:diseases8020009. [PMID: 32326509 PMCID: PMC7349373 DOI: 10.3390/diseases8020009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
Fecal Microbiota Transplantation (FMT) is suggested as an efficacious therapeutic strategy for restoring intestinal microbial balance, and thus for treating disease associated with alteration of gut microbiota. FMT consists of the administration of fresh or frozen fecal microorganisms from a healthy donor into the intestinal tract of diseased patients. At this time, in according to healthcare authorities, FMT is mainly used to treat recurrent Clostridium difficile. Despite the existence of a few existing stool banks worldwide and many studies of the FMT, there is no standard method for producing material for FMT, and there are a multitude of factors that can vary between the institutions. The main constraints for the therapeutic uses of FMT are safety concerns and acceptability. Technical and logistical issues arise when establishing such a non-standardized treatment into clinical practice with safety and proper governance. In this context, our manuscript describes a process of donor safety screening for FMT compiling clinical and biological examinations, questionnaires and interviews of donors. The potential risk of transmission of SARS-CoV-2 virus by the use of fecal microbiota for transplantation must be taken urgently into consideration. We discuss a standardized procedure of collection, preparation and cryopreservation of fecal samples through to the administration of material to patients, and explore the risks and limits of this method of FMT. The future success of medicine employing microbiota transplantation will be tightly related to its modulation and manipulation to combat dysbiosis. To achieve this goal, standard and strict methods need to be established before performing any type of FMT.
Collapse
Affiliation(s)
- Carole Nicco
- Cochin Institute, INSERM U1016, University Paris Descartes, Development, Reproduction and Cancer, Cochin Hospital, 75014 Paris, France;
| | - Armelle Paule
- International Society of Microbiota, 75002 Paris, France;
| | - Peter Konturek
- Teaching Hospital of the University of Jena, Thuringia-Clinic Saalfeld, 07318 Saalfeld, Germany;
| | - Marvin Edeas
- Cochin Institute, INSERM U1016, University Paris Descartes, Development, Reproduction and Cancer, Cochin Hospital, 75014 Paris, France;
- Correspondence:
| |
Collapse
|
30
|
Abstract
Recent studies have used ethanol stool disinfection as a mean of promoting valuable species’ cultivation in bacteriotherapy trials for Clostridium difficile infections (CDI) treatment with a particular focus on sporulating bacteria. Moreover, the culturomic approach has considerably enriched the repertoire of cultivable organisms in the human gut in recent years. This study aimed to apply this culturomic approach on fecal donor samples treated with ethanol disinfection to evidence potential beneficial microbes that could be used in bacteriotherapy trials for the treatment of CDI. Thereby, a total of 254 bacterial species were identified, 9 of which were novel. Of these, 242 have never been included in clinical trials for the treatment of CDIs, representing potential new candidates for bacteriotherapy trials. While non-sporulating species were nevertheless more affected by the ethanol pretreatment than sporulating species, the ethanol disinfection technique did not specifically select bacteria able to sporulate, as suggested by previous studies. Furthermore, some bacteria previously considered as potential candidates for bacteriotherapy have been lost after ethanol treatment. This study, while enriching the bacterial repertoire of the human intestine, would nevertheless require determining the exact contribution of each of species composing the bacterial consortia intended to be administered for CDI treatment.
Collapse
|
31
|
Tamilarasan AG, Irving P, Meadows CI, Goldenberg S. Faecal microbiota transplantation for refractory C lostridium difficile infection. BMJ Case Rep 2019; 12:12/11/e231027. [PMID: 31780599 DOI: 10.1136/bcr-2019-231027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Faecal microbiota transplantation (FMT) has become a part of the treatment algorithm for Clostridium difficile infection (CDI), particularly for recurrent infections when antibiotics have diminishing efficacy. Notably, despite a significant proportion of patients suffering from refractory disease, there is a general lack of evidence describing the use of FMT in this patient cohort. We present here a case of successful treatment of refractory CDI in a patient under critical care.
Collapse
Affiliation(s)
| | - Peter Irving
- Department of Gastroenterology, Guy's and St Thomas' Hospitals, London, UK
| | - Christopher Is Meadows
- Department of Critical Care, Guy's and St Thomas' Hospitals, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, London, UK
| | - Simon Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
32
|
Tresman R, Goldenberg SD. Healthcare resource use and attributable cost of Clostridium difficile infection: a micro-costing analysis comparing first and recurrent episodes. J Antimicrob Chemother 2019; 73:2851-2855. [PMID: 29982502 DOI: 10.1093/jac/dky250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022] Open
Abstract
Objectives Accurate and sufficiently detailed data on the economic burden of Clostridium difficile infection (CDI) are lacking. We performed a micro-costing study to determine the health resource utilization of patients with a first episode of CDI (fCDI) and those with a recurrent episode of CDI (rCDI). Patients and methods Forty-five adult and paediatric inpatients with rCDI were matched by age, sex and date of diagnosis with control patients with fCDI. Total length of hospital stay, length of stay in the ICU and several cost parameters differentiated into fixed and variable components were measured and compared across both groups. Results The mean total length of stay for rCDI patients was 33 days (95% CI 19-46) compared with 17 days (95% CI 12-21) for fCDI patients; P = 0.0259. ICU length of stay was also longer for rCDI patients than for fCDI patients (mean 2.5 versus 0.7 days). Mean total variable costs for fCDI and rCDI were £2382 (95% CI 1750-3014) and £4683 (95% CI 3051-6311), respectively; P = 0.009. Mean fixed costs for fCDI and rCDI were £10 328 (95% CI 7555-13 101) and £26 438 (95% CI 16 135-36 742), respectively; P = 0.003. Mean total costs for fCDI and rCDI were £12 710 (95% CI 9652-15 769) and £31 121 (95% CI 19 792-42 447), respectively; P < 0.002. Conclusions The healthcare resource use and financial burden attributable to CDI is significant. Most excess cost is driven by additional length of hospital stay. These costs may have been underestimated in previous studies that have not accounted for several difficult-to-measure parameters or have used averaged tariff-based estimates.
Collapse
Affiliation(s)
- Rebecca Tresman
- Department of Paediatric Infectious Diseases, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, King's College London and Guy's & St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
33
|
Leshem A, Horesh N, Elinav E. Fecal Microbial Transplantation and Its Potential Application in Cardiometabolic Syndrome. Front Immunol 2019; 10:1341. [PMID: 31258528 PMCID: PMC6587678 DOI: 10.3389/fimmu.2019.01341] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Newly revealed links between inflammation, obesity, and cardiometabolic syndrome have created opportunities to try previously unexplored therapeutic modalities in these common and life-risking disorders. One potential modulator of these complex disorders is the gut microbiome, which was described in recent years to be altered in patients suffering from features of cardiometabolic syndrome and to transmit cardiometabolic phenotypes upon transfer into germ-free mice. As a result, there is great interest in developing new modalities targeting the altered commensal bacteria as a means of treatment for cardiometabolic syndrome. Fecal microbiota transplantation (FMT) is one such modality in which a disease-associated microbiome is replaced by a healthy microbiome configuration. So far clinical use of FMT has been overwhelmingly successful in recurrent Clostridium difficile infection and is being extensively studied in other microbiome-associated pathologies such as cardiometabolic syndrome. This review will focus on the rationale, promises and challenges in FMT utilization in human disease. In particular, it will overview the role of the gut microbiota in cardiometabolic syndrome and the rationale, experience, and prospects of utilizing FMT treatment as a potential preventive and curative treatment of metabolic human disease.
Collapse
Affiliation(s)
- Avner Leshem
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Horesh
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Department of General Surgery B and Organ Transplantation, Sheba Medical Center, Ramat Gan, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Fecal microbiota transplantation: Review and update. J Formos Med Assoc 2019; 118 Suppl 1:S23-S31. [PMID: 30181015 DOI: 10.1016/j.jfma.2018.08.011] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023] Open
|
35
|
Woodhouse CA, Patel VC, Goldenberg S, Sanchez-Fueyo A, China L, O'Brien A, Flach C, Douiri A, Shawcross D. PROFIT, a PROspective, randomised placebo controlled feasibility trial of Faecal mIcrobiota Transplantation in cirrhosis: study protocol for a single-blinded trial. BMJ Open 2019; 9:e023518. [PMID: 30772848 PMCID: PMC6398649 DOI: 10.1136/bmjopen-2018-023518] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Patients with advanced cirrhosis have enteric bacterial dysbiosis and translocation of bacteria and their products across the gut epithelial barrier. This culminates in systemic inflammation and endotoxaemia, inducing innate immune dysfunction which predisposes to infection, and development of complications such as bleeding, sepsis and hepatic encephalopathy. This feasibility study aims to assess the safety of administering faecal microbiota transplantion to patients with cirrhosis and explore the effect of the intervention on their prognosis by achieving restoration of a healthy gut microbiome. METHODS AND ANALYSIS A PROspective, randomised placebo controlled feasibility trial of Faecal mIcrobiota Transplantation is a single-centre, randomised, single-blinded, placebo-controlled study evaluating faecal microbiota transplantation (FMT) against placebo. Patients with advanced but stable cirrhosis with a Model for End-Stage Liver Disease score between 10 and 16 will be recruited. Twenty-four patients will be randomised to FMT plus standard of care (as per our institutional practice) and eight patients to placebo in a ratio of 3:1. Patients will be evaluated at baseline before the study intervention is administered and at 7, 30 and 90 days post-intervention to assess safety and adverse events. FMT/placebo will be administered into the jejunum within 7 days of baseline. The primary outcome measure will be safety and feasibility as assessed by recruitment rates, tolerability and safety of FMT treatment. Results will be disseminated via peer-reviewed journals and international conferences. The recruitment of the first patient occurred on 23 May 2018. ETHICS AND DISSEMINATION Research Ethics approval was given by the London South East Research Ethics committee (ref 17/LO/2081). TRIAL REGISTRATION NUMBER NCT02862249 and EudraCT 2017-003629-13.
Collapse
Affiliation(s)
- Charlotte Alexandra Woodhouse
- James Black Centre, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Vishal C Patel
- James Black Centre, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Simon Goldenberg
- Department of Microbiology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Alberto Sanchez-Fueyo
- James Black Centre, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Louise China
- Division of Medicine, University College London, London, UK
| | | | - Clare Flach
- School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Abdel Douiri
- School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Debbie Shawcross
- James Black Centre, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
36
|
Lam TJ, Ye Y. CRISPRs for Strain Tracking and Their Application to Microbiota Transplantation Data Analysis. CRISPR J 2019; 2:41-50. [PMID: 30820491 PMCID: PMC6390457 DOI: 10.1089/crispr.2018.0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022] Open
Abstract
CRISPR-Cas systems are adaptive immune systems naturally found in bacteria and archaea. Prokaryotes use these immune systems to defend against invaders, which include phages, plasmids, and other mobile genetic elements. Relying on the integration of spacers derived from invader sequences (protospacers) into CRISPR loci (forming spacers flanked by repeats), CRISPR-Cas systems are able to store the memory of past immunological encounters. While CRISPR-Cas systems have evolved in response to invading mobile genetic elements, invaders have also developed mechanisms to avoid detection. As a result of an arms race between CRISPR-Cas systems and their targets, CRISPR arrays typically undergo rapid turnover of spacers through the acquisition and loss events. Additionally, microbiomes of different individuals rarely share spacers. Here, we present a computational pipeline, CRISPRtrack, for strain tracking based on CRISPR spacer content, and we applied it to fecal transplantation microbiome data to study the retention of donor strains in recipients. Our results demonstrate the potential use of CRISPRs as a simple yet effective tool for donor-strain tracking in fecal transplantation and as a general purpose tool for quantifying microbiome similarity.
Collapse
Affiliation(s)
- Tony J Lam
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana
| | - Yuzhen Ye
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana
| |
Collapse
|
37
|
Zhang XY, Wang YZ, Li XL, Hu H, Liu HF, Li D, Xiao YM, Zhang T. Safety of fecal microbiota transplantation in Chinese children: A single-center retrospective study. World J Clin Cases 2018; 6:1121-1127. [PMID: 30613670 PMCID: PMC6306635 DOI: 10.12998/wjcc.v6.i16.1121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/22/2018] [Accepted: 12/01/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is the administration of fecal bacterial liquid from healthy donors to a recipient’s digestive tract, which is recommended as a therapeutic method for recurrent Clostridium difficile infection (CDI). Many clinical trials focusing on different diseases are in progress. To date, scarce research and long-term follow-up have been conducted on FMT in children or on the proper guidelines. Our center first performed FMT to treat a 13-month-old boy with severe CDI in 2013. Until February 2018, our center had performed 114 pediatric FMT procedures in 49 subjects.
AIM To investigate the safety of FMT in children.
METHODS A retrospective study was conducted on 49 patients who underwent 114 FMT treatments at our hospital. All FMT processes followed uniform standards. Adverse events (AEs) related to FMT were divided into short-term (48 h post-FMT) and long-term (3 mo). All potential influencing factors for AEs, such as gender, age, time of FMT infusion, route of administration, disease type, immune function state, and donor relative genetic background, were analyzed as independent factors. The significant independent factors and risk ratio with 95% confidence interval (CI) were assessed by multivariate logistic regression analysis.
RESULTS Forty-nine patients (mean age 68.1 mo, range 4 to 193 mo) were recruited. Their average follow-up time after the first FMT was 23.1 mo. The incidence of short-term AEs was 26.32% (30/114). The most common short-term AEs were abdominal pain, diarrhea, fever, and vomiting, which were all self-limited and symptom-free within 48 h. Two severe AEs occurred, and one patient died in the fourth week after FMT. All-cause mortality was 2.04%. As independent factors, age (P = 0.006) and immune state (P = 0.002) had significant effects. Age greater than 72 mo seemed to be correlated with more AEs than age 13 to 36 mo (P = 0.04). In multivariate logistic regression analysis, immune state was an independent risk factor for AE occurrence (P = 0.035), and the risk ratio in immunodeficient patients was 3.105 (95%CI: 1.080-8.923).
CONCLUSION Although FMT was proven to be tolerated in children, we need to be more cautious with immunodeficient patients. The effect on children’s long-term health is unpredictable.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Yi-Zhong Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Xiao-Lu Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Hui Hu
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Hai-Feng Liu
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Dan Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Yong-Mei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| |
Collapse
|
38
|
Zhang XY, Wang YZ, Li XL, Hu H, Liu HF, Li D, Xiao YM, Zhang T. Safety of fecal microbiota transplantation in chinese children: A single-center retrospective study. World J Clin Cases 2018. [DOI: 10.12998/wjcc.v6.i161.1121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
39
|
Management of adult Clostridium difficile digestive contaminations: a literature review. Eur J Clin Microbiol Infect Dis 2018; 38:209-231. [PMID: 30498879 DOI: 10.1007/s10096-018-3419-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 02/08/2023]
Abstract
Clostridium difficile infections (CDI) dramatically increased during the last decade and cause a major public health problem. Current treatments are limited by the high disease recurrence rate, severity of clinical forms, disruption of the gut microbiota, and colonization by vancomycin-resistant enterococci (VRE). In this review, we resumed current treatment options from official recommendation to promising alternatives available in the management of adult CDI, with regard to severity and recurring or non-recurring character of the infection. Vancomycin remains the first-line antibiotic in the management of mild to severe CDI. The use of metronidazole is discussed following the latest US recommendations that replaced it by fidaxomicin as first-line treatment of an initial episode of non-severe CDI. Fidaxomicin, the most recent antibiotic approved for CDI in adults, has several advantages compared to vancomycin and metronidazole, but its efficacy seems limited in cases of multiple recurrences. Innovative therapies such as fecal microbiota transplantation (FMT) and antitoxin antibodies were developed to limit the occurrence of recurrence of CDI. Research is therefore very active, and new antibiotics are being studied as surotomycin, cadazolid, and rinidazole.
Collapse
|
40
|
Weiss RA. Infection hazards of xenotransplantation: Retrospect and prospect. Xenotransplantation 2018; 25:e12401. [PMID: 29756309 DOI: 10.1111/xen.12401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, London, UK
| |
Collapse
|
41
|
Zhang F, Cui B, He X, Nie Y, Wu K, Fan D. Microbiota transplantation: concept, methodology and strategy for its modernization. Protein Cell 2018; 9:462-473. [PMID: 29691757 DOI: 10.1007/s13238-018-0541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/08/2018] [Indexed: 05/25/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has become a research focus of biomedicine and clinical medicine in recent years. The clinical response from FMT for different diseases provided evidence for microbiota-host interactions associated with various disorders, including Clostridium difficile infection, inflammatory bowel disease, diabetes mellitus, cancer, liver cirrhosis, gut-brain disease and others. To discuss the experiences of using microbes to treat human diseases from ancient China to current era should be important in moving standardized FMT forward and achieving a better future. Here, we review the changing concept of microbiota transplantation from FMT to selective microbiota transplantation, methodology development of FMT and step-up FMT strategy based on literature and state experts' perspectives.
Collapse
Affiliation(s)
- Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 211166, China.
- Division of Microbiotherapy, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Bota Cui
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 211166, China
| | - Xingxiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
- National Clinical Research Center for Digestive Diseases, Xi'an, 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
- National Clinical Research Center for Digestive Diseases, Xi'an, 710032, China
| |
Collapse
|
42
|
Zhang F, Cui B, He X, Nie Y, Wu K, Fan D. Microbiota transplantation: concept, methodology and strategy for its modernization. Protein Cell 2018; 9:462-473. [PMID: 29691757 PMCID: PMC5960466 DOI: 10.1007/s13238-018-0541-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/08/2018] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has become a research focus of biomedicine and clinical medicine in recent years. The clinical response from FMT for different diseases provided evidence for microbiota-host interactions associated with various disorders, including Clostridium difficile infection, inflammatory bowel disease, diabetes mellitus, cancer, liver cirrhosis, gut-brain disease and others. To discuss the experiences of using microbes to treat human diseases from ancient China to current era should be important in moving standardized FMT forward and achieving a better future. Here, we review the changing concept of microbiota transplantation from FMT to selective microbiota transplantation, methodology development of FMT and step-up FMT strategy based on literature and state experts' perspectives.
Collapse
Affiliation(s)
- Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 211166, China.
- Division of Microbiotherapy, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Bota Cui
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 211166, China
| | - Xingxiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
- National Clinical Research Center for Digestive Diseases, Xi'an, 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
- National Clinical Research Center for Digestive Diseases, Xi'an, 710032, China
| |
Collapse
|