1
|
Maličev E, Žiberna K, Jazbec K, Kolenc A, Mali P, Potokar UR, Rožman P. Cytokine, Anti-SARS-CoV-2 Antibody, and Neutralizing Antibody Levels in Conventional Blood Donors Who Have Recovered from COVID-19. Transfus Med Hemother 2024; 51:175-184. [PMID: 38867805 PMCID: PMC11166906 DOI: 10.1159/000531942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/02/2023] [Indexed: 06/14/2024] Open
Abstract
Background At the beginning of the pandemic, COVID-19 convalescent plasma (CCP) containing anti-SARS-CoV-2 antibodies was suggested as a source of therapy. In the last 3 years, many trials have demonstrated the limited usefulness of CCP therapy. This led us to the hypothesis that CCP could contain other elements, along with the desired neutralizing antibodies, which could potentially prevent it from having a therapeutic effect, among them cytokines, chemokines, growth factors, clotting factors, and autoantibodies. Methods In total, 39 cytokines were analyzed in the plasma of 190 blood donors, and further research focused on the levels of 23 different cytokines in CCP (sCD40L, eotaxin, FGF-2, FLT-3L, ractalkine, GRO-α, IFNα2, IL-1β, IL-1RA, IL-5, IL-6, IL-8, IL-12, IL-13, IL-15, IL-17E, IP-10, MCP-1, MIP-1b, PDGF-AA, TGFα, TNFα, and TRAIL). Anti-SARS-CoV-2 antibodies and neutralizing antibodies were detected in CCP. Results We found no significant differences between CCP taken within a maximum of 180 days from the onset of the first COVID-19 symptoms and the controls. We also made a comparison of the cytokine levels between the low neutralizing antibodies (<160) group and the high neutralizing antibodies (≥160) group and found there were no differences between the groups. Our research also showed no correlation either to levels of anti-SARS-CoV-2 IgG Ab or to the levels of neutralizing antibodies. There were also no significant changes in cytokine levels based on the period after the start of COVID-19 symptoms. Conclusions No elements which could potentially be responsible for preventing CCP from having a therapeutic effect were found.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Žiberna
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | | | - Ana Kolenc
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | | | - Primož Rožman
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
2
|
Henderson JP. Igniting the slow burn of post-COVID conditions. mBio 2023; 14:e0148923. [PMID: 37750708 PMCID: PMC10653924 DOI: 10.1128/mbio.01489-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Post-COVID conditions (PCCs) are persistent new patient symptoms occurring after acute COVID-19 infection and are an increasingly appreciated dimension of the COVID-19 pandemic. The factors that cause PCCs are not well understood. In recent work, Gebo et al. identify a connection between acute IL-6 levels, early COVID-19 convalescent plasma (CP) administration, and later PCCs in subjects from a randomized controlled trial of acutely ill subjects enrolled in 2020 to 2021 (K. A. Gebo, S. L. Heath, Y. Fukuta, X. Zhu, et al., mBio e00618-23, 2023, https://doi.org/10.1128/mbio.00618-23). These results may be viewed as part of an emerging picture linking the intensity of inflammatory responses during acute infection to later PCCs.
Collapse
Affiliation(s)
- Jeffrey P. Henderson
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Senefeld JW, Gorman EK, Johnson PW, Moir ME, Klassen SA, Carter RE, Paneth NS, Sullivan DJ, Morkeberg OH, Wright RS, Fairweather D, Bruno KA, Shoham S, Bloch EM, Focosi D, Henderson JP, Juskewitch JE, Pirofski LA, Grossman BJ, Tobian AA, Franchini M, Ganesh R, Hurt RT, Kay NE, Parikh SA, Baker SE, Buchholtz ZA, Buras MR, Clayburn AJ, Dennis JJ, Diaz Soto JC, Herasevich V, Klompas AM, Kunze KL, Larson KF, Mills JR, Regimbal RJ, Ripoll JG, Sexton MA, Shepherd JR, Stubbs JR, Theel ES, van Buskirk CM, van Helmond N, Vogt MN, Whelan ER, Wiggins CC, Winters JL, Casadevall A, Joyner MJ. Rates Among Hospitalized Patients With COVID-19 Treated With Convalescent Plasma: A Systematic Review and Meta-Analysis. Mayo Clin Proc Innov Qual Outcomes 2023; 7:499-513. [PMID: 37859995 PMCID: PMC10582279 DOI: 10.1016/j.mayocpiqo.2023.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Objective To examine the association of COVID-19 convalescent plasma transfusion with mortality and the differences between subgroups in hospitalized patients with COVID-19. Patients and Methods On October 26, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma in the literature from January 1, 2020, to October 26, 2022. Randomized clinical trials and matched cohort studies investigating COVID-19 convalescent plasma transfusion compared with standard of care treatment or placebo among hospitalized patients with confirmed COVID-19 were included. The electronic search yielded 3841 unique records, of which 744 were considered for full-text screening. The selection process was performed independently by a panel of 5 reviewers. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were extracted by 5 independent reviewers in duplicate and pooled using an inverse-variance random effects model. The prespecified end point was all-cause mortality during hospitalization. Results Thirty-nine randomized clinical trials enrolling 21,529 participants and 70 matched cohort studies enrolling 50,160 participants were included in the systematic review. Separate meta-analyses reported that transfusion of COVID-19 convalescent plasma was associated with a decrease in mortality compared with the control cohort for both randomized clinical trials (odds ratio [OR], 0.87; 95% CI, 0.76-1.00) and matched cohort studies (OR, 0.76; 95% CI, 0.66-0.88). The meta-analysis of subgroups revealed 2 important findings. First, treatment with convalescent plasma containing high antibody levels was associated with a decrease in mortality compared with convalescent plasma containing low antibody levels (OR, 0.85; 95% CI, 0.73 to 0.99). Second, earlier treatment with COVID-19 convalescent plasma was associated with a decrease in mortality compared with the later treatment cohort (OR, 0.63; 95% CI, 0.48 to 0.82). Conclusion During COVID-19 convalescent plasma use was associated with a 13% reduced risk of mortality, implying a mortality benefit for hospitalized patients with COVID-19, particularly those treated with convalescent plasma containing high antibody levels treated earlier in the disease course.
Collapse
Affiliation(s)
- Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Patrick W. Johnson
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - M. Erin Moir
- Department of Kinesiology, University of Wisconsin-Madison, Madison
| | - Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - Nigel S. Paneth
- Department of Epidemiology and Biostatistics and Department of Pediatrics and Human Development, Michigan State University, East Lansing
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Olaf H. Morkeberg
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - R. Scott Wright
- Human Research Protection Program, Mayo Clinic, Rochester, MN
| | | | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
- Division of Cardiovascular Medicine, University of Florida, Gainesville
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Evan M. Bloch
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Italy
| | - Jeffrey P. Henderson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO
| | | | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Brenda J. Grossman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO
| | - Aaron A.R. Tobian
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ravindra Ganesh
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ryan T. Hurt
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Zachary A. Buchholtz
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew R. Buras
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | - Andrew J. Clayburn
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Joshua J. Dennis
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan C. Diaz Soto
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Allan M. Klompas
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Katie L. Kunze
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | | | - John R. Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Riley J. Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan G. Ripoll
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew A. Sexton
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - John R.A. Shepherd
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - James R. Stubbs
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Noud van Helmond
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew N.P. Vogt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Jeffrey L. Winters
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Aldunate F, Fajardo A, Ibañez N, Rammauro F, Daghero H, Arce R, Ferla D, Pereira-Gomez M, Salazar C, Iraola G, Pritsch O, Hurtado J, Tenzi J, Bollati-Fogolín M, Bianchi S, Nin N, Moratorio G, Moreno P. What have we learned from a case of convalescent plasma treatment in a two-time kidney transplant recipient COVID-19 patient? A case report from the perspective of viral load evolution and immune response. FRONTIERS IN NEPHROLOGY 2023; 3:1132763. [PMID: 37675346 PMCID: PMC10479756 DOI: 10.3389/fneph.2023.1132763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, can have a wide range of clinical manifestations, ranging from asymptomatic disease to potentially life-threatening complications. Convalescent plasma therapy has been proposed as an effective alternative for the treatment of severe cases. The aim of this study was to follow a two-time renal transplant patient with severe COVID-19 treated with convalescent plasma over time from an immunologic and virologic perspective. A 42-year-old female patient, who was a two-time kidney transplant recipient, was hospitalized with COVID-19. Due to worsening respiratory symptoms, she was admitted to the intensive care unit, where she received two doses of convalescent plasma. We analyzed the dynamics of viral load in nasopharyngeal swab, saliva, and tracheal aspirate samples, before and after convalescent plasma transfusion. The levels of pro-inflammatory cytokines and antibody titers were also measured in serum samples. A significant decrease in viral load was observed after treatment in the saliva and nasopharyngeal swab samples, and a slight decrease was observed in tracheal aspirate samples. In addition, we found evidence of an increase in antibody titers after transfusion, accompanied by a decrease in the levels of several cytokines responsible for cytokine storm.
Collapse
Affiliation(s)
- Fabian Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Alvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Natalia Ibañez
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Rammauro
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hellen Daghero
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rodrigo Arce
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Diego Ferla
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Marianoel Pereira-Gomez
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Cecilia Salazar
- Laboratorio de Genómica Microbiana, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gregorio Iraola
- Laboratorio de Genómica Microbiana, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Otto Pritsch
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Javier Hurtado
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Jordan Tenzi
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | | | - Sergio Bianchi
- Laboratorio de Biomarcadores Moleculares, Departamento de Fisiopatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Genómica Funcional, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicolas Nin
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| |
Collapse
|
5
|
Jazbec K, Jež M, Žiberna K, Mali P, Ramšak Ž, Potokar UR, Kvrzić Z, Černilec M, Gracar M, Šprohar M, Jovanovič P, Vuletić S, Rožman P. Simple prediction of COVID-19 convalescent plasma units with high levels of neutralization antibodies. Virol J 2023; 20:53. [PMID: 36973781 PMCID: PMC10042109 DOI: 10.1186/s12985-023-02007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Hyperimmune convalescent COVID-19 plasma (CCP) containing anti-SARS-CoV-2 neutralizing antibodies (NAbs) was proposed as a therapeutic option for patients early in the new coronavirus disease pandemic. The efficacy of this therapy depends on the quantity of neutralizing antibodies (NAbs) in the CCP units, with titers ≥ 1:160 being recommended. The standard neutralizing tests (NTs) used for determining appropriate CCP donors are technically demanding and expensive and take several days. We explored whether they could be replaced by high-throughput serology tests and a set of available clinical data. METHODS Our study included 1302 CCP donors after PCR-confirmed COVID-19 infection. To predict donors with high NAb titers, we built four (4) multiple logistic regression models evaluating the relationships of demographic data, COVID-19 symptoms, results of various serological testing, the period between disease and donation, and COVID-19 vaccination status. RESULTS The analysis of the four models showed that the chemiluminescent microparticle assay (CMIA) for the quantitative determination of IgG Abs to the RBD of the S1 subunit of the SARS-CoV-2 spike protein was enough to predict the CCP units with a high NAb titer. CCP donors with respective results > 850 BAU/ml SARS-CoV-2 IgG had a high probability of attaining sufficient NAb titers. Including additional variables such as donor demographics, clinical symptoms, or time of donation into a particular predictive model did not significantly increase its sensitivity and specificity. CONCLUSION A simple quantitative serological determination of anti-SARS-CoV-2 antibodies alone is satisfactory for recruiting CCP donors with high titer NAbs.
Collapse
Affiliation(s)
- Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia.
| | - Mojca Jež
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Klemen Žiberna
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Živa Ramšak
- NIB-National Institute of Biology, Ljubljana, Slovenia
| | - Urška Rahne Potokar
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Zdravko Kvrzić
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Maja Černilec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Melita Gracar
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Marjana Šprohar
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Petra Jovanovič
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Sonja Vuletić
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Primož Rožman
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| |
Collapse
|
6
|
Kandula UR, Tuji TS, Gudeta DB, Bulbula KL, Mohammad AA, Wari KD, Abbas A. Effectiveness of COVID-19 Convalescent Plasma (CCP) During the Pandemic Era: A Literature Review. J Blood Med 2023; 14:159-187. [PMID: 36855559 PMCID: PMC9968437 DOI: 10.2147/jbm.s397722] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Worldwide pandemic with coronavirus disease-2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As November 2, 2022, World Health Organization (WHO) received 628,035,553 reported incidents on COVID-19, with 6,572,800 mortalities and, with a total 12,850,970,971 vaccine doses have been delivered as of October 31, 2022. The infection can cause mild or self-limiting symptoms of pulmonary and severe infections or death may be caused by SARS-CoV-2 infection. Simultaneously, antivirals, corticosteroids, immunological treatments, antibiotics, and anticoagulants have been proposed as potential medicines to cure COVID-19 affected patients. Among these initial treatments, COVID-19 convalescent plasma (CCP), which was retrieved from COVID-19 recovered patients to be used as passive immune therapy, in which antibodies from cured patients were given to infected patients to prevent illness. Such treatment has yielded the best results in earlier with preventative or early stages of illness. Convalescent plasma (CP) is the first treatment available when infectious disease initially appears, although few randomized controlled trials (RCTs) were conducted to evaluate its effectiveness. The historical record suggests with potential benefit for other respiratory infections, as coronaviruses like Severe Acute Respiratory Syndrome-CoV-I (SARS-CoV-I) and Middle Eastern Respiratory Syndrome (MERS), though the analysis of such research is constrained by some non-randomized experiments (NREs). Rigorous studies on CP are made more demanding by the following with the immediacy of the epidemics, CP use may restrict the ability to utilize it for clinical testing, non-homogenous nature of product, highly decentralized manufacturing process; constraints with capacity to measure biologic function, ultimate availability of substitute therapies, as antivirals, purified immune globulins, or monoclonal antibodies. Though, it is still not clear how effectively CCP works among hospitalized COVID-19 patients. The current review tries to focus on its efficiency and usage in clinical scenarios and identifying existing benefits of implementation during pandemic or how it may assist with future pandemic preventions.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Techane Sisay Tuji
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Kassech Leta Bulbula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Ketema Diriba Wari
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Ahmad Abbas
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
7
|
Inada M, Togano T, Terada M, Shiratori K, Tsuzuki S, Takamatsu Y, Saito S, Hangaishi A, Morioka S, Kutsuna S, Maeda K, Mitsuya H, Ohmagari N. Preserved SARS-CoV-2 neutralizing IgG activity of in-house manufactured COVID-19 convalescent plasma. Transfus Apher Sci 2022:103638. [PMID: 36610860 PMCID: PMC9797217 DOI: 10.1016/j.transci.2022.103638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE In the current study, we aimed to evaluate the neutralizing IgG activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as the coagulation factors of convalescent plasmas which we manufactured in-house without a fast-freezing technique. METHODS We collected plasmas from eligible participants who had confirmed certain titers of neutralizing antibodies. The plasmas were frozen and stored in the ordinary biofreezer without a fast-freezing function. The purified-IgG neutralizing activity of 20 samples from 19 participants and the coagulation factors of 49 samples from 40 participants were evaluated before and after freezing. RESULTS Purified-IgG maintained its neutralizing activities, with the median 50 % inhibitory concentration (IC50) of 10.11 mg/ml (IQR 6.53-18.19) before freezing and 8.90 m g/ml (IQR 6.92-28.27) after thawing (p = 0.956). On the contrary, fibrinogen and factor Ⅷ decreased significantly after freezing and thawing in our environment. No significant temperature deviation was observed during the storage period. CONCLUSION Neutralizing IgG activity, which largely contributes to the antiviral activity of convalescent plasma, did not change through our in-house manufacturing, without fastfreezing and storage conditions for more than 200 days. Ordinary freezers without the fast-freezing function are suitable enough to manufacture and store convalescent plasmas. Hospitals or facilities without specified resources could easily collect and store convalescent plasmas in case of upcoming emerging or re-emerging infectious diseases on-demand with appropriate neutralizing antibody levels measurements.
Collapse
Affiliation(s)
- Makoto Inada
- Disease Prevention and Control Center, National Center for Global Health and Medicine, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Tomiteru Togano
- Department of Hematology, National Center for Global Health and Medicine, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan,Corresponding author
| | - Mari Terada
- Disease Prevention and Control Center, National Center for Global Health and Medicine, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan,Center for Clinical Sciences, National Center for Global Health and Medicine, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Katsuyuki Shiratori
- Department of Clinical Laboratory, National Center for Global Health and Medicine, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Shinya Tsuzuki
- Disease Prevention and Control Center, National Center for Global Health and Medicine, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Yuki Takamatsu
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Sho Saito
- Disease Prevention and Control Center, National Center for Global Health and Medicine, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Akira Hangaishi
- Department of Hematology, National Center for Global Health and Medicine, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Shinichiro Morioka
- Disease Prevention and Control Center, National Center for Global Health and Medicine, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Satoshi Kutsuna
- Disease Prevention and Control Center, National Center for Global Health and Medicine, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan,Department of Infection Control, Graduate School of Medicine, Osaka University, 2–15 Yamadagaoka, Suita City, Osaka, Japan
| | - Kenji Maeda
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan,Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8–35-1 Sakuragaoka, Kagoshima City, Kagoshima, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Norio Ohmagari
- Disease Prevention and Control Center, National Center for Global Health and Medicine, 1–21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Turecek PL, Hibbett D, Kreil TR. Plasma procurement and plasma product safety in light of the COVID-19 pandemic from the perspective of the plasma industry. Vox Sang 2022; 117:780-788. [PMID: 35298841 PMCID: PMC9115499 DOI: 10.1111/vox.13267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/12/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
Abstract
This review, written from the perspective of the plasma industry, discusses plasma procurement and plasma product safety in light of the COVID-19 pandemic. The COVID-19 pandemic impacted the whole world and, therefore, not unexpectedly, the pharmaceutical industry too. In spite of this, the plasma protein industry has continued to provide life saving therapies to critically ill patients. Moreover, companies have collected COVID convalescent plasma (CP) to support development of investigational therapies, for example, hyperimmune globulins to potentially treat SARS-CoV-2 infection, and collaborated with those collecting COVID CP for direct transfusion, which has been made available under emergency use in the United States. For plasma that is fractionated to become a therapy, general knowledge of coronaviruses and numerous new studies on the structure and function of SARS-CoV-2 provide reassurance that existing industry precautions, including donor selection, as well as virus inactivation and removal steps during the manufacturing process are sufficient to maintain the high standards of virus safety of plasma products. The pandemic also revealed the vulnerability and inadequacy of the current plasma ecosystem. There is a need for more plasma to be collected around the world to meet the growing need for safe and efficacious plasma-derived therapies. This requires outdated regulatory and policy restrictions to be realigned with current scientific evidence. More countries around the world should be in a position to contribute to global supply of plasma so that patients with life-threatening conditions - and often no alternative therapeutic solutions - have better access to care.
Collapse
Affiliation(s)
- Peter L. Turecek
- Plasma‐Derived Therapies R&DBaxalta Innovations GmbH, part of TakedaViennaAustria
| | - Deborah Hibbett
- Global Communications and Public AffairsTakeda Pharmaceutical Company LimitedZurichSwitzerland
| | - Thomas R. Kreil
- Global Pathogen SafetyTakeda Manufacturing Austria AGViennaAustria
| |
Collapse
|
9
|
Chandra A, Johri A. A Peek into Pandora’s Box: COVID-19 and Neurodegeneration. Brain Sci 2022; 12:brainsci12020190. [PMID: 35203953 PMCID: PMC8870638 DOI: 10.3390/brainsci12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Ever since it was first reported in Wuhan, China, the coronavirus-induced disease of 2019 (COVID-19) has become an enigma of sorts with ever expanding reports of direct and indirect effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on almost all the vital organ systems. Along with inciting acute pulmonary complications, the virus attacks the cardiac, renal, hepatic, and gastrointestinal systems as well as the central nervous system (CNS). The person-to-person variability in susceptibility of individuals to disease severity still remains a puzzle, although the comorbidities and the age/gender of a person are believed to play a key role. SARS-CoV-2 needs angiotensin-converting enzyme 2 (ACE2) receptor for its infectivity, and the association between SARS-CoV-2 and ACE2 leads to a decline in ACE2 activity and its neuroprotective effects. Acute respiratory distress may also induce hypoxia, leading to increased oxidative stress and neurodegeneration. Infection of the neurons along with peripheral leukocytes’ activation results in proinflammatory cytokine release, rendering the brain more susceptible to neurodegenerative changes. Due to the advancement in molecular biology techniques and vaccine development programs, the world now has hope to relatively quickly study and combat the deadly virus. On the other side, however, the virus seems to be still evolving with new variants being discovered periodically. In keeping up with the pace of this virus, there has been an avalanche of studies. This review provides an update on the recent progress in adjudicating the CNS-related mechanisms of SARS-CoV-2 infection and its potential to incite or accelerate neurodegeneration in surviving patients. Current as well as emerging therapeutic opportunities and biomarker development are highlighted.
Collapse
|
10
|
Grujić J, Bujandrić N, Budakov-Obradović Z, Dolinaj V, Bogdan D, Savić N, Cabezas-Cruz A, Mijatović D, Simin V, Anđelić N, Banović P. Demographic and Clinical Factors Associated with Reactivity of Anti-SARS-CoV-2 Antibodies in Serbian Convalescent Plasma Donors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010042. [PMID: 35010301 PMCID: PMC8751168 DOI: 10.3390/ijerph19010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/02/2023]
Abstract
Passive immunotherapy with convalescent COVID-19 plasma (CCP) is used as a therapeutic procedure in many countries, including Serbia. In this study, we analyzed the association between demographic factors, COVID-19 severity and the reactivity of anti-SARS-CoV-2 antibodies (Abs) in Serbian CCP donors. Individuals (n = 468) recovered from confirmed SARS-CoV-2 infection, and who were willing to donate their plasma for passive immunization of COVID-19 patients were enrolled in the study. Plasma samples were tested for the presence of IgG reactive to SARS-CoV-2 spike glycoprotein (S1) and nucleocapsid antigens. Individuals were characterized according to age, gender, comorbidities, COVID-19 severity, ABO blood type and RhD factor. Total of 420 candidates (420/468; 89.74%) reached the levels of anti-SARS-CoV-2 IgG that qualified them for inclusion in CCP donation program. Further statistical analysis showed that male individuals (p = 0.034), older age groups (p < 0.001), existence of hypertension (p = 0.008), and severe COVID-19 (p = 0.000) are linked with higher levels of anti-SARS-CoV-2 Abs. These findings will guide the selection of CCP donors in Serbia. Further studies need to be conducted to assess the neutralization potency and clinical efficiency of CCP collected from Serbian donors with high anti-SARS-CoV-2 IgG reactivity.
Collapse
Affiliation(s)
- Jasmina Grujić
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia; (N.B.); (Z.B.-O.)
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (V.D.); (N.A.)
- Correspondence: (J.G.); (P.B.)
| | - Nevenka Bujandrić
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia; (N.B.); (Z.B.-O.)
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (V.D.); (N.A.)
| | - Zorana Budakov-Obradović
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia; (N.B.); (Z.B.-O.)
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (V.D.); (N.A.)
| | - Vladimir Dolinaj
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (V.D.); (N.A.)
- Department of Anesthesia and Intensive Care, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia
| | - Damir Bogdan
- Social Sciences and Computing, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nebojša Savić
- Transfusion Medicine Department, Clinic for Vascular and Endovascular Surgery, Clinical Centre of Serbia, 11000 Belgrade, Serbia;
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France;
| | - Dragana Mijatović
- Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
| | - Verica Simin
- Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
| | - Nikola Anđelić
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (V.D.); (N.A.)
| | - Pavle Banović
- Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence: (J.G.); (P.B.)
| |
Collapse
|