1
|
Wang X, Wu J, Zhou J, Zhang L, Shen Y, Wu J, Hao C. Effective removal of Congo red and hexavalent chromium from aqueous solutions by guar gum/sodium alginate/Mg/Al-layered double hydroxide composite microspheres. Int J Biol Macromol 2024; 293:139385. [PMID: 39743091 DOI: 10.1016/j.ijbiomac.2024.139385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
In this paper, Mg/Al-layered double hydroxide (Mg/Al-LDH) was modified with the natural polymers sodium alginate and guar gum, and the prepared GG/SA/Mg-Al-LDH composite microsphere adsorbent (G-LDH) showed better adsorption performance for Congo red and hexavalent chromium in aqueous solution than the Mg/Al-LDH. The SEM image of G-LDH shows a distinct micro-spherical morphology, and it can maintain the micro-spherical morphology even after adsorbing Congo Red and hexavalent chromium. G-LDH showed strong adsorption properties for CR (Congo red) and Cr (VI) solutions with initial concentrations of 80 mg L-1 and 100 mg L-1, with adsorption amounts of 361.6 mg g-1 and 461.7 mg g-1. The unique layered structure of Mg/Al-LDH made an indispensable contribution to the efficient adsorption capacity of G-LDH when GG was used to prepare composite microspheres. The adsorption process of G-LDH is consistent with the Langmuir isotherm model and the proposed secondary kinetic model as a heat-absorbing, spontaneous, monolayer, and chemisorption process. G-LDH is an innovative anion adsorbent with excellent adsorption performance at low cost, using natural polymer materials as the backbone and the layered structure of magnesium‑aluminum hydrotalcite as the support.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jiale Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiayi Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lele Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yutang Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jingbo Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Erraji FZ, Baz FE, Dabagh A, Amkraz N. Valorization of Sepia Bone as a Bio-Sourced Adsorbent via Simple Modification for Removal of Methylene Blue. CHEMISTRY AFRICA 2024; 7:3917-3931. [DOI: 10.1007/s42250-024-01012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/10/2024] [Indexed: 01/06/2025]
|
3
|
Yu K, Yang L, Zhang S, Liu H. Strong, tough, conductive and transparent nanocellulose hydrogel based on Ca 2+-induced cross-linked double-networks and its adsorption of methylene blue dye. Int J Biol Macromol 2024; 274:133417. [PMID: 38944997 DOI: 10.1016/j.ijbiomac.2024.133417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
A novel multi-performance SHNC/SA/CaCl2 hydrogel with multi-performance was prepared via ultra-low-temperature freeze-thaw cycling and Ca2+ cross-linking for the removal of methylene blue (MB) from industrial wastewater. Various methods were used to characterize the structure and properties of hydrogel, and the internal structure of hydrogel showed a three-dimensional network with hydrogen and ester bonds. The SHNC/SA/CaCl2-15 hydrogel exhibited the highest tensile properties (elongation = 800 %), viscoelasticity (90 kPa), compressive strength (0.45 MPa), tensile strength (0.47 MPa) and ionic conductivity (4.34 S/cm). The maximum adsorption capacity of 2 g SHNC/SA/CaCl2-15 hydrogel was 608.49 mg/g at 40 °C, pH = 8 and adsorption 24 h. The adsorption process of hydrogel toward MB was more consistent with the second-order kinetic model and Langmuir isothermal adsorption model. According to the Langmuir isotherm model, the maximum monolayer adsorption capacity of SHNC/SA/CaCl2-15 hydrogel toward MB can reach 613.88 mg/g. Finally, it was found that the removal rate of SHNC/SA/CaCl2-15 hydrogel for MB was still as high as 90 % after five cycles of the adsorption-desorption test, and it could be reused. The hydrogel can be used as cheap and reusable adsorption material for cationic dyes. Our study provides a new perspective for the development of multifunctional cellulose hydrogel adsorbent materials.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Siyu Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
4
|
El Messaoudi N, El Khomri M, El Mouden A, Bouich A, Jada A, Lacherai A, Iqbal HMN, Mulla SI, Kumar V, Américo-Pinheiro JHP. Regeneration and reusability of non-conventional low-cost adsorbents to remove dyes from wastewaters in multiple consecutive adsorption–desorption cycles: a review. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:11739-11756. [DOI: 10.1007/s13399-022-03604-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 12/17/2024]
|
5
|
Shi L, Zhang D, Yang M, Li F, Zhao J, He Z, Bai Y. New discovery of extremely high adsorption of environmental DNA on cuttlefish bone pyrolysis derivative via large pore structure and carbon film. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:286-293. [PMID: 38237404 DOI: 10.1016/j.wasman.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Environmental DNA (eDNA) carrying antibiotic resistance gene (ARG) has attracted a great deal of attention because of its threat to the ecology and human health. Traditional porous adsorbents, such as microporous biochar and natural mineral, are low-effective in removing eDNA from sewage. This study used cuttlefish-bone (CB), a fishery waste, as an anticipated material to adsorb a model compound of eDNA from herring sperm (hsDNA). An interesting result was firstly observed that extremely high DNA adsorption on cuttlefish-bone pyrolysis derivative (CCB) was up to 88.7 mg/g, 3-10 folds higher than that of most other adsorbents in the existing literatures, which was attributed to the carbon film and large pores. To achieve an adsorption rate of 75 %, hsDNA adsorption took 96 h on CB but only 24 h on CCB, which was attributed to the fluent channel of CCB. The ligand exchange, Ca2+ bridge and π-π interaction were identified as dominated adsorption mechanisms, based on FTIR and phosphate competition experiments. This study exploited a high-efficient, environmentally friendly, and low-cost adsorbent for treating ARG-contaminated soil and water.
Collapse
Affiliation(s)
- Lin Shi
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China.
| | - Di Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Mingyi Yang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Fangfang Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jinfeng Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China.
| | - Zhaohui He
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yangwei Bai
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
6
|
Panda A, Samal PP, Qaiyum MA, Dey B, Dey S. Think before throw: waste chili stalk powder for facile scavenging of cationic dyes from water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:118. [PMID: 38183504 DOI: 10.1007/s10661-023-12243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024]
Abstract
Chili stalk powder (CS), a non-conventional adsorbent, has been exercised for facile removal of cationic dyes from simulated and wastewater by batch technique. The prepared material has been characterized by Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller analysis (BET), powder X-ray diffraction (powder XRD), and pHZPC and tested best with methylene blue and crystal violet under ambient conditions. FTIR denotes the presence of carbonyl and polyphenolic groups, responsible for dye adsorption. BET surface area analysis evaluates the porous nature and specific surface area of the material, and powder XRD confirms its amorphous nature. The porous structure could be ascertained from the FESEM image, and energy dispersive X-ray analysis (EDX) confirms the elemental composition. The pH above pHzpc shows an increase in removal efficiency. The maximum adsorption capacities are 49.53 and 36.88 mg/g for methylene blue (MB) and crystal violet (CV) respectively. Linear as well as non-linear plots for kinetic and isotherm models were studied. Both dye uptake fits the linear plot of Langmuir adsorption isotherm (R2 = 0.999 and 0.995) and pseudo-second-order kinetics (R2 = 0.998 and 0.999). In the non-linear plot, the adsorption process for both dyes fit Langmuir (R2 = 0.999 for MB and R2 = 0.983 for CV) as well as Freundlich adsorption (R2 = 0.999 for MB and R2 = 0.994 for CV). 75.48% crystal violet (CV) and 73.35% methylene blue (MB) regeneration were successful in 1:1 methanol medium and reused for up to three cycles. The uptake mechanism is suggested to be a union of π-π stacking, electrostatic interaction, and weak hydrogen bonding. The material was tested with industrial effluent to prove its application in real wastewater treatment. Moreover, the material shows superior adsorption capacity than contemporary phytosorbents. To conclude, a zero-cost adsorbent using green chili stalk has been demonstrated for wastewater treatment.
Collapse
Affiliation(s)
- Ankita Panda
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ranchi, 835205, India
| | - Priyanka Priyadarsini Samal
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ranchi, 835205, India
| | - Md Atif Qaiyum
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ranchi, 835205, India
| | - Banashree Dey
- Department of Chemistry, The Graduate School College for Women, Jamshedpur, 831001, India
| | - Soumen Dey
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ranchi, 835205, India.
| |
Collapse
|
7
|
Sharma A, Mittal R, Sharma P, Pal K, Mona S. Sustainable approach for adsorptive removal of cationic and anionic dyes by titanium oxide nanoparticles synthesized biogenically using algal extract of Spirulina. NANOTECHNOLOGY 2023; 34:485301. [PMID: 37619535 DOI: 10.1088/1361-6528/acf37e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
Worldwide, dyes are significant pollutants present in water because of their huge consumption for industrial purposes. These dyes as pollutants cause serious health issues in human beings and cause the loss of aquatic biodiversity. So, remediation of pollutants like dyes from wastewater is the need of the hour. In the present study, we greenly synthesizedSpirulina-mediated titanium oxide nanoparticles (STONPs) for the adsorptive remediation of methyl orange (MO) (anionic) and malachite green (MG) (cationic) dyes. The characterization of STONPs was performed by Field emission scanning electron microscopy (FESEM) with EDX, FT-IR, XRD, Zeta Potential and particle size analyzer, Raman spectroscopy, and UV-vis. The various parameter effects like pH, nano-adsorbent dose, the concentration of dye, contact time, and temperature were also examined. Adsorption isotherms like Langmuir, Freundlich, and Temkin, and Kinetics models like Elovich Model, Pseudo 1st, intraparticle diffusion model (IPDM), Pseudo 2nd order, and the thermodynamic model were applied for a stronger interpretation. Theqmaxattained utilizing the Langmuir adsorption model was 272.4795 mg g-1and 209.6436 mg g-1for MO and MG correspondingly. The regeneration study of synthesized nanomaterials up to five cycles was also done. We found that greenly synthesized STONPs have great potential for adsorptive remediation for both MG and MO dyes.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar - 125001, Haryana, India
| | - Rishi Mittal
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar - 125001, Haryana, India
| | - Praveen Sharma
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar - 125001, Haryana, India
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab 140413, India
| | - Sharma Mona
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar - 125001, Haryana, India
- Department of Environmental Studies, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh-123031, Haryana, India
| |
Collapse
|
8
|
Mohamed EN, Abd-Elhamid AI, El-Bardan AA, Soliman HMA, Mohy-Eldin MS. Development of carboxymethyl cellulose-graphene oxide biobased composite for the removal of methylene blue cationic dye model contaminate from wastewater. Sci Rep 2023; 13:14265. [PMID: 37652988 PMCID: PMC10471753 DOI: 10.1038/s41598-023-41431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023] Open
Abstract
Utilizing Glutaraldehyde crosslinked sodium carboxymethyl cellulose (CMC-GA) hydrogel and its nanographene oxide composite (CMC-GA-GOx), an effective carboxymethyl cellulose-graphene oxide biobased composites adsorbent was developed for the adsorption removal of methylene blue (MB) cationic dye contaminate from industrial wastewater. The CMC-GA-GOx composites developed were characterized using FTIR, RAMAN, TGA, SEM, and EDX analysis instruments. Through batch experiments, several variables affecting the removal of MB dye, including the biocomposites GO:CMC composition, adsorption time, pH and temperature, initial MB concentration, adsorbent dosage, and NaCl concentration, were investigated under different conditions. The maximum dye removal percentages ranged between 93 and 98%. They were obtained using biocomposites CMC-GA-GO102 with 20% GO weight percent, adsorption time 25 min, adsorption temperature 25 °C, MB concentrations 10-30 ppm, adsorption pH 7.0, and 0.2 g adsorbent dose. The experimental data of the adsorption process suit the Langmuir isotherm more closely with a maximal monolayer adsorption capacity of 76.92 mg/g. The adsorption process followed the kinetic model of pseudo-second order. The removal of MB was exothermic and spontaneous from a thermodynamic standpoint. In addition, thermodynamic results demonstrated that adsorption operates most effectively at low temperatures. Finally, the reusability of the developed CMC-GA-GO102 has been proved through 10 successive cycles where only 14% of the MB dye removal percentage was lost. These results suggest that the developed CMC-GA-GO102 composite may be an inexpensive and reusable adsorbent for removing organic cationic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Eman N Mohamed
- Department of Chemistry, Faculty of Science, Alexandria University, P.O.Box 426, Alexandria, 21321, Egypt.
| | - Ahmed I Abd-Elhamid
- Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, 21934, Alexandria, Egypt
| | - Ali A El-Bardan
- Department of Chemistry, Faculty of Science, Alexandria University, P.O.Box 426, Alexandria, 21321, Egypt
| | - Hesham M A Soliman
- Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, 21934, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, 21934, Alexandria, Egypt
| |
Collapse
|
9
|
Natesan G, Rajappan K. GO-CuO nanocomposites assimilated into CA-PES polymer membrane in adsorptive removal of organic dyes from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42658-42678. [PMID: 35821317 DOI: 10.1007/s11356-022-21821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Textile industries are one of the leading environmental pollutants by releasing harmful dye effluents. In many textile distrts, the amount of excess color in treated textile effluent that exceeds regulatory limitations is still being a major concern. The combining usage of nanomaterials and polymer material to solve these issues using various techniques. In this research, graphene oxide-copper oxide (GO-CuO) nanomaterial have been incorporated into cellulose-acetate (CA), poly-ether sulfone (PES) blend polymer by using phase inversion process to fabricate thin film nanocomposite (TFN) membrane for removal of dye pollutant. The physiochemical properties of prepared TFN materials were studied by Fourier transform infra-red spectroscopy (FT-IR), X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), thermo gravimetric analysis (TGA), and mechanical strength analysis. Dye adsorption experiments were performed with four typical water-soluble organic dyes methylene blue (MB), rhodamine blue (Rh. B), methyl orange (MO) and Congo red (CR). After reaching adsorption equilibrium, the composite membrane final removal effectiveness for MB 92.42%, Rh. B 89.39%, CR 68.39%, and MO 58.82% respectively. As a result, the fabricated TFN material proves to be an effective adsorbent material for cationic dye molecules. Also, when the fabricated material was tested with textile industry effluent sample, all physio-chemical properties exhibited a considerable decrease in concentrations when compared to the real textile effluent concentration. The treated effluents permitted for a relatively greater growth and germination index of Tropical amaranth roots than the textile effluent, this demonstrates that phytotoxicity testing was also successful. The most effective temperature, concentration and pH were found to be 273 K, 1 × 10-5 M and pH 9. The fabricated TFN membrane material (GO-CuO @ CA-PES) can be recommended for water treatment applications.
Collapse
Affiliation(s)
- Gowriboy Natesan
- Department of Chemistry SRM Institute of Science & Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Kalaivizhi Rajappan
- Department of Chemistry SRM Institute of Science & Technology, Kattankulathur, Chengalpattu, 603203, India.
| |
Collapse
|
10
|
Ahmad I, Basu D. Taguchi L 16 (4 4) orthogonal array-based study and thermodynamics analysis for electro-Fenton process treatment of textile industrial dye. CHEMICAL PRODUCT AND PROCESS MODELING 2022. [DOI: 10.1515/cppm-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Reactive orange 16 (RO16) is the most widely used azo dye in Textile industry. Complex aromatic structures and resistivity to biological decay caused the dye pollutants incompletely treated by the conventional oxidative methods. The current study presents the electro-Fenton-based advanced oxidation treatment of RO16 dye and the process optimization by Taguchi-based design of experiment (DOE). Using a 500 mL volume lab-scale experimental setup, the process was first studied for the principal operational parameters (initial dye concentration (q); [H2O2]/[Fe+2] (R); current density (ρ); and temperature (T)) effect on decolourization (D
R
) and COD removal (C
R
). Then, by means of the L16 (44) orthogonal array (OA) formation, standard mean and signal-to-noise (S/N) ratio, the process was optimized for the response variables. The result showed the optimized result at q = 100 mg/L, R = 100, ρ = 8 mA/cm2, and T = 32 °C; with D
R
and C
R
as 90.023 and 84.344%, respectively. It was found that the current density affects the process most, followed by [H2O2]/[Fe+2] ratio, initial dye concentration, and temperature i.e., ρ > R > q > T. Also, with the analysis of variance (ANOVA), model equations for D
R
and C
R
were developed and its accuracy was verified for experimental results. At optimized conditions, the first order removal rate constants (k
a
) were found from batch results. Additionally, the thermodynamic constants (ΔH
e
, ΔS
e
, and ΔG
b
) were also calculated for the nature of heat-energy involved and temperature effect study on dye degradation. The results showed that the process was thermodynamically feasible, endothermic, and non-spontaneous with a lower energy barrier (E
A
= 46.7 kJ mol−1).
Collapse
Affiliation(s)
- Imran Ahmad
- Civil Engineering Department , Motilal Nehru National Institute of Technology Allahabad , Prayagraj , 211004 India
| | - Debolina Basu
- Civil Engineering Department , Motilal Nehru National Institute of Technology Allahabad , Prayagraj , 211004 India
| |
Collapse
|
11
|
Skwierawska AM, Bliźniewska M, Muza K, Nowak A, Nowacka D, Zehra Syeda SE, Khan MS, Łęska B. Cellulose and its derivatives, coffee grounds, and cross-linked, β-cyclodextrin in the race for the highest sorption capacity of cationic dyes in accordance with the principles of sustainable development. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129588. [PMID: 35850070 DOI: 10.1016/j.jhazmat.2022.129588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
In this study, seven different materials were analyzed and includes coffee grounds (CG), two types of cellulose (CGC and CC), two types of modified cellulose (CT and CTCD), and cross-linked β-cyclodextrin (CD-1 and CD-2) were tested as adsorbents for the removal of dyes from the wastewater. The composition, morphology, and presence of functional groups in the obtained sorption materials were characterized by elemental analysis, SEM, TG/DTA, and FTIR spectroscopy. The sorption processes of the model contaminant, crystal violet (CV), were studied by kinetics and equilibrium models. The results showed, that using CTCD, the dye was adsorbed rapidly in 1 min and the slowest adsorption occurred in 20 min by CG. The time evolution was adjusted using a two-model, pseudo second-order model (CG and CGC) and pseudo first-order model in the rest adsorbents. According to the Langmuir and Sips isotherm models, the maximum adsorption capacities were very high in each case ranging from 1092.24 to 1220.40 mg g-1. Moreover, the adsorption capacity of the near-natural materials remained even higher after five regeneration cycles. The regeneration is almost waste-free and the materials used can be decomposed during composting. In addition, almost complete removal of cationic dyes was observed during the treatment of real wastewater samples.
Collapse
Affiliation(s)
- Anna Maria Skwierawska
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland.
| | - Monika Bliźniewska
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Kinga Muza
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Agnieszka Nowak
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Dominika Nowacka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Shan E Zehra Syeda
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Muhammad Shahzeb Khan
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Bogusława Łęska
- Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego street, 61-614 Poznań, Poland
| |
Collapse
|
12
|
Osman AI, Elgarahy AM, Mehta N, Al-Muhtaseb AH, Al-Fatesh AS, Rooney DW. Facile Synthesis and Life Cycle Assessment of Highly Active Magnetic Sorbent Composite Derived from Mixed Plastic and Biomass Waste for Water Remediation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:12433-12447. [PMID: 36161095 PMCID: PMC9490754 DOI: 10.1021/acssuschemeng.2c04095] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Indexed: 05/09/2023]
Abstract
Plastic and biomass waste pose a serious environmental risk; thus, herein, we mixed biomass waste with plastic bottle waste (PET) to produce char composite materials for producing a magnetic char composite for better separation when used in water treatment applications. This study also calculated the life cycle environmental impacts of the preparation of adsorbent material for 11 different indicator categories. For 1 functional unit (1 kg of pomace leaves as feedstock), abiotic depletion of fossil fuels and global warming potential were quantified as 7.17 MJ and 0.63 kg CO2 equiv for production of magnetic char composite materials. The magnetic char composite material (MPBC) was then used to remove crystal violet dye from its aqueous solution under various operational parameters. The kinetics and isotherm statistical theories showed that the sorption of CV dye onto MPBC was governed by pseudo-second-order, and Langmuir models, respectively. The quantitative assessment of sorption capacity clarifies that the produced MPBC exhibited an admirable ability of 256.41 mg g-1. Meanwhile, the recyclability of 92.4% of MPBC was demonstrated after 5 adsorption/desorption cycles. Findings from this study will inspire more sustainable and cost-effective production of magnetic sorbents, including those derived from combined plastic and biomass waste streams.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
- Ahmed
I. Osman. . Fax: +44 2890 97 4687. Tel.: +44 2890 97 4412
| | - Ahmed M. Elgarahy
- Environmental
Science Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
- Egyptian
Propylene and Polypropylene Company (EPPC), Port-Said 42526, Egypt
| | - Neha Mehta
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Ala’a H. Al-Muhtaseb
- Department
of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat 123, Oman
| | - Ahmed S. Al-Fatesh
- Chemical
Engineering Department, College of Engineering,
King Saud University, Riyadh 11421, Saudi Arabia
| | - David W. Rooney
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| |
Collapse
|
13
|
Gellan gum/bacterial cellulose hydrogel crosslinked with citric acid as an eco-friendly green adsorbent for safranin and crystal violet dye removal. Int J Biol Macromol 2022; 222:77-89. [PMID: 36096252 DOI: 10.1016/j.ijbiomac.2022.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
In this study, ex-situ crosslinked gellan gum (GG)/bacterial cellulose (BC) hydrogels have been investigated as good absorbents for the removal of safranin and crystal violet dye pollutants. The preparation involves a cost-effective and easy-to-perform crosslinking procedure, using citric acid (CA) as a green crosslinker. The physicochemical and mechanical properties of the crosslinked hydrogels were examined by FTIR, TGA, SEM, XRD, and unconfined compression analyses. The swelling capacity of the hydrogels as a function of pH was investigated. CA depicted to improve structural stability as a crosslinker. The dye removal capacity of the hydrogels as good adsorbents was explored and showed higher efficiency in the removal of safranin dye as compared to crystal violet with optimum adsorption capacities obtained as 17.57 and 13.49 mg/g, respectively. Adsorption kinetics and isotherm models as well as thermodynamics examined. Results showed the adsorption process well fitted the pseudo 2nd-order kinetic and Langmuir-Freundlich models while temperature dependence study depicted to be exothermic. Furthermore, no significant loss of removal efficiency of the hydrogel adsorbent was observed even after five adsorption-desorption cycles. Based on the revealed results, the prepared hydrogel may serve as an effective adsorbent for the removal of dyes from the aqueous phase.
Collapse
|
14
|
El Khomri M, El Messaoudi N, Dbik A, Bentahar S, Fernine Y, Lacherai A, Jada A. Optimization Based on Response Surface Methodology of Anionic Dye Desorption From Two Agricultural Solid Wastes. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00395-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Adsorptive Behavior of Tartaric Acid Treated Holarrhena antidysenterica and Citrullus colocynthis Biowastes for Decolourization of Congo Red Dye from Aqueous Solutions. J CHEM-NY 2022. [DOI: 10.1155/2022/5724347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the present work is to eradicate Congo red (CR) dye from aqueous solutions since the dye compounds are harmful to human life and the environment leading to detrimental results. For this purpose, Holarrhena antidysenterica (HA) and Citrullus colocynthis (CC) adsorbents were used for the adsorptive removal of Congo red dye from wastewaters. The unmodified adsorbents (U-HA and U-CC) were chemically modified using tartaric acid (TA). Morphological structures were examined by FTIR and SEM. Batch adsorption studies were tested at a variety of pH, time exposure, temperatures, and adsorbent dosages. Thermodynamic parameters such as Gibbs free energy (
), enthalpy (
), entropy changes (
), and energy of activation (
) were also calculated. The results revealed that tartaric acid-Citrullus colocynthis (TA-CC) gave optimum conditions of time of contact (35 min), temperature conditions (40°C), pH (3), and dosage of adsorbent (1.6 g) for maximum dye removal. Tartaric acid-Holarrhena antidysenterica (TA-HA) gave equilibrium time of contact (30 min), temperature (40°C), and pH optimum (2) along with a 1.6 g dosage of adsorbent. Mechanistic understanding of adsorption isotherm provided that the Langmuir model was followed by raw and modified adsorbents. Maximum adsorption capacities
attained were 60.61 (mg g-1), 128.21 (mg g-1), 87.71 (mg g-1), and 131.57 (mg g-1), respectively, for U-HA, TA-HA, U-CC, and TA-CC. The results of kinetic modeling displayed a high value of
(0.99) along with minimal error (RMSE) for dye removal showing that the pseudo-second-order kinetic model has acceptable accuracy. Fourier transform infrared proposed the electrostatic, pi-pi interactions, and hydrogen bonding as dominant adsorption mechanisms at acidic pH, respectively. Rate-determining steps comprise both surface and intraparticle diffusions. Thermodynamics indicated that the dye adsorption of CR is spontaneous, exothermic, and favorable in nature. These agricultural wastes due to specific points such as low cost, availability, and high removal rates of adsorption are highly competent for the expulsion of anionic dye like CR from wastewaters.
Collapse
|
16
|
Zhang H, Xing L, Liang H, Ren J, Ding W, Wang Q, Geng Z, Xu C. Efficient removal of Remazol Brilliant Blue R from water by a cellulose-based activated carbon. Int J Biol Macromol 2022; 207:254-262. [PMID: 35263647 DOI: 10.1016/j.ijbiomac.2022.02.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/29/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022]
Abstract
Due to its wide application and high toxicity, Remazol Brilliant Blue R (RBBR) has become a fatal contaminate in aquatic environment. In this study, to remove RBBR, a cellulose-based activated carbon (CAC) was synthesized at 800 °C with a cellulose-based hydrocarbon (CHC) activated by NaOH. The CHC was synthesized by the hydrothermal method with microcrystalline cellulose and urea as raw materials. The CAC possessed great amounts of N and O-containing functional groups and had well-developed pore structure. The BET specific surface area of CAC reached up to 1872.30 m2/g. The maximum adsorption capacity of CAC on RBBR was 653.19 mg/g during which chemical adsorption was the dominant mechanism. Adsorption thermodynamics indicated that the adsorption of RBBR by CAC was exothermic and spontaneous. Regeneration adsorption and ion competition experiments showed that the material could be used repeatedly and had good anti-interference ability. In addition, the removal rates of RBBR by CAC in actual water bodies, including river water and artificial lake water, were above 99.40%. Therefore, the novel CAC shows great potential for the remediation of printing and dyeing wastewater.
Collapse
Affiliation(s)
- Hongwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Libin Xing
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jiawei Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, Yangling 712100, China.
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
17
|
Chandarana H, Senthil Kumar P, Seenuvasan M, Anil Kumar M. Kinetics, equilibrium and thermodynamic investigations of methylene blue dye removal using Casuarina equisetifolia pines. CHEMOSPHERE 2021; 285:131480. [PMID: 34265726 DOI: 10.1016/j.chemosphere.2021.131480] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Casuarina equisetifolia pines are degradable biopolymeric substance with dye-sequestering property was utilized as biosorbent to expel a cationic dye; methylene blue dye from simulated wastewater. The prepared adsorbent material was characterized for their structural, morphological and elemental features to understand their suitability in augmenting in dye-wastewater remediation. The results infer that 0.5 g/L biosorbent was proficient in removing 100 mg/L methylene blue (pH 7.0 ± 0.2) when agitated at 150 rpm for 120 min. Isothermal behavior were evaluated using non-linear isotherm models like Temkin, Langmuir and Freundlich models while the rate-limiting steps were found using kinetic models. Temkin isotherm and pseudo-first order model explained the removal mechanism among the models evaluated, which infers that the biosorption followed physisorption with the maximum adsorption capacity of 41.35 mg/g. Thermodynamic behavior of methylene blue removal by C. equisetifolia pines powder described the feasibility of biosorption as well as the type of heat involved. Equilibrium sorption capacities, rate constants and correlation coefficients explains that MB dye removal by C. equisetifolia pines is presumably physisorption, spontaneous and endothermic in nature.
Collapse
Affiliation(s)
- Helly Chandarana
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India
| | - Muthulingam Seenuvasan
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641 032, Tamil Nadu, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
18
|
Shalaby SM, Madkour FF, El-Kassas HY, Mohamed AA, Elgarahy AM. Green synthesis of recyclable iron oxide nanoparticles using Spirulina platensis microalgae for adsorptive removal of cationic and anionic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65549-65572. [PMID: 34322819 DOI: 10.1007/s11356-021-15544-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Globally, organic dyes are major constituents in wastewater effluents due to their large-scale industrial applications. These persistent pollutants adversely impact the public health of different living entities. Thus, wastewater remediation has become an indispensable necessity. Herein, we greenly synthesized iron oxide nanoparticles (SP-IONPs) using Spirulina platensis microalgae to remove cationic crystal violet (CV) and anionic methyl orange (MO) dyes from their aqueous solution. The engineered sorbent was thoroughly scrutinized by different characterization techniques of FT-IR, BET surface area, SEM, EDX, TEM, VSM, UV/Vis spectroscopy, and pHPZC measurement. The proficiency of SP-IONPs was methodically appraised for its sorptive performance towards the target CV and MO dyes under variable technological parameters (batch scenario). Collectively, the outlined results inferred an amazing efficacy characterized to the SP-IONPs sorbent for the expulsion of relevant dyes from the aqueous media. Regarding the dynamic static sorption data, the kinetics profile was ascribed to the pseudo-second order model, whereas sorption isotherm was quantitatively dominated by the Langmuir theory with maximum sorption capacities of 256.4 mg g-1 and 270.2 mg g-1 for CV and MO, respectively. Thermodynamics findings conformed the endothermic nature of sorption process. Repeatability of the spent sorbent was successfully emphasized for 5 times of sorption/desorption cycles. The productive sorbent admirably sequestered CV and MO dyes from spiked tap water. The potency of SP-IONPs as color collecting material from real dyeing effluents was achieved.
Collapse
Affiliation(s)
- Shymaa M Shalaby
- Marine Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Fedekar F Madkour
- Marine Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Hala Y El-Kassas
- Marine Hydrobiology Department, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Adel A Mohamed
- Marine Chemistry Department, National Institute of Oceanography and Fisheries, Suez, Egypt
| | - Ahmed M Elgarahy
- Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt.
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt.
| |
Collapse
|
19
|
Shalaby SM, Madkour FF, El-Kassas HY, Mohamed AA, Elgarahy AM. Microwave enhanced sorption of methylene blue dye onto bio-synthesized iron oxide nanoparticles: kinetics, isotherms, and thermodynamics studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:902-918. [PMID: 34618649 DOI: 10.1080/15226514.2021.1984389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To adequately address the grave human health risks and environmental damage caused by the uncontrolled utilization of organic dyes, we greenly synthesized iron oxide nanoparticles (IONPs) using Spirulina platensis micro-algae for sequestration of cationic methylene blue (MB) dye from an aqueous solution. The nano-engineered sorbent was thoroughly scrutinized by different spectral analyses of; FT-IR, SEM, EDX, BET surface area, TEM, VSM, UV/Vis spectroscopy, and PHPZC measurement. The adsorption of MB was methodically carried out in a batch process to investigate the effects of initial pH (2.2-10.4), adsorbent concentration (0.5-5.0 g L-1), initial dye concentration (10-1000 mg L-1), contact time (0-230 min), and adsorption temperature (298 K, 308 K, 318 K, and 328 K). The outlined results inferred that the maximum adsorption capacity of MB dye by IONPs (surface area of 134.003 m2/g, a total pore volume of 0.3715 cc/g, and average pore size of 5.54 nm) was 312.5 mg g-1 under the optimized pH value (i.e., pH = 10.4). Collectively, the adsorption kinetics profile showed that the experimental data were in good agreement with the PSORE model, and the equilibrium adsorption isotherm data were quantitatively dominated by the Langmuir model. The thermodynamic findings conformed to the endothermic nature of the adsorption process. Interestingly, the proposed microwave scenario enhanced the adsorption rate and the equilibrium was attained in a very short time (only 1 min), compared with the normal sorption conditions (∼70 min). Repeatability of the spent sorbent was successfully emphasized for 5 times of adsorption/desorption cycles using 0.5 M of HCl. The productive adsorbent admirably sequestered MB dye from spiked real specimens (>83%). These results demonstrated that IONPs can be considered as a cost-efficient adsorbent in practical applications such as wastewater purification.
Collapse
Affiliation(s)
- Shymaa M Shalaby
- Marine Science Department, Faculty of Science, Port-Said University, Port Said, Egypt
| | - Fedekar F Madkour
- Marine Science Department, Faculty of Science, Port-Said University, Port Said, Egypt
| | - Hala Y El-Kassas
- Marine Hydrobiology Department, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Adel A Mohamed
- Marine Chemistry Department, National Institute of Oceanography and Fisheries, Suez, Egypt
| | - Ahmed M Elgarahy
- Environmental Science Department, Faculty of Science, Port-Said University, Port Said, Egypt
- Production Department, Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt
| |
Collapse
|
20
|
Zhang J, Zhu M, Jones I, Zhang Z, Gao J, Zhang D. Performance of activated carbons prepared from spent tyres in the adsorption of rhodamine B in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52862-52872. [PMID: 34019212 DOI: 10.1007/s11356-021-14502-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Activated carbons were produced from spent tyre pyrolysis char by steam or CO2 activation and evaluated for their performance in rhodamine B (RhB) adsorption in aqueous solutions. The effect of RhB starting concentration (80-150 mg L-1), contact time (0-80 min), temperature (298-318 K) and initial pH on the adsorption process was examined. Pseudo-first-order and pseudo-second-order models were carried out to fit the experimental data to derive RhB adsorption kinetics. Langmuir, Freundlich and Temkin isotherm models were applied to depict RhB adsorption behaviour of the prepared activated carbons. Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were calculated. It has been found that the activated carbons can effectively adsorb RhB due to high mesoporosity and RhB equilibrium adsorption capacity (qe) increased almost linearly with increasing total mesopore volumes, regardless of the activation agents. When BET surface areas are similar, CO2-activated carbon obtained higher qe than steam due to higher mesoporosity of CO2-activated carbon. The results show that pseudo-second-order well fitted the experimental data. RhB starting concentration increased from 80 to 150 mg L-1 causing qe increased from 158 to 251 mg g-1 but RhB removal decreased from 99.7 to 84.5%. The RhB adsorption process follows the Langmuir model and thermodynamic calculation, indicating RhB adsorption is an endothermic, spontaneous process, dominated by both chemisorption and physisorption.
Collapse
Affiliation(s)
- Juan Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, 266101, China
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Mingming Zhu
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Isabelle Jones
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Zhezi Zhang
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Jian Gao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, 266101, China
| | - Dongke Zhang
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
21
|
El Khomri M, El Messaoudi N, Dbik A, Bentahar S, Lacherai A, Faska N, Jada A. Regeneration of argan nutshell and almond shell using HNO3 for their reusability to remove cationic dye from aqueous solution. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1963960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mohammed El Khomri
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Abdellah Dbik
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Safae Bentahar
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Abdellah Lacherai
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Nadia Faska
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco
- Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
| | - Amane Jada
- Institute of Materials Science of Mulhouse (IS2M), High Alsace University, Mulhouse, France
| |
Collapse
|
22
|
Bayram O, Köksal E, Göde F, Pehlivan E. Decolorization of water through removal of methylene blue and malachite green on biodegradable magnetic Bauhinia variagata fruits. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:311-323. [PMID: 34134559 DOI: 10.1080/15226514.2021.1937931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Batch sorption experiments were performed to investigate the potential of Bauhinia variagata fruit (BVf) and nano-magnetic Bauhinia variagata fruit (nM-BVf) to remove methylene blue (MB) and malachite green (MG). Equilibrium studies have been carried out using various experimental parameters such as the amount of biosorbent, initial solution concentration, contact time, pH, and temperature. The Langmuir, Freundlich, Scatchard, D-R and Temkin adsorption models were applied for the experimental information of MB and MG. The Freundlich model fits better than the Langmuir model. Freundlich model confirmed the magnificent dye sorption ability; 19.3 mg/g for BVf/MB, 21.2 mg/g for nM-BVf/MB, 19.7 mg/g for BVf/MG, and 30.1 mg/g for nM-BVf/MG. The pseudo-second-order kinetic model displayed a more suitable behavior to the experimental result for the removal of MG and MB. Thermodynamic parameters such as changes in Gibbs free energy (ΔGo), enthalpy (ΔHo), and entropy (ΔSo) were investigated and the fine details in the adsorption system were completed. The conclusion from this study is that the prepared nano biosorbent can be efficient for the removal of cationic dyes from wastewater.
Collapse
Affiliation(s)
- Okan Bayram
- Department of Chemistry,Graduate School of Applied and Natural Sciences, Süleyman Demirel University, Isparta, Turkey
| | - Elif Köksal
- Department of Chemistry,Graduate School of Applied and Natural Sciences, Süleyman Demirel University, Isparta, Turkey
| | - Fethiye Göde
- Department of Chemistry, Faculty of Science and Arts, Süleyman Demirel University, Isparta, Turkey
| | - Erol Pehlivan
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey
| |
Collapse
|
23
|
Non-Woven Fabrics Based on Nanocomposite Nylon 6/ZnO Obtained by Ultrasound-Assisted Extrusion for Improved Antimicrobial and Adsorption Methylene Blue Dye Properties. Polymers (Basel) 2021; 13:polym13111888. [PMID: 34204165 PMCID: PMC8201166 DOI: 10.3390/polym13111888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Approximately 200,000 tons of water contaminated with dyes are discharged into effluents annually, which in addition to infectious diseases constitute problems that afflict the population worldwide. This study evaluated the mechanical properties, surface structure, antimicrobial performance, and methylene blue dye-contaminant adsorption using the non-woven fabrics manufactured by melt-blowing. The non-woven fabrics are composed of nylon 6 (Ny 6) and zinc oxide nanoparticles (ZnO NPs). The polymer nanocomposites were previously fabricated using variable frequency ultrasound assisted-melt-extrusion to be used in melt-blowing. Energy dispersion spectroscopy (SEM-EDS) images showed a homogeneous dispersion of the ZnO nanoparticles in nylon 6. The mechanical properties of the composites increased by adding ZnO compared to the nylon 6 matrix, and sample Ny/ZnO 0.5 showed the best mechanical performance. All fabric samples exhibited antimicrobial activity against S. aureus and fungus C. albicans, and the incorporation of ZnO nanoparticles significantly improved this property compared to pure nylon 6. The absorption efficiency of methylene blue (MB), during 60 min, for the samples Ny/ZnO 0.05 and Ny/ZnO 0.25 wt%, were 93% and 65%, respectively. The adsorption equilibrium data obeyed the Langmuir isotherm.
Collapse
|
24
|
Adsorption Behavior of Acid-Treated Brazilian Palygorskite for Cationic and Anionic Dyes Removal from the Water. SUSTAINABILITY 2021. [DOI: 10.3390/su13073954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The effect of acid treatment on the adsorptive capacity of a Brazilian palygorskite to remove the crystal violet (CV) and congo red (CR) dyes was investigated. The raw palygorskite was acid-treated by different HCl solutions (2, 4, and 6 mol/L). The modifications on the palygorskite structure were investigated using X-ray diffraction, X-ray fluorescence, Fourier-transform infrared spectroscopy, N2 adsorption/desorption, and thermogravimetric and differential thermal analysis. The efficiency of CV and CR adsorption was investigated, and the effect of the initial concentration, contact time, pH, and adsorbent amount was analyzed. The results revealed that CV adsorption in the acid-treated palygorskite was higher than that of the raw material. A Langmuir isotherm model was observed for the adsorption behavior of CV, while a Freundlich isotherm model was verified for the CR adsorption. A pseudo-second-order model was observed for the adsorption kinetics of both dyes. The higher CV adsorption capacity was observed at basic pH, higher than 97%, and the higher CR removal was observed at acidic pH, higher than 50%. The adsorption parameters of enthalpy (ΔH), entropy (ΔS), and Gibbs energy (ΔG) were evaluated. The adsorption process of the CV and CR dyes on the raw and acid-treated Brazilian palygorskite was predominantly endothermic and occurred spontaneously. The studied raw palygorskite has a mild-adsorption capacity to remove anionic dyes, while acid-treated samples effectively remove cationic dyes.
Collapse
|
25
|
Nguyen DTC, Dang HH, Vo DVN, Bach LG, Nguyen TD, Tran TV. Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124146. [PMID: 33053473 DOI: 10.1016/j.jhazmat.2020.124146] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 05/21/2023]
Abstract
The occurrence and influence of dyes-containing effluents are alarmingly serious; hence, the treatment of such wastewater needs to be undertaken. Here, we report the biosynthesis strategy and utilisation of MgO nanoparticles (MgO NPs) from distinct Tecoma stans (L.) plant extracts (flower, bark, and leaf). The FT-IR spectroscopy revealed the dominance of chemical bonds as well as functional groups on MgO NPs surfaces. For adsorption experiments, the impact of pH, contact time, concentration, and pH on uptake efficiency of congo red (CR) and crystal violet (CV) dyes were investigated and then optimized using response surface methodology and Box-Behnken design. Under the optimal conditions, 99.7% CR (at Ci = 9.33 mg/L, Dos = 0.22, pH = 7.9) and 90.8% CV (at Ci = 5.0 mg/L, Dos = 0.3, pH = 6.3) were attained. The maximum adsorption capacities were calculated from 89.24 to 150.49 mg/g, where MgO NPs derived from flower extract gave better adsorption efficiency than those from other extracts. Therefore, MgO NPs material from Tecoma stans (L.) flower extract is expected as a perspective adsorbent for the effective remediation of organic dyes.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| | - Huy Hoang Dang
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Long Giang Bach
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Trinh Duy Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
26
|
Nayeri D, Mousavi SA. Dye removal from water and wastewater by nanosized metal oxides - modified activated carbon: a review on recent researches. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1671-1689. [PMID: 33312670 PMCID: PMC7721786 DOI: 10.1007/s40201-020-00566-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 10/08/2020] [Indexed: 05/25/2023]
Abstract
The conventional water and wastewater treatment methods are unable to provide up-to-data organized standards for drinking water and discharging effluents into natural ecosystems. Therefore, developing advanced and cost-effective methods to achieve published standards for water and wastewater and population needs are nowadays necessity. The important parts of this article are providing literature information about dyes and their effects on the environment and human health, adsorption properties and mechanism, adsorbent characteristics, and recent information on various aspects of modified activated carbons with nanosized metal oxides (AC- NMOs) in the removal of dyes. This review also summarized the effect of main environmental and operational parameters such as adsorbent dosage, pH, initial dye concentration, contact time, and temperature on the dye adsorption using AC-NMOs. Furthermore, the applied isotherm and kinetic models have been discussed.
Collapse
Affiliation(s)
- Danial Nayeri
- Department of Environmental Health Engineering, School of Public Health, and Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student research committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Alireza Mousavi
- Department of Environmental Health Engineering, School of Public Health, and Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
27
|
Saruchi, Verma R, Kumar V, ALOthman AA. Comparison between removal of Ethidium bromide and eosin by synthesized manganese (II) doped zinc (II) sulphide nanoparticles: kinetic, isotherms and thermodynamic studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1175-1187. [PMID: 33312633 PMCID: PMC7721835 DOI: 10.1007/s40201-020-00536-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/07/2020] [Indexed: 05/16/2023]
Abstract
The present work seeks to investigate the kinetics and thermodynamic studies of ethidium bromide (EtBr) and eosin adsorption onto the synthesized Manganese (II) doped Zinc (II) Sulphide nanoparticles. A convenient scheme of co-precipitation was used for the synthesis of Manganese (II) doped Zinc (II) Sulphide nanoparticles. The Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and X-ray diffractogram (XRD) techniques were used for the characterization of synthesized nanoparticles. The adsorption study was undertaken in a systematic manner. Effects of different experimental parameters were studied using batch adsorption method. It was evident from the results that EtBr and eosin removal was inversely proportional to the concentration of initial dye and directly proportional to contact time and adsorbent used. To study the adsorption equilibrium three different isotherm models like Langmuir, Freundlich and Flory-Huggins were used. It was observed that adsorption data synced most successfully with Langmuir isotherm model as compared to Freundlich and Flory-Huggins isotherm model. To fit the investigational statistics, the kinetic models pseudo 1st order, pseudo 2nd order and intra particle diffusion were taken onto consideration. The maximum dye removal of 98.19% and 97.16% for EtBr and eosin, was observed during the synthesis of nanoparticles.
Collapse
Affiliation(s)
- Saruchi
- Department of Biotechnology, CT Group of Institutions, Shahpur Campus, Jalandhar, Punjab India
| | - Rashim Verma
- Department of Biotechnology, DAV University, Jalandhar, India
| | - Vaneet Kumar
- Department of Biotechnology, CT Group of Institutions, Shahpur Campus, Jalandhar, Punjab India
| | - Asma A. ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
28
|
Essekri A, Hsini A, Naciri Y, Laabd M, Ajmal Z, El Ouardi M, Ait Addi A, Albourine A. Novel citric acid-functionalized brown algae with a high removal efficiency of crystal violet dye from colored wastewaters: insights into equilibrium, adsorption mechanism, and reusability. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:336-346. [PMID: 32898432 DOI: 10.1080/15226514.2020.1813686] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic dye waste is one of the world's key ecological concerns. The algal biomass has emerged as a promising alternative adsorbent for wastewater treatment. The present study deals with the functionalization of brown algae (BA) by citric acid in order to improve its adsorption ability for textile dye removal in aqueous solutions. The morphological texture (SEM and BET) and surface chemistry (FTIR, EDS-mapping, and PZC) of the novel functionalized brown algae (designated as BA-CA) were analyzed. The performance of BA-CA for crystal violet (CV) dye removal from wastewater was investigated. The isotherm and kinetic adsorption modeling indicate the good fit of Langmuir isotherm and pseudo-second-order models. Optimum monolayer uptake capacity was 279.14 mg/g for BA-CA, which was about two times higher than that of unmodified BA. The thermodynamic parameters clearly indicated that CV removal process was physiosorption, exothermic, and spontaneous in nature. The regeneration study showed excellent reusability of the BA-CA up to five cycles. Overall, the experimental findings lead us to conclude that the BA-CA can be used as an eco-friendly, cost-effective and easily regenerated adsorbent for the purification of textile effluents.
Collapse
Affiliation(s)
- Abdelilah Essekri
- Laboratory of Materials and Environment, Department of Chemistry, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- Laboratory of Materials and Environment, Department of Chemistry, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Yassine Naciri
- Laboratory of Materials and Environment, Department of Chemistry, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Laabd
- Laboratory of Materials and Environment, Department of Chemistry, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Zeeshan Ajmal
- College of Engineering, China Agricultural University, Beijing, PR China
| | - Mahmoud El Ouardi
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
| | - Abdelaziz Ait Addi
- Physical Chemistry and Environment Team, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Department of Chemistry, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
29
|
Parlayıcı Ş, Pehlivan E. Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: modeling and equilibrium study. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:26-40. [PMID: 32715734 DOI: 10.1080/15226514.2020.1788502] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study involves the production of a novel biosorbent obtained from Cortaderia selloana flower spikes (CSFs). Magnetic C. selloana flower spikes (nM∞CSFs) was applied as an ideal biosorbent for the elimination of dyes from water. They were utilized for the removal from aqueous solutions of malachite green (MG) and methylene blue (MB) dyes. The analyses of the equilibrium were done under certain experimental parameters such as contact time, initial dye concentration, pH, and quantity of biosorbent. The rapid intake of dyes to reach the equilibrium in a short period time showed the effectiveness of nM∞CSFs to adsorb MG and MB. The experimental information of MB and MG was obtained from the Langmuir model and it confirmed the magnificent dye biosorption ability; 72.99 mg/g for CSFs/MB, 119.05 mg/g for nM∞CSFs/MB, 31.06 mg/g for CSFs/MG, and 56.50 mg/g for nM∞CSFs/MG. Langmuir's model affirmed the excellent dye biosorption ability. The pseudo-second-order kinetic model displayed a great fit to the experimental result for the removal of MG and MB. The nM∞CSFs compared with raw biosorbent affirmed that the magnetic form of the biosorbent has a greater removal ability for MB and MG. nM∞CSFs is a noteworthy biosorbent for MB and MG removal from wastewater. [Figure: see text] HIGHLIGHTS Magnetic Cortaderia selloana flower spikes (nM∞CSFs) was synthesized for the biosorption of dyes FT-IR and SEM analysis were used for characterization. The Langmuir isotherm model fitted the data of the adsorption for nM∞CSFs nM∞CSFs is a noteworthy biosorbent for MB and MG removal from wastewater. A NOVELTY STATEMENT This novel biodegradable biosorbent (magnetic-C. selloana flower spikes-(nM∞CSFs)) has many different functional groups to bind MG and MB from aqueous medium. The method to bring the magnetic form was well described and gives an astronomically immense capacity for the abstraction of the dyes. It resists in acidic or basic medium and has a vigorous structure. It has an immense capacity for the dyes compared to other biosorbents. It can be cited by a sizably voluminous number of investigators or researchers when it is published because it is incipient biosorbent in the literature and can be utilized as a novel biosorbent for the removal of dyes.
Collapse
Affiliation(s)
- Şerife Parlayıcı
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey
| | - Erol Pehlivan
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey
| |
Collapse
|