1
|
Yavuz O, Arslan HH, Tokur O, Marangoz O, Nuhoglu Ozturk Z, Mushtaq S. Monitoring of environmental persistent organic pollutants in hair samples of cats and dogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173020. [PMID: 38719047 DOI: 10.1016/j.scitotenv.2024.173020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
This study investigated 32 persistent organic pollutants, including 9 organochlorine pesticides, 15 polychlorinated biphenyls, 6 polycyclic aromatic hydrocarbons, and 2 organophosphate pesticides in the hair samples of domestic cats and dogs living in an urban area in Samsun, Turkiye. Hair samples were collected from 35 cats and 38 dogs, grouped by sex and age (<3 or >3 years old). Samples were extracted using a liquid-liquid extraction method and analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). The results revealed the presence of organochlorine pesticides (n = 58, 468.65 ± 92.30 ng/g), polycyclic aromatic hydrocarbons (n = 57, 15.65 ± 3.91 ng/g), polychlorinated biphenyls (n = 55, 54.11 ± 9.47 ng/g), and organophosphate pesticides (n = 25, 568.43 ± 113.17 ng/g) in the samples. PCBs 81, 118, 128, 208, and 2,4-DDE were not detected in any samples. Only one sample did not contain any of the searched compounds. Fluorene was the most frequently detected pollutant (n = 53, 72.6 %), followed by β-hexachlorocyclohexane (n = 34, 46.6 %). The highest maximum concentration was observed for hexachlorobenzene (2748.03 ng/g), followed by aldrin (2313.45 ng/g) and fenitrothion (2081.13 ng/g). Pollutant concentrations did not differ between cats and dogs, sexes, and ages (p > 0.05). This study highlights the significant threat that urban areas pose to pets, and therefore, POPs should be monitored periodically in hair and other samples. To the best of our knowledge, this is the first report to investigate POP levels in hair samples from cats and dogs in Turkiye.
Collapse
Affiliation(s)
- Oguzhan Yavuz
- Department of Pharmacology and Toxicology, Ceyhan Faculty of Veterinary Medicine, Cukurova University, Adana, Turkiye.
| | - Handan Hilal Arslan
- Department of Internal Medicine, Ceyhan Faculty of Veterinary Medicine, Cukurova University, Adana, Turkiye
| | - Orhan Tokur
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
| | - Ozge Marangoz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
| | - Zeyno Nuhoglu Ozturk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
| | - Saima Mushtaq
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
| |
Collapse
|
2
|
Janarthanam VA, Issac PK, Guru A, Arockiaraj J. Hazards of polycyclic aromatic hydrocarbons: a review on occurrence, detection, and role of green nanomaterials on the removal of PAH from the water environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1531. [PMID: 38008868 DOI: 10.1007/s10661-023-12076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
Organic pollutant contamination in the environment is a serious and dangerous issue, especially for developing countries. Among all organic pollutants, polycyclic aromatic hydrocarbons (PAHs) are the more frequently discovered ones in the environment. PAH contamination is caused chiefly by anthropogenic sources, such as the disposal of residential and industrial waste and automobile air emissions. They are gaining interest due to their environmental persistence, toxicity, and probable bioaccumulation. The existence of PAHs may result in damage to the environment and living things, and there is widespread concern about the acute and chronic threats posed by the release of these contaminants. The detection and elimination of PAHs from wastewater have been the focus of numerous technological developments during recent decades. The development of sensitive and economical monitoring systems for detecting these substances has attracted a lot of scientific attention. Using several nanomaterials and nanocomposites is a promising treatment option for the identification and elimination of PAHs in aquatic ecosystems. This review elaborated on the sources of origin, pathogenicity, and widespread occurrence of PAHs. In addition, the paper highlighted the use of nanomaterial-based sensors in detecting PAHs from contaminated sites and nanomaterial-based absorbents in PAH elimination from wastewater. This review also addresses the development of Graphene and Biofunctionalized nanomaterials for the elimination of PAHs from the contaminated sites.
Collapse
Affiliation(s)
- Vishnu Adith Janarthanam
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, , Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
Huang X, Li Z, Zhang T, Zhu J, Wang X, Nie M, Harada K, Zhang J, Zou X. Research progress in human biological monitoring of aromatic hydrocarbon with emphasis on the analytical technology of biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114917. [PMID: 37094484 DOI: 10.1016/j.ecoenv.2023.114917] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Aromatic hydrocarbons are unsaturated compounds containing carbon and hydrogen that form single aromatic ring, or double, triple, or multiple fused rings. This review focuses on the research progress of aromatic hydrocarbons represented by polycyclic aromatic hydrocarbons (including halogenated polycyclic aromatic hydrocarbons), benzene and its derivatives including toluene, ethylbenzene, xylenes (o-, m- and p-), styrene, nitrobenzene, and aniline. Due to the toxicity, widespread coexistence, and persistence of aromatic hydrocarbons in the environment, accurate assessment of exposure to aromatic hydrocarbons is essential to protect human health. The effects of aromatic hydrocarbons on human health are mainly derived from three aspects: different routes of exposure, the duration and relative toxicity of aromatic hydrocarbons, and the concentration of aromatic hydrocarbons which should be below the biological exposure limit. Therefore, this review discusses the primary exposure routes, toxic effects on humans, and key populations, in particular. This review briefly summarizes the different biomarker indicators of main aromatic hydrocarbons in urine, since most aromatic hydrocarbon metabolites are excreted via urine, which is more feasible, convenient, and non-invasive. In this review, the pretreatment and analytical techniques are compiled systematically for the qualitative and quantitative assessments of aromatic hydrocarbons metabolites such as gas chromatography and high-performance liquid chromatography with multiple detectors. This review aims to identify and monitor the co-exposure of aromatic hydrocarbons that provides a basis for the formulation of corresponding health risk control measures and guide the adjustment of the exposure dose of pollutants to the population.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Zhuoya Li
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Tianai Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Jing Zhu
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Xuan Wang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Manqing Nie
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Kouji Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jing Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China.
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Naghashan M, Kargarghomsheh P, Nazari RR, Mehraie A, Tooryan F, Shariatifar N. Health risk assessment of PAHs in fruit juice samples marketed in city of Tehran, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20077-20088. [PMID: 36251183 DOI: 10.1007/s11356-022-22763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The objective of the present study was to investigate the level of 16 PAHs in fruit juice samples (orange, apple, peach, pineapple, and mango) with three different packages (PET bottle, Tetra Pak, and canned packaging) by using MSPE/GC-MS (magnetic solid-phase extraction and gas chromatography-mass spectrometry) method. In this method limit of detection (LOD), and limit of quantitation (LOQ), and recovery were 0.030-0.280 μg/L, 0.090-0.840 μg/L, and 94.8-102%, respectively. Our results showed the median of total PAHs and PAH4 (in all samples) were 7.67 ± 3.19 and 0.370 ± 0.160 μg/L, respectively. The median of BaP in samples was )0.060 ± 0.030 μg/L( lower than the standard level (0.200 μg/L in drinking water) of US Environmental Protection Agency (USEPA). Also, our results showed that pineapple juice had a maximum median of total PAHs of 12.4 ± 4.84 μg/L and mango juice had a minimum median of total PAHs of 5.17 ± 1.24 μg/L. Additionally, canned packaging had a maximum average total PAHs of 10.6 ± 5.22 μg/L and PET bottles had a minimum average total PAH of 5.25 ± 2.03 μg/L. A heat map approach was also used to cluster samples. The Monte Carlo results indicated that the estimated daily intake (EDI) rank order was Na > B(g)P > Ch > I(cd)P > B(b)F > Ph > B(k)F > F > Ace > Fl > B(a)P > B(a)A > P >A. The Monte Carlo simulation (MCS) results showed the incremental lifetime cancer risk (ILCR) at the 95th percentiles for adults and children was 4.91 × 10-7 and 9.12 × 10-7, respectively. It is concluded that the concentration of PAHs compounds in Iranian fruit juices is lower than the existing standards, and in terms of the risk of carcinogenesis, it does not threaten the human health (< 10-6).
Collapse
Affiliation(s)
- Mahsa Naghashan
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pegah Kargarghomsheh
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | | | - Abbas Mehraie
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fahimeh Tooryan
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
- Preventive Veterinary Medicine Graduate Group, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Rapid detection of four polycyclic aromatic hydrocarbons in drinking water by constant-wavelength synchronous fluorescence spectrometry. ANAL SCI 2023; 39:59-66. [PMID: 36223062 DOI: 10.1007/s44211-022-00200-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/02/2022] [Indexed: 01/06/2023]
Abstract
Based on the advantages of the good selectivity and high sensitivity of the synchronous fluorescence method, an efficient method using constant-wavelength synchronous fluorescence spectrometry (CWSFS) for simultaneous and rapid determination of four polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, phenanthrene, benzo[a]anthracene and fluoranthene) in drinking water was established in this study. When the difference in wavelength (Δλ) at 100 nm was chosen for CWSFS scanning, the synchronous fluorescence spectra of the four PAHs could be well separated with only one single scan. Different from conventional fluorescence analysis, the established method can avoid the interference among the four PAHs each other and the interference of the drinking water sample matrix, so the four PAHs in drinking water could be well distinguished and determined. The concentrations of four PAHs in the range of 0.05-100 μg/L, 0.1-400 μg/L, 0.05-100 μg/L and 0.5-2000 μg/L showed a good linear relationship with fluorescence intensity. The limits of detection were 0.0058 μg/L, 0.021 μg/L, 0.0061 μg/L and 0.056 μg/L, respectively. The recoveries were in the range of 86.55-98.74%. Overall, the established CWSFS had the characteristics of simple, rapid, sensitive and accuracy, and had been applied to the determination of the four PAHs in various drinking water with satisfactory results.
Collapse
|
6
|
Bukowska B, Mokra K, Michałowicz J. Benzo[ a]pyrene-Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int J Mol Sci 2022; 23:6348. [PMID: 35683027 PMCID: PMC9181839 DOI: 10.3390/ijms23116348] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is the main representative of polycyclic aromatic hydrocarbons (PAHs), and has been repeatedly found in the air, surface water, soil, and sediments. It is present in cigarette smoke as well as in food products, especially when smoked and grilled. Human exposure to B[a]P is therefore common. Research shows growing evidence concerning toxic effects induced by this substance. This xenobiotic is metabolized by cytochrome P450 (CYP P450) to carcinogenic metabolite: 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), which creates DNA adducts, causing mutations and malignant transformations. Moreover, B[a]P is epigenotoxic, neurotoxic, and teratogenic, and exhibits pro-oxidative potential and causes impairment of animals' fertility. CYP P450 is strongly involved in B[a]P metabolism, and it is simultaneously expressed as a result of the association of B[a]P with aromatic hydrocarbon receptor (AhR), playing an essential role in the cancerogenic potential of various xenobiotics. In turn, polymorphism of CYP P450 genes determines the sensitivity of the organism to B[a]P. It was also observed that B[a]P facilitates the multiplication of viruses, which may be an additional problem with the widespread COVID-19 pandemic. Based on publications mainly from 2017 to 2022, this paper presents the occurrence of B[a]P in various environmental compartments and human surroundings, shows the exposure of humans to this substance, and describes the mechanisms of its toxicity.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland; (K.M.); (J.M.)
| | | | | |
Collapse
|
7
|
Capaccio A, Sasso A, Rusciano G. Feasibility of SERS-Active Porous Ag Substrates for the Effective Detection of Pyrene in Water. SENSORS 2022; 22:s22072764. [PMID: 35408378 PMCID: PMC9002898 DOI: 10.3390/s22072764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants that are typically released into the environment during the incomplete combustion of fossil fuels. Due to their relevant carcinogenicity, mutagenicity, and teratogenicity, it is urgent to develop sensitive and cost-effective strategies for monitoring them, especially in aqueous environments. Surface-enhanced Raman spectroscopy (SERS) can potentially be used as a reliable approach for this purpose, as it constitutes a valid alternative to traditional techniques, such as liquid and gas chromatography. Nevertheless, the development of an SERS-based platform for detection PAHs has so far been hindered by the poor adsorption of PAHs onto silver- and gold-based SERS-active substrates. To overcome this limitation, several research efforts have been directed towards the development of functionalized SERS substrates for the improvement of PAH adsorption. However, these strategies suffer from the interference that functionalizing molecules can produce in SERS detection. Herein, we demonstrate the feasibility of label-free detection of pyrene by using a highly porous 3D-SERS substrate produced by an inductively coupled plasma (ICP). Thanks to the coral-like nanopattern exhibited by our substrate, clear signals ascribable to pyrene molecules can be observed with a limit of detection of 23 nM. The observed performance can be attributed to the nanoporous character of our substrate, which combines a high density of hotspots and a certain capability of trapping molecules and favoring their adhesion to the Ag nanopattern. The obtained results demonstrate the potential of our substrates as a large-area, label-free SERS-based platform for chemical sensing and environmental control applications.
Collapse
Affiliation(s)
- Angela Capaccio
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy; (A.S.); (G.R.)
- Correspondence:
| | - Antonio Sasso
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy; (A.S.); (G.R.)
- National Research Council-National Institute of Optics (CNR-INO), 80078 Pozzuoli, Italy
| | - Giulia Rusciano
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy; (A.S.); (G.R.)
- National Research Council-National Institute of Optics (CNR-INO), 80078 Pozzuoli, Italy
| |
Collapse
|
8
|
Polycyclic Aromatic Hydrocarbons (PAHs) Sample Preparation and Analysis in Beverages: A Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe monitoring of food contaminants is of interests to both food regulatory bodies and the consumers. This literature review covers polycyclic aromatic hydrocarbons (PAHs) with regard to their background, sources of exposures, and occurrence in food and environment as well as health hazards. Furthermore, analytical methods focusing on the analysis of PAHs in tea, coffee, milk, and alcoholic samples for the last 16 years are presented. Numerous experimental methods have been developed aiming to obtain better limits of detections (LODs) and percent recoveries as well as to reduce solvent consumption and laborious work. These include information such as the selected PAHs analyzed, food matrix of PAHs, methods of extraction, cleanup procedure, LOD, limits of quantitation (LOQ), and percent recovery. For the analysis of tea, coffee, milk, and alcoholic samples, a majority of the research papers focused on the 16 US Environmental Protection Agency PAHs, while PAH4, PAH8, and methylated PAHs were also of interests. Extraction methods range from the classic Soxhlet extraction and liquid–liquid extraction to newer methods such as QuEChERS, dispersive solid-phase microextraction, and magnetic solid-phase extraction. The cleanup methods involved mainly the use of column chromatography and SPE filled with either silica or Florisil adsorbents. Gas chromatography and liquid chromatography coupled with mass spectrometry or fluorescence detectors are the main analytical instruments used. A majority of the selected combined methods used are able to achieve LODs and percent recoveries in the ranges of 0.01–5 ug/kg and 70–110%, respectively, for the analysis of tea, coffee, milk, and alcoholic samples.
Collapse
|
9
|
Ambade B, Sethi SS, Kumar A, Sankar TK, Kurwadkar S. Health Risk Assessment, Composition, and Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Drinking Water of Southern Jharkhand, East India. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:120-133. [PMID: 33211120 DOI: 10.1007/s00244-020-00779-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/30/2020] [Indexed: 05/27/2023]
Abstract
The studies on polycyclic aromatic hydrocarbons (PAHs) occurrence, distribution, health risk, and composition in drinking water are limited in India and worldwide. The main objective of this study was to find the contaminant sources, composition, health risk, and distribution of USEPA's 16 priority pollutant PAHs in the drinking water samples collected between July 2019 to September 2019 from six districts of Southern Jharkhand. The Σ16PAHs mean ± standard deviation [SD] concentration values were ordered as East Singhbhum (ES) (21.5 ± 14.8 ng L-1) > West Singhbhum (WS) (16.57 ± 13.21 ng L-1) > Saraikela Kharsawan (SK) (11.48 ± 9.92 ng L-1) > Khunti (KH) (10.32 ± 9.09 ng L-1) > Simdega (SM) (9.96 ± 7.85 ng L-1) > Gumla (GU) (9.41 ± 8.63 ng L-1). The results show that ES and WS districts' groundwater samples were more contaminated by the PAHs, which may be attributed to the presence of many small-, medium-, and large-scale industries and high vehicular density in these districts. The concentrations of lower molecular weight ring (3-rings) and middle molecular weight ring (4-rings) PAHs were dominant throughout all drinking samples. The concentration of the 3-ring PAH Anthracene and 4-ring PAH Fluoranthene were dominant in all districts. The molecular ratios suggested that the potential sources of PAHs are fuel combustion and coal, grass, and wood burning. Risk assessment shows that the incremental lifetime cancer risk and risk index (RI) were ranged from 0.02 × 10-10 to 4.93 × 10-10 for children and 0.01 × 10-10 to 2.98 × 10-10 for adults. The RI values for seven carcinogenic PAHs were 8.83 × 10-10 for children and 7.38 × 10-10 for adults. Although the carcinogenic risks were within the permissible values, chronic exposure to PAHs through the ingestion of drinking water could still be a human health concern.
Collapse
Affiliation(s)
- Balram Ambade
- Department of Chemistry, National Institute of Technology, Jamshedpur, 831014, Jharkhand, India.
| | - Shrikanta Shankar Sethi
- Department of Chemistry, National Institute of Technology, Jamshedpur, 831014, Jharkhand, India
| | - Amit Kumar
- Department of Chemistry, National Institute of Technology, Jamshedpur, 831014, Jharkhand, India
| | - Tapan Kumar Sankar
- Department of Chemistry, National Institute of Technology, Jamshedpur, 831014, Jharkhand, India
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, Fullerton, CA, USA
| |
Collapse
|