1
|
Dutra Alves NS, Reigado GR, Santos M, Caldeira IDS, Hernandes HDS, Freitas-Marchi BL, Zhivov E, Chambergo FS, Nunes VA. Advances in regenerative medicine-based approaches for skin regeneration and rejuvenation. Front Bioeng Biotechnol 2025; 13:1527854. [PMID: 40013305 PMCID: PMC11861087 DOI: 10.3389/fbioe.2025.1527854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Significant progress has been made in regenerative medicine for skin repair and rejuvenation. This review examines core technologies including stem cell therapy, bioengineered skin substitutes, platelet-rich plasma (PRP), exosome-based therapies, and gene editing techniques like CRISPR. These methods hold promise for treating a range of conditions, from chronic wounds and burns to age-related skin changes and genetic disorders. Challenges remain in optimizing these therapies for broader accessibility and ensuring long-term safety and efficacy.
Collapse
Affiliation(s)
- Nathalia Silva Dutra Alves
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Gustavo Roncoli Reigado
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Mayara Santos
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Izabela Daniel Sardinha Caldeira
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Henrique dos Santos Hernandes
- Laboratory of Proteins and Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | | | - Elina Zhivov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, FL, United States
| | - Felipe Santiago Chambergo
- Laboratory of Proteins and Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Viviane Abreu Nunes
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Moody A, Bhattarai N. Enhanced Cell Proliferation, Migration, and Fibroblast Differentiation with Electrospun PCL-Zinc Scaffolds Coated with Fibroblast-Derived ECM. ACS OMEGA 2025; 10:4427-4441. [PMID: 39959067 PMCID: PMC11822518 DOI: 10.1021/acsomega.4c07504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025]
Abstract
Despite tremendous improvement in the development of tissue-regenerating materials, a promising solution that provides an optimal environment remains to be accomplished. Here, we report a composite nanofiber biomaterial scaffold as a promising solution that closely mimics the extracellular matrix (ECM) to improve cell viability, proliferation, and migration. Initially, nanofiber composites of polycaprolactone (PCL) and zinc (Zn) metal were fabricated by using electrospinning. The resulting PCL-Zn (PZ) nanofibers effectively guided the growth of NIH3T3 fibroblasts for 7 days, forming a fibroblast cell sheet. The PZ fibers were decellularized to remove autologous and allogenic cellular antigens while leaving an intact ECM with structural and functional components. The resulting nanofiber PCL-Zn-ECM (PZE) showcased a natural ECM bonded to the surface, providing a bioactive element to the interconnected fibers. The reseeding of NIH3T3 fibroblasts demonstrated the scaffold's excellent capacity to direct and support cell proliferation. Furthermore, in vitro cytotoxicity analysis and morphological staining confer the scaffold's biocompatibility. The PZE scaffold presents a promising development in which these scaffolds can be further used for various regenerative medicine applications including wound healing.
Collapse
Affiliation(s)
- Alexis Moody
- Department
of Applied Science and Technology, North
Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Narayan Bhattarai
- Department
of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| |
Collapse
|
3
|
Nur MG, Rahman M, Dip TM, Hossain MH, Hossain NB, Baratchi S, Padhye R, Houshyar S. Recent advances in bioactive wound dressings. Wound Repair Regen 2025; 33:e13233. [PMID: 39543919 DOI: 10.1111/wrr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Traditional wound dressings, despite their widespread use, face limitations, such as poor infection control and insufficient healing promotion. To address these challenges, bioactive materials have emerged as a promising solution in wound care. This comprehensive review explores the latest developments in wound healing technologies, starting with an overview of the importance of effective wound management, emphasising the need for advanced bioactive wound dressings. The review further explores various bioactive materials, defining their characteristics. It covers a wide range of natural and synthetic biopolymers used to develop bioactive wound dressings. Next, the paper discusses the incorporation of bioactive agents into wound dressings, including antimicrobial and anti-inflammatory agents, alongside regenerative components like growth factors, platelet-rich plasma, platelet-rich fibrin and stem cells. The review also covers fabrication techniques for bioactive wound dressings, highlighting techniques like electrospinning, which facilitated the production of nanofibre-based dressings with controlled porosity, the sol-gel method for developing bioactive glass-based dressings, and 3D bioprinting for customised, patient-specific dressings. The review concludes by addressing the challenges and future perspectives in bioactive wound dressing development. It includes regulatory considerations, clinical efficacy, patient care protocol integration and wound healing progress monitoring. Furthermore, the review considers emerging trends such as smart materials, sensors and personalised medicine approaches, offering insights into the future direction of bioactive wound dressing research.
Collapse
Affiliation(s)
- Md Golam Nur
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Textiles, Ministry of Textiles and Jute, Government of the People's Republic of Bangladesh, Dhaka, Bangladesh
| | - Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Md Hasibul Hossain
- Department of Textile Engineering, International Standard University, Dhaka, Bangladesh
| | - Nusrat Binta Hossain
- TJX Australia Pty Limited, Preston, Victoria, Australia
- Department of Environmental Science & Management, North South University, Dhaka, Bangladesh
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Rhee S, Xia C, Chandra A, Hamon M, Lee G, Yang C, Guo Z, Sun B. Full-Thickness Perfused Skin-on-a-Chip with In Vivo-Like Drug Response for Drug and Cosmetics Testing. Bioengineering (Basel) 2024; 11:1055. [PMID: 39593715 PMCID: PMC11591533 DOI: 10.3390/bioengineering11111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, we present a novel 3D perfused skin-on-a-chip model fabricated using micro-precision 3D printing, which offers a streamlined and reproducible approach for incorporating perfusion. Perfused skin models are well-regarded for their advantages, such as improved nutrient supply, enhanced barrier function, and prolonged tissue viability. However, current models often require complex setups, such as self-assembled endothelial cells or sacrificial rods, which are prone to variability and time-consuming. Our model uses projection micro-stereolithography 3D printing to create precise microcapillary-like channels using a biocompatible resin, overcoming the drug-absorbing properties of PDMS. A customized chip holder allows for the simultaneous culture of six perfused chips, enabling high-throughput testing. The engineered skin-on-a-chip features distinct dermis and epidermis layers, confirmed via H&E staining and immunostaining. To evaluate drug screening capabilities, inflammation was induced using TNF-α and treated with dexamethasone, with cytokine levels compared to 2D cultures and human skin biopsies. Our 3D model exhibited drug response trends similar to human skin, while showing reduced cytotoxicity over time compared to biopsies. This perfused skin-on-a-chip provides a reliable, physiologically relevant alternative for drug and cosmetics screening, simplifying perfusion setup while preserving key benefits.
Collapse
Affiliation(s)
- Stephen Rhee
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| | - Chunguang Xia
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
- BMF Nano Material Technology Co., Ltd., Shenzhen 518100, China; (C.Y.)
| | | | - Morgan Hamon
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| | - Geonhui Lee
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| | - Chen Yang
- BMF Nano Material Technology Co., Ltd., Shenzhen 518100, China; (C.Y.)
| | - Zaixun Guo
- BMF Nano Material Technology Co., Ltd., Shenzhen 518100, China; (C.Y.)
| | - Bingjie Sun
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| |
Collapse
|
5
|
Tanadchangsaeng N, Pasanaphong K, Tawonsawatruk T, Rattanapinyopituk K, Tangketsarawan B, Rawiwet V, Kongchanagul A, Srikaew N, Yoyruerop T, Panupinthu N, Sangpayap R, Panaksri A, Boonyagul S, Hemstapat R. 3D bioprinting of fish skin-based gelatin methacryloyl (GelMA) bio-ink for use as a potential skin substitute. Sci Rep 2024; 14:23240. [PMID: 39369014 PMCID: PMC11455937 DOI: 10.1038/s41598-024-73774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Gelatin methacryloyl (GelMA), typically derived from mammalian sources, has recently emerged as an ideal bio-ink for three-dimensional (3D) bioprinting. Herein, we developed a fish skin-based GelMA bio-ink for the fabrication of a 3D GelMA skin substitute with a 3D bioprinter. Several concentrations of methacrylic acid anhydride were used to fabricate GelMA, in which their physical-mechanical properties were assessed. This fish skin-based GelMA bio-ink was loaded with human adipose tissue-derived mesenchymal stromal cells (ASCs) and human platelet lysate (HPL) and then printed to obtain 3D ASCs + HPL-loaded GelMA scaffolds. Cell viability test and a preliminary investigation of its effectiveness in promoting wound closure were evaluated in a critical-sized full thickness skin defect in a rat model. The cell viability results showed that the number of ASCs increased significantly within the 3D GelMA hydrogel scaffold, indicating its biocompatibility property. In vivo results demonstrated that ASCs + HPL-loaded GelMA scaffolds could delay wound contraction, markedly enhanced collagen deposition, and promoted the formation of new blood vessels, especially at the wound edge, compared to the untreated group. Therefore, this newly fish skin-based GelMA bio-ink developed in this study has the potential to be utilized for the printing of 3D GelMA skin substitutes.
Collapse
Affiliation(s)
| | | | - Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kasem Rattanapinyopituk
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Visut Rawiwet
- Central Animal Facility, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Alita Kongchanagul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Narongrit Srikaew
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanaporn Yoyruerop
- Mahidol University-Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, Thailand
| | - Nattapon Panupinthu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ratirat Sangpayap
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anuchan Panaksri
- College of Biomedical Engineering, Rangsit University, Pathum Thani, Thailand
| | - Sani Boonyagul
- College of Biomedical Engineering, Rangsit University, Pathum Thani, Thailand
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Agarwal P, Mathur V, Kasturi M, Srinivasan V, Seetharam RN, S Vasanthan K. A Futuristic Development in 3D Printing Technique Using Nanomaterials with a Step Toward 4D Printing. ACS OMEGA 2024; 9:37445-37458. [PMID: 39281933 PMCID: PMC11391532 DOI: 10.1021/acsomega.4c04123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024]
Abstract
3D bioprinting has shown great promise in tissue engineering and regenerative medicine for creating patient-specific tissue scaffolds and medicinal devices. The quickness, accurate imaging, and design targeting of this emerging technology have excited biomedical engineers and translational medicine researchers. Recently, scaffolds made from 3D bioprinted tissue have become more clinically effective due to nanomaterials and nanotechnology. Because of quantum confinement effects and high surface area/volume ratios, nanomaterials and nanotechnological techniques have unique physical, chemical, and biological features. The use of nanomaterials and 3D bioprinting has led to scaffolds with improved physicochemical and biological properties. Nanotechnology and nanomaterials affect 3D bioprinted tissue engineered scaffolds for regenerative medicine and tissue engineering. Biomaterials and cells that respond to stimuli change the structural shape in 4D bioprinting. With such dynamic designs, tissue architecture can change morphologically. New 4D bioprinting techniques will aid in bioactuation, biorobotics, and biosensing. The potential of 4D bioprinting in biomedical technologies is also discussed in this article.
Collapse
Affiliation(s)
- Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Meghana Kasturi
- Department of Mechanical Engineering, University of Michigan, Dearborn, Michigan 48128, United States
| | - Varadharajan Srinivasan
- Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| |
Collapse
|
7
|
Riabinin A, Pankratova M, Rogovaya O, Vorotelyak E, Terskikh V, Vasiliev A. Ideal Living Skin Equivalents, From Old Technologies and Models to Advanced Ones: The Prospects for an Integrated Approach. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9947692. [PMID: 39184355 PMCID: PMC11343635 DOI: 10.1155/2024/9947692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/18/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
The development of technologies for the generation and transplantation of living skin equivalents (LSEs) is a significant area of translational medicine. Such functional equivalents can be used to model and study the morphogenesis of the skin and its derivatives, to test drugs, and to improve the healing of chronic wounds, burns, and other skin injuries. The evolution of LSEs over the past 50 years has demonstrated the leap in technology and quality and the shift from classical full-thickness LSEs to principled new models, including modification of classical models and skin organoids with skin derived from human-induced pluripotent stem cells (iPSCs) (hiPSCs). Modern methods and approaches make it possible to create LSEs that successfully mimic native skin, including derivatives such as hair follicles (HFs), sebaceous and sweat glands, blood vessels, melanocytes, and nerve cells. New technologies such as 3D and 4D bioprinting, microfluidic systems, and genetic modification enable achievement of new goals, cost reductions, and the scaled-up production of LSEs.
Collapse
Affiliation(s)
- Andrei Riabinin
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria Pankratova
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga Rogovaya
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Vorotelyak
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy Terskikh
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey Vasiliev
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Wang J, Sui Z, Huang W, Yu Z, Guo L. Biomimetic hydrogels with mesoscale collagen architecture for patient-derived tumor organoids culture. Bioact Mater 2024; 38:384-398. [PMID: 38764448 PMCID: PMC11101944 DOI: 10.1016/j.bioactmat.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Patient-derived tumor organoids (PDTOs) shows great potential as a preclinical model. However, the current methods for establishing PDTOs primarily focus on modulating local properties, such as sub-micrometer topographies. Nevertheless, they neglect to capture the global millimeter or intermediate mesoscale architecture that have been demonstrated to influence tumor response to therapeutic treatment and tumor progression. In this study, we present a rapid technique for generating collagen bundles with an average length of 90 ± 27 μm and a mean diameter of 5 ± 1.5 μm from tumor tissue debris that underwent mechanical agitation following enzymatic digestion. The collagen bundles were subsequently utilized for the fabrication of biomimetic hydrogels, incorporating microbial transglutaminase (mTG) crosslinked gelatin. These biomimetic hydrogels, referred to as MC-gel, were specifically designed for patient-derived tumor organoids. The lung cancer organoids cultured in MC-gel exhibited larger diameters and higher cell viability compared to those cultured in gels lacking the mesoscale collagen bundle; moreover, their irregular morphology more closely resembled that observed in vivo. The MC-gel-based lung cancer organoids effectively replicated the histology and mutational landscapes observed in the original donor patient's tumor tissue. Additionally, these lung cancer organoids showed a remarkable similarity in their gene expression and drug response across different matrices. This recently developed model holds great potential for investigating the occurrence, progression, metastasis, and management of tumors, thereby offering opportunities for personalized medicine and customized treatment options.
Collapse
Affiliation(s)
- Jiaxin Wang
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences & Peking Union Medical College, Shenzhen, 518116, China
| | - Zhilin Sui
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences & Peking Union Medical College, Shenzhen, 518116, China
| | - Wei Huang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Zhentao Yu
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences & Peking Union Medical College, Shenzhen, 518116, China
| | - Ling Guo
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences & Peking Union Medical College, Shenzhen, 518116, China
- Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
10
|
Wei Q, An Y, Zhao X, Li M, Zhang J. Three-dimensional bioprinting of tissue-engineered skin: Biomaterials, fabrication techniques, challenging difficulties, and future directions: A review. Int J Biol Macromol 2024; 266:131281. [PMID: 38641503 DOI: 10.1016/j.ijbiomac.2024.131281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024]
Abstract
As an emerging new manufacturing technology, Three-dimensional (3D) bioprinting provides the potential for the biomimetic construction of multifaceted and intricate architectures of functional integument, particularly functional biomimetic dermal structures inclusive of cutaneous appendages. Although the tissue-engineered skin with complete biological activity and physiological functions is still cannot be manufactured, it is believed that with the advances in matrix materials, molding process, and biotechnology, a new generation of physiologically active skin will be born in the future. In pursuit of furnishing readers and researchers involved in relevant research to have a systematic and comprehensive understanding of 3D printed tissue-engineered skin, this paper furnishes an exegesis on the prevailing research landscape, formidable obstacles, and forthcoming trajectories within the sphere of tissue-engineered skin, including: (1) the prevalent biomaterials (collagen, chitosan, agarose, alginate, etc.) routinely employed in tissue-engineered skin, and a discerning analysis and comparison of their respective merits, demerits, and inherent characteristics; (2) the underlying principles and distinguishing attributes of various current printing methodologies utilized in tissue-engineered skin fabrication; (3) the present research status and progression in the realm of tissue-engineered biomimetic skin; (4) meticulous scrutiny and summation of the extant research underpinning tissue-engineered skin inform the identification of prevailing challenges and issues.
Collapse
Affiliation(s)
- Qinghua Wei
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China.
| | - Yalong An
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Zhao
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mingyang Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juan Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
11
|
Shafiee A, Sun J, Ahmed IA, Phua F, Rossi GR, Lin CY, Souza-Fonseca-Guimaraes F, Wolvetang EJ, Brown J, Khosrotehrani K. Development of Physiologically Relevant Skin Organoids from Human Induced Pluripotent Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304879. [PMID: 38044307 DOI: 10.1002/smll.202304879] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/28/2023] [Indexed: 12/05/2023]
Abstract
The development of skin organs for studying developmental pathways, modeling diseases, or regenerative medicine purposes is a major endeavor in the field. Human induced pluripotent stem cells (hiPSCs) are successfully used to derive skin cells, but the field is still far from meeting the goal of creating skin containing appendages, such as hair follicles and sweat glands. Here, the goal is to generate skin organoids (SKOs) from human skin fibroblast or placental CD34+ cell-derived hiPSCs. With all three hiPSC lines, complex SKOs with stratified skin layers and pigmented hair follicles are generated with different efficacies. In addition, the hiPSC-derived SKOs develop sebaceous glands, touch-receptive Merkel cells, and more importantly eccrine sweat glands. Together, physiologically relevant skin organoids are developed by direct induction of embryoid body formation, along with simultaneous inactivation of transforming growth factor beta signaling, activation of fibroblast growth factor signaling, and inhibition of bone morphogenetic protein signaling pathways. The skin organoids created in this study can be used as valuable platforms for further research into human skin development, disease modeling, or reconstructive surgeries.
Collapse
Affiliation(s)
- Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Jane Sun
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Imaan A Ahmed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Felicia Phua
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Gustavo R Rossi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Cheng-Yu Lin
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | | | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jason Brown
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
| | - Kiarash Khosrotehrani
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
12
|
Chaudhry MS, Czekanski A. Surface slicing and toolpath planning for in-situbioprinting of skin implants. Biofabrication 2024; 16:025030. [PMID: 38447215 DOI: 10.1088/1758-5090/ad30c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Bioprinting has emerged as a successful method for fabricating engineered tissue implants, offering great potential for wound healing applications. This study focuses on an advanced surface-based slicing approach aimed at designing a skin implant specifically forin-situbioprinting. The slicing step plays a crucial role in determining the layering arrangement of the tissue during printing. By utilizing surface slicing, a significant shift from planar fabrication methods is achieved. The developed methodology involves the utilization of a customized robotic printer to deliver biomaterials. A multilayer slicing and toolpath generation procedure is presented, enabling the fabrication of skin implants that incorporate the epidermal, dermal, and hypodermal layers. One notable advantage of using the approximate representation of the native wound site surface as the slicing surface is the avoidance of planar printing effects such as staircasing. This surface slicing method allows for the design of non-planar and ultra-thin skin implants, ensuring a higher degree of geometric match between the implant and the wound interface. Furthermore, the proposed methodology demonstrates superior surface quality of thein-situbio-printed implant on a hand model, validating its ability to create toolpaths on implants with complex surfaces.
Collapse
Affiliation(s)
| | - Aleksander Czekanski
- Lassonde School of Engineering, York University, 4700 Keele Street, Toronto M3J1P3, Canada
| |
Collapse
|
13
|
Kapoor K. 3D visualization and printing: An "Anatomical Engineering" trend revealing underlying morphology via innovation and reconstruction towards future of veterinary anatomy. Anat Sci Int 2024; 99:159-182. [PMID: 38236439 DOI: 10.1007/s12565-023-00755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
The amalgamation of veterinary anatomy, technology and innovation has led to development of latest technological advancement in the field of veterinary medicine, i.e., three-dimensional (3D) imaging and reconstruction. 3D visualization technique followed by 3D reconstruction has been proven to enhance non-destructive 3D visualization grossly or microscopically, e.g., skeletal muscle, smooth muscle, ligaments, cartilage, connective tissue, blood vessels, nerves, lymph nodes, and glands. The core aim of this manuscript is to document non-invasive 3D visualization methods being adopted currently in veterinary anatomy to reveal underlying morphology and to reconstruct them by 3D softwares followed by printing, its applications, current challenges, trends and future opportunities. 3D visualization methods such as MRI, CT scans and micro-CT scans are utilised in revealing volumetric data and underlying morphology at microscopic levels as well. This will pave a way to transform and re-invent the future of teaching in veterinary medicine, in clinical cases as well as in exploring wildlife anatomy. This review provides novel insights into 3D visualization and printing as it is the future of veterinary anatomy, thus making it spread to become the plethora of opportunities for whole veterinary science.
Collapse
Affiliation(s)
- Kritima Kapoor
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India.
| |
Collapse
|
14
|
Teng F, Wang W, Wang ZQ, Wang GX. Analysis of bioprinting strategies for skin diseases and injuries through structural and temporal dynamics: historical perspectives, research hotspots, and emerging trends. Biofabrication 2024; 16:025019. [PMID: 38350130 DOI: 10.1088/1758-5090/ad28f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
This study endeavors to investigate the progression, research focal points, and budding trends in the realm of skin bioprinting over the past decade from a structural and temporal dynamics standpoint. Scholarly articles on skin bioprinting were obtained from WoSCC. A series of bibliometric tools comprising R software, CiteSpace, HistCite, and an alluvial generator were employed to discern historical characteristics, evolution of active topics, and upcoming tendencies in the area of skin bioprinting. Over the past decade, there has been a consistent rise in research interest in skin bioprinting, accompanied by an extensive array of meaningful scientific collaborations. Concurrently, diverse dynamic topics have emerged during various periods, as substantiated by an aggregate of 22 disciplines, 74 keywords, and 187 references demonstrating citation bursts. Four burgeoning research subfields were discerned through keyword clustering-namely, #3 'in situbioprinting', #6 'vascular', #7 'xanthan gum', and #8 'collagen hydrogels'. The keyword alluvial map reveals that Module 1, including 'transplantation' etc, has primarily dominated the research module over the previous decade, maintaining enduring relevance despite annual shifts in keyword focus. Additionally, we mapped out the top six key modules from 2023 being 'silk fibroin nanofiber', 'system', 'ionic liquid', 'mechanism', and 'foot ulcer'. Three recent research subdivisions were identified via timeline visualization of references, particularly Clusters #0 'wound healing', #4 'situ mineralization', and #5 '3D bioprinter'. Insights derived from bibliometric analyses illustrate present conditions and trends in skin bioprinting research, potentially aiding researchers in pinpointing central themes and pioneering novel investigative approaches in this field.
Collapse
Affiliation(s)
- Fei Teng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Wei Wang
- Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing 400042, People's Republic of China
| | - Zhi-Qiang Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Gui-Xue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
15
|
Kurian AG, Singh RK, Sagar V, Lee JH, Kim HW. Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. NANO-MICRO LETTERS 2024; 16:110. [PMID: 38321242 PMCID: PMC10847086 DOI: 10.1007/s40820-024-01323-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
Inflammatory skin disorders can cause chronic scarring and functional impairments, posing a significant burden on patients and the healthcare system. Conventional therapies, such as corticosteroids and nonsteroidal anti-inflammatory drugs, are limited in efficacy and associated with adverse effects. Recently, nanozyme (NZ)-based hydrogels have shown great promise in addressing these challenges. NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels. The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation. This review highlights the current state of the art in NZ-engineered hydrogels (NZ@hydrogels) for anti-inflammatory and skin regeneration applications. It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness. Additionally, the challenges and future directions in this ground, particularly their clinical translation, are addressed. The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels, offering new possibilities for targeted and personalized skin-care therapies.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Varsha Sagar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
16
|
Zhang X, Cheng F, Islam MR, Li H. The fabrication of the chitosan-based bioink for in vitro tissue repair and regeneration: A review. Int J Biol Macromol 2024; 257:128504. [PMID: 38040155 DOI: 10.1016/j.ijbiomac.2023.128504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The repair and regeneration of the injured tissues or organs is a major challenge for biomedicine, and the emerging 3D bioprinting technology as a class of promising techniques in biomedical research for the development of tissue engineering and regenerative medicine. Chitosan-based bioinks, as the natural biomaterials, are considered as ideal materials for 3D bioprinting to design and fabricate the various scaffold due to their unique dynamic reversibility and fantastic biological properties. Our review aims to provide an overview of chitosan-based bioinks for in vitro tissue repair and regeneration, starting from modification of chitosan that affect these bioprinting processes. In addition, we summarize the advances in chitosan-based bioinks used in the various 3D printing strategies. Moreover, the biomedical applications of chitosan-based bioinks are discussed, primarily centered on regenerative medicine and tissue modeling engineering. Finally, current challenges and future opportunities in this field are discussed. The combination of chitosan-based bioinks and 3D bioprinting will hold promise for developing novel biomedical scaffolds for tissue or organ repair and regeneration.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Feng Cheng
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China.
| | - Md Rashidul Islam
- College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China
| | - Hongbin Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China; College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China.
| |
Collapse
|
17
|
Elsayed EM, Farghali AA, Zanaty MI, Abdel-Fattah M, Alkhalifah DHM, Hozzein WN, Mahmoud AM. Poly-Gamma-Glutamic Acid Nanopolymer Effect against Bacterial Biofilms: In Vitro and In Vivo Study. Biomedicines 2024; 12:251. [PMID: 38397853 PMCID: PMC10887140 DOI: 10.3390/biomedicines12020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, a biodegradable poly-gamma-glutamic-acid nanopolymer (Ɣ-PGA NP) was investigated for its activity against clinical strains of Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae and Escherichia coli), and reference strains of S. aureus ATCC 6538, S. pyogenes ATCC 19615 (Gram-positive), and Gram-negative E. coli ATCC 25922, and K. pneumoniae ATCC 13884 bacterial biofilms. The minimum inhibitory concentration (MIC) effect of Ɣ-PGA NP showed inhibitory effects of 0.2, 0.4, 1.6, and 3.2 μg/mL for S. pyogenes, S. aureus, E. coli, and K. pneumoniae, respectively. Also, MIC values were 1.6, 0.8, 0.2, and 0.2 μg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Afterwards, MBEC (minimum biofilm eradication concentration) and MBIC (minimum biofilm inhibitory concentration) were investigated to detect Ɣ-PGA NPs efficiency against the biofilms. MBEC and MBIC increased with increasing Ɣ-PGA NPs concentration or time of exposure. Interestingly, MBIC values were at lower concentrations of Ɣ-PGA NPs than those of MBEC. Moreover, MBEC values showed that K. pneumoniae was more resistant to Ɣ-PGA NPs than E. coli, S. aureus, and S. pyogenes, and the same pattern was observed in the reference strains. The most effective results for MBEC were after 48 h, which were 1.6, 0.8, 0.4, and 0.2 µg/mL for K. pneumoniae, E. coli, S. aureus, and S. pyogenes, respectively. Moreover, MBIC results were the most impactful after 24 h but some were the same after 48 h. MBIC values after 48 h were 0.2, 0.2, 0.2, and 0.1 μg/mL for K. pneumoniae, E. coli, S. aureus, and S. pyogenes, respectively. The most effective results for MBEC were after 24 h, which were 1.6, 0.8, 0.4, and 0.4 µg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Also, MBIC results were the most impactful after an exposure time of 12 h. MBIC values after exposure time of 12 h were 0.4, 0.4, 0.2, and 0.2 μg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Besides that, results were confirmed using confocal laser scanning microscopy (CLSM), which showed a decrease in the number of living cells to 80% and 60% for MBEC and MBIC, respectively, for all the clinical bacterial strains. Moreover, living bacterial cells decreased to 70% at MBEC while decreasing up to 50% at MBIC with all bacterial refence strains. These data justify the CFU quantification. After that, ImageJ software was used to count the attached cells after incubating with the NPs, which proved the variation in live cell count between the manual counting and image analysis methods. Also, a scanning electron microscope (SEM) was used to detect the biofilm architecture after incubation with the Ɣ-PGA NP. In in vivo wound healing experiments, treated wounds of mice showed faster healing (p < 0.00001) than both the untreated mice and those that were only wounded, as the bacterial count was eradicated. Briefly, the infected mice were treated faster (p < 0.0001) when infected with S. pyogenes > S. aureus > E. coli > K. pneumoniae. The same pattern was observed for mice infected with the reference strains. Wound lengths after 2 h showed slightly healing (p < 0.001) for the clinical strains, while treatment became more obvious after 72 h > 48 h > 24 h (p < 0.0001) as wounds began to heal after 24 h up to 72 h. For reference strains, wound lengths after 2 h started to heal up to 72 h.
Collapse
Affiliation(s)
- Eman M. Elsayed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Ahmed A. Farghali
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Mohamed I. Zanaty
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Medhat Abdel-Fattah
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Wael N. Hozzein
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Ahmed M. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| |
Collapse
|
18
|
He W, Deng J, Ma B, Tao K, Zhang Z, Ramakrishna S, Yuan W, Ye T. Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs. ACS APPLIED BIO MATERIALS 2024; 7:17-43. [PMID: 38091514 DOI: 10.1021/acsabm.3c00806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
3D bioprinting is recognized as a promising biomanufacturing technology that enables the reproducible and high-throughput production of tissues and organs through the deposition of different bioinks. Especially, bioinks based on loaded cells allow for immediate cellularity upon printing, providing opportunities for enhanced cell differentiation for organ manufacturing and regeneration. Thus, extensive applications have been found in the field of tissue engineering. The performance of the bioinks determines the functionality of the entire printed construct throughout the bioprinting process. It is generally expected that bioinks should support the encapsulated cells to achieve their respective cellular functions and withstand normal physiological pressure exerted on the printed constructs. The bioinks should also exhibit a suitable printability for precise deposition of the constructs. These characteristics are essential for the functional development of tissues and organs in bioprinting and are often achieved through the combination of different biomaterials. In this review, we have discussed the cutting-edge outstanding performance of different bioinks for printing various human tissues and organs in recent years. We have also examined the current status of 3D bioprinting and discussed its future prospects in relieving or curing human health problems.
Collapse
Affiliation(s)
- Wen He
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinjun Deng
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Binghe Ma
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhi Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576, Singapore
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
19
|
Bagasariya D, Charankumar K, Shah S, Famta P, Fernandes V, Shahrukh S, Khatri DK, Singh SB, Srivastava S. Quality by design endorsed atorvastatin-loaded nanostructured lipid carriers embedded in pH-responsive gel for melanoma. J Microencapsul 2024; 41:27-44. [PMID: 37982590 DOI: 10.1080/02652048.2023.2282971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
AIM Our aim was to repurpose atorvastatin for melanoma by encapsulating in a nanostructured lipid carrier matrix to promote tumour cell internalisation and skin permeation. pH-responsive chitosan gel was employed to restrict At-NLCs in upper dermal layers. METHODS We utilised a quality by design approach for encapsulating At within the NLC matrix. Further, cellular uptake and cytotoxicity was evaluated along with pH-responsive release and ex vivo skin permeation. RESULTS Cytotoxicity assay showed 3.13-fold enhanced cytotoxicity on melanoma cells compared to plain drug with nuclear staining showing apoptotic markers. In vitro, release studies showed 5.9-fold rapid release in chitosan gel matrix at pH 5.5 compared to neutral pH. CONCLUSIONS At-NLCs prevented precipitation, promoted skin permeation, and SK-MEL 28 cell internalisation. The localisation of NLCs on the upper dermal layer due to electrostatic interactions of skin with chitosan gel diminished the incidence of untoward systemic effects.
Collapse
Affiliation(s)
- Deepkumar Bagasariya
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Lab (PITRL), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charankumar
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Lab (PITRL), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Lab (PITRL), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Lab (PITRL), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Valencia Fernandes
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Lab (PITRL), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Lab (PITRL), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
20
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
21
|
Williams FM. New approaches build upon historical studies in dermal toxicology. Toxicol Res (Camb) 2023; 12:1007-1013. [PMID: 38145096 PMCID: PMC10734571 DOI: 10.1093/toxres/tfad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 12/26/2023] Open
Abstract
These are my personal reflections on the history of approaches to understanding dermal toxicology brought together for the Paton Prize Award. This is not a comprehensive account of all publications from in vivo studies in humans to development of in vitro and in silico approaches but highlghts important progress. I will consider what is needed now to influence approaches to understanding dermal exposure with the current development and use of NAMs (new approach methodologies).
Collapse
Affiliation(s)
- Faith M Williams
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle NE24HH, United Kingdom
| |
Collapse
|
22
|
Footner E, Firipis K, Liu E, Baker C, Foley P, Kapsa RMI, Pirogova E, O'Connell C, Quigley A. Layer-by-Layer Analysis of In Vitro Skin Models. ACS Biomater Sci Eng 2023; 9:5933-5952. [PMID: 37791888 DOI: 10.1021/acsbiomaterials.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In vitro human skin models are evolving into versatile platforms for the study of skin biology and disorders. These models have many potential applications in the fields of drug testing and safety assessment, as well as cosmetic and new treatment development. The development of in vitro skin models that accurately mimic native human skin can reduce reliance on animal models and also allow for more precise, clinically relevant testing. Recent advances in biofabrication techniques and biomaterials have led to the creation of increasingly complex, multilayered skin models that incorporate important functional components of skin, such as the skin barrier, mechanical properties, pigmentation, vasculature, hair follicles, glands, and subcutaneous layer. This improved ability to recapitulate the functional aspects of native skin enhances the ability to model the behavior and response of native human skin, as the complex interplay of cell-to-cell and cell-to-material interactions are incorporated. In this review, we summarize the recent developments in in vitro skin models, with a focus on their applications, limitations, and future directions.
Collapse
Affiliation(s)
- Elizabeth Footner
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Kate Firipis
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Emily Liu
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Chris Baker
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Peter Foley
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Cathal O'Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
23
|
Motter Catarino C, Cigaran Schuck D, Dechiario L, Karande P. Incorporation of hair follicles in 3D bioprinted models of human skin. SCIENCE ADVANCES 2023; 9:eadg0297. [PMID: 37831765 PMCID: PMC10575578 DOI: 10.1126/sciadv.adg0297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Current approaches fail to adequately introduce complex adnexal structures such as hair follicles within tissue engineered models of skin. Here, we report on the use of 3D bioprinting to incorporate these structures in engineered skin tissues. Spheroids, induced by printing dermal papilla cells (DPCs) and human umbilical vein cells (HUVECs), were precisely printed within a pregelled dermal layer containing fibroblasts. The resulting tissue developed hair follicle-like structures upon maturation, supported by migration of keratinocytes and melanocytes, and their morphology and composition grossly mimicked that of the native skin tissue. Reconstructed skin models with increased complexity that better mimic native adnexal structures can have a substantial impact on regenerative medicine as grafts and efficacy models to test the safety of chemical compounds.
Collapse
Affiliation(s)
- Carolina Motter Catarino
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Grupo Boticário, Curitiba, Paraná, Brazil
| | | | - Lexi Dechiario
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Pankaj Karande
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
24
|
Cavallo A, Al Kayal T, Mero A, Mezzetta A, Guazzelli L, Soldani G, Losi P. Fibrinogen-Based Bioink for Application in Skin Equivalent 3D Bioprinting. J Funct Biomater 2023; 14:459. [PMID: 37754873 PMCID: PMC10532308 DOI: 10.3390/jfb14090459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Three-dimensional bioprinting has emerged as an attractive technology due to its ability to mimic native tissue architecture using different cell types and biomaterials. Nowadays, cell-laden bioink development or skin tissue equivalents are still at an early stage. The aim of the study is to propose a bioink to be used in skin bioprinting based on a blend of fibrinogen and alginate to form a hydrogel by enzymatic polymerization with thrombin and by ionic crosslinking with divalent calcium ions. The biomaterial ink formulation, composed of 30 mg/mL of fibrinogen, 6% of alginate, and 25 mM of CaCl2, was characterized in terms of homogeneity, rheological properties, printability, mechanical properties, degradation rate, water uptake, and biocompatibility by the indirect method using L929 mouse fibroblasts. The proposed bioink is a homogeneous blend with a shear thinning behavior, excellent printability, adequate mechanical stiffness, porosity, biodegradability, and water uptake, and it is in vitro biocompatible. The fibrinogen-based bioink was used for the 3D bioprinting of the dermal layer of the skin equivalent. Three different normal human dermal fibroblast (NHDF) densities were tested, and better results in terms of viability, spreading, and proliferation were obtained with 4 × 106 cell/mL. The skin equivalent was bioprinted, adding human keratinocytes (HaCaT) through bioprinting on the top surface of the dermal layer. A skin equivalent stained by live/dead and histological analysis immediately after printing and at days 7 and 14 of culture showed a tissuelike structure with two distinct layers characterized by the presence of viable and proliferating cells. This bioprinted skin equivalent showed a similar native skin architecture, paving the way for its use as a skin substitute for wound healing applications.
Collapse
Affiliation(s)
- Aida Cavallo
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy
| | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy
| | - Angelica Mero
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy
| |
Collapse
|
25
|
Sanaei K, Zamanian A, Mashayekhan S, Ramezani T. Formulation and Characterization of a Novel Oxidized Alginate-Gelatin-Silk Fibroin Bioink with the Aim of Skin Regeneration. IRANIAN BIOMEDICAL JOURNAL 2023; 27:280-93. [PMID: 37873644 PMCID: PMC10707813 DOI: 10.61186/ibj.27.5.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 12/17/2023]
Abstract
Background In the present study, a novel bioink was suggested based on the oxidized alginate (OAlg), gelatin (GL), and silk fibroin (SF) hydrogels. Methods The composition of the bioink was optimized by the rheological and printability measurements, and the extrusion-based 3D bioprinting process was performed by applying the optimum OAlg-based bioink. Results The results demonstrated that the viscosity of bioink was continuously decreased by increasing the SF/GL ratio, and the bioink displayed a maximum achievable printability (92 ± 2%) at 2% (w/v) of SF and 4% (w/v) of GL. Moreover, the cellular behavior of the scaffolds investigated by MTT assay and live/dead staining confirmed the biocompatibility of the prepared bioink. Conclusion The bioprinted OAlg-GL-SF scaffold could have the potential for using in skin tissue engineering applications, which needs further exploration.
Collapse
Affiliation(s)
- Khadijeh Sanaei
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Tayebe Ramezani
- Faculty of biological sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
26
|
Nikolova MP, Joshi PB, Chavali MS. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics 2023; 15:1650. [PMID: 37376098 PMCID: PMC10301310 DOI: 10.3390/pharmaceutics15061650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The ambition to combat the issues affecting the environment and human health triggers the development of biosynthesis that incorporates the production of natural compounds by living organisms via eco-friendly nano assembly. Biosynthesized nanoparticles (NPs) have various pharmaceutical applications, such as tumoricidal, anti-inflammatory, antimicrobials, antiviral, etc. When combined, bio-nanotechnology and drug delivery give rise to the development of various pharmaceutics with site-specific biomedical applications. In this review, we have attempted to summarize in brief the types of renewable biological systems used for the biosynthesis of metallic and metal oxide NPs and the vital contribution of biogenic NPs as pharmaceutics and drug carriers simultaneously. The biosystem used for nano assembly further affects the morphology, size, shape, and structure of the produced nanomaterial. The toxicity of the biogenic NPs, because of their pharmacokinetic behavior in vitro and in vivo, is also discussed, together with some recent achievements towards enhanced biocompatibility, bioavailability, and reduced side effects. Because of the large biodiversity, the potential biomedical application of metal NPs produced via natural extracts in biogenic nanomedicine is yet to be explored.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Payal B. Joshi
- Shefali Research Laboratories, 203/454, Sai Section, Ambernath (East), Mumbai 421501, Maharashtra, India;
| | - Murthy S. Chavali
- Office of the Dean (Research), Dr. Vishwanath Karad MIT World Peace University (MIT-WPU), Kothrud, Pune 411038, Maharashtra, India;
| |
Collapse
|
27
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
28
|
Yu Q, Wang Q, Zhang L, Deng W, Cao X, Wang Z, Sun X, Yu J, Xu X. The applications of 3D printing in wound healing: the external delivery of stem cells and antibiosis. Adv Drug Deliv Rev 2023; 197:114823. [PMID: 37068658 DOI: 10.1016/j.addr.2023.114823] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
As the global number of chronic wound patients rises, the financial burden and social pressure on patients increase daily. Stem cells have emerged as promising tissue engineering seed cells due to their enriched sources, multidirectional differentiation ability, and high proliferation rate. However, delivering them in vitro for the treatment of skin injury is still challenging. In addition, bacteria from the wound site and the environment can significantly impact wound healing. In the last decade, 3D bioprinting has dramatically enriched cell delivery systems. The produced scaffolds by this technique can be precisely localized within cells and perform antibacterial actions. In this review, we summarized the 3D bioprinting-based external delivery of stem cells and their antibiosis to improve wound healing.
Collapse
Affiliation(s)
- Qingtong Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Qilong Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Linzhi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenwen Deng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xia Cao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhe Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xuan Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
29
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
30
|
Adhikari J, Roy A, Chanda A, D A G, Thomas S, Ghosh M, Kim J, Saha P. Effects of surface patterning and topography on the cellular functions of tissue engineered scaffolds with special reference to 3D bioprinting. Biomater Sci 2023; 11:1236-1269. [PMID: 36644788 DOI: 10.1039/d2bm01499h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The extracellular matrix (ECM) of the tissue organ exhibits a topography from the nano to micrometer range, and the design of scaffolds has been inspired by the host environment. Modern bioprinting aims to replicate the host tissue environment to mimic the native physiological functions. A detailed discussion on the topographical features controlling cell attachment, proliferation, migration, differentiation, and the effect of geometrical design on the wettability and mechanical properties of the scaffold are presented in this review. Moreover, geometrical pattern-mediated stiffness and pore arrangement variations for guiding cell functions have also been discussed. This review also covers the application of designed patterns, gradients, or topographic modulation on 3D bioprinted structures in fabricating the anisotropic features. Finally, this review accounts for the tissue-specific requirements that can be adopted for topography-motivated enhancement of cellular functions during the fabrication process with a special thrust on bioprinting.
Collapse
Affiliation(s)
- Jaideep Adhikari
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Avinava Roy
- Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Amit Chanda
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Gouripriya D A
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, West Bengal 700091, India.
| | - Sabu Thomas
- School of Chemical Sciences, MG University, Kottayam 686560, Kerala, India
| | - Manojit Ghosh
- Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Jinku Kim
- Department of Bio and Chemical Engineering, Hongik University, Sejong, 30016, South Korea.
| | - Prosenjit Saha
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, West Bengal 700091, India.
| |
Collapse
|
31
|
Augustine R, Gezek M, Seray Bostanci N, Nguyen A, Camci-Unal G. Oxygen-Generating Scaffolds: One Step Closer to the Clinical Translation of Tissue Engineered Products. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 455:140783. [PMID: 36644784 PMCID: PMC9835968 DOI: 10.1016/j.cej.2022.140783] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The lack of oxygen supply in engineered constructs has been an ongoing challenge for tissue engineering and regenerative medicine. Upon implantation of an engineered tissue, spontaneous blood vessel formation does not happen rapidly, therefore, there is typically a limited availability of oxygen in engineered biomaterials. Providing oxygen in large tissue-engineered constructs is a major challenge that hinders the development of clinically relevant engineered tissues. Similarly, maintaining adequate oxygen levels in cell-laden tissue engineered products during transportation and storage is another hurdle. There is an unmet demand for functional scaffolds that could actively produce and deliver oxygen, attainable by incorporating oxygen-generating materials. Recent approaches include encapsulation of oxygen-generating agents such as solid peroxides, liquid peroxides, and fluorinated substances in the scaffolds. Recent approaches to mitigate the adverse effects, as well as achieving a sustained and controlled release of oxygen, are discussed. Importance of oxygen-generating materials in various tissue engineering approaches such as ex vivo tissue engineering, in situ tissue engineering, and bioprinting are highlighted in detail. In addition, the existing challenges, possible solutions, and future strategies that aim to design clinically relevant multifunctional oxygen-generating biomaterials are provided in this review paper.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Angelina Nguyen
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
32
|
Negrescu AM, Killian MS, Raghu SNV, Schmuki P, Mazare A, Cimpean A. Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. J Funct Biomater 2022; 13:jfb13040274. [PMID: 36547533 PMCID: PMC9780975 DOI: 10.3390/jfb13040274] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
In the last few years, the progress made in the field of nanotechnology has allowed researchers to develop and synthesize nanosized materials with unique physicochemical characteristics, suitable for various biomedical applications. Amongst these nanomaterials, metal oxide nanoparticles (MONPs) have gained increasing interest due to their excellent properties, which to a great extent differ from their bulk counterpart. However, despite such positive advantages, a substantial body of literature reports on their cytotoxic effects, which are directly correlated to the nanoparticles' physicochemical properties, therefore, better control over the synthetic parameters will not only lead to favorable surface characteristics but may also increase biocompatibility and consequently lower cytotoxicity. Taking into consideration the enormous biomedical potential of MONPs, the present review will discuss the most recent developments in this field referring mainly to synthesis methods, physical and chemical characterization and biological effects, including the pro-regenerative and antitumor potentials as well as antibacterial activity. Moreover, the last section of the review will tackle the pressing issue of the toxic effects of MONPs on various tissues/organs and cell lines.
Collapse
Affiliation(s)
- Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Manuela S. Killian
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Swathi N. V. Raghu
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacky University, Listopadu 50A, 772 07 Olomouc, Czech Republic
- Chemistry Department, King Abdulaziz University, Jeddah 80203, Saudi Arabia
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai 980-8577, Japan
- Correspondence:
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
33
|
Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, El-Tanani M, Aljabali A, Tambuwala MM, Mishra YK. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio 2022; 16:100412. [PMID: 36097597 PMCID: PMC9463390 DOI: 10.1016/j.mtbio.2022.100412] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Due to microbial infections dramatically affect cell survival and increase the risk of implant failure, scaffolds produced with antimicrobial materials are now much more likely to be successful. Multidrug-resistant infections without suitable prevention strategies are increasing at an alarming rate. The ability of cells to organize, develop, differentiate, produce a functioning extracellular matrix (ECM) and create new functional tissue can all be controlled by careful control of the extracellular microenvironment. This review covers the present state of advanced strategies to develop scaffolds with antimicrobial properties for bone, oral tissue, skin, muscle, nerve, trachea, cardiac and other tissue engineering applications. The review focuses on the development of antimicrobial scaffolds against bacteria and fungi using a wide range of materials, including polymers, biopolymers, glass, ceramics and antimicrobials agents such as antibiotics, antiseptics, antimicrobial polymers, peptides, metals, carbon nanomaterials, combinatorial strategies, and includes discussions on the antimicrobial mechanisms involved in these antimicrobial approaches. The toxicological aspects of these advanced scaffolds are also analyzed to ensure future technological transfer to clinics. The main antimicrobial methods of characterizing scaffolds’ antimicrobial and antibiofilm properties are described. The production methods of these porous supports, such as electrospinning, phase separation, gas foaming, the porogen method, polymerization in solution, fiber mesh coating, self-assembly, membrane lamination, freeze drying, 3D printing and bioprinting, among others, are also included in this article. These important advances in antimicrobial materials-based scaffolds for regenerative medicine offer many new promising avenues to the material design and tissue-engineering communities. Antibacterial, antifungal and antibiofilm scaffolds. Antimicrobial scaffold fabrication techniques. Antimicrobial biomaterials for tissue engineering applications. Antimicrobial characterization methods of scaffolds. Bone, oral tissue, skin, muscle, nerve, trachea, cardiac, among other applications.
Collapse
|
34
|
Shree A, Vagga AA. Methodologies of Autologous Skin Cell Spray Graft. Cureus 2022; 14:e31353. [DOI: 10.7759/cureus.31353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
35
|
Katiyar S, Singh D, Kumari S, Srivastava P, Mishra A. Novel strategies for designing regenerative skin products for accelerated wound healing. 3 Biotech 2022; 12:316. [PMID: 36276437 PMCID: PMC9547767 DOI: 10.1007/s13205-022-03331-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022] Open
Abstract
Healthy skin protects from pathogens, water loss, ultraviolet rays, and also maintains homeostasis conditions along with sensory perceptions in normal circumstances. Skin wound healing mechanism is a multi-phased biodynamic process that ultimately triggers intercellular and intracellular mechanisms. Failure to implement the normal and effective healing process may result in chronic injuries and aberrant scarring. Chronic wounds lead to substantial rising healthcare expenditure, and innovative methods to diagnose and control severe consequences are urgently needed. Skin tissue engineering (STE) has achieved several therapeutic accomplishments during the last few decades, demonstrating tremendous development. The engineered skin substitutes provide instant coverage for extensive wounds and facilitate the prevention of microbial infections and fluid loss; furthermore, they help in fighting inflammation and allow rapid neo-tissue formation. The current review primarily focused on the wound recovery and restoration process and the current conditions of STE with various advancements and complexities associated with different strategies such as cell sources, biopolymers, innovative fabrication techniques, and growth factors delivery systems.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Divakar Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Shikha Kumari
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| |
Collapse
|
36
|
Wang Y, Yuan X, Yao B, Zhu S, Zhu P, Huang S. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact Mater 2022; 17:178-194. [PMID: 35386443 PMCID: PMC8965032 DOI: 10.1016/j.bioactmat.2022.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
Abstract
Extrusion-based bioprinting (EBB) holds potential for regenerative medicine. However, the widely-used bioinks of EBB exhibit some limitations for skin regeneration, such as unsatisfactory bio-physical (i.e., mechanical, structural, biodegradable) properties and compromised cellular compatibilities, and the EBB-based bioinks with therapeutic effects targeting cutaneous wounds still remain largely undiscussed. In this review, the printability considerations for skin bioprinting were discussed. Then, current strategies for improving the physical properties of bioinks and for reinforcing bioinks in EBB approaches were introduced, respectively. Notably, we highlighted the applications and effects of current EBB-based bioinks on wound healing, wound scar formation, vascularization and the regeneration of skin appendages (i.e., sweat glands and hair follicles) and discussed the challenges and future perspectives. This review aims to provide an overall view of the applications, challenges and promising solutions about the EBB-based bioinks for cutaneous wound healing and skin regeneration.
Collapse
Affiliation(s)
- Yuzhen Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, 589 Yunzhong Road, Pingcheng District, Datong, Shanxi, 037006, PR China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin, 300071, PR China
| | - Bin Yao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, PR China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
| |
Collapse
|
37
|
Ma J, Wu C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210083. [PMID: 37325498 PMCID: PMC10190985 DOI: 10.1002/exp.20210083] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The challenge for treatment of severe cutaneous wound poses an urgent clinical need for the development of biomaterials to promote skin regeneration. In the past few decades, introduction of inorganic components into material system has become a promising strategy for improving performances of biomaterials in the process of tissue repair. In this review, we provide a current overview of the development of bioactive inorganic particles-based biomaterials used for skin tissue engineering. We highlight the three stages in the evolution of the bioactive inorganic biomaterials applied to wound management, including single inorganic materials, inorganic/organic composite materials, and inorganic particles-based cell-encapsulated living systems. At every stage, the primary types of bioactive inorganic biomaterials are described, followed by citation of the related representative studies completed in recent years. Then we offer a brief exposition of typical approaches to construct the composite material systems with incorporation of inorganic components for wound healing. Finally, the conclusions and future directions are suggested for the development of novel bioactive inorganic particles-based biomaterials in the field of skin regeneration.
Collapse
Affiliation(s)
- Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
38
|
3D Bioprinting with Live Cells. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Heng TT, Tey JY, Soon KS, Woo KK. Utilizing Fish Skin of Ikan Belida (Notopterus lopis) as a Source of Collagen: Production and Rheology Properties. Mar Drugs 2022; 20:md20080525. [PMID: 36005530 PMCID: PMC9410226 DOI: 10.3390/md20080525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen hydrogels have been extensively applied in biomedical applications. However, their mechanical properties are insufficient for such applications. Our previous study showed improved mechanical properties when collagen was blended with alginate. The current study aims to analyze the physico-chemical properties of collagen-alginate (CA) films such as swelling, porosity, denaturation temperature (Td), and rheology properties. Collagen was prepared from discarded fish skin of Ikan Belida (Notopterus lopis) that was derived from fish ball manufacturing industries and cross-linked with alginate from brown seaweed (Sargasum polycystum) of a local species as a means to benefit the downstream production of marine industries. CA hydrogels were fabricated with ratios (v/v) of 1:1, 1:4, 3:7, 4:1, and 7:3 respectively. FTIR spectrums of CA film showed an Amide I shift of 1636.12 cm−1 to 1634.64 cm−1, indicating collagen-alginate interactions. SEM images of CA films show a porous structure that varied from pure collagen. DSC analysis shows Td was improved from 61.26 °C (collagen) to 83.11 °C (CA 3:7). CA 4:1 swelled nearly 800% after 48 h, correlated with the of hydrogels porosity. Most CA demonstrated visco-elastic solid characteristics with greater storage modulus (G′) than lost modulus (G″). Shear thinning and non-Newtonian behavior was observed in CA with 0.4% to 1.0% (w/v) CaCl2. CA hydrogels that were derived from discarded materials shows promising potential to serve as a wound dressing or ink for bio printing in the future.
Collapse
Affiliation(s)
- Tzen T. Heng
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Jing Y. Tey
- Department of Mechanical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Kean S. Soon
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Kwan K. Woo
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
40
|
Yan J, Li Z, Guo J, Liu S, Guo J. Organ-on-a-chip: A new tool for in vitro research. Biosens Bioelectron 2022; 216:114626. [PMID: 35969963 DOI: 10.1016/j.bios.2022.114626] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 12/16/2022]
Abstract
Organ-on-a-chip (OOC, organ chip) technology can closely simulate the human microenvironment, synthesize organ-like functional units on a fluidic chip substrate, and simulate the physiology of tissues and organs. It will become an increasingly important platform for in vitro drug development and screening. Most importantly, organ-on-a-chip technology, incorporating 3D cell cultures, overcomes the traditional drawbacks of 2D (flat) cell-culture technology in vitro and in vivo animal trials, neither of which generate completely reliable results when it comes to the actual human subject. It is expected that organ chips will allow huge reductions in the incidence of failure in late-stage human trials, thus slashing the cost of drug development and speeding up the introduction of drugs that are effective. There have been three key enabling technologies that have made organ chip technology possible: 3D bioprinting, fluidic chips, and 3D cell culture, of which the last has allowed cells to be cultivated under more physiologically realistic growth conditions than 2D culture. The fusion of these advanced technologies and the addition of new research methods and algorithms has enabled the construction of chip types with different structures and different uses, providing a wide range of controllable microenvironments, both for research at the cellular level and for more reliable analysis of the action of drugs on the human body. This paper summarizes some research progress of organ-on-a-chip in recent years, outlines the key technologies used and the achievements in drug screening, and makes some suggestions concerning the current challenges and future development of organ-on-a-chip technology.
Collapse
Affiliation(s)
- Jiasheng Yan
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China; University of Electronic Science and Technology of China, Chengdu, China
| | - Ziwei Li
- Department of Clinical Laboratory, Fuling Central Hospital of Chongqing City, Chongqing, 408008, China
| | - Jiuchuan Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China; University of Electronic Science and Technology of China, Chengdu, China.
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Jinhong Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China; School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
41
|
Fernandes S, Vyas C, Lim P, Pereira RF, Virós A, Bártolo P. 3D Bioprinting: An Enabling Technology to Understand Melanoma. Cancers (Basel) 2022; 14:cancers14143535. [PMID: 35884596 PMCID: PMC9318274 DOI: 10.3390/cancers14143535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a potentially fatal cancer with rising incidence over the last 50 years, associated with enhanced sun exposure and ultraviolet radiation. Its incidence is highest in people of European descent and the ageing population. There are multiple clinical and epidemiological variables affecting melanoma incidence and mortality, such as sex, ethnicity, UV exposure, anatomic site, and age. Although survival has improved in recent years due to advances in targeted and immunotherapies, new understanding of melanoma biology and disease progression is vital to improving clinical outcomes. Efforts to develop three-dimensional human skin equivalent models using biofabrication techniques, such as bioprinting, promise to deliver a better understanding of the complexity of melanoma and associated risk factors. These 3D skin models can be used as a platform for patient specific models and testing therapeutics.
Collapse
Affiliation(s)
- Samantha Fernandes
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Peggy Lim
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
| | - Rúben F. Pereira
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Amaya Virós
- Skin Cancer and Ageing Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Paulo Bártolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence: or
| |
Collapse
|
42
|
Neural Differentiation Potential of Mesenchymal Stem Cells Enhanced by Biocompatible Chitosan-Gold Nanocomposites. Cells 2022; 11:cells11121861. [PMID: 35740991 PMCID: PMC9221394 DOI: 10.3390/cells11121861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chitosan (Chi) is a natural polymer that has been demonstrated to have potential as a promoter of neural regeneration. In this study, Chi was prepared with various amounts (25, 50, and 100 ppm) of gold (Au) nanoparticles for use in in vitro and in vivo assessments. Each as-prepared material was first characterized by UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and Dynamic Light Scattering (DLS). Through the in vitro experiments, Chi combined with 50 ppm of Au nanoparticles demonstrated better biocompatibility. The platelet activation, monocyte conversion, and intracellular ROS generation was remarkably decreased by Chi–Au 50 pm treatment. Furthermore, Chi–Au 50 ppm could facilitate colony formation and strengthen matrix metalloproteinase (MMP) activation in mesenchymal stem cells (MSCs). The lower expression of CD44 in Chi–Au 50 ppm treatment demonstrated that the nanocomposites could enhance the MSCs undergoing differentiation. Chi–Au 50 ppm was discovered to significantly induce the expression of GFAP, β-Tubulin, and nestin protein in MSCs for neural differentiation, which was verified by real-time PCR analysis and immunostaining assays. Additionally, a rat model involving subcutaneous implantation was used to evaluate the superior anti-inflammatory and endothelialization abilities of a Chi–Au 50 ppm treatment. Capsule formation and collagen deposition were decreased. The CD86 expression (M1 macrophage polarization) and leukocyte filtration (CD45) were remarkably reduced as well. In summary, a Chi polymer combined with 50 ppm of Au nanoparticles was proven to enhance the neural differentiation of MSCs and showed potential as a biosafe nanomaterial for neural tissue engineering.
Collapse
|
43
|
Afghah F, Iyison NB, Nadernezhad A, Midi A, Sen O, Saner Okan B, Culha M, Koc B. 3D Fiber Reinforced Hydrogel Scaffolds by Melt Electrowriting and Gel Casting as a Hybrid Design for Wound Healing. Adv Healthc Mater 2022; 11:e2102068. [PMID: 35120280 DOI: 10.1002/adhm.202102068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/09/2021] [Indexed: 12/22/2022]
Abstract
Emerging biomanufacturing technologies have revolutionized the field of tissue engineering by offering unprecedented possibilities. Over the past few years, new opportunities arose by combining traditional and novel fabrication techniques, shaping the hybrid designs in biofabrication. One of the potential application fields is skin tissue engineering, in which a combination of traditional principles of wound dressing with advanced biofabrication methods could yield more efficient therapies. In this study, a hybrid design of fiber-reinforced scaffolds combined with gel casting is developed and the efficiency for in vivo wound healing applications is assessed. For this purpose, 3D fiber meshes produced by melt electrowriting are selectively filled with photocrosslinkable gelatin hydrogel matrices loaded with different growth factor carrier microspheres. Additionally, the influence of the inclusion of inorganic bioactive glass particles within the composite fibrous mesh is evaluated. Qualitative evaluation of secondary wound healing criteria and histological analysis shows that hybrid scaffolds containing growth factors and bioactive glass enhances the healing process significantly, compared to the designs merely providing a fiber-reinforced bioactive hydrogel matrix as the wound dressing. This study aims to explore a new application area for melt electrowriting as a powerful tool in fabricating hybrid therapeutic designs for skin tissue engineering.
Collapse
Affiliation(s)
- Ferdows Afghah
- Sabanci University Faculty of Engineering and Natural Sciences Istanbul 34956 Turkey
- Sabanci University Nanotechnology Research and Application Center Istanbul 34956 Turkey
| | - Necla Birgul Iyison
- Molecular Biology and Genetics Bogazici University Kuzey Park Istanbul 34342 Turkey
| | - Ali Nadernezhad
- Sabanci University Faculty of Engineering and Natural Sciences Istanbul 34956 Turkey
- Sabanci University Nanotechnology Research and Application Center Istanbul 34956 Turkey
| | - Ahmet Midi
- Department of Pathology Faculty of Medicine, Bahcesehir University Istanbul Turkey
| | - Ozlem Sen
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Istanbul 34755 Turkey
| | - Burcu Saner Okan
- Sabanci University Integrated Manufacturing Technologies Research and Application Center Istanbul 34906 Turkey
| | - Mustafa Culha
- Sabanci University Nanotechnology Research and Application Center Istanbul 34956 Turkey
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Istanbul 34755 Turkey
| | - Bahattin Koc
- Sabanci University Faculty of Engineering and Natural Sciences Istanbul 34956 Turkey
- Sabanci University Nanotechnology Research and Application Center Istanbul 34956 Turkey
- Sabanci University Integrated Manufacturing Technologies Research and Application Center Istanbul 34906 Turkey
| |
Collapse
|
44
|
Advances in spray products for skin regeneration. Bioact Mater 2022; 16:187-203. [PMID: 35386328 PMCID: PMC8965724 DOI: 10.1016/j.bioactmat.2022.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
To date, skin wounds are still an issue for healthcare professionals. Although numerous approaches have been developed over the years for skin regeneration, recent advances in regenerative medicine offer very promising strategies for the fabrication of artificial skin substitutes, including 3D bioprinting, electrospinning or spraying, among others. In particular, skin sprays are an innovative technique still under clinical evaluation that show great potential for the delivery of cells and hydrogels to treat acute and chronic wounds. Skin sprays present significant advantages compared to conventional treatments for wound healing, such as the facility of application, the possibility to treat large wound areas, or the homogeneous distribution of the sprayed material. In this article, we review the latest advances in this technology, giving a detailed description of investigational and currently commercially available acellular and cellular skin spray products, used for a variety of diseases and applying different experimental materials. Moreover, as skin sprays products are subjected to different classifications, we also explain the regulatory pathways for their commercialization and include the main clinical trials for different skin diseases and their treatment conditions. Finally, we argue and suggest possible future trends for the biotechnology of skin sprays for a better use in clinical dermatology. Skin sprays represent a promising technique for wound healing applications. Skin sprays can deliver cells and hydrogels with great facility over large wounds. Many skin spray products have been studied, only a few have been commercialized. Numerous clinical trials study spray products for skin diseases like psoriasis. Improved spraying devices should be developed for different materials and cells.
Collapse
|
45
|
Aavani F, Biazar E, Kheilnezhad B, Amjad F. 3D Bio-printing For Skin Tissue Regeneration: Hopes and Hurdles. Curr Stem Cell Res Ther 2022; 17:415-439. [DOI: 10.2174/1574888x17666220204144544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
For many years, discovering the appropriate methods for the treatment of skin irritation has been challenging for specialists and researchers. Bio-printing can be extensively applied to address the demand for proper skin substitutes to improve skin damage. Nowadays, to make more effective bio-mimicking of natural skin, many research teams have developed cell-seeded bio-inks for bioprinting of skin substitutes. These loaded cells can be single or co-cultured in these structures. The present review gives a comprehensive overview of the methods, substantial parameters of skin bioprinting, examples of in vitro and in vivo studies, and current advances and challenges for skin tissue engineering.
Collapse
Affiliation(s)
- Farzaneh. Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Bahareh Kheilnezhad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Fatemeh Amjad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
46
|
Ramakrishnan R, Kasoju N, Raju R, Geevarghese R, Gauthaman A, Bhatt A. Exploring the Potential of Alginate-Gelatin-Diethylaminoethyl Cellulose-Fibrinogen based Bioink for 3D Bioprinting of Skin Tissue Constructs. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
47
|
Masri S, Zawani M, Zulkiflee I, Salleh A, Fadilah NIM, Maarof M, Wen APY, Duman F, Tabata Y, Aziz IA, Bt Hj Idrus R, Fauzi MB. Cellular Interaction of Human Skin Cells towards Natural Bioink via 3D-Bioprinting Technologies for Chronic Wound: A Comprehensive Review. Int J Mol Sci 2022; 23:476. [PMID: 35008902 PMCID: PMC8745539 DOI: 10.3390/ijms23010476] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Skin substitutes can provide a temporary or permanent treatment option for chronic wounds. The selection of skin substitutes depends on several factors, including the type of wound and its severity. Full-thickness skin grafts (SGs) require a well-vascularised bed and sometimes will lead to contraction and scarring formation. Besides, donor sites for full-thickness skin grafts are very limited if the wound area is big, and it has been proven to have the lowest survival rate compared to thick- and thin-split thickness. Tissue engineering technology has introduced new advanced strategies since the last decades to fabricate the composite scaffold via the 3D-bioprinting approach as a tissue replacement strategy. Considering the current global donor shortage for autologous split-thickness skin graft (ASSG), skin 3D-bioprinting has emerged as a potential alternative to replace the ASSG treatment. The three-dimensional (3D)-bioprinting technique yields scaffold fabrication with the combination of biomaterials and cells to form bioinks. Thus, the essential key factor for success in 3D-bioprinting is selecting and developing suitable bioinks to maintain the mechanisms of cellular activity. This crucial stage is vital to mimic the native extracellular matrix (ECM) for the sustainability of cell viability before tissue regeneration. This comprehensive review outlined the application of the 3D-bioprinting technique to develop skin tissue regeneration. The cell viability of human skin cells, dermal fibroblasts (DFs), and keratinocytes (KCs) during in vitro testing has been further discussed prior to in vivo application. It is essential to ensure the printed tissue/organ constantly allows cellular activities, including cell proliferation rate and migration capacity. Therefore, 3D-bioprinting plays a vital role in developing a complex skin tissue structure for tissue replacement approach in future precision medicine.
Collapse
Affiliation(s)
- Syafira Masri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mazlan Zawani
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Atiqah Salleh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Fatih Duman
- Department of Biology, Faculty of Science, University of Erciyes, 38039 Kayseri, Turkey
| | - Yasuhiko Tabata
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biomaterials, Institute of Frontier Medical Science, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Izhar Abd Aziz
- 3D Gens Sdn Bhd, 18, Jalan Kerawang U8/108, Bukit Jelutong, Shah Alam 40150, Malaysia
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
48
|
Aslan E, Vyas C, Yupanqui Mieles J, Humphreys G, Diver C, Bartolo P. Preliminary Characterization of a Polycaprolactone-SurgihoneyRO Electrospun Mesh for Skin Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 15:89. [PMID: 35009233 PMCID: PMC8746156 DOI: 10.3390/ma15010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 05/09/2023]
Abstract
Skin is a hierarchical and multi-cellular organ exposed to the external environment with a key protective and regulatory role. Wounds caused by disease and trauma can lead to a loss of function, which can be debilitating and even cause death. Accelerating the natural skin healing process and minimizing the risk of infection is a clinical challenge. Electrospinning is a key technology in the development of wound dressings and skin substitutes as it enables extracellular matrix-mimicking fibrous structures and delivery of bioactive materials. Honey is a promising biomaterial for use in skin tissue engineering applications and has antimicrobial properties and potential tissue regenerative properties. This preliminary study investigates a solution electrospun composite nanofibrous mesh based on polycaprolactone and a medical grade honey, SurgihoneyRO. The processing conditions were optimized and assessed by scanning electron microscopy to fabricate meshes with uniform fiber diameters and minimal presence of beads. The chemistry of the composite meshes was examined using Fourier transform infrared spectroscopy and X-ray photon spectroscopy showing incorporation of honey into the polymer matrix. Meshes incorporating honey had lower mechanical properties due to lower polymer content but were more hydrophilic, resulting in an increase in swelling and an accelerated degradation profile. The biocompatibility of the meshes was assessed using human dermal fibroblasts and adipose-derived stem cells, which showed comparable or higher cell metabolic activity and viability for SurgihoneyRO-containing meshes compared to polycaprolactone only meshes. The meshes showed no antibacterial properties in a disk diffusion test due to a lack of hydrogen peroxide production and release. The developed polycaprolactone-honey nanofibrous meshes have potential for use in skin applications.
Collapse
Affiliation(s)
- Enes Aslan
- Department of Machine and Metal Technologies, Gumusova Vocational School, Duzce University, Duzce 81850, Turkey;
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
| | - Joel Yupanqui Mieles
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
| | - Gavin Humphreys
- School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Carl Diver
- Department of Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
49
|
Veiga A, Castro F, Rocha F, Oliveira AL. An update on hydroxyapatite/collagen composites: What is there left to say about these bioinspired materials? J Biomed Mater Res B Appl Biomater 2021; 110:1192-1205. [PMID: 34860461 DOI: 10.1002/jbm.b.34976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023]
Abstract
Hydroxyapatite (HAp)/collagen-based composite materials have been a constant in the development of bioinspired materials for bone tissue engineering. The most fundamental research works focus on combining HAp, due to its chemical similarity with the mineral component of bones, and collagen, which is the most abundant protein in the body. Modern studies have explored different two-dimensional (2D) and 3D structures, in order to obtain biomaterials with specific physicochemical, mechanical, and biological characteristics that can be applied in distinct biomedical applications. However, as there is already so much work developed with these materials, it is crucial to question: what can still be done? What is the importance of current know-how for the future of bioinspired materials? In this paper we intend to review and update the available methodologies to synthesize HAp/collagen composites, along with their characteristics. In addition, the future of these materials in terms of applications and their potential as a cutting-edge technology is discussed.
Collapse
Affiliation(s)
- Anabela Veiga
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Filipa Castro
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fernando Rocha
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
50
|
Moakes RJA, Senior JJ, Robinson TE, Chipara M, Atanasov A, Naylor A, Metcalfe AD, Smith AM, Grover LM. A suspended layer additive manufacturing approach to the bioprinting of tri-layered skin equivalents. APL Bioeng 2021; 5:046103. [PMID: 34888433 PMCID: PMC8635740 DOI: 10.1063/5.0061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/15/2023] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Skin exhibits a complex structure consisting of three predominant layers (epidermis, dermis, and hypodermis). Extensive trauma may result in the loss of these structures and poor repair, in the longer term, forming scarred tissue and associated reduction in function. Although a number of skin replacements exist, there have been no solutions that recapitulate the chemical, mechanical, and biological roles that exist within native skin. This study reports the use of suspended layer additive manufacturing to produce a continuous tri-layered implant, which closely resembles human skin. Through careful control of the bioink composition, gradients (chemical and cellular) were formed throughout the printed construct. Culture of the model demonstrated that over 21 days, the cellular components played a key role in remodeling the supporting matrix into architectures comparable with those of healthy skin. Indeed, it has been demonstrated that even at seven days post-implantation, the integration of the implant had occurred, with mobilization of the adipose tissue from the surrounding tissue into the construct itself. As such, it is believed that these implants can facilitate healing, commencing from the fascia, up toward the skin surface-a mechanism recently shown to be key within deep wounds.
Collapse
Affiliation(s)
- Richard J. A. Moakes
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica J. Senior
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Thomas E. Robinson
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Miruna Chipara
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Aleksandar Atanasov
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Amy Naylor
- Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Anthony D. Metcalfe
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alan M. Smith
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Liam M. Grover
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|