1
|
García-Gutiérrez V, Gómez-Casares MT, Xicoy B, Casado-Montero F, Orti G, Giraldo P, Hernández-Boluda JC. Critical review of clinical data and expert-based recommendations for the use of bosutinib in the treatment of chronic myeloid leukemia. Front Oncol 2024; 14:1405467. [PMID: 39252937 PMCID: PMC11381280 DOI: 10.3389/fonc.2024.1405467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Chronic myeloid leukemia (CML), characterized by the presence of the BCR::ABL1 fusion gene, has undergone a transformative shift with the introduction of tyrosine kinase inhibitors (TKIs). The current availability of six different TKIs (imatinib, dasatinib, nilotinib, bosutinib, ponatinib, and asciminib) in clinical practice makes it important to know their efficacy and toxicity profile for treatment optimization. This review examines the latest insights regarding the use of bosutinib in CML treatment. Clinical trials have demonstrated the effectiveness of bosutinib, positioning it as a first-line treatment that can induce sustained molecular responses. Importantly, it can also be effective in patients who have experienced treatment failure or intolerance with prior TKIs, revealing the potential of bosutinib also in second- and later-line settings. Even in the advanced phase of CML, bosutinib has demonstrated its capacity to achieve molecular responses, expanding its usefulness. Real-world evidence studies echo these findings, emphasizing bosutinib's effectiveness in achieving deep molecular responses, maintaining remissions, and serving as an alternative for patients intolerant or resistant to other TKIs as a second-line therapy. Notably, one of the greatest strengths of bosutinib is its favorable safety profile, in particular the low incidence of vascular complications with its use, which is undoubtedly a comparative advantage over other TKIs. In summary, the latest research highlights the versatility of bosutinib in CML treatment and underscores its pivotal role in optimizing patient management in challenging cases. Continuing research and investigation will further establish bosutinib's place in the evolving landscape of CML therapy, offering an alternative for CML patients across different treatment stages.
Collapse
Affiliation(s)
| | - María Teresa Gómez-Casares
- Servicio de Hematología, Hospital Universitario de Gran Canaria Dr. Negrin. Profesor asociado de la ULPGC, Las Palmas de Gran Canaria, Spain
| | - Blanca Xicoy
- Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Felipe Casado-Montero
- Servicio de Hematología y Hemoterapia, Hospital General Universitario de Toledo, Toledo, Spain
| | - Guillermo Orti
- Servicio de Hematologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Pilar Giraldo
- Hematologia, Hospital Quironsalud, Fundación ZeroLMC, Zaragoza, Spain
| | | |
Collapse
|
2
|
Chen L, Zhang Y, Zhang YX, Wang WL, Sun DM, Li PY, Feng XS, Tan Y. Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring. J Pharm Anal 2024; 14:100899. [PMID: 38634061 PMCID: PMC11022103 DOI: 10.1016/j.jpha.2023.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 04/19/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have emerged as the first-line small molecule drugs in many cancer therapies, exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways. However, there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites, which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments, alongside other potential side effects or adverse reactions. Therefore, an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods, clinical pharmacokinetics, and therapeutic drug monitoring of different TKIs. This paper provides a comprehensive overview of the advancements in pretreatment methods, such as protein precipitation (PPT), liquid-liquid extraction (LLE), solid-phase extraction (SPE), micro-SPE (μ-SPE), magnetic SPE (MSPE), and vortex-assisted dispersive SPE (VA-DSPE) achieved since 2017. It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) methods, capillary electrophoresis (CE), gas chromatography (GC), supercritical fluid chromatography (SFC) procedures, surface plasmon resonance (SPR) assays as well as novel nanoprobes-based biosensing techniques. In addition, a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Lan Chen
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wei-Lai Wang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - De-Mei Sun
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Peng-Yun Li
- Institute of Pharmacology and Toxicology Institution, National Engineering Research Center for Strategic Drugs, Beijing, 100850, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| |
Collapse
|
3
|
Holzmayer SJ, Kauer J, Mauermann J, Roider T, Märklin M. Asciminib Maintains Antibody-Dependent Cellular Cytotoxicity against Leukemic Blasts. Cancers (Basel) 2024; 16:1288. [PMID: 38610966 PMCID: PMC11010908 DOI: 10.3390/cancers16071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) is characterized by an accumulation of malignant precursor cells. Treatment consists of multiagent chemotherapy followed by allogeneic stem cell transplantation in high-risk patients. In addition, patients bearing the BCR-ABL1 fusion gene receive concomitant tyrosine kinase inhibitor (TKI) therapy. On the other hand, monoclonal antibody therapy is increasingly used in both clinical trials and real-world settings. The introduction of rituximab has improved the outcomes in CD20 positive cases. Other monoclonal antibodies, such as tafasitamab (anti-CD19), obinutuzumab (anti-CD20) and epratuzumab (anti-CD22) have been tested in trials (NCT05366218, NCT04920968, NCT00098839). The efficacy of monoclonal antibodies is based, at least in part, on their ability to induce antibody-dependent cellular cytotoxicity (ADCC). Combination treatments, e.g., chemotherapy and TKI, should therefore be screened for potential interference with ADCC. Here, we report on in vitro data using BCR-ABL1 positive and negative B-ALL cell lines treated with rituximab and TKI. NK cell activation, proliferation, degranulation, cytokine release and tumor cell lysis were analyzed. In contrast to ATP site inhibitors such as dasatinib and ponatinib, the novel first-in-class selective allosteric ABL myristoyl pocket (STAMP) inhibitor asciminib did not significantly impact ADCC in our settings. Our results suggest that asciminib should be considered in clinical trials.
Collapse
Affiliation(s)
- Samuel J. Holzmayer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (S.J.H.)
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, Eberhard Karls University, 72076 Tübingen, Germany
| | - Joseph Kauer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (S.J.H.)
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69117 Heidelberg, Germany;
- European Molecular Biology Laboratory (EMBL), 69116 Heidelberg, Germany
| | - Jonas Mauermann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (S.J.H.)
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, Eberhard Karls University, 72076 Tübingen, Germany
| | - Tobias Roider
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69117 Heidelberg, Germany;
- European Molecular Biology Laboratory (EMBL), 69116 Heidelberg, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (S.J.H.)
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, Eberhard Karls University, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Brivio E, Pennesi E, Willemse ME, Huitema AD, Jiang Y, van Tinteren HD, van der Velden VH, Beverloo BH, den Boer ML, Rammeloo LA, Hudson C, Heerema N, Kowalski K, Zhao H, Kuttschreuter L, Bautista Sirvent FJ, Bukowinski A, Rizzari C, Pollard J, Murillo-Sanjuán L, Kutny M, Zarnegar-Lumley S, Redell M, Cooper S, Bertrand Y, Petit A, Krystal J, Metzler M, Lancaster D, Bourquin JP, Motwani J, van der Sluis IM, Locatelli F, Roth ME, Hijiya N, Zwaan CM. Bosutinib in Resistant and Intolerant Pediatric Patients With Chronic Phase Chronic Myeloid Leukemia: Results From the Phase I Part of Study ITCC054/COG AAML1921. J Clin Oncol 2024; 42:821-831. [PMID: 38033284 PMCID: PMC10906575 DOI: 10.1200/jco.23.00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023] Open
Abstract
PURPOSE Bosutinib is approved for adults with chronic myeloid leukemia (CML): 400 mg once daily in newly diagnosed (ND); 500 mg once daily in resistant/intolerant (R/I) patients. Bosutinib has a different tolerability profile than other tyrosine kinase inhibitors (TKIs) and potentially less impact on growth (preclinical data). The primary objective of this first-in-child trial was to determine the recommended phase II dose (RP2D) for pediatric R/I and ND patients. PATIENTS AND METHODS In the phase I part of this international, open-label trial (ClinicalTrials.gov identifier: NCT04258943), children age 1-18 years with R/I (per European LeukemiaNet 2013) Ph+ CML were enrolled using a 6 + 4 design, testing 300, 350, and 400 mg/m2 once daily with food. The RP2D was the dose resulting in 0/6 or 1/10 dose-limiting toxicities (DLTs) during the first cycle and achieving adult target AUC levels for the respective indication. As ND participants were only enrolled in phase II, the ND RP2D was selected based on data from R/I patients. RESULTS Thirty patients were enrolled; 27 were evaluable for DLT: six at 300 mg/m2, 11 at 350 mg/m2 (one DLT), and 10 at 400 mg/m2 (one DLT). The mean AUCs at 300 mg/m2, 350 mg/m2, and 400 mg/m2 were 2.20 μg h/mL, 2.52 μg h/mL, and 2.66 μg h/mL, respectively. The most common adverse event was diarrhea (93%; ≥grade 3: 11%). Seven patients stopped because of intolerance and eight because of insufficient response. Complete cytogenetic and major molecular response to bosutinib appeared comparable with other published phase I/II trials with second-generation TKIs in children. CONCLUSION Bosutinib was safe and effective. The pediatric RP2D was 400 mg/m2 once daily (max 600 mg/d) with food in R/I patients and 300 mg/m2 once daily (max 500 mg/d) with food in ND patients, which achieved targeted exposures as per adult experience.
Collapse
Affiliation(s)
- Erica Brivio
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Edoardo Pennesi
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marieke E. Willemse
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Alwin D.R. Huitema
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- The Netherlands Cancer Institute, Amsterdam, the Netherlands
- University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Yilin Jiang
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Berna H. Beverloo
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Monique L. den Boer
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lukas A.J. Rammeloo
- Department of Pediatric Cardiology, Amsterdam UMC, Emma Children's Hospital, Amsterdam, the Netherlands
| | | | | | | | | | | | - Francisco J. Bautista Sirvent
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Pediatric Oncology and Hematology Department, Hospital Niño Jesús, Madrid, Spain
| | - Andrew Bukowinski
- Pediatric Hematology and Oncology Alabama, University of Alabama at Birmingham, Birmingham, AL
| | - Carmelo Rizzari
- Department of Pediatrics, University of Milano-Bicocca, IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | | | | | | | - Michele Redell
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Stacy Cooper
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD
| | | | | | - Julie Krystal
- The Steven and Alexandra Cohen Children's Medical Center of New York, New York, NY
| | | | - Donna Lancaster
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Inge M. van der Sluis
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Franco Locatelli
- IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Nobuko Hijiya
- Columbia University Irving Medical Center, New York, NY
| | - Christian M. Zwaan
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
5
|
Cheng F, Wang H, Li W, Zhang Y. Clinical pharmacokinetics and drug-drug interactions of tyrosine-kinase inhibitors in chronic myeloid leukemia: A clinical perspective. Crit Rev Oncol Hematol 2024; 195:104258. [PMID: 38307392 DOI: 10.1016/j.critrevonc.2024.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024] Open
Abstract
In the past decade, numerous tyrosine kinase inhibitors (TKIs) have been introduced in the treatment of chronic myeloid leukemia. Given the significant interpatient variability in TKIs pharmacokinetics, potential drug-drug interactions (DDIs) can greatly impact patient therapy. This review aims to discuss the pharmacokinetic characteristics of TKIs, specifically focusing on their absorption, distribution, metabolism, and excretion profiles. Additionally, it provides a comprehensive overview of the utilization of TKIs in special populations such as the elderly, children, and patients with liver or kidney dysfunction. We also highlight known or suspected DDIs between TKIs and other drugs, highlighting various clinically relevant interactions. Moreover, specific recommendations are provided to guide haemato-oncologists, oncologists, and clinical pharmacists in managing DDIs during TKI treatment in daily clinical practice.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Hongxiang Wang
- Department of Hematology, the Central Hospital of Wuhan, 430014, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| |
Collapse
|
6
|
Rea D, Cayssials E, Charbonnier A, Coiteux V, Etienne G, Goldwirt L, Guerci-Bresler A, Huguet F, Legros L, Roy L, Nicolini FE. [Optimizing the use of bosutinib in patients with chronic-phase chronic myeloid leukemia: Recommendations of a panel of experts from the Fi-LMC (French CML working group)]. Bull Cancer 2024; 111:87-96. [PMID: 38087729 DOI: 10.1016/j.bulcan.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 01/22/2024]
Abstract
The treatment of chronic myeloid leukemia relies on orally available tyrosine kinase inhibitors targeting the BCR::ABL1 oncoprotein. Bosutinib is a second generation adenosine triphosphate-competitive inhibitor approved for use in frontline adult chronic phase-chronic myeloid leukemia and all phases-chronic myeloid leukemia in the second line setting or beyond. Its efficacy was demonstrated in several pivotal clinical trials at 400mg once daily in the first line context and at 500mg once daily beyond first line. Bosutinib-related adverse events frequently occur early after treatment initiation and include gastro-intestinal symptoms and cytolytic hepatitis. These drug-related adverse events must be properly managed in order to preserve safety, efficacy and treatment acceptability. The French chronic myeloid leukemia study group gathered a panel of experts in hematology, pharmacology and hepatology in order to elaborate practical recommendations on the management of bosutinib treatment. These recommendations aim at optimizing the short and long-term tolerance and benefit/risk balance of bosutinib, mainly focusing at gastro-intestinal and liver toxicities.
Collapse
Affiliation(s)
- Delphine Rea
- DMU d'hématologie, hôpital universitaire Saint-Louis, Paris, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France.
| | - Emilie Cayssials
- CHU de Poitiers, département d'hématologie, Poitiers, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Aude Charbonnier
- Institut Paoli-Calmettes, hematology department, Marseille, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Valérie Coiteux
- CHU Claude-Huriez, département d'hématologie, Lille, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Gabriel Etienne
- Institut Bergonié, département d'hématologie, Bordeaux, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | | | - Agnès Guerci-Bresler
- CHRU Brabois, service d'hématologie, Vandœuvre-lès-Nancy, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Françoise Huguet
- CHU de Toulouse, institut universitaire du cancer, département d'hématologie, Toulouse, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Laurence Legros
- Hôpital Paul-Brousse, département d'hématologie, Villejuif, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Lydia Roy
- AP-HP, hôpital universitaire Henri-Mondor, université Paris Est Créteil (UPEC), service d'hématologie clinique, Créteil, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Franck Emmanuel Nicolini
- Centre Léon-Bérard, hématologie clinique, Inserm U1052, Lyon, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| |
Collapse
|
7
|
Sun X, Xie Z, Lei X, Huang S, Tang G, Wang Z. Research and development of N, N'-diarylureas as anti-tumor agents. RSC Med Chem 2023; 14:1209-1226. [PMID: 37484562 PMCID: PMC10357950 DOI: 10.1039/d3md00053b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor neovascularization provides abundant nutrients for the occurrence and development of tumors, and is also an important factor in tumor invasion and metastasis, which has attracted extensive attention in anti-tumor therapy. Sorafenib is a clinically approved multi-targeted anti-tumor drug that targets vascular endothelial growth factor receptor (VEGFR) and inhibits the formation of tumor angiogenesis, thereby achieving the purpose of suppressing tumor growth. Since the approval of sorafenib, N,N'-diarylureas have received extensive attention as the key pharmacophore in its chemical structure. And a series of N,N'-diarylureas were designed and synthesized to screen a new generation of anti-tumor drug candidates through chemical modification and structural optimization. Moreover, the rational design of targeted drugs is beneficial to reduce toxic side effects and drug resistance and improve the curative effect. Here, this article reviews the research progress in the design, classification, structure-activity relationship (SAR) and biological activity of N,N'-diarylureas, in order to provide some prospective routes for the development of clinically effective anti-tumor drugs.
Collapse
Affiliation(s)
- Xueyan Sun
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Sheng Huang
- Jiuzhitang Co., Ltd Changsha Hunan 410007 China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China Hengyang 421001 Hunan China
| |
Collapse
|
8
|
Sonawane HR, Vibhute BT, Aghav BD, Deore JV, Patil SK. Versatile applications of transition metal incorporating quinoline Schiff base metal complexes: An overview. Eur J Med Chem 2023; 258:115549. [PMID: 37321110 DOI: 10.1016/j.ejmech.2023.115549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Since the last decade, research on quinoline Schiff base metal complexes has risen substantially due to their versatile applications across many significant fields. Schiff bases are also known as azomethines, aldimines, and imines. Quinoline Schiff base-derived metal complexes are intriguing to study topics. These complexes are employed in biological, analytical, and catalytic fields. Researchers have found that Schiff bases are more biologically active when coordinated with metal ions. Research in the biological sciences has shown that heterocyclic compounds like quinoline and its derivatives are important. Because of their broad spectrum of activity, quinoline derivatives have been discovered to be effective therapeutic agents for various disorders. Even though various classical synthetic pathways mentioned in the literature are still in use, there is an urgent need for a new, more effective method that is safer for the environment, has a higher yield, generates less hazardous waste, and is easier to use. This highlights the critical need for a safe, eco-friendly approach to quinoline scaffold synthesis. This review focuses exclusively on Schiff base metal complexes derived from quinoline, fabricated and studied in the past ten years, and having anticancer, antibacterial, antifungal, antioxidant, antidiabetic, antiproliferative, DNA-intercalation, and cytotoxic activities.
Collapse
Affiliation(s)
- Harshad R Sonawane
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India; Department of Chemistry, G. M. Vedak College of Science, Tala-Raigad, 402111, Maharashtra, India.
| | - Baliram T Vibhute
- Department of Chemistry Doshi Vakil Arts and G.C.U.B. Science and Commerce College, Goregaon, Raigad, 402103, Maharashtra, India
| | - Balasaheb D Aghav
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India
| | - Jaydeep V Deore
- Department of Chemistry, G. M. Vedak College of Science, Tala-Raigad, 402111, Maharashtra, India
| | - Sanjay K Patil
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India.
| |
Collapse
|
9
|
Chen L, Chau WY, Yuen HT, Liu XH, Qi RZ, Lung ML, Lung HL. THY1 (CD90) Maintains the Adherens Junctions in Nasopharyngeal Carcinoma via Inhibition of SRC Activation. Cancers (Basel) 2023; 15:cancers15072189. [PMID: 37046850 PMCID: PMC10093038 DOI: 10.3390/cancers15072189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
We had previously shown that THY1 (CD90) is a tumor suppressor in nasopharyngeal carcinoma (NPC) and that its down-regulation and loss of expression are associated with tumor metastasis, yet the mechanism leading to such effects remains unknown. In this study we show that tumor invasion could be suppressed by THY1 via adherens junction formation in a few NPC cell lines, and knockdown of THY1 would disrupt this cell-cell adhesion phenotype. Mechanistically, the activity of the SRC family kinase (SFK) member, SRC, and canonical Wnt signaling were dramatically reduced when THY1 was constitutively expressed. Previous studies by others have found that high levels of SRC activity in NPCs are associated with EMT and a poor prognosis. We hypothesized that THY1 can suppress tumor invasion in NPC via inhibition of SRC. By gene silencing of SRC, we found that the in vitro NPC cell invasion was significantly reduced and adherens junctions were restored. Through proteomic analysis, we identified that platelet-derived growth factor receptor β (PDGF-Rβ) and protein tyrosine phosphatase nonreceptor type 22 (PTPN22) are novel and potential binding partners of THY1, which were subsequently verified by co-immunoprecipitation (co-IP) analysis. The ligand of PDGF-Rβ (PDGF-BB) could highly induce SRC activation and NPC cell invasion, which could be almost completely suppressed by THY1 expression. On the other hand, the PTPN22 siRNA could enhance both the SRC activities and the cell invasion and could also disrupt the adherens junctions in the THY1-expressing NPC cells; the original THY1-induced phenotypes were reverted when the PTPN22 expression was reduced. Together, our results identified that PTPN22 is essential for THY1 to suppress cell invasion and SRC activity, maintain tight adherens junctions, and prevent NPC metastasis. These results suggested that PDGF-Rβ and SRC can be used as drug targets for suppressing NPC metastasis. Indeed, our in vivo assay using the SRC inhibitor KX2-391, clearly showed that inhibition of SRC signaling can prevent the metastasis of NPC, indicating that targeting SRC can be a promising approach to control the NPC progression.
Collapse
Affiliation(s)
- Luo Chen
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong 999077, China
| | - Wai Yin Chau
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hei Tung Yuen
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiao Han Liu
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong 999077, China
| | - Robert Zhong Qi
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Hong Kong 999077, China
| | - Hong Lok Lung
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
10
|
Berman E. Family Planning and Pregnancy in Patients with Chronic Myeloid Leukemia. Curr Hematol Malig Rep 2023; 18:33-39. [PMID: 36763239 DOI: 10.1007/s11899-023-00689-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize what is known about pregnancy in women with chronic myeloid leukemia (CML): there are very few guidelines regarding how to treat women who are pregnant at the time of CML diagnosis, and similarly, few guidelines regarding family planning for women already on tyrosine kinase inhibitor therapy who might want to start family planning. RECENT FINDINGS Most patients with CML achieve excellent control with first line tyrosine kinase inhibitor therapy that includes either imatinib, dasatinib, nilotinib, or bosutinib. For men, tyrosine kinase inhibitor (TKI) therapy does not affect sperm number or function, and female partners of men on therapy who become pregnant do not have an increased risk of miscarriage or babies with fetal malformation. However, for women, all TKIs are teratogenic and should be avoided at least in the first trimester of pregnancy. However, a small study suggests that women who have achieved a stable deep response therapy can safely stop therapy prior to a planned pregnancy and may not need any intervention during the pregnancy. Another small study suggests that nilotinib and imatinib have the lowest rate of transfer across the placenta. Providing well-documented guidelines for women with CML is challenging as TKI therapy is teratogenic. However, valuable information can be gained from small series of patients as summarized here.
Collapse
Affiliation(s)
- Ellin Berman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, 530 East 74th St, Room 21264, New York, NY, 10021, USA.
| |
Collapse
|
11
|
Evaluation of Renal Impairment Influence on Metabolic Drug Clearance using a Modelling Approach. Clin Pharmacokinet 2023; 62:307-319. [PMID: 36631686 DOI: 10.1007/s40262-022-01205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic kidney disease (CKD) may alter drug renal elimination but is also known for interacting with hepatic metabolism via multiple uremic components. However, few global models, considering the five major cytochromes, have been published, and none specifically address the decrease in cytochrome P450 (CYP450) activity. The aim of our study was to estimate the possibility of quantifying residual cytochrome activity as a function of filtration rate, according to the data available in the literature. METHODS For each drug in the DDI-predictor database, we collected available pharmacokinetic data comparing drug exposition in the healthy patient and in various stages of CKD, before building a model capable of predicting the variation of exposure according to the degree of renal damage. We followed an In vivo Mechanistic Static Model (IMSM) approach, previously validated for predicting change in liver clearance. We estimated the remaining fraction parameters at glomerular filtration rate (GFR) = 0 and the alpha value of GFR to 50% impairment for the 5 major cytochromes using a non-linear constrained regression using Matlab software. RESULTS Thirty-one compounds had usable pharmacokinetic data, with 51 AUC ratios between healthy and renal impaired patients. The remaining CYP3A4 activity was estimated to be 0.4 when CYP2D6, 2C9, 2C19 and 1A2 activity was estimated to be 0.43; 1; 0.73 and 0.7, respectively. The alpha value was estimated to be at 6.62; 25; 9.8; 1.38 and 11.04 for each cytochrome. In comparison with published data, all estimates but one were correctly predicted in the range of 0.5-2. CONCLUSION Our approach was able to describe the impact of CKD on metabolic elimination. Modelling this process makes it possible to anticipate changes in clearance and drug exposure in CKD patients, with the advantage of greater simplicity than approaches based on physiologically-based pharmacokinetic modelling. However, a precise estimation of the impact of renal failure is not possible with an IMSM approach due to the large variability of the published data, and thus should rely on specific pharmacokinetic modelling for narrow therapeutic margin drugs.
Collapse
|
12
|
Eckart F, Tauer JT, Suttorp M, Knöfler R. Impact of Tyrosine Kinase Inhibitors Applied for First-Line Chronic Myeloid Leukemia Treatment on Platelet Function in Whole Blood of Healthy Volunteers In Vitro. Hamostaseologie 2023. [PMID: 36693407 DOI: 10.1055/a-1892-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The tyrosine kinase inhibitors (TKIs) imatinib, dasatinib, bosutinib, and nilotinib are established for first-line treatment of chronic myeloid leukemia (CML) but may cause side effects such as bleeding and thrombotic complications. We investigated the impact of TKIs on platelet function ex vivo in anticoagulated whole blood (WB) samples from healthy adults by lumiaggregometry and PFA-100 test. Samples (n = 15 per TKI) were incubated for 30 minutes with TKI at therapeutically relevant final concentrations. Aggregation and ATP release were induced by collagen (1 µg/mL), arachidonic acid (0.5 mmol/L), and thrombin (0.5 U/mL). Imatinib, bosutinib, and nilotinib significantly increased collagen-induced aggregation compared with controls. In addition, for bosutinib and nilotinib, a significant increase in aggregation after induction with arachidonic acid was detected. ATP-release and PFA-100 closure times were not influenced significantly by these three TKI. In contrast, dasatinib demonstrated a concentration-dependent inhibition of collagen-induced aggregation and ATP release and a significant prolongation of the PFA-100 closure time with the collagen/epinephrine cartridge. Aggregation and ATP release by other agonists as well as closure time with the collagen/ADP cartridge were not influenced significantly. In conclusion, we clearly show a concentration-dependent inhibition of collagen-induced platelet function in WB by dasatinib confirming prior results obtained in platelet-rich plasma. Bosutinib and nilotinib exerted no impairment of platelet activation. On the contrary, both TKI showed signs of platelet activation. When comparing our results with existing data, imatinib in therapeutic relevant concentrations does not impair platelet function.
Collapse
Affiliation(s)
- Falk Eckart
- Department of Paediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Josephine T Tauer
- Department of Dentistry, McGill University, Shriners Hospital for Children, Montreal, Canada
| | - Meinolf Suttorp
- Paediatric Haematology and Oncology, Medical Faculty, TU Dresden, Germany
| | - Ralf Knöfler
- Department of Paediatrics, University Hospital Carl Gustav Carus, Dresden, Germany.,Paediatric Haematology and Oncology, Medical Faculty, TU Dresden, Germany
| |
Collapse
|
13
|
Fast-Fed Variability: Insights into Drug Delivery, Molecular Manifestations, and Regulatory Aspects. Pharmaceutics 2022; 14:pharmaceutics14091807. [PMID: 36145555 PMCID: PMC9505616 DOI: 10.3390/pharmaceutics14091807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/26/2022] Open
Abstract
Among various drug administration routes, oral drug delivery is preferred and is considered patient-friendly; hence, most of the marketed drugs are available as conventional tablets or capsules. In such cases, the administration of drugs with or without food has tremendous importance on the bioavailability of the drugs. The presence of food may increase (positive effect) or decrease (negative effect) the bioavailability of the drug. Such a positive or negative effect is undesirable since it makes dosage estimation difficult in several diseases. This may lead to an increased propensity for adverse effects of drugs when a positive food effect is perceived. However, a negative food effect may lead to therapeutic insufficiency for patients suffering from life-threatening disorders. This review emphasizes the causes of food effects, formulation strategies to overcome the fast-fed variability, and the regulatory aspects of drugs with food effects, which may open new avenues for researchers to design products that may help to eliminate fast-fed variability.
Collapse
|
14
|
Gopakumar L, Sreeranganathan M, Chappan S, James S, Gowd GS, Manohar M, Sukumaran A, Unni AKK, Nair SV, Koyakutty M. Enhanced oral bioavailability and antitumor therapeutic efficacy of sorafenib administered in core-shell protein nanoparticle. Drug Deliv Transl Res 2022; 12:2824-2837. [PMID: 35678961 DOI: 10.1007/s13346-022-01142-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2022] [Indexed: 12/17/2022]
Abstract
Orally delivered molecularly targeted small-molecule drugs play a significant role in managing cancer as a chronic disease. However, due to the poor oral bioavailability of some of these molecules, high-dose administration is required leading to dose-limiting toxicity especially when delivered daily for a long duration. Here, we report an oral nanoformulation for small-molecule multi-kinase inhibitor, sorafenib tosylate, showing nearly two fold enhancement in the oral bioavailability and enhanced therapeutic efficacy with a better safety profile compared to the current clinical formulation. Using a scalable process involving high-pressure homogenization, sorafenib was loaded into an albumin nanocarrier at ~ 50 w/w%. Repeated preparation of gram-scale batches (n = 7) showed an average particle size of 180 ± 9 nm, encapsulation efficiency of 95 [Formula: see text] 2%, and drug-loading efficiency of 48 [Formula: see text] 0.7%. Further, surface engineering with a mucoadhesive layer on nanoparticles (referred to as ABSORF) resulted in the final size of 299 ± 38 nm and surface charge of -54 ± 8 mV. Single-dose and multidose pharmacokinetic studies showed two fold enhancement in the plasma concentration of sorafenib compared to current clinically used tablets. Antitumor efficacy studies in the orthotopic rat liver tumor model showed significant tumor regression (p value = 0.0037) even at half dose (eqv. to 200 mg of human equivalent dose) of ABSORF compared to clinical control (eqv. to 400 mg). The biodistribution of sorafenib from ABSORF was higher in the liver; however, liver and kidney function test parameters were comparable with that of the 2 × dose of clinical control. No abnormalities and signs of toxicity were seen in the histopathological analysis for ABSORF-treated animals. In summary, we demonstrate a scalable preparation of small-molecule drug-loaded nanoformulation with approximately two fold enhancement in oral bioavailability, improved antitumor efficacy, and acceptable toxicity profile.
Collapse
Affiliation(s)
- Lekshmi Gopakumar
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Maya Sreeranganathan
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Shalin Chappan
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Sneha James
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Genekehal Siddaramana Gowd
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Maneesh Manohar
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Arya Sukumaran
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Ayalur Kodakara Kochugovindan Unni
- Central Lab Animal Facility, Amrita Institute of Medical Sciences and Research Centre, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Shantikumar Vasudevan Nair
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Manzoor Koyakutty
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India.
| |
Collapse
|
15
|
Lipton JH, Brümmendorf TH, Gambacorti-Passerini C, Garcia-Gutiérrez V, Deininger MW, Cortes JE. Long-term safety review of tyrosine kinase inhibitors in chronic myeloid leukemia - What to look for when treatment-free remission is not an option. Blood Rev 2022; 56:100968. [DOI: 10.1016/j.blre.2022.100968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
|
16
|
Avila-Castano K, Morgenstern-Kaplan D, Carrillo-Martin I, Gonzalez-Estrada A. Bosutinib-Induced Stevens-Johnson Syndrome and Evidence of Tolerance to a Structurally Dissimilar Tyrosine Kinase Inhibitor. Cureus 2022; 14:e23288. [PMID: 35449618 PMCID: PMC9013475 DOI: 10.7759/cureus.23288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 11/05/2022] Open
Abstract
Bosutinib is a breakpoint cluster region-Abelson gene (BCR-ABL) tyrosine kinase inhibitor (TKI) used for the treatment of chronic myeloid leukemia (CML). Patients on TKIs may develop severe cutaneous adverse reactions (SCARs). A 73-year-old female with CML treated with a second-generation TKI (bosutinib) was evaluated after developing fever and a maculopapular exanthema with skin-peeling affecting her lips, oral mucosa, and genitals 10 days after starting the medication. She required hospitalization, bosutinib discontinuation, and management with intravenous corticosteroids and antibiotics. Patch testing was contraindicated due to the severity of the reaction. The patient was subsequently challenged with first-generation TKI along with careful observation without any adverse reactions. She has not reported any adverse reactions while on therapy in the last two years. In patients who have suffered from SCARs, the suspected triggers must be avoided in all instances. In some cases, the underlying condition limits the use of alternative agents, but low-concentration patch testing may help guide alternative therapies within the same medication group. There appears to be a low cross-reactivity among generational TKIs, and our patient benefited from treatment with a structurally dissimilar alternative TKI for her CML.
Collapse
|
17
|
Cordo’ V, Meijer MT, Hagelaar R, de Goeij-de Haas RR, Poort VM, Henneman AA, Piersma SR, Pham TV, Oshima K, Ferrando AA, Zaman GJR, Jimenez CR, Meijerink JPP. Phosphoproteomic profiling of T cell acute lymphoblastic leukemia reveals targetable kinases and combination treatment strategies. Nat Commun 2022; 13:1048. [PMID: 35217681 PMCID: PMC8881579 DOI: 10.1038/s41467-022-28682-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
Protein kinase inhibitors are amongst the most successful cancer treatments, but targetable kinases activated by genomic abnormalities are rare in T cell acute lymphoblastic leukemia. Nevertheless, kinases can be activated in the absence of genetic defects. Thus, phosphoproteomics can provide information on pathway activation and signaling networks that offer opportunities for targeted therapy. Here, we describe a mass spectrometry-based global phosphoproteomic profiling of 11 T cell acute lymphoblastic leukemia cell lines to identify targetable kinases. We report a comprehensive dataset consisting of 21,000 phosphosites on 4,896 phosphoproteins, including 217 kinases. We identify active Src-family kinases signaling as well as active cyclin-dependent kinases. We validate putative targets for therapy ex vivo and identify potential combination treatments, such as the inhibition of the INSR/IGF-1R axis to increase the sensitivity to dasatinib treatment. Ex vivo validation of selected drug combinations using patient-derived xenografts provides a proof-of-concept for phosphoproteomics-guided design of personalized treatments.
Collapse
Affiliation(s)
- Valentina Cordo’
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mariska T. Meijer
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rico Hagelaar
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Richard R. de Goeij-de Haas
- grid.12380.380000 0004 1754 9227OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Vera M. Poort
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alex A. Henneman
- grid.12380.380000 0004 1754 9227OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Sander R. Piersma
- grid.12380.380000 0004 1754 9227OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Thang V. Pham
- grid.12380.380000 0004 1754 9227OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Koichi Oshima
- grid.239585.00000 0001 2285 2675Institute for Cancer Genetics, Columbia University Medical Center, New York, NY USA
| | - Adolfo A. Ferrando
- grid.239585.00000 0001 2285 2675Institute for Cancer Genetics, Columbia University Medical Center, New York, NY USA
| | | | - Connie R. Jimenez
- grid.12380.380000 0004 1754 9227OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Jules P. P. Meijerink
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands ,Present Address: Acerta Pharma (member of the AstraZeneca group), Oss, The Netherlands
| |
Collapse
|
18
|
Transport and metabolism of tyrosine kinase inhibitors associated with chronic myeloid leukemia therapy: a review. Mol Cell Biochem 2022; 477:1261-1279. [DOI: 10.1007/s11010-022-04376-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022]
|
19
|
Physiologically based pharmacokinetic model predictions of natural product-drug interactions between goldenseal, berberine, imatinib and bosutinib. Eur J Clin Pharmacol 2022; 78:597-611. [DOI: 10.1007/s00228-021-03266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022]
|
20
|
Management of drug–drug interactions of targeted therapies for haematological malignancies and triazole antifungal drugs. THE LANCET HAEMATOLOGY 2022; 9:e58-e72. [DOI: 10.1016/s2352-3026(21)00232-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022]
|
21
|
Pagan FL, Torres‐Yaghi Y, Hebron ML, Wilmarth B, Turner RS, Matar S, Ferrante D, Ahn J, Moussa C. Safety, target engagement, and biomarker effects of bosutinib in dementia with Lewy bodies. ALZHEIMER'S & DEMENTIA: TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2022; 8:e12296. [PMID: 35662832 PMCID: PMC9157583 DOI: 10.1002/trc2.12296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fernando L. Pagan
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
- MedStar Georgetown University Hospital Movement Disorders Clinic Department of Neurology Washington DC USA
| | - Yasar Torres‐Yaghi
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
- MedStar Georgetown University Hospital Movement Disorders Clinic Department of Neurology Washington DC USA
| | - Michaeline L. Hebron
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| | - Barbara Wilmarth
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
- MedStar Georgetown University Hospital Movement Disorders Clinic Department of Neurology Washington DC USA
| | - R. Scott Turner
- Memory Disorders Program Department of Neurology Georgetown University Medical Center Washington DC USA
| | - Sara Matar
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| | - Dalila Ferrante
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| | - Jaeil Ahn
- Department of Biostatistics Bioinformatics and Biomathematics Georgetown University Medical Center Washington DC USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| |
Collapse
|
22
|
Kazim N, Yen A. Evidence of off-target effects of bosutinib that promote retinoic acid-induced differentiation of non-APL AML cells. Cell Cycle 2021; 20:2638-2651. [PMID: 34836491 DOI: 10.1080/15384101.2021.2005275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In the present study, we determined the effects of the Src family kinase (SFK) inhibitor, Bosutinib, and the engineered loss of the Lyn SFK on all-trans retinoic acid-induced leukemic cell differentiation. Retinoic acid (RA) is an embryonic morphogen and dietary factor that demonstrates chemotherapeutic efficacy in inducing differentiation of a non-APL AML cell model, the HL-60 human myeloblastic (FAB-M2) leukemia cell line, via activation of a novel signalsome containing an ensemble of signaling molecules that drive differentiation. Bosutinib is an inhibitor of SFKs used to treat myeloid leukemias where prominent high expression of SFKs, in particular Lyn, has been observed. Using either Bosutinib or loss of Lyn expression due to shRNA promoted RA-induced phenotypic differentiation, G0 arrest, and respiratory burst (functional differentiation) of HL-60 cells. Signaling events putatively seminal to RA-induced differentiation, the expression of Fgr, Cbl, Slp-76 and Vav, and the phosphorylation of c-Raf (pS259), Vav (p-tyr), and Slp76 (p-tyr) were not inhibited by Bosutinib or loss of Lyn. Nor was RA-induced upregulation of p-tyr phosphorylation of p47phox, a member of the NADPH complex that produces ROS, a putative phosphorylation dependent signaling regulator. Surprisingly, Bosutinib still works in the absence of Lyn to enhance RA-induced differentiation and neither compromised RA-induced expression, nor phosphorylation of signaling molecules that drive differentiation. These findings suggested there is a novel, off-target, Lyn-independent effect of Bosutinib that is of therapeutic significance to differentiation therapy.
Collapse
Affiliation(s)
- Noor Kazim
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Andrew Yen
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Gidaro A, Salvi E, Carraro MC, Rossi RS, Castelli R. Concomitant use of Tyrosine-kinase Inhibitor and Mepolizumab in Asthma secondary to Chronic Myeloid Leukemia with hypereosinophilia. Antiinflamm Antiallergy Agents Med Chem 2021; 20:389-393. [PMID: 34420510 DOI: 10.2174/1871523020999210820091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Asthma and hypereosinophilia have been treated with different therapeutics in the past. Some of them appear to be more effective in symptoms resolution and decreasing eosinophilic count. CASE PRESENTATION We report here an unusual case of asthma with hypereosinophilia secondary to Chronic Myeloid Leukemia (CML) with high prevalence of eosinophilic infiltrate, treated simultaneously with an anti-IL-5 antibody (Mepolizumab) and Tyrosine-kinase Inhibitors (TKI: Imatinib and Bosutinib) for three years. The patient showed a promising reduction of pulmonary exacerbations and good control of CML without developing side effects. CONCLUSION We hope that this finding could inspire further studies on the efficacy and safety of the concomitant use of anti-IL-5 and TKI.
Collapse
Affiliation(s)
- Antonio Gidaro
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan. Italy
| | - Emanuele Salvi
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan. Italy
| | - Maria Cristina Carraro
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan. Italy
| | - Roberta Simona Rossi
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan. Italy
| | - Roberto Castelli
- University of Sassari Department of Medical, Surgical and Experimental Science University Hospital of Sassari. Italy
| |
Collapse
|
24
|
Smith DP, Oechsle O, Rawling MJ, Savory E, Lacoste AMB, Richardson PJ. Expert-Augmented Computational Drug Repurposing Identified Baricitinib as a Treatment for COVID-19. Front Pharmacol 2021; 12:709856. [PMID: 34393789 PMCID: PMC8356560 DOI: 10.3389/fphar.2021.709856] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
The onset of the 2019 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic necessitated the identification of approved drugs to treat the disease, before the development, approval and widespread administration of suitable vaccines. To identify such a drug, we used a visual analytics workflow where computational tools applied over an AI-enhanced biomedical knowledge graph were combined with human expertise. The workflow comprised rapid augmentation of knowledge graph information from recent literature using machine learning (ML) based extraction, with human-guided iterative queries of the graph. Using this workflow, we identified the rheumatoid arthritis drug baricitinib as both an antiviral and anti-inflammatory therapy. The effectiveness of baricitinib was substantiated by the recent publication of the data from the ACTT-2 randomised Phase 3 trial, followed by emergency approval for use by the FDA, and a report from the CoV-BARRIER trial confirming significant reductions in mortality with baricitinib compared to standard of care. Such methods that iteratively combine computational tools with human expertise hold promise for the identification of treatments for rare and neglected diseases and, beyond drug repurposing, in areas of biological research where relevant data may be lacking or hidden in the mass of available biomedical literature.
Collapse
Affiliation(s)
| | | | | | - Ed Savory
- BenevolentAI, London, United Kingdom
| | | | | |
Collapse
|
25
|
Chuah C, Koh LP, Numbenjapon T, Zang DY, Ong KH, Do YR, Ohkura M, Ono C, Viqueira A, Cortes JE, Brümmendorf TH. Efficacy and safety of bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia in the Asian subpopulation of the phase 3 BFORE trial. Int J Hematol 2021; 114:65-78. [PMID: 33851349 DOI: 10.1007/s12185-021-03144-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Abstract
Bosutinib is approved in the United States, Europe, Japan, and other countries for treatment of newly diagnosed chronic phase (CP) chronic myeloid leukemia (CML), and CML resistant/intolerant to prior therapy. In the phase 3 BFORE trial (Clinicaltrials.gov, NCT02130557), patients were randomized 1:1 to first-line bosutinib or imatinib 400 mg once daily. We examined efficacy, safety, and patient-reported outcomes of bosutinib vs imatinib and pharmacokinetics of bosutinib in the Asian (n = 33 vs 34) and non-Asian (n = 235 vs 234) subpopulations of BFORE followed for at least 24 months. At the data cutoff date, 72.7 vs 66.7% of Asian and 70.6 vs 66.4% of non-Asian patients remained on treatment. The major molecular response rate at 24 months favored bosutinib vs imatinib among Asian (63.6 vs 38.2%) and non-Asian (60.9 vs 52.6%) patients, as did the complete cytogenetic response rate by 24 months (86.7 vs 76.7%, 81.5 vs 76.3%). Treatment-emergent adverse events in both subpopulations were consistent with the primary BFORE results. Trough bosutinib concentration levels tended to be higher in Asian patients. Health-related quality of life was maintained after 12 months of bosutinib in both subpopulations. These results support bosutinib as a first-line treatment option in Asian patients with CP CML.
Collapse
Affiliation(s)
- Charles Chuah
- Singapore General Hospital, Duke-NUS Medical School, 20 College Road, Singapore, 169856, Singapore.
| | - Liang Piu Koh
- National University Cancer Institute, Singapore, Singapore
| | - Tontanai Numbenjapon
- Phramongkutklao Hospital, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Dae Young Zang
- Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | | | - Young Rok Do
- Dongsan Medical Center, Keimyung University, Daegu, Republic of Korea
| | | | | | | | - Jorge E Cortes
- Georgia Cancer Center at Augusta University, Augusta, GA, USA
| | | |
Collapse
|
26
|
Mueller-Schoell A, Groenland SL, Scherf-Clavel O, van Dyk M, Huisinga W, Michelet R, Jaehde U, Steeghs N, Huitema ADR, Kloft C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur J Clin Pharmacol 2021; 77:441-464. [PMID: 33165648 PMCID: PMC7935845 DOI: 10.1007/s00228-020-03014-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE This review provides an overview of the current challenges in oral targeted antineoplastic drug (OAD) dosing and outlines the unexploited value of therapeutic drug monitoring (TDM). Factors influencing the pharmacokinetic exposure in OAD therapy are depicted together with an overview of different TDM approaches. Finally, current evidence for TDM for all approved OADs is reviewed. METHODS A comprehensive literature search (covering literature published until April 2020), including primary and secondary scientific literature on pharmacokinetics and dose individualisation strategies for OADs, together with US FDA Clinical Pharmacology and Biopharmaceutics Reviews and the Committee for Medicinal Products for Human Use European Public Assessment Reports was conducted. RESULTS OADs are highly potent drugs, which have substantially changed treatment options for cancer patients. Nevertheless, high pharmacokinetic variability and low treatment adherence are risk factors for treatment failure. TDM is a powerful tool to individualise drug dosing, ensure drug concentrations within the therapeutic window and increase treatment success rates. After reviewing the literature for 71 approved OADs, we show that exposure-response and/or exposure-toxicity relationships have been established for the majority. Moreover, TDM has been proven to be feasible for individualised dosing of abiraterone, everolimus, imatinib, pazopanib, sunitinib and tamoxifen in prospective studies. There is a lack of experience in how to best implement TDM as part of clinical routine in OAD cancer therapy. CONCLUSION Sub-therapeutic concentrations and severe adverse events are current challenges in OAD treatment, which can both be addressed by the application of TDM-guided dosing, ensuring concentrations within the therapeutic window.
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program, PharMetrX, Berlin/Potsdam, Germany
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Oliver Scherf-Clavel
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Robin Michelet
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Kloft
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.
| |
Collapse
|
27
|
Huang TT, Wang X, Qiang SJ, Zhao ZN, Wu ZX, Ashby CR, Li JZ, Chen ZS. The Discovery of Novel BCR-ABL Tyrosine Kinase Inhibitors Using a Pharmacophore Modeling and Virtual Screening Approach. Front Cell Dev Biol 2021; 9:649434. [PMID: 33748144 PMCID: PMC7969810 DOI: 10.3389/fcell.2021.649434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
Chronic myelogenous leukemia (CML) typically results from a reciprocal translocation between chromosomes 9 and 22 to produce the bcr-abl oncogene that when translated, yields the p210 BCR-ABL protein in more than 90% of all CML patients. This protein has constitutive tyrosine kinase activity that activates numerous downstream pathways that ultimately produces uncontrolled myeloid proliferation. Although the use of the BCR-ABL tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, dasatinib, bosutinib, and ponatinib have increased the overall survival of CML patients, their use is limited by drug resistance and severe adverse effects. Therefore, there is the need to develop novel compounds that can overcome these problems that limit the use of these drugs. Therefore, in this study, we sought to find novel compounds using Hypogen and Hiphip pharmacophore models based on the structures of clinically approved BCR-ABL TKIs. We also used optimal pharmacophore models such as three-dimensional queries to screen the ZINC database to search for potential BCR-ABL inhibitors. The hit compounds were further screened using Lipinski’s rule of five, ADMET and molecular docking, and the efficacy of the hit compounds was evaluated. Our in vitro results indicated that compound ZINC21710815 significantly inhibited the proliferation of K562, BaF3/WT, and BaF3/T315I leukemia cells by inducing cell cycle arrest. The compound ZINC21710815 decreased the expression of p-BCR-ABL, STAT5, and Crkl and produced apoptosis and autophagy. Our results suggest that ZINC21710815 may be a potential BCR-ABL inhibitor that should undergo in vivo evaluation.
Collapse
Affiliation(s)
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Zhen-Nan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhuo-Xun Wu
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jia-Zhong Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
28
|
Sampaio MM, Santos MLC, Marques HS, Gonçalves VLDS, Araújo GRL, Lopes LW, Apolonio JS, Silva CS, Santos LKDS, Cuzzuol BR, Guimarães QES, Santos MN, de Brito BB, da Silva FAF, Oliveira MV, Souza CL, de Melo FF. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol 2021; 12:69-94. [PMID: 33680875 PMCID: PMC7918527 DOI: 10.5306/wjco.v12.i2.69] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm and was the first neoplastic disease associated with a well-defined genotypic anomaly - the presence of the Philadelphia chromosome. The advances in cytogenetic and molecular assays are of great importance to the diagnosis, prognosis, treatment, and monitoring of CML. The discovery of the breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) 1 fusion oncogene has revolutionized the treatment of CML patients by allowing the development of targeted drugs that inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein. Tyrosine kinase inhibitors (known as TKIs) are the standard therapy for CML and greatly increase the survival rates, despite adverse effects and the odds of residual disease after discontinuation of treatment. As therapeutic alternatives, the subsequent TKIs lead to faster and deeper molecular remissions; however, with the emergence of resistance to these drugs, immunotherapy appears as an alternative, which may have a cure potential in these patients. Against this background, this article aims at providing an overview on CML clinical management and a summary on the main targeted drugs available in that context.
Collapse
Affiliation(s)
- Mariana Miranda Sampaio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | | | - Glauber Rocha Lima Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Camilo Santana Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Mariana Novaes Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
29
|
Wang M, Du Q, Zuo L, Xue P, Lan C, Sun Z. Metabolism and Distribution of Novel Tumor Targeting Drugs In Vivo. Curr Drug Metab 2020; 21:996-1008. [PMID: 33183197 DOI: 10.2174/1389200221666201112110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND As a new tumor therapy, targeted therapy is becoming a hot topic due to its high efficiency and low toxicity. Drug effects of targeted tumor drugs are closely related to pharmacokinetics, so it is important to understand their distribution and metabolism in vivo. METHODS A systematic review of the literature on the metabolism and distribution of targeted drugs over the past 20 years was conducted, and the pharmacokinetic parameters of approved targeted drugs were summarized in combination with the FDA's drug instructions. Targeting drugs are divided into two categories: small molecule inhibitors and monoclonal antibodies. Novel targeting drugs and their mechanisms of action, which have been developed in recent years, are summarized. The distribution and metabolic processes of each drug in the human body are reviewed. RESULTS In this review, we found that the distribution and metabolism of small molecule kinase inhibitors (TKI) and monoclonal antibodies (mAb) showed different characteristics based on the differences of action mechanism and molecular characteristics. TKI absorbed rapidly (Tmax ≈ 1-4 h) and distributed in large amounts (Vd > 100 L). It was mainly oxidized and reduced by cytochrome P450 CYP3A4. However, due to the large molecular diameter, mAb was distributed to tissues slowly, and the volume of distribution was usually very low (Vd < 10 L). It was mainly hydrolyzed and metabolized into peptides and amino acids by protease hydrolysis. In addition, some of the latest drugs are still in clinical trials, and the in vivo process still needs further study. CONCLUSION According to the summary of the research progress of the existing targeting drugs, it is found that they have high specificity, but there are still deficiencies in drug resistance and safety. Therefore, the development of safer and more effective targeted drugs is the future research direction. Meanwhile, this study also provides a theoretical basis for clinical accurate drug delivery.
Collapse
Affiliation(s)
- Mengli Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Xue
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Lan
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
31
|
Indovina P, Forte IM, Pentimalli F, Giordano A. Targeting SRC Family Kinases in Mesothelioma: Time to Upgrade. Cancers (Basel) 2020; 12:cancers12071866. [PMID: 32664483 PMCID: PMC7408838 DOI: 10.3390/cancers12071866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant mesothelioma (MM) is a deadly tumor mainly caused by exposure to asbestos. Unfortunately, no current treatment is able to change significantly the natural history of the disease, which has a poor prognosis in the majority of patients. The non-receptor tyrosine kinase SRC and other SRC family kinase (SFK) members are frequently hyperactivated in many cancer types, including MM. Several works have indeed suggested that SFKs underlie MM cell proliferation, survival, motility, and invasion, overall affecting multiple oncogenic pathways. Consistently, SFK inhibitors effectively counteracted MM cancerous features at the preclinical level. Dasatinib, a multi-kinase inhibitor targeting SFKs, was also assessed in clinical trials either as second-line treatment for patients with unresectable MM or, more recently, as a neoadjuvant agent in patients with resectable MM. Here, we provide an overview of the molecular mechanisms implicating SFKs in MM progression and discuss possible strategies for a more successful clinical application of SFK inhibitors. Our aim is to stimulate discussion and further consideration of these agents in better designed preclinical and clinical studies to make the most of another class of powerful antitumoral drugs, which too often are lost in translation when applied to MM.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), I-80131 Naples, Italy
- Correspondence: (P.I.); (F.P.)
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
- Correspondence: (P.I.); (F.P.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| |
Collapse
|
32
|
Hsu PC, Yang CT, Jablons DM, You L. The Crosstalk between Src and Hippo/YAP Signaling Pathways in Non-Small Cell Lung Cancer (NSCLC). Cancers (Basel) 2020; 12:cancers12061361. [PMID: 32466572 PMCID: PMC7352956 DOI: 10.3390/cancers12061361] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022] Open
Abstract
The advancement of new therapies, including targeted therapies and immunotherapies, has improved the survival of non-small-cell lung cancer (NSCLC) patients in the last decade. Some NSCLC patients still do not benefit from therapies or encounter progressive disease during the course of treatment because they have intrinsic resistance, acquired resistance, or lack a targetable driver mutation. More investigations on the molecular biology of NSCLC are needed to find useful biomarkers for current therapies and to develop novel therapeutic strategies. Src is a non-receptor tyrosine kinase protein that interacts with cell surface growth factor receptors and the intracellular signaling pathway to maintain cell survival tumorigenesis in NSCLC. The Yes-associated protein (YAP) is one of the main effectors of the Hippo pathway and has been identified as a promoter of drug resistance, cancer progression, and metastasis in NSCLC. Here, we review studies that have investigated the activation of YAP as mediated by Src kinases and demonstrate that Src regulates YAP through three main mechanisms: (1) direct phosphorylation; (2) the activation of pathways repressing Hippo kinases; and (3) Hippo-independent mechanisms. Further work should focus on the efficacy of Src inhibitors in inhibiting YAP activity in NSCLC. In addition, future efforts toward developing potentially reasonable combinations of therapy targeting the Src–YAP axis using other therapies, including targeted therapies and/or immunotherapies, are warranted.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Cheng-Ta Yang
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - David M. Jablons
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
| | - Liang You
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
- Correspondence: ; Tel.: +1-415-476-6906
| |
Collapse
|
33
|
Adiwidjaja J, Boddy AV, McLachlan AJ. Potential for pharmacokinetic interactions between Schisandra sphenanthera and bosutinib, but not imatinib: in vitro metabolism study combined with a physiologically-based pharmacokinetic modelling approach. Br J Clin Pharmacol 2020; 86:2080-2094. [PMID: 32250458 DOI: 10.1111/bcp.14303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS This study aimed to investigate the potential interaction between Schisandra sphenanthera, imatinib and bosutinib combining in vitro and in silico methods. METHODS In vitro metabolism of imatinib and bosutinib using recombinant enzymes and human liver microsomes were investigated in the presence and absence of Schisandra lignans. Physiologically-based pharmacokinetic (PBPK) models for the lignans accounting for reversible and mechanism-based inhibitions and induction of CYP3A enzymes were built in the Simcyp Simulator (version 17) and evaluated for their capability to predict interactions with midazolam and tacrolimus. Their potential effect on systemic exposures of imatinib and bosutinib were predicted using PBPK in silico simulations. RESULTS Schisantherin A and schisandrol B, but not schisandrin A, potently inhibited CYP3A4-mediated metabolism of imatinib and bosutinib. All three compounds showed a strong reversible inhibition on CYP2C8 enzyme with ki of less than 0.5 μmol L-1 . The verified PBPK models were able to describe the increase in systemic exposure of midazolam and tacrolimus due to co-administration of S. sphenanthera, consistent with the reported changes in the corresponding clinical interaction study (AUC ratio of 2.0 vs 2.1 and 2.4 vs 2.1, respectively). The PBPK simulation predicted that at recommended dosing regimens of S. sphenanthera, co-administration would result in an increase in bosutinib exposure (AUC ratio 3.0) but not in imatinib exposure. CONCLUSION PBPK models for Schisandra lignans were successfully developed. Interaction between imatinib and Schisandra lignans was unlikely to be of clinical importance. Conversely, S. sphenanthera at a clinically-relevant dose results in a predicted three-fold increase in bosutinib systemic exposure.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Alan V Boddy
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Andrew J McLachlan
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
G. Lindström HJ, Friedman R. The effects of combination treatments on drug resistance in chronic myeloid leukaemia: an evaluation of the tyrosine kinase inhibitors axitinib and asciminib. BMC Cancer 2020; 20:397. [PMID: 32380976 PMCID: PMC7204252 DOI: 10.1186/s12885-020-06782-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic myeloid leukaemia is in principle a treatable malignancy but drug resistance is lowering survival. Recent drug discoveries have opened up new options for drug combinations, which is a concept used in other areas for preventing drug resistance. Two of these are (I) Axitinib, which inhibits the T315I mutation of BCR-ABL1, a main source of drug resistance, and (II) Asciminib, which has been developed as an allosteric BCR-ABL1 inhibitor, targeting an entirely different binding site, and as such does not compete for binding with other drugs. These drugs offer new treatment options. METHODS We measured the proliferation of KCL-22 cells exposed to imatinib-dasatinib, imatinib-asciminib and dasatinib-asciminib combinations and calculated combination index graphs for each case. Moreover, using the median-effect equation we calculated how much axitinib can reduce the growth advantage of T315I mutant clones in combination with available drugs. In addition, we calculated how much the total drug burden could be reduced by combinations using asciminib and other drugs, and evaluated which mutations such combinations might be sensitive to. RESULTS Asciminib had synergistic interactions with imatinib or dasatinib in KCL-22 cells at high degrees of inhibition. Interestingly, some antagonism between asciminib and the other drugs was present at lower degrees on inhibition. Simulations revealed that asciminib may allow for dose reductions, and its complementary resistance profile could reduce the risk of mutation based resistance. Axitinib, however, had only a minor effect on T315I growth advantage. CONCLUSIONS Given how asciminib combinations were synergistic in vitro, our modelling suggests that drug combinations involving asciminib should allow for lower total drug doses, and may result in a reduced spectrum of observed resistance mutations. On the other hand, a combination involving axitinib was not shown to be useful in countering drug resistance.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Axitinib/administration & dosage
- Cell Line, Tumor
- Computer Simulation
- Dasatinib/administration & dosage
- Drug Discovery/methods
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Humans
- Imatinib Mesylate/administration & dosage
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mutation
- Niacinamide/administration & dosage
- Niacinamide/analogs & derivatives
- Pyrazoles/administration & dosage
Collapse
Affiliation(s)
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, 391 82 Sweden
| |
Collapse
|
35
|
Hamid AB, Petreaca RC. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers (Basel) 2020; 12:cancers12040927. [PMID: 32283832 PMCID: PMC7226513 DOI: 10.3390/cancers12040927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Secondary resistant mutations in cancer cells arise in response to certain small molecule inhibitors. These mutations inevitably cause recurrence and often progression to a more aggressive form. Resistant mutations may manifest in various forms. For example, some mutations decrease or abrogate the affinity of the drug for the protein. Others restore the function of the enzyme even in the presence of the inhibitor. In some cases, resistance is acquired through activation of a parallel pathway which bypasses the function of the drug targeted pathway. The Catalogue of Somatic Mutations in Cancer (COSMIC) produced a compendium of resistant mutations to small molecule inhibitors reported in the literature. Here, we build on these data and provide a comprehensive review of resistant mutations in cancers. We also discuss mechanistic parallels of resistance.
Collapse
|
36
|
Is there enough evidence to classify cycloalkyl amine substituents as structural alerts? Biochem Pharmacol 2020; 174:113796. [PMID: 31926938 DOI: 10.1016/j.bcp.2020.113796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Basic amine substituents provide several pharmacokinetic benefits relative to acidic and neutral functional groups, and have been extensively utilized as substituents of choice in drug design. On occasions, basic amines have been associated with off-target pharmacology via interactions with aminergic G-protein coupled receptors, ion-channels, kinases, etc. Structural features associated with the promiscuous nature of basic amines have been well-studied, and can be mitigated in a preclinical drug discovery environment. In addition to the undesirable secondary pharmacology, α-carbon oxidation of certain secondary or tertiary cycloalkyl amines can generate electrophilic iminium and aldehyde metabolites, potentially capable of covalent adduction to proteins or DNA. Consequently, cycloalkyl amines have been viewed as structural alerts (SAs), analogous to functional groups such as anilines, furans, thiophenes, etc., which are oxidized to reactive metabolites that generate immunogenic haptens by covalently binding to host proteins. Detailed survey of the literature, however, suggests that cases where preclinical or clinical toxicity has been explicitly linked to the metabolic activation of a cycloalkyl amine group are extremely rare. Moreover, there is a distinct possibility for the formation of electrophilic iminium/amino-aldehyde metabolites with numerous cycloalkyl amine-containing marketed drugs, since stable ring cleavage products have been characterized as metabolites in human mass balance studies. In the present work, a critical analysis of the evidence for and against the role of iminium ions/aldehydes as mediators of toxicity is discussed with a special emphasis on often time overlooked detoxication pathways of these reactive species to innocuous metabolites.
Collapse
|
37
|
Pharmacology of tyrosine kinase inhibitors in chronic myeloid leukemia; a clinician's perspective. ACTA ACUST UNITED AC 2020; 28:371-385. [PMID: 31900888 DOI: 10.1007/s40199-019-00321-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/17/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE In this review, we have summarized the pharmacokinetics, pharmacodynamics and adverse effects of imatinib, dasatinib, nilotinib, bosutinib, ponatinib and radotinib with focus on pharmacogenomic studies with clinical end points. We have discussed the key phase 3 trials of tyrosine kinase inhibitors (TKI) comparing with each other, treatment free remission (TFR) and selection of TKI. Upcoming concepts and related trials in the management of chronic myeloid leukemia (CML) along with future directions have been touched upon. EVIDENCE ACQUISITION PubMed, Embase, Google, Cochrane library and Medline were searched to identify relevant literature for the review. Clinicaltrial.gov was searched for upcoming data and trials. RESULTS There are lot of gap in pharmacokinetics and pharmacodynamics of TKI. Imatinib appears to be the safest TKI. Newer TKI's achieve better achievement of therapeutic milestones, deeper molecular response and less chances of progression of CML compared to imatinib. Newer TKI appears to be better choice for achieving TFR. When the objective is survival, imatinib is still the TKI of choice. Primary prophylaxis with antiplatelet drugs for TKI having cardiovascular and thromboembolic side effects should be considered. CONCLUSION Pharmacogenetic data of TKI is still immature to guide in therapeutic decision making in clinical practice. There is need for further research in pharmacology and pharmacogenomics of newer TKI's. Randomized controlled trials are required to decide the optimum TKI for TFR. Safe and effective TKI for targeting T315I mutation, CML accelerated phase and blast crisis are an active area of research.
Collapse
|
38
|
Gambacorti-Passerini C, le Coutre P, Piazza R. The role of bosutinib in the treatment of chronic myeloid leukemia. Future Oncol 2019; 16:4395-4408. [PMID: 31833784 DOI: 10.2217/fon-2019-0555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The availability of several BCR-ABL1 tyrosine kinase inhibitor (TKI) options means physicians and patients can select the most appropriate treatment for a patient with chronic myeloid leukemia (CML). BCR-ABL TKI selection as a first- or later-line therapy is dependent on a number of clinical factors. Regular monitoring of patients, patient education, dose optimization and management of treatment-emergent adverse events are key aspects of long-term chronic myeloid leukemia management and contribute to improved clinical outcomes, quality of life, patient adherence and healthcare costs. This review provides an overview of the BCR-ABL1 TKI bosutinib, its pharmacology and clinical trials; discusses the impact of comorbidities and concomitant medications on bosutinib treatment selection; and suggests strategies for managing adverse events and dose optimization during bosutinib treatment.
Collapse
Affiliation(s)
| | - Philipp le Coutre
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zuBerlin, Germany.,Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Berlin, Germany
| | - Rocco Piazza
- Department of Medicine & Surgery, University of Milano-Bicocca, Italy
| |
Collapse
|
39
|
A phosphoproteomic signature in endothelial cells predicts vascular toxicity of tyrosine kinase inhibitors used in CML. Blood Adv 2019; 2:1680-1684. [PMID: 30021779 DOI: 10.1182/bloodadvances.2018020396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Key Points
Newer CML kinase inhibitors increase ischemia risk and are toxic to endothelial cells where they produce a proteomic toxicity signature. This phosphoproteomic EC toxicity signature predicts bosutinib to be safe, providing a potential screening tool for safer drug development.
Collapse
|
40
|
Nair PC, McKinnon RA, Miners JO. Computational Prediction of the Site(s) of Metabolism and Binding Modes of Protein Kinase Inhibitors Metabolized by CYP3A4. Drug Metab Dispos 2019; 47:616-631. [DOI: 10.1124/dmd.118.085167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/18/2019] [Indexed: 01/13/2023] Open
|
41
|
Won AM, Boddu P, Otun AO, Aponte-Wesson R, Chambers M. Chronic myelogenous leukemia presenting with osteonecrosis of the jaw as a rare but debilitating toxicity of dasatinib: a case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 126:e208-e211. [PMID: 29941400 DOI: 10.1016/j.oooo.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022]
Abstract
This report describes a case of osteonecrosis of the jaw developing after a routine dental extraction in a patient being treated with dasatinib, a tyrosine kinase inhibitor, for chronic myelogenous leukemia. As the role of tyrosine kinase inhibitors in cancer treatment expands, patterns of debilitating complications involving the osseous structures of the oral cavity have begun to emerge, and many long-term side effects of this promising therapy remain unknown. To limit the occurrence of known complications, health care providers and patients must be aware of the potential for serious complications of dasatinib, and appropriate protocols should be in place before administration of this medication.
Collapse
Affiliation(s)
- Alexander M Won
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Prajwal Boddu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adegbenga O Otun
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruth Aponte-Wesson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Chambers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
42
|
Effects of polymorphisms in NR1I2, CYP3A4, and ABC transporters on the steady-state plasma trough concentrations of bosutinib in Japanese patient with chronic myeloid leukemia. Med Oncol 2018; 35:90. [PMID: 29736778 DOI: 10.1007/s12032-018-1146-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
We investigated the effects of polymorphisms in NR1I2 (7635A>G, 8055C>T), CYP3A4 (20230G>A), ABCB1 (1199G>A, 1236C>T, 2677G>T/A, 3435C>T), and ABCG2 (421C>A) on the mean plasma trough concentrations (C0) of bosutinib at the steady-state in 30 Japanese patients with chronic myeloid leukemia. Bosutinib C0 values were monitored using high-performance liquid chromatography. The median coefficient of variation (CV) value of the bosutinib C0 for one patient (intrapatient) during bosutinib therapy was 25.9% (range: 7.66-44.24%). During bosutinib therapy, 17 of 30 patients received 300 mg/day bosutinib. The interpatient CV value for the bosutinib C0 after administration of 300 mg/day was 45.0%. There were no significant differences in the bosutinib C0 between genotypes for ABCB1, ABCG2, and CYP3A4 polymorphisms. However, the bosutinib C0 in patients with the NR1I2 7635G/G or 8055T/T genotype was significantly lower than those in patients with the 7635A allele or 8055C allele, respectively (P = 0.050 and 0.022, respectively). In addition, the bosutinib C0 in patients with both NR1I2 7635G/G and 8055T/T genotypes was significantly lower than those in patients with other genotypes (P = 0.022). Because patients with the NR1I2 7635G/G or 8055T/T genotype may have increased activity of pregnane X receptor-regulated genes and thereafter higher intestinal expression of CYP3A4 and ABC efflux drug transporters, these patients may have a lower bosutinib C0. Therefore, information on the NR1I2 genotype may be useful for achieving optimal systemic exposure of bosutinib.
Collapse
|
43
|
Abstract
During recent years, the therapeutic landscape in chronic myeloid leukemia (CML) has changed significantly. Since the clinical introduction of tyrosine kinase inhibitors (TKIs) approximately 15 years ago, patients' concerns have shifted from reduced life expectancy toward long-term toxicities of TKI, depth of remission, and the probability of successful treatment discontinuation. Patients with newly diagnosed CML in chronic phase (at least with a Sokal score not exceeding intermediate) may now expect an almost normal life expectancy. However, even if almost 30% of all newly diagnosed chronic-phase patients might eventually be facing the prospect of a life without CML-specific treatment, based on current knowledge, most, if not all, patients would have to undergo an expected minimum of 5-8 years of TKI treatment and the majority would face a life-long exposure to the side-effects of TKIs. At present, 5 different TKIs are licensed for the treatment of CML, that is, imatinib, which is a first-generation TKI (including its generic derivatives); nilotinib, dasatinib, and bosutinib, which are second-generation TKIs; as well as ponatinib, which is a so-called third-generation TKI and is supposed to be used for patients harboring the T315I-mutation. One of the important, yet unanswered questions is the choice of the best possible TKI upfront for each individual patient. Bosutinib is currently licensed for patients with CML after failure or intolerance of at least 2 other TKIs. It can also be prescribed according to label if after failure of the first TKI therapy, another option does not seem feasible. This review focuses on the existing data on clinical efficacy, tolerability, and side effects of bosutinib treatment in CML patients with the aim to identify patient characteristics and treatment scenarios most suitable for treatment with bosutinib.
Collapse
Affiliation(s)
- Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Center for Translational and Clinical Research Aachen (CTC-A), Medical Faculty at the RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
44
|
MacDonald RJ, Bunaciu RP, Ip V, Dai D, Tran D, Varner JD, Yen A. Src family kinase inhibitor bosutinib enhances retinoic acid-induced differentiation of HL-60 leukemia cells. Leuk Lymphoma 2018; 59:2941-2951. [PMID: 29569971 DOI: 10.1080/10428194.2018.1452213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The acute promyelocytic leukemia (APL) has been treated with all-trans retinoic acid (RA) for decades. While RA has largely been ineffective in non-APL AML subtypes, co-treatments combining RA and other agents are currently in clinical trials. Using the RA-responsive non-APL AML cell line HL-60, we tested the efficacy of the Src family kinase (SFK) inhibitor bosutinib on RA-induced differentiation. HL-60 has been recently shown to bear fidelity to a subtype of AML that respond to RA. We found that co-treatment with RA and bosutinib enhanced differentiation evidenced by increased CD11b expression, G1/G0 cell cycle arrest, and respiratory burst. Expression of the SFK members Fgr and Lyn was enhanced, while SFK activation was inhibited. Phosphorylation of several sites of c-Raf was increased and expression of AhR and p85 PI3K was enhanced. Expression of c-Cbl and mTOR was decreased. Our study suggests that SFK inhibition enhances RA-induced differentiation and may have therapeutic value in non-APL AML.
Collapse
Affiliation(s)
- Robert J MacDonald
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| | - Rodica P Bunaciu
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| | - Victoria Ip
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| | - David Dai
- b Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , NY , USA
| | - David Tran
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| | - Jeffrey D Varner
- b Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , NY , USA
| | - Andrew Yen
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| |
Collapse
|
45
|
Abstract
This last decade has yielded more robust development of cancer treatments and first-in-class agents than ever before. Since 2006, nearly one hundred new drugs have received regulatory approval for the treatment of hematological and solid organ neoplasms. Moreover, older conventional therapies have received approval for new clinical indications and are being used in combination with these newer small-molecule targeted treatments. The nervous system is vulnerable to many of the traditional cancer therapies, manifesting both already well-described acute and chronic toxicities. However, newer agents may produce toxicities that may seem indistinguishable from the underlying cancer. Early recognition of neurotoxicities from new therapeutics is vital to avoid irreversible neurological injury. This review focuses on cancer therapies in use in the last 10 years and approved by the FDA from January 2006 through January 1, 2017.
Collapse
Affiliation(s)
- Alicia M Zukas
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia
| | - David Schiff
- Department of Neurology, University of Virginia, Charlottesville, Virginia
- Department of Neurological Surgery, and Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
46
|
Development and Validation of a Simultaneous Quantification Method of 14 Tyrosine Kinase Inhibitors in Human Plasma Using LC-MS/MS. Ther Drug Monit 2017; 39:43-54. [PMID: 27861317 DOI: 10.1097/ftd.0000000000000357] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND A sensitive liquid chromatography coupled with tandem mass spectrometry (MS/MS) method for the analysis in a small volume of plasma of 14 tyrosine kinase inhibitors currently used (imatinib, dasatinib, ibrutinib, ponatinib, trametinib, sunitinib, cobimetinib, dabrafenib, erlotinib, lapatinib, nilotinib, bosutinib, sorafenib, and vemurafenib) has been developed and validated. This multianalyte liquid chromatography coupled with MS/MS assay is of interest for anticancer drug combination therapy. METHODS After a simple protein precipitation of plasma samples, the chromatographic separation was performed using an ultra performance liquid chromatography system coupled with MS/MS in a positive ionization mode. The mobile phase consisted of a gradient elution of 10 mmol/L formate ammonium buffer containing 0.1% (vol/vol) formic acid (phase A) and acetonitrile with 0.1% (vol/vol) formic acid (phase B) at a flow rate of 300 μL/min. RESULTS The analysis time was 5.0 minutes per run, and all analytes and internal standard eluted within 1.45-1.79 minutes. The calibration curves were linear over the range from 1 to 500 ng/mL for bosutinib, cobimetinib, dasatinib, ibrutinib, and trametinib, from 5 to 500 ng/mL for ponatinib and sunitinib; from 50 to 2500 ng/mL for lapatinib; from 750 to 100,000 ng/mL for vemurafenib, and from 10 to 2500 ng/mL for dabrafenib, erlotinib, imatinib, nilotinib, and sorafenib, with coefficients of correlation above 0.99 for all analytes. The intra- and interday imprecisions were below 14.36%. CONCLUSIONS This method was successfully applied to therapeutic drug monitoring in clinical practice.
Collapse
|
47
|
Hsyu PH, Pignataro DS, Matschke K. Absolute Bioavailability of Bosutinib in Healthy Subjects From an Open-Label, Randomized, 2-Period Crossover Study. Clin Pharmacol Drug Dev 2017; 7:373-381. [PMID: 29058816 DOI: 10.1002/cpdd.396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022]
Abstract
This study evaluated the absolute bioavailability of bosutinib and assessed its safety and tolerability after single-dose oral and intravenous administration. In this phase 1 open-label, 2-sequence, 2-period crossover study, healthy, fed subjects aged 18-55 years were randomized to 1 of 2 treatment sequences (n = 7/sequence): oral bosutinib (100 mg × 5) followed by intravenous bosutinib (120 mg in approximately 240 mL over 1 hour), with a ≥14-day washout, or intravenous bosutinib and then oral bosutinib. Results of plasma pharmacokinetics analyses demonstrated that exposure to intravenous bosutinib was 3-fold higher than for oral bosutinib (16.2 and 5.5 ng·h/mL/mg, respectively), and mean terminal half-life was similar (35.5 and 31.7 hours). The ratio of adjusted geometric means (90%CI) for the dose-normalized area under the plasma concentration-time profile (AUC0-∞ /D) was 33.85% (30.65%-37.38%). Most treatment-emergent adverse events (AEs) were mild in severity. Gastrointestinal (GI) AEs occurred in 9 of 13 subjects given oral bosutinib, whereas no subjects given intravenous bosutinib experienced GI AEs, suggesting bosutinib present in the GI tract had an effect. Bosutinib exhibited an absolute bioavailability of 33.85% based on the ratio of AUC0-∞ /D. Both oral and intravenous bosutinib were safe and well tolerated in healthy, fed adult subjects.
Collapse
|
48
|
Clinical trial simulations in paediatric oncology: A feasibility study from the Innovative Therapies for Children with Cancer Consortium. Eur J Cancer 2017; 85:78-85. [PMID: 28892776 DOI: 10.1016/j.ejca.2017.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/27/2017] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Paediatric dose-finding studies are challenging to perform due to ethical reasons, the limited number of available patients and restricted number of blood samples. In certain cases, the adult pharmacokinetic (PK) exposure can be used as target for dose finding in paediatrics. The aim of this study was to investigate the performance of a paediatric phase I dose-finding clinical trial in silico. METHODS Using an adult pharmacokinetic model, clinical trial simulations were performed to determine the power of a proposed clinical trial design. Power was defined as the fraction of 1000 trials with an area under the plasma concentration-time curve at steady-state (AUC0-24,SS) within ±20% of the adult geometric mean AUC0-24,SS. Different scenarios were compared to optimise the design of the trial. To show the potential of this framework for similar compounds, the current simulation method was also evaluated with adult and paediatric data from literature on sunitinib. RESULTS At the starting dose of 300 mg/m2, the power of the trial design was 66.9%. Power did not improve by dose escalation to 350 mg/m2 (65.3%). Power increased to 78.9% with inclusion of 10 patients per trial. Paediatric sunitinib PK data were adequately predicted from adult data with a mean prediction error of 1.80%. CONCLUSION The performance of PK-based clinical trials in paediatrics can be predicted and optimised through PK modelling and simulation. Application of this approach enables clinical trials in paediatrics to be performed as efficiently as possible while protecting the child from unnecessary harm.
Collapse
|
49
|
Verheijen RB, Yu H, Schellens JHM, Beijnen JH, Steeghs N, Huitema ADR. Practical Recommendations for Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin Pharmacol Ther 2017; 102:765-776. [PMID: 28699160 PMCID: PMC5656880 DOI: 10.1002/cpt.787] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 01/16/2023]
Abstract
Despite the fact that pharmacokinetic exposure of kinase inhibitors (KIs) is highly variable and clear relationships exist between exposure and treatment outcomes, fixed dosing is still standard practice. This review aims to summarize the available clinical pharmacokinetic and pharmacodynamic data into practical guidelines for individualized dosing of KIs through therapeutic drug monitoring (TDM). Additionally, we provide an overview of prospective TDM trials and discuss the future steps needed for further implementation of TDM of KIs.
Collapse
Affiliation(s)
- Remy B Verheijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Huixin Yu
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Jan H M Schellens
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, Utrecht University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
50
|
Coiras M, Ambrosioni J, Cervantes F, Miró JM, Alcamí J. Tyrosine kinase inhibitors: potential use and safety considerations in HIV-1 infection. Expert Opin Drug Saf 2017; 16:547-559. [PMID: 28387147 DOI: 10.1080/14740338.2017.1313224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Infection caused by HIV-1 is nowadays a chronic disease due to a highly efficient antiretroviral treatment that is nevertheless, unable to eliminate the virus from the organism. New strategies are necessary in order to impede the formation of the viral reservoirs, responsible for the failure of the antiretroviral treatment to cure the infection. Areas covered: The purpose of this review is to discuss the possibility of using tyrosine kinase inhibitors (TKIs) for the treatment of HIV-1 infection. These inhibitors are successfully used in patients with distinct cancers such as chronic myeloid leukemia. The most relevant papers have been selected and commented. Expert opinion: The family of TKIs are directed against the activation of tyrosine kinases from the Src family. Some of these kinases are essential for the activation of CD4 + T cells, the major target of HIV-1. During acute or primary infection the CD4 + T cells are massively activated, which is mostly responsible for the generation of the reservoirs, the spread of the infection and the destruction of activated CD4 + T cells, infected or not. Consequently, we discuss the possibility of using TKIs as adjuvant of the antiretroviral treatment against HIV-1 infection mostly, but not exclusively, during the acute/recent phase.
Collapse
Affiliation(s)
- Mayte Coiras
- a AIDS Immunopathology Unit , National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| | - Juan Ambrosioni
- b Infectious Diseases Service , AIDS Research Group, Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | | | - José M Miró
- b Infectious Diseases Service , AIDS Research Group, Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - José Alcamí
- a AIDS Immunopathology Unit , National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|