1
|
Wu T, Huang J, Li Y, Guo Y, Wang H, Zhang Y. Prenatal acetaminophen exposure and the developing ovary: Time, dose, and course consequences for fetal mice. Food Chem Toxicol 2024; 189:114679. [PMID: 38657942 DOI: 10.1016/j.fct.2024.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Acetaminophen is an emerging endocrine disrupting chemical and has been detected in various natural matrices. Numerous studies have documented developmental toxicity associated with prenatal acetaminophen exposure (PAcE). In this study, we established a PAcE Kunming mouse model at different time (middle pregnancy and third trimester), doses (low, middle, high) and courses (single or multi-) to systematically investigate their effects on fetal ovarian development. The findings indicated PAcE affected ovarian development, reduced fetal ovarian oocyte number and inhibited cell proliferation. A reduction in mRNA expression was observed for genes associated with oocyte markers (NOBOX and Figlα), follicular development markers (BMP15 and GDF9), and pre-granulosa cell steroid synthase (SF1 and StAR). Notably, exposure in middle pregnancy, high dose, multi-course resulted in the most pronounced inhibition of oocyte development; exposure in third trimester, high dose and multi-course led to the most pronounced inhibition of follicular development; and in third trimester, low dose and single course, the inhibition of pre-granulosa cell function was most pronounced. Mechanistic investigations revealed that PAcE had the most pronounced suppression of the ovarian Notch signaling pathway. Overall, PAcE caused fetal ovarian multicellular toxicity and inhibited follicular development with time, dose and course differences.
Collapse
Affiliation(s)
- Tiancheng Wu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Huang
- Department of Otorhinolaryngology and HN Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yating Li
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Wuhan, 430071, China; Clinical Research Center for Reproductive Science and Birth Health of Wuhan, Wuhan, 430071, China.
| |
Collapse
|
2
|
Zhang X, Li Z. Assessing chronic gestational exposure to environmental chemicals in pregnant women: Advancing the co-PBK model. ENVIRONMENTAL RESEARCH 2024; 247:118160. [PMID: 38199464 DOI: 10.1016/j.envres.2024.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/07/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Vulnerable populations, such as pregnant women and their fetuses, confront potential health risks due to exposure to environmental toxic compounds. Computational methods have been popular in assessing chemical exposure to populations, contrasting with traditional cohort studies for human biomonitoring. This study proposes a screening-level approach based on physiologically based kinetic (PBK) modeling to evaluate the steady-state exposure of pregnant women to environmental chemicals throughout pregnancy. To exemplify the modeling application, naphthalene was chosen. Simulation results indicated that maternal fat exhibited significant bioaccumulation potential, with the log-transformed BTF of naphthalene at 0.51 mg kg-1 per mg d-1 in the steady state. The placenta was primarily exposed to 0.83 mg/d naphthalene for a 75.2 kg pregnant woman, considering all exposure routes. In the fetal structure, single-organ fetal PBK modeling estimated a naphthalene exposure of 123.64 mg/d to the entire fetus, while multiple-organ fetal PBK modeling further revealed the bioaccumulation highest in fat tissue. The liver identified as the vital organ for metabolism, kBioT,LiverM was demonstrated with the highest sensitivity among rate constants in the maternal body. Furthermore, the first-order kinetic rate constants related to the placenta and blood were found to impact the distribution process of naphthalene in the fetus, influencing gestational exposure. In conclusion, urgent attention is needed to develop a computational biomonitoring tool for assessing toxic chemical exposure in vulnerable populations.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
3
|
Chen Y, Ke M, Fang W, Jiang Y, Lin R, Wu W, Huang P, Lin C. Physiologically based pharmacokinetic modeling to predict maternal pharmacokinetics and fetal carbamazepine exposure during pregnancy. Eur J Pharm Sci 2024; 194:106707. [PMID: 38244810 DOI: 10.1016/j.ejps.2024.106707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Carbamazepine is an antiepileptic drug commonly used in pregnant women, during which the physiological changes may affect its efficacy. The aim of this study was to establish a physiologically based pharmacokinetic (PBPK) model of carbamazepine and its active metabolite carbamazepine-10,11-epoxide, and simulate maternal and fetal pharmacokinetic changes of carbamazepine and carbamazepine-10,11-epoxide in different trimesters and propose dose adjustment. We established pregnancy PBPK models for carbamazepine and carbamazepine-10,11-epoxide in PK-Sim® and Mobi® and validated the models with observed data from clinical reports. The placental transfer parameters obtained using different methods were also imported into the model and compared with the observed data to establish and validate fetal pharmacokinetic curves. The simulated results showed that mean steady-state trough plasma concentration of carbamazepine decreased by 27, 43.1, and 52 % during the first, second, and third trimesters, respectively. Therefore, to achieve an optimum therapeutic concentration, administering at least 1.4, 1.8, and 2.1 times the baseline dose of carbamazepine in the first, second, and third trimesters, respectively can be used as a dose reference. In conclusion, this study established and validated a pregnancy PBPK model of carbamazepine and carbamazepine-10,11-epoxide to assess exposure in pregnant women and fetuses, which provided a reference for the dosage adjustment of carbamazepine during pregnancy.
Collapse
Affiliation(s)
- Yuying Chen
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Meng Ke
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Weipeng Fang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yaojie Jiang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Rongfang Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wanhong Wu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Pinfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
4
|
Le Merdy M, Szeto KX, Perrier J, Bolger MB, Lukacova V. PBPK Modeling Approach to Predict the Behavior of Drugs Cleared by Metabolism in Pregnant Subjects and Fetuses. Pharmaceutics 2024; 16:96. [PMID: 38258106 PMCID: PMC10820132 DOI: 10.3390/pharmaceutics16010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
This study aimed to develop a physiologically based pharmacokinetic (PBPK) model that simulates metabolically cleared compounds' pharmacokinetics (PK) in pregnant subjects and fetuses. This model accounts for the differences in tissue sizes, blood flow rates, enzyme expression levels, plasma protein binding, and other physiological factors affecting the drugs' PK in both the pregnant woman and the fetus. The PBPKPlus™ module in GastroPlus® was used to model the PK of metoprolol, midazolam, and metronidazole for both non-pregnant and pregnant groups. For each of the three compounds, the model was first developed and validated against PK data in healthy non-pregnant volunteers and then applied to predict the PK in the pregnant groups. The model accurately described the PK in both the non-pregnant and pregnant groups and explained well the differences in the plasma concentration due to pregnancy. When available, the fetal plasma concentration, placenta, and fetal tissue concentrations were also predicted reasonably well at different stages of pregnancy. The work described the use of a PBPK approach for drug development and demonstrates the ability to predict differences in PK in pregnant subjects and fetal exposure for metabolically cleared compounds.
Collapse
Affiliation(s)
- Maxime Le Merdy
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| | - Ke Xu Szeto
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| | - Jeremy Perrier
- PhinC Development, 36 Rue Victor Basch, 91300 Massy, France
| | - Michael B. Bolger
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| | - Viera Lukacova
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| |
Collapse
|
5
|
Liu XI, Green DJ, van den Anker J, Ahmadzia HK, Burckart GJ, Dallmann A. Development of a Generic Fetal Physiologically Based Pharmacokinetic Model and Prediction of Human Maternal and Fetal Organ Concentrations of Cefuroxime. Clin Pharmacokinet 2024; 63:69-78. [PMID: 37962827 DOI: 10.1007/s40262-023-01323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Physiologically based pharmacokinetic (PBPK) models for pregnant women have recently been successfully used to predict maternal and umbilical cord pharmacokinetics (PK). Because there is very limited opportunity for conducting clinical and PK investigations for fetal drug exposure, PBPK models may provide further insights. The objectives of this study were to extend a whole-body pregnancy PBPK model by multiple compartments representing fetal organs, and to predict the PK of cefuroxime in the maternal and fetal plasma, the amniotic fluid, and several fetal organs. METHODS To this end, a previously developed pregnancy PBPK model for cefuroxime was updated using the open-source software Open Systems Pharmacology (PK-Sim®/MoBi®). Multiple compartments were implemented to represent fetal organs including brain, heart, liver, lungs, kidneys, the gastrointestinal tract (GI), muscles, and fat tissue, as well as another compartment lumping organs and tissues not explicitly represented. RESULTS This novel PBPK model successfully predicted cefuroxime concentrations in maternal blood, umbilical cord, amniotic fluid, and several fetal organs including heart, liver, and lungs. Further model validation with additional clinical PK data is needed to build confidence in the model. CONCLUSIONS Being developed with an open-source software, the presented generic model can be freely re-used and tailored to address specific questions at hand, e.g., to assist the design of clinical studies in the context of drug research or to predict fetal organ concentrations of chemicals in the context of fetal health risk assessment.
Collapse
Affiliation(s)
- Xiaomei I Liu
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA.
| | - Dionna J Green
- Office of Pediatric Therapeutics, US Food and Drug Administration, Silver Spring, MD, USA
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
| | - Homa K Ahmadzia
- Division of Maternal-Fetal Medicine, Department of OB/Gyn, George Washington University, Washington, DC, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | - André Dallmann
- Bayer HealthCare SAS, Loos, France
- On Behalf of: Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| |
Collapse
|
6
|
Wu K, Lu W, Yan X. Potential adverse actions of prenatal exposure of acetaminophen to offspring. Front Pharmacol 2023; 14:1094435. [PMID: 37089952 PMCID: PMC10113502 DOI: 10.3389/fphar.2023.1094435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Acetaminophen (APAP) is a widely used as analgesic and antipyretic drug. APAP is also added as an active ingredient in various medications to relieve pain and reduce fever. APAP has been widely used in pregnant women in the past decades because it is considered a relatively safe drug with recommended dose in different countries. However, an increasing number of epidemiological and experimental studies have shown that APAP exposure during pregnancy may increase the risk of inducing reproductive and neurobehavior dysfunctions, hepatotoxicity in offspring. This review aims to assess the potential effects of prenatal APAP exposure on offspring growth and development.
Collapse
Affiliation(s)
- Ka Wu
- Department of Pharmacy, The Second People’s Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wensheng Lu
- Department of Pharmacy, The Second People’s Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Yan
- Department of Endocrinology, The Second People’s Hospital of Nanning City, The Third Affiliated Hospital ofGuangxi Medical University, Nanning, China
- *Correspondence: Xin Yan,
| |
Collapse
|
7
|
Hudson RE, Metz TD, Ward RM, McKnite AM, Enioutina EY, Sherwin CM, Watt KM, Job KM. Drug exposure during pregnancy: Current understanding and approaches to measure maternal-fetal drug exposure. Front Pharmacol 2023; 14:1111601. [PMID: 37033628 PMCID: PMC10076747 DOI: 10.3389/fphar.2023.1111601] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Prescription drug use is prevalent during pregnancy, yet there is limited knowledge about maternal-fetal safety and efficacy of this drug use because pregnant individuals have historically been excluded from clinical trials. Underrepresentation has resulted in a lack of data available to estimate or predict fetal drug exposure. Approaches to study fetal drug pharmacology are limited and must be evaluated for feasibility and accuracy. Anatomic and physiological changes throughout pregnancy fluctuate based on gestational age and can affect drug pharmacokinetics (PK) for both mother and fetus. Drug concentrations have been studied throughout different stages of gestation and at or following delivery in tissue and fluid biospecimens. Sampling amniotic fluid, umbilical cord blood, placental tissue, meconium, umbilical cord tissue, and neonatal hair present surrogate options to quantify and characterize fetal drug exposure. These sampling methods can be applied to all therapeutics including small molecule drugs, large molecule drugs, conjugated nanoparticles, and chemical exposures. Alternative approaches to determine PK have been explored, including physiologically based PK modeling, in vitro methods, and traditional animal models. These alternative approaches along with convenience sampling of tissue or fluid biospecimens can address challenges in studying maternal-fetal pharmacology. In this narrative review, we 1) present an overview of the current understanding of maternal-fetal drug exposure; 2) discuss biospecimen-guided sampling design and methods for measuring fetal drug concentrations throughout gestation; and 3) propose methods for advancing pharmacology research in the maternal-fetal population.
Collapse
Affiliation(s)
- Rachel E. Hudson
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| | - Torri D. Metz
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| | - Robert M. Ward
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| | - Autumn M. McKnite
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Utah, Salt Lake City, UT, United States
| | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| | - Catherine M. Sherwin
- Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kevin M. Watt
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| | - Kathleen M. Job
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Barańska A, Kanadys W, Wdowiak A, Malm M, Błaszczuk A, Religioni U, Wdowiak-Filip A, Polz-Dacewicz M. Effects of Prenatal Paracetamol Exposure on the Development of Asthma and Wheezing in Childhood: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:1832. [PMID: 36902618 PMCID: PMC10003539 DOI: 10.3390/jcm12051832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The aim of the report was to evaluate whether in utero exposure to paracetamol is associated with risk towards developing respiratory disorders such as asthma and wheeze after birth. MEDLINE (PubMed), EMBASE and Cochrane Library databases were searched for articles published in English to December 2021. The study involved 330,550 women. We then calculated the summary risk estimates and 95% CIs and plotted forest plots using random effect models (DerSimonian-Laird method) and fixed effect models. We also performed a systematic review of the chosen articles and a meta-analysis of studies based on the guidelines outlined in the PRISMA statement. Accordingly, maternal exposure to paracetamol during pregnancy was associated with a significant increased risk of asthma: crude OR = 1.34, 95% CI: 1.22 to 1.48, p < 0.001; and significant increased risk of wheeze: crude OR = 1.31, 95% CI: 1.12 to 1.54, p < 0.002. Results of our study confirmed that maternal paracetamol use in pregnancy is associated with an enhanced risk of asthma and wheezing in their children. We believe paracetamol should be used with caution by pregnant women, and at the lowest effective dose, and for the shortest duration. Long-term use or the use of high doses should be limited to the indications recommended by a physician and with the mother-to-be under constant supervision.
Collapse
Affiliation(s)
- Agnieszka Barańska
- Department of Medical Informatics and Statistics with e-Health Laboratory, Medical University of Lublin, 20-954 Lublin, Poland
| | | | - Artur Wdowiak
- Chair of Obstetrics and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Maria Malm
- Department of Medical Informatics and Statistics with e-Health Laboratory, Medical University of Lublin, 20-954 Lublin, Poland
| | - Agata Błaszczuk
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - Urszula Religioni
- School of Public Health, Centre of Postgraduate Medical Education of Warsaw, 01-826 Warsaw, Poland
| | - Anita Wdowiak-Filip
- Department of Cosmetology and Aesthetic Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
9
|
He L, Ke M, Wu W, Chen J, Guo G, Lin R, Huang P, Lin C. Application of Physiologically Based Pharmacokinetic Modeling to Predict Maternal Pharmacokinetics and Fetal Exposure to Oxcarbazepine. Pharmaceutics 2022; 14:2367. [PMID: 36365185 PMCID: PMC9693517 DOI: 10.3390/pharmaceutics14112367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2023] Open
Abstract
Pregnancy is associated with physiological changes that may affect drug pharmacokinetics (PKs). The aim of this study was to establish a maternal-fetal physiologically based pharmacokinetic (PBPK) model of oxcarbazepine (OXC) and its active metabolite, 10,11-dihydro-10-hydroxy-carbazepine (MHD), to (1) assess differences in pregnancy, (2) predict changes in PK target parameters of these molecules following the current dosing regimen, (3) assess predicted concentrations of these molecules in the umbilical vein at delivery, and (4) compare different methods for estimating drug placental penetration. Predictions using the pregnancy PBPK model of OXC resulted in maternal concentrations within a 2-fold error, and extrapolation of the model to early-stage pregnancies indicated that changes in median PK parameters remained above target thresholds, requiring increased frequency of monitoring. The dosing simulation results suggested dose adjustment in the last two trimesters. We generally recommend that women administer ≥ 1.5× their baseline dose of OXC during their second and third trimesters. Test methods for predicting placental transfer showed varying performance, with the in vitro method showing the highest predictive accuracy. Exposure to MHD in maternal and fetal venous blood was similar. Overall, the above-mentioned models can enhance understanding of the maternal-fetal PK behavior of drugs, ultimately informing drug-treatment decisions for pregnant women and their fetuses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, China
| |
Collapse
|
10
|
Mao Q, Chen X. An update on placental drug transport and its relevance to fetal drug exposure. MEDICAL REVIEW (2021) 2022; 2:501-511. [PMID: 37724167 PMCID: PMC10388746 DOI: 10.1515/mr-2022-0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/27/2022] [Indexed: 09/20/2023]
Abstract
Pregnant women are often complicated with diseases that require treatment with medication. Most drugs administered to pregnant women are off-label without the necessary dose, efficacy, and safety information. Knowledge concerning drug transfer across the placental barrier is essential for understanding fetal drug exposure and hence drug safety and efficacy to the fetus. Transporters expressed in the placenta, including adenosine triphosphate (ATP)-binding cassette efflux transporters and solute carrier uptake transporters, play important roles in determining drug transfer across the placental barrier, leading to fetal exposure to the drugs. In this review, we provide an update on placental drug transport, including in vitro cell/tissue, ex vivo human placenta perfusion, and in vivo animal studies that can be used to determine the expression and function of drug transporters in the placenta as well as placental drug transfer and fetal drug exposure. We also describe how the knowledge of placental drug transfer through passive diffusion or active transport can be combined with physiologically based pharmacokinetic modeling and simulation to predict systemic fetal drug exposure. Finally, we highlight knowledge gaps in studying placental drug transport and predicting fetal drug exposure and discuss future research directions to fill these gaps.
Collapse
Affiliation(s)
- Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Xin Chen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Chen JH, Lin IH, Sun CK, Yang L, Hsueh TY, Ting CT, Tsai TH. Transplacental transfer of acetaminophen in pregnant rats. Biomed Pharmacother 2022; 154:113613. [PMID: 36058146 DOI: 10.1016/j.biopha.2022.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Acetaminophen is among the most widely used analgesics; however, the proportion and mechanism of transplacental transfer of unbound acetaminophen with actual pharmacological activity remain unknown. Our hypothesis is that acetaminophen gradually penetrates the blood-placenta barrier to reach the fetus. A multiple microdialysis coupled to liquid chromatography with photodiode array detection method was developed to monitor acetaminophen levels in the maternal blood, placenta, fetus, and amniotic fluid of a pregnant rat and investigate this hypothesis. The pharmacokinetic data indicates that acetaminophen exhibits a nonlinear behavior in the maternal blood within the dosage regimen of 100 and 300 mg/kg. In addition, acetaminophen penetrates the placenta, fetus, and amniotic fluid during treatment. The transplacental transfer ratio represented by the area under the concentration curve (AUC) ratio for the conceptus (the collective term for the fetus, placenta, and amniotic fluid) and maternal blood (AUCtissue/AUCblood) was approximately 11-23 % after acetaminophen (100 and 300 mg/kg) administration. However, the transporter of multidrug resistance-associated protein (MRP) inhibitor MK-571 did not significantly change the transplacental transfer ratio. This basic study provides constructive information for the clinical application of acetaminophen in pregnant women.
Collapse
Affiliation(s)
- Jung-Hung Chen
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - I-Hsin Lin
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chung-Kai Sun
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ling Yang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Thomas Y Hsueh
- Division of Urology, Department of Surgery, Taipei City Hospital Renai Branch, Taipei 106, Taiwan; Department of Urology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chin-Tsung Ting
- Division of Gastrointestinal Surgery, Department of Surgery, Renai Branch, Taipei City Hospital, Taipei 106, Taiwan; General Education Center, University of Taipei, Taipei 100, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei 106, Taiwan.
| |
Collapse
|
12
|
Predicting fetal exposure of crizotinib during pregnancy: Combining human ex vivo placenta perfusion data with physiologically-based pharmacokinetic modeling. Toxicol In Vitro 2022; 85:105471. [PMID: 36096459 DOI: 10.1016/j.tiv.2022.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Commercially available physiologically-based pharmacokinetic (PBPK) modeling platforms increasingly allow estimations of fetal exposure to xenobiotics. We aimed to explore a physiology-based approach in which literature data from ex vivo placenta perfusion studies are used to parameterize Simcyp's pregnancy-PBPK (p-PBPK) model, taking crizotinib as an example. First, a physiologically-based semi-mechanistic placenta (PBMP) model was developed in MATLAB to analyze placenta perfusion data of crizotinib. Mixed-effects modeling was performed to derive intrinsic unbound clearance values across the maternal-placental barrier and fetal-placental barrier. Values were then used for parameterization of the p-PBPK model. The PBMP model adequately described the perfusion data. Clearance was estimated to be 71 mL/min and 535 mL/min for the maternal placental uptake and efflux, and 8 mL/min and 163 mL/min for fetal placental uptake and efflux, respectively. For oral dosing of 250 mg twice daily, p-PBPK modeling predicted a Cmax and AUC0-τ of 0.08 mg/L and 0.78 mg/L*h in the umbilical vein at steady-state, respectively. In placental tissue, a Cmax of 5.04 mg/L was predicted. In conclusion, PBMP model-based data analysis and the associated p-PBPK modeling approach illustrate how ex vivo placenta perfusion data may be used for fetal exposure predictions.
Collapse
|
13
|
Allegaert K. Pharmacotherapy during Pregnancy, Childbirth, and Lactation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11336. [PMID: 36141608 PMCID: PMC9517125 DOI: 10.3390/ijerph191811336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Pharmacotherapy is a very powerful approach to truly improve outcomes for pregnant women and their newborns [...].
Collapse
Affiliation(s)
- Karel Allegaert
- Child and Youth Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; ; Tel.: +32-(0)-1634-2020
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus Medical Center, 3000 GA Rotterdam, The Netherlands
| |
Collapse
|
14
|
Balhara A, Kumar AR, Unadkat JD. Predicting Human Fetal Drug Exposure Through Maternal-Fetal PBPK Modeling and In Vitro or Ex Vivo Studies. J Clin Pharmacol 2022; 62 Suppl 1:S94-S114. [PMID: 36106781 PMCID: PMC9494623 DOI: 10.1002/jcph.2117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Medication (drug) use in human pregnancy is prevalent. Determining fetal safety and efficacy of drugs is logistically challenging. However, predicting (not measuring) fetal drug exposure (systemic and tissue) throughout pregnancy is possible through maternal-fetal physiologically based pharmacokinetic (PBPK) modeling and simulation. Such prediction can inform fetal drug safety and efficacy. Fetal drug exposure can be quantified in 2 complementary ways. First, the ratio of the steady-state unbound plasma concentration in the fetal plasma (or area under the plasma concentration-time curve) to the corresponding maternal plasma concentration (ie, Kp,uu ). Second, the maximum unbound peak (Cu,max,ss,f ) and trough (Cu,min,ss,f ) fetal steady-state plasma concentrations. We (and others) have developed a maternal-fetal PBPK model that can successfully predict maternal drug exposure. To predict fetal drug exposure, the model needs to be populated with drug specific parameters, of which transplacental clearances (active and/or passive) and placental/fetal metabolism of the drug are critical. Herein, we describe in vitro studies in cells/tissue fractions or the perfused human placenta that can be used to determine these drug-specific parameters. In addition, we provide examples whereby this approach has successfully predicted systemic fetal exposure to drugs that passively or actively cross the placenta. Apart from maternal-fetal PBPK models, animal studies also have the potential to estimate fetal drug exposure by allometric scaling. Whether such scaling will be successful is yet to be determined. Here, we review the above approaches to predict fetal drug exposure, outline gaps in our knowledge to make such predictions and map out future research directions that could fill these gaps.
Collapse
Affiliation(s)
- Ankit Balhara
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Aditya R Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Laue HE, Shen Y, Bloomquist TR, Wu H, Brennan KJM, Cassoulet R, Wilkie E, Gillet V, Desautels AS, Abdelouahab N, Bellenger JP, Burris HH, Coull BA, Weisskopf MG, Zhang W, Takser L, Baccarelli AA. In Utero Exposure to Caffeine and Acetaminophen, the Gut Microbiome, and Neurodevelopmental Outcomes: A Prospective Birth Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9357. [PMID: 35954712 PMCID: PMC9367926 DOI: 10.3390/ijerph19159357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
Pregnant individuals are exposed to acetaminophen and caffeine, but it is unknown how these exposures interact with the developing gut microbiome. We aimed to determine whether acetaminophen and/or caffeine relate to the childhood gut microbiome and whether features of the gut microbiome alter the relationship between acetaminophen/caffeine and neurodevelopment. Forty-nine and 85 participants provided meconium and stool samples at 6-7, respectively, for exposure and microbiome assessment. Fecal acetaminophen and caffeine concentrations were quantified, and fecal DNA underwent metagenomic sequencing. Caregivers and study staff assessed the participants' motor and cognitive development using standardized scales. Prenatal exposures had stronger associations with the childhood microbiome than concurrent exposures. Prenatal acetaminophen exposure was associated with a trend of lower gut bacterial diversity in childhood [β = -0.17 Shannon Index, 95% CI: (-0.31, -0.04)] and was marginally associated with differences in the relative abundances of features of the gut microbiome at the phylum (Firmicutes, Actinobacteria) and gene pathway levels. Among the participants with a higher relative abundance of Proteobacteria, prenatal exposure to acetaminophen and caffeine was associated with lower scores on WISC-IV subscales. Acetaminophen during bacterial colonization of the naïve gut is associated with lasting alterations in childhood microbiome composition. Future studies may inform our understanding of downstream health effects.
Collapse
Affiliation(s)
- Hannah E. Laue
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Yike Shen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (Y.S.); (T.R.B.); (H.W.); (K.J.M.B.); (A.A.B.)
| | - Tessa R. Bloomquist
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (Y.S.); (T.R.B.); (H.W.); (K.J.M.B.); (A.A.B.)
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (Y.S.); (T.R.B.); (H.W.); (K.J.M.B.); (A.A.B.)
| | - Kasey J. M. Brennan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (Y.S.); (T.R.B.); (H.W.); (K.J.M.B.); (A.A.B.)
| | - Raphael Cassoulet
- Département de Chimie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (R.C.); (J.P.B.)
| | - Erin Wilkie
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (E.W.); (V.G.); (A.-S.D.); (N.A.); (L.T.)
| | - Virginie Gillet
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (E.W.); (V.G.); (A.-S.D.); (N.A.); (L.T.)
| | - Anne-Sandrine Desautels
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (E.W.); (V.G.); (A.-S.D.); (N.A.); (L.T.)
| | - Nadia Abdelouahab
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (E.W.); (V.G.); (A.-S.D.); (N.A.); (L.T.)
| | - Jean Philippe Bellenger
- Département de Chimie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (R.C.); (J.P.B.)
| | - Heather H. Burris
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Larissa Takser
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (E.W.); (V.G.); (A.-S.D.); (N.A.); (L.T.)
- Département de Psychiatrie, Faculté de Médicine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (Y.S.); (T.R.B.); (H.W.); (K.J.M.B.); (A.A.B.)
| |
Collapse
|
16
|
Greupink R, van Hove H, Mhlanga F, Theunissen P, Colbers A. Non-clinical considerations for supporting accelerated inclusion of pregnant women in pre-licensure clinical trials with anti-HIV agents. J Int AIDS Soc 2022; 25 Suppl 2:e25914. [PMID: 35851570 PMCID: PMC9294860 DOI: 10.1002/jia2.25914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/28/2022] [Indexed: 12/19/2022] Open
Abstract
Introduction To allow the continued participation of women enrolled in pre‐licensure clinical trials who become pregnant, and to potentially enrol pregnant women in clinical trials, non‐clinical developmental and reproductive toxicology studies (DART) are essential. Generally during pharmaceutical development, DART studies are conducted late during clinical development, leading to the exclusion of pregnant women from enrolment and withdrawal of women becoming pregnant during pre‐licensure trials. Discussion Completing all DART studies prior to or early during the conduct of phase 3 trials (i.e. earlier than current common practice) can accelerate and facilitate the inclusion of women who become pregnant during pre‐licensure trials to remain on study drug and to potentially enrol pregnant women more rapidly. Promoting complementary strategies, such as alternative combinations of DART study designs and physiologically based pharmacokinetic modelling, could better inform drug dosing and safety in pregnancy at an earlier stage in drug development. The interpretation of the results of non‐clinical DART studies is often complex. Institutional review boards/ethics committees should have access to relevant expertise for interpretation and application of results of non‐clinical developmental and reproductive toxicity studies. Clear communication and thorough understanding of non‐clinical findings and the overall benefit–risk profile of the product are critical to review protocols and determine if women who become pregnant during a clinical trial could continue on study drug and/or to enrol pregnant women in the trial. The informed consent document should be well written so that participants can make an informed decision to stay on study drug or participate in a trial during pregnancy. Ultimately, the decision to allow women who become pregnant during pre‐licensure trials to remain on study will depend on the totality of the evidence and benefit–risk considerations. Conclusions We propose that industry completes non‐clinical reproductive toxicity studies prior to or early during the conduct of phase 3 trials in HIV drug development, especially for priority agents, and potentially uses alternative DART study design strategies to achieve this goal.
Collapse
Affiliation(s)
- Rick Greupink
- Department of Pharmacology and ToxicologyRadboud Institute of Molecular Life SciencesNijmegenNetherlands
| | - Hedwig van Hove
- Department of Pharmacology and ToxicologyRadboud Institute of Molecular Life SciencesNijmegenNetherlands
| | - Felix Mhlanga
- UZ‐UCSF Collaborative Study in Women's Health ZimbabweHarareZimbabwe
| | | | - Angela Colbers
- Department of PharmacyRadboud Institute for Health SciencesNijmegenNetherlands
| |
Collapse
|
17
|
Lecante LL, Leverrier-Penna S, Gicquel T, Giton F, Costet N, Desdoits-Lethimonier C, Lesné L, Fromenty B, Lavoué V, Rolland AD, Mazaud-Guittot S. Acetaminophen (APAP, Paracetamol) Interferes With the First Trimester Human Fetal Ovary Development in an Ex Vivo Model. J Clin Endocrinol Metab 2022; 107:1647-1661. [PMID: 35147701 PMCID: PMC9113793 DOI: 10.1210/clinem/dgac080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/23/2022]
Abstract
CONTEXT Acetaminophen (APAP, paracetamol) is widely used by pregnant women. Although long considered safe, growing evidence indicates that APAP is an endocrine disruptor since in utero exposure may be associated with a higher risk of male genital tract abnormalities. In rodents, fetal exposure has long-term effects on the reproductive function of female offspring. Human studies have also suggested harmful APAP exposure effects. OBJECTIVE Given that disruption of fetal ovarian development may impact women's reproductive health, we investigated the effects of APAP on fetal human ovaries in culture. DESIGN AND SETTING Human ovarian fragments from 284 fetuses aged 7 to 12 developmental weeks (DW) were cultivated ex vivo for 7 days in the presence of human-relevant concentrations of APAP (10-8 to 10-3 M) or vehicle control. MAIN OUTCOME MEASURES Outcomes included examination of postculture tissue morphology, cell viability, apoptosis, and quantification of hormones, APAP, and APAP metabolites in conditioned culture media. RESULTS APAP reduced the total cell number specifically in 10- to 12-DW ovaries, induced cell death, and decreased KI67-positive cell density independently of fetal age. APAP targeted subpopulations of germ cells and disrupted human fetal ovarian steroidogenesis, without affecting prostaglandin or inhibin B production. Human fetal ovaries were able to metabolize APAP. CONCLUSIONS Our data indicate that APAP can impact first trimester human fetal ovarian development, especially during a 10- to 12-DW window of heightened sensitivity. Overall, APAP behaves as an endocrine disruptor in the fetal human ovary.
Collapse
Affiliation(s)
- Laetitia L Lecante
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Sabrina Leverrier-Penna
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Thomas Gicquel
- Inserm, Inrae, Univ Rennes, Institut NuMeCan (Nutrition Metabolism and Cancer), Rennes, France
- Clinical and forensic Toxicology Laboratory Rennes University Hospital, Rennes, France
| | - Frank Giton
- AP-HP, Pôle Biologie-Pathologie Henri Mondor, Créteil, France
- Inserm IMRB, Faculté de Santé, Créteil, France
| | - Nathalie Costet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | | | - Laurianne Lesné
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Bernard Fromenty
- Inserm, Inrae, Univ Rennes, Institut NuMeCan (Nutrition Metabolism and Cancer), Rennes, France
| | - Vincent Lavoué
- CHU Rennes, Service Gynécologie et Obstétrique, Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| |
Collapse
|
18
|
Prediction of Maternal and Fetal Doravirine Exposure by Integrating Physiologically Based Pharmacokinetic Modeling and Human Placenta Perfusion Experiments. Clin Pharmacokinet 2022; 61:1129-1141. [PMID: 35579825 PMCID: PMC9349081 DOI: 10.1007/s40262-022-01127-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
Background and Objective Doravirine is currently not recommended for pregnant women living with human immunodeficiency virus because efficacy and safety data are lacking. This study aimed to predict maternal and fetal doravirine exposure by integrating human placenta perfusion experiments with pregnancy physiologically based pharmacokinetic (PBPK) modeling. Methods Ex vivo placenta perfusions were performed in a closed–closed configuration, in both maternal-to-fetal and fetal-to-maternal directions (n = 8). To derive intrinsic placental transfer parameters from perfusion data, we developed a mechanistic placenta model. Next, we developed a maternal and fetal full-body pregnancy PBPK model for doravirine in Simcyp, which was parameterized with the derived intrinsic placental transfer parameters to predict in vivo maternal and fetal doravirine exposure at 26, 32, and 40 weeks of pregnancy. The predicted total geometric mean (GM) trough plasma concentration (Ctrough) values were compared with the target (0.23 mg/L) derived from in vivo exposure–response analysis. Results A decrease of 55% in maternal doravirine area under the plasma concentration–time curve (AUC)0–24h was predicted in pregnant women at 40 weeks of pregnancy compared with nonpregnant women. At 26, 32, and 40 weeks of pregnancy, predicted maternal total doravirine GM Ctrough values were below the predefined efficacy target of 0.23 mg/L. Perfusion experiments showed that doravirine extensively crossed the placenta, and PBPK modeling predicted considerable fetal doravirine exposure. Conclusion Substantially reduced maternal doravirine exposure was predicted during pregnancy, possibly resulting in impaired efficacy. Therapeutic drug and viral load monitoring are advised for pregnant women treated with doravirine. Considerable fetal doravirine exposure was predicted, highlighting the need for clinical fetal safety data. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-022-01127-0.
Collapse
|
19
|
van Hove H, Mathiesen L, Freriksen J, Vähäkangas K, Colbers A, Brownbill P, Greupink R. Placental transfer and vascular effects of pharmaceutical drugs in the human placenta ex vivo: A review. Placenta 2022; 122:29-45. [DOI: 10.1016/j.placenta.2022.03.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
20
|
Abduljalil K, Pansari A, Ning J, Jamei M. Prediction of Maternal and Fetal Acyclovir, Emtricitabine, Lamivudine, and Metformin Concentrations during Pregnancy Using a Physiologically Based Pharmacokinetic Modeling Approach. Clin Pharmacokinet 2022; 61:725-748. [DOI: 10.1007/s40262-021-01103-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
|
21
|
Zheng L, Yang H, Dallmann A, Jiang X, Wang L, Hu W. Physiologically Based Pharmacokinetic Modeling in Pregnant Women Suggests Minor Decrease in Maternal Exposure to Olanzapine. Front Pharmacol 2022; 12:793346. [PMID: 35126130 PMCID: PMC8807508 DOI: 10.3389/fphar.2021.793346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023] Open
Abstract
Pregnancy is accompanied by significant physiological changes that might affect the in vivo drug disposition. Olanzapine is prescribed to pregnant women with schizophrenia, while its pharmacokinetics during pregnancy remains unclear. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of olanzapine in the pregnant population. With the contributions of each clearance pathway determined beforehand, a full PBPK model was developed and validated in the non-pregnant population. This model was then extrapolated to predict steady-state pharmacokinetics in the three trimesters of pregnancy by introducing gestation-related alterations. The model adequately simulated the reported time-concentration curves. The geometric mean fold error of Cmax and AUC was 1.14 and 1.09, respectively. The model predicted that under 10 mg daily dose, the systematic exposure of olanzapine had minor changes (less than 28%) throughout pregnancy. We proposed that the reduction in cytochrome P4501A2 activity is counteracted by the induction of other enzymes, especially glucuronyltransferase1A4. In conclusion, the PBPK model simulations suggest that, at least at the tested stages of pregnancy, dose adjustment of olanzapine can hardly be recommended for pregnant women if effective treatment was achieved before the onset of pregnancy and if fetal toxicity can be ruled out.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hongyi Yang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals Bayer AG, Leverkusen, Germany
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Ling Wang, ; Wei Hu,
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ling Wang, ; Wei Hu,
| |
Collapse
|
22
|
van Hoogdalem MW, Wexelblatt SL, Akinbi HT, Vinks AA, Mizuno T. A review of pregnancy-induced changes in opioid pharmacokinetics, placental transfer, and fetal exposure: Towards fetomaternal physiologically-based pharmacokinetic modeling to improve the treatment of neonatal opioid withdrawal syndrome. Pharmacol Ther 2021; 234:108045. [PMID: 34813863 DOI: 10.1016/j.pharmthera.2021.108045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling has emerged as a useful tool to study pharmacokinetics (PK) in special populations, such as pregnant women, fetuses, and newborns, where practical hurdles severely limit the study of drug behavior. PK in pregnant women is variable and everchanging, differing greatly from that in their nonpregnant female and male counterparts typically enrolled in clinical trials. PBPK models can accommodate pregnancy-induced physiological and metabolic changes, thereby providing mechanistic insights into maternal drug disposition and fetal exposure. Fueled by the soaring opioid epidemic in the United States, opioid use during pregnancy continues to rise, leading to an increased incidence of neonatal opioid withdrawal syndrome (NOWS). The severity of NOWS is influenced by a complex interplay of extrinsic and intrinsic factors, and varies substantially between newborns, but the extent of prenatal opioid exposure is likely the primary driver. Fetomaternal PBPK modeling is an attractive approach to predict in utero opioid exposure. To facilitate the development of fetomaternal PBPK models of opioids, this review provides a detailed overview of pregnancy-induced changes affecting the PK of commonly used opioids during gestation. Moreover, the placental transfer of these opioids is described, along with their disposition in the fetus. Lastly, the implementation of these factors into PBPK models is discussed. Fetomaternal PBPK modeling of opioids is expected to provide improved insights in fetal opioid exposure, which allows for prediction of postnatal NOWS severity, thereby opening the way for precision postnatal treatment of these vulnerable infants.
Collapse
Affiliation(s)
- Matthijs W van Hoogdalem
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Scott L Wexelblatt
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Henry T Akinbi
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Liu XI, Green DJ, van den Anker JN, Rakhmanina NY, Ahmadzia HK, Momper JD, Park K, Burckart GJ, Dallmann A. Mechanistic Modeling of Placental Drug Transfer in Humans: How Do Differences in Maternal/Fetal Fraction of Unbound Drug and Placental Influx/Efflux Transfer Rates Affect Fetal Pharmacokinetics? Front Pediatr 2021; 9:723006. [PMID: 34733804 PMCID: PMC8559552 DOI: 10.3389/fped.2021.723006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 01/16/2023] Open
Abstract
Background: While physiologically based pharmacokinetic (PBPK) models generally predict pharmacokinetics in pregnant women successfully, the confidence in predicting fetal pharmacokinetics is limited because many parameters affecting placental drug transfer have not been mechanistically accounted for. Objectives: The objectives of this study were to implement different maternal and fetal unbound drug fractions in a PBPK framework; to predict fetal pharmacokinetics of eight drugs in the third trimester; and to quantitatively investigate how alterations in various model parameters affect predicted fetal pharmacokinetics. Methods: The ordinary differential equations of previously developed pregnancy PBPK models for eight drugs (acyclovir, cefuroxime, diazepam, dolutegravir, emtricitabine, metronidazole, ondansetron, and raltegravir) were amended to account for different unbound drug fractions in mother and fetus. Local sensitivity analyses were conducted for various parameters relevant to placental drug transfer, including influx/efflux transfer clearances across the apical and basolateral membrane of the trophoblasts. Results: For the highly-protein bound drugs diazepam, dolutegravir and ondansetron, the lower fraction unbound in the fetus vs. mother affected predicted pharmacokinetics in the umbilical vein by ≥10%. Metronidazole displayed blood flow-limited distribution across the placenta. For all drugs, umbilical vein concentrations were highly sensitive to changes in the apical influx/efflux transfer clearance ratio. Additionally, transfer clearance across the basolateral membrane was a critical parameter for cefuroxime and ondansetron. Conclusion: In healthy pregnancies, differential protein binding characteristics in mother and fetus give rise to minor differences in maternal-fetal drug exposure. Further studies are needed to differentiate passive and active transfer processes across the apical and basolateral trophoblast membrane.
Collapse
Affiliation(s)
- Xiaomei I. Liu
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, United States
| | - Dionna J. Green
- Office of Pediatric Therapeutics, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD, United States
| | - John N. van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, United States
| | - Natella Y. Rakhmanina
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, United States
- Technical Strategies and Innovation, Elizabeth Glaser Pediatric AIDS Foundation, Washington, DC, United States
| | - Homa K. Ahmadzia
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kyunghun Park
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, United States
| | - Gilbert J. Burckart
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, United States
| | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| |
Collapse
|
24
|
Mian P, Nolan B, van den Anker JN, van Calsteren K, Allegaert K, Lakhi N, Dallmann A. Mechanistic Coupling of a Novel in silico Cotyledon Perfusion Model and a Physiologically Based Pharmacokinetic Model to Predict Fetal Acetaminophen Pharmacokinetics at Delivery. Front Pediatr 2021; 9:733520. [PMID: 34631628 PMCID: PMC8496351 DOI: 10.3389/fped.2021.733520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 01/24/2023] Open
Abstract
Little is known about placental drug transfer and fetal pharmacokinetics despite increasing drug use in pregnant women. While physiologically based pharmacokinetic (PBPK) models can help in some cases to shed light on this knowledge gap, adequate parameterization of placental drug transfer remains challenging. A novel in silico model with seven compartments representing the ex vivo cotyledon perfusion assay was developed and used to describe placental transfer and fetal pharmacokinetics of acetaminophen. Unknown parameters were optimized using observed data. Thereafter, values of relevant model parameters were copied to a maternal-fetal PBPK model and acetaminophen pharmacokinetics were predicted at delivery after oral administration of 1,000 mg. Predictions in the umbilical vein were evaluated with data from two clinical studies. Simulations from the in silico cotyledon perfusion model indicated that acetaminophen accumulates in the trophoblasts; simulated steady state concentrations in the trophoblasts were 4.31-fold higher than those in the perfusate. The whole-body PBPK model predicted umbilical vein concentrations with a mean prediction error of 24.7%. Of the 62 concentration values reported in the clinical studies, 50 values (81%) were predicted within a 2-fold error range. In conclusion, this study presents a novel in silico cotyledon perfusion model that is structurally congruent with the placenta implemented in our maternal-fetal PBPK model. This allows transferring parameters from the former model into our PBPK model for mechanistically exploring whole-body pharmacokinetics and concentration-effect relationships in the placental tissue. Further studies should investigate acetaminophen accumulation and metabolism in the placenta as the former might potentially affect placental prostaglandin synthesis and subsequent fetal exposure.
Collapse
Affiliation(s)
- Paola Mian
- Department of Clinical Pharmacy, Medisch Spectrum Twente, Enschede, Netherlands
| | - Bridget Nolan
- Department of Obstetrics and Gynecology, Richmond University Medical Center, Staten Island, NY, United States
- Department of Obstetrics and Gynecology, New York Medical College, Valhalla, NY, United States
| | - John N. van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, United States
- Department of Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, Basel, Switzerland
| | - Kristel van Calsteren
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, UZ Gasthuisberg, Leuven, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nisha Lakhi
- Department of Obstetrics and Gynecology, Richmond University Medical Center, Staten Island, NY, United States
- Department of Obstetrics and Gynecology, New York Medical College, Valhalla, NY, United States
| | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| |
Collapse
|
25
|
Chaphekar N, Caritis S, Venkataramanan R. Model-Informed Dose Optimization in Pregnancy. J Clin Pharmacol 2021; 60 Suppl 1:S63-S76. [PMID: 33205432 DOI: 10.1002/jcph.1777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Pregnancy is associated with several physiological changes that can alter the pharmacokinetics (PK) and pharmacodynamics of drugs. These may require dosing changes in pregnant women to achieve drug exposures comparable to the nonpregnant population. There is, however, limited information available on the PK and pharmacodynamics of drugs used during pregnancy. Practical difficulties in performing PK studies and potential liability issues are often the reasons for the availability of limited information. Over the past several years, there has been a rapid development in the application of various modeling strategies such as population PK and physiologically based PK modeling to provide guidance on drug dosing in this special patient population. Population PK models rely on measured PK data, whereas physiologically based PK models integrate physiological, preclinical, and clinical data to quantify changes in PK of drugs in various patient populations. These modeling strategies offer a promising approach to identify the drugs with PK changes during pregnancy and guide dose adjustment in pregnant women. This review focuses on PBPK modeling to guide drug therpay in pregnancy.
Collapse
Affiliation(s)
- Nupur Chaphekar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steve Caritis
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Magee Womens Hospital of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Modelling Tools to Characterize Acetaminophen Pharmacokinetics in the Pregnant Population. Pharmaceutics 2021; 13:pharmaceutics13081302. [PMID: 34452263 PMCID: PMC8400310 DOI: 10.3390/pharmaceutics13081302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
This review describes acetaminophen pharmacokinetics (PK) throughout pregnancy, as analyzed by three methods (non-compartmental analyses (NCA), population PK, and physiologically based PK (PBPK) modelling). Eighteen studies using NCA were reported in the scientific literature. These studies reported an increase in the volume of distribution (3.5-60.7%) and an increase in the clearance (36.8-84.4%) of acetaminophen in pregnant women compared to non-pregnant women. Only two studies using population PK modelling as a technique were available in the literature. The largest difference in acetaminophen clearance (203%) was observed in women at delivery compared to non-pregnant women. One study using the PBPK technique was found in the literature. This study focused on the formation of metabolites, and the toxic metabolite N-acetyl-p-benzoquinone imine was the highest in the first trimester, followed by the second and third trimester, compared with non-pregnant women. In conclusion, this review gave an overview on acetaminophen PK changes in pregnancy. Also, knowledge gaps, such as fetal and placenta PK parameters, have been identified, which should be explored further before dosing adjustments can be suggested on an evidence-based basis.
Collapse
|
27
|
Maternal paracetamol intake and fetal ductus arteriosus closure: adding pieces to the scenery. Eur J Clin Pharmacol 2021; 77:1935-1936. [PMID: 34312693 DOI: 10.1007/s00228-021-03191-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
|
28
|
Rayner CR, Smith PF, Andes D, Andrews K, Derendorf H, Friberg LE, Hanna D, Lepak A, Mills E, Polasek TM, Roberts JA, Schuck V, Shelton MJ, Wesche D, Rowland‐Yeo K. Model-Informed Drug Development for Anti-Infectives: State of the Art and Future. Clin Pharmacol Ther 2021; 109:867-891. [PMID: 33555032 PMCID: PMC8014105 DOI: 10.1002/cpt.2198] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Model-informed drug development (MIDD) has a long and rich history in infectious diseases. This review describes foundational principles of translational anti-infective pharmacology, including choice of appropriate measures of exposure and pharmacodynamic (PD) measures, patient subpopulations, and drug-drug interactions. Examples are presented for state-of-the-art, empiric, mechanistic, interdisciplinary, and real-world evidence MIDD applications in the development of antibacterials (review of minimum inhibitory concentration-based models, mechanism-based pharmacokinetic/PD (PK/PD) models, PK/PD models of resistance, and immune response), antifungals, antivirals, drugs for the treatment of global health infectious diseases, and medical countermeasures. The degree of adoption of MIDD practices across the infectious diseases field is also summarized. The future application of MIDD in infectious diseases will progress along two planes; "depth" and "breadth" of MIDD methods. "MIDD depth" refers to deeper incorporation of the specific pathogen biology and intrinsic and acquired-resistance mechanisms; host factors, such as immunologic response and infection site, to enable deeper interrogation of pharmacological impact on pathogen clearance; clinical outcome and emergence of resistance from a pathogen; and patient and population perspective. In particular, improved early assessment of the emergence of resistance potential will become a greater focus in MIDD, as this is poorly mitigated by current development approaches. "MIDD breadth" refers to greater adoption of model-centered approaches to anti-infective development. Specifically, this means how various MIDD approaches and translational tools can be integrated or connected in a systematic way that supports decision making by key stakeholders (sponsors, regulators, and payers) across the entire development pathway.
Collapse
Affiliation(s)
- Craig R. Rayner
- CertaraPrincetonNew JerseyUSA
- Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | | | - David Andes
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kayla Andrews
- Bill & Melinda Gates Medical Research InstituteCambridgeMassachusettsUSA
| | | | | | - Debra Hanna
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Alex Lepak
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Thomas M. Polasek
- CertaraPrincetonNew JerseyUSA
- Centre for Medicines Use and SafetyMonash UniversityMelbourneVictoriaAustralia
- Department of Clinical PharmacologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Jason A. Roberts
- Faculty of MedicineUniversity of Queensland Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Departments of Pharmacy and Intensive Care MedicineRoyal Brisbane and Women’s HospitalBrisbaneQueenslandAustralia
- Division of Anaesthesiology Critical Care Emergency and Pain MedicineNîmes University HospitalUniversity of MontpellierMontpellierFrance
| | | | | | | | | |
Collapse
|
29
|
Naji-Talakar S, Sharma S, Martin LA, Barnhart D, Prasad B. Potential implications of DMET ontogeny on the disposition of commonly prescribed drugs in neonatal and pediatric intensive care units. Expert Opin Drug Metab Toxicol 2021; 17:273-289. [PMID: 33256492 PMCID: PMC8346204 DOI: 10.1080/17425255.2021.1858051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Introduction: Pediatric patients, especially neonates and infants, are more susceptible to adverse drug events as compared to adults. In particular, immature small molecule drug metabolism and excretion can result in higher incidences of pediatric toxicity than adults if the pediatric dose is not adjusted.Area covered: We reviewed the top 29 small molecule drugs prescribed in neonatal and pediatric intensive care units and compiled the mechanisms of their metabolism and excretion. The ontogeny of Phase I and II drug metabolizing enzymes and transporters (DMETs), particularly relevant to these drugs, are summarized. The potential effects of DMET ontogeny on the metabolism and excretion of the top pediatric drugs were predicted. The current regulatory requirements and recommendations regarding safe and effective use of drugs in children are discussed. A few representative examples of the use of ontogeny-informed physiologically based pharmacokinetic (PBPK) models are highlighted.Expert opinion: Empirical prediction of pediatric drug dosing based on body weight or body-surface area from the adult parameters can be inaccurate because DMETs are not mature in children and the age-dependent maturation of these proteins is different. Ontogeny-informed-PBPK modeling provides a better alternative to predict the pharmacokinetics of drugs in children.
Collapse
Affiliation(s)
- Siavosh Naji-Talakar
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Sheena Sharma
- Pediatrics and Neonatology, Providence Sacred Heart Medical Center and Children’s Hospital, Spokane, WA, USA
| | - Leslie A. Martin
- Pediatrics and Neonatology, Providence Sacred Heart Medical Center and Children’s Hospital, Spokane, WA, USA
| | - Derek Barnhart
- Pediatrics and Neonatology, Providence Sacred Heart Medical Center and Children’s Hospital, Spokane, WA, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
30
|
Chaphekar N, Dodeja P, Shaik IH, Caritis S, Venkataramanan R. Maternal-Fetal Pharmacology of Drugs: A Review of Current Status of the Application of Physiologically Based Pharmacokinetic Models. Front Pediatr 2021; 9:733823. [PMID: 34805038 PMCID: PMC8596611 DOI: 10.3389/fped.2021.733823] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
Pregnancy and the postpartum period are associated with several physiological changes that can alter the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs. For certain drugs, dosing changes may be required during pregnancy and postpartum to achieve drug exposures comparable to what is observed in non-pregnant subjects. There is very limited data on fetal exposure of drugs during pregnancy, and neonatal exposure through transfer of drugs via human milk during breastfeeding. Very few systematic clinical pharmacology studies have been conducted in pregnant and postpartum women due to ethical issues, concern for the fetus safety as well as potential legal ramifications. Over the past several years, there has been an increase in the application of modeling and simulation approaches such as population PK (PopPK) and physiologically based PK (PBPK) modeling to provide guidance on drug dosing in those special patient populations. Population PK models rely on measured PK data, whereas physiologically based PK models incorporate physiological, preclinical, and clinical data into the model to predict drug exposure during pregnancy. These modeling strategies offer a promising approach to identify the drugs with PK changes during pregnancy to guide dose optimization in pregnancy, when there is lack of clinical data. PBPK modeling is also utilized to predict the fetal exposure of drugs and drug transfer via human milk following maternal exposure. This review focuses on the current status of the application of PBPK modeling to predict maternal and fetal exposure of drugs and thereby guide drug therapy during pregnancy.
Collapse
Affiliation(s)
- Nupur Chaphekar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Prerna Dodeja
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Imam H Shaik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steve Caritis
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women's Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women's Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Ogawa K, Uchida M, Yamaki T, Matsuzaki H, Kimura M, Okazaki M, Uchida H, Natsume H. Delivery of acetaminophen to the central nervous system and the pharmacological effect after intranasal administration with a mucoadhesive agent and absorption enhancer. Int J Pharm 2020; 594:120046. [PMID: 33309832 DOI: 10.1016/j.ijpharm.2020.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 11/30/2022]
Abstract
Acetaminophen, a central antipyretic and analgesic drug, is one of the most commonly used drugs among individuals of all ages throughout the world. This study pharmacokinetically and pharmacodynamically investigated the transport of acetaminophen to the central nervous system and systemic circulation after intranasal (i.n.) administration, and evaluated the potential of a transnasal acetaminophen formulation in comparison to other routes of administration. Direct transport to the brain and the pharmacological effect after the i.n. administration of acetaminophen with polyvinylpyrrolidone (PVP; a mucoadhesive agent) and poly-l-arginine (PLA; an absorption enhancer) were investigated to improve retention of the dosage solution in the olfactory epithelium region and enhance the transfer of acetaminophen to the brain. The transport of acetaminophen to the brain was rapid, and the concentration in the brain, especially the olfactory bulb, was higher after i.n. administration, resulting in a greater antipyretic effect in comparison to other routes of administration. The delivery system using PVP and PLA produced a high and prolonged antipyretic effect by enhancing the transfer of acetaminophen to the brain through suppression of the transfer to systemic circulation. Thus, this transnasal drug delivery system using PVP and PLA may be a promising method for transporting acetaminophen to the brain.
Collapse
Affiliation(s)
- Kaho Ogawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Masaki Uchida
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Tsutomu Yamaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Hirokazu Matsuzaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Mitsutoshi Kimura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Mari Okazaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Hiroyuki Uchida
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Hideshi Natsume
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
32
|
Assessing the impacts on fetal dosimetry of the modelling of the placental transfers of xenobiotics in a pregnancy physiologically based pharmacokinetic model. Toxicol Appl Pharmacol 2020; 409:115318. [PMID: 33160985 DOI: 10.1016/j.taap.2020.115318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
The developmental origin of health and diseases theory supports the critical role of the fetal exposure to children's health. We developed a physiologically based pharmacokinetic model for human pregnancy (pPBPK) to simulate the maternal and fetal dosimetry throughout pregnancy. Four models of the placental exchanges of chemicals were assessed on ten chemicals for which maternal and fetal data were available. These models were calibrated using non-animal methods: in vitro (InV) or ex vivo (ExV) data, a semi-empirical relationship (SE), or the limitation by the placental perfusion (PL). They did not impact the maternal pharmacokinetics but provided different profiles in the fetus. The PL and InV models performed well even if the PL model overpredicted the fetal exposure for some substances. The SE and ExV models showed the lowest global performance and the SE model a tendency to underprediction. The comparison of the profiles showed that the PL model predicted an increase in the fetal exposure with the pregnancy age, whereas the ExV model predicted a decrease. For the SE and InV models, a small decrease was predicted during the second trimester. All models but the ExV one, presented the highest fetal exposure at the end of the third trimester. Global sensitivity analyses highlighted the predominant influence of the placental transfers on the fetal exposure, as well as the metabolic clearance and the fraction unbound. Finally, the four transfer models could be considered depending on the framework of the use of the pPBPK model and the availability of data or resources to inform their parametrization.
Collapse
|
33
|
Zafeiri A, Mitchell RT, Hay DC, Fowler PA. Over-the-counter analgesics during pregnancy: a comprehensive review of global prevalence and offspring safety. Hum Reprod Update 2020; 27:67-95. [PMID: 33118024 DOI: 10.1093/humupd/dmaa042] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Analgesia during pregnancy is often necessary. Due to their widespread availability, many mothers opt to use over-the-counter (OTC) analgesics. Those analgesic compounds and their metabolites can readily cross the placenta and reach the developing foetus. Evidence for safety or associations with adverse health outcomes is conflicting, limiting definitive decision-making for healthcare professionals. OBJECTIVE AND RATIONALE This review provides a detailed and objective overview of research in this field. We consider the global prevalence of OTC analgesia during pregnancy, explain the current mechanistic understanding of how analgesic compounds cross the placenta and reach the foetus, and review current research on exposure associations with offspring health outcomes. SEARCH METHODS A comprehensive English language literature search was conducted using PubMed and Scopus databases. Different combinations of key search terms were used including 'over-the-counter/non-prescription analgesics', 'pregnancy', 'self-medication', 'paracetamol', 'acetaminophen', 'diclofenac', 'aspirin', 'ibuprofen', 'in utero exposure', 'placenta drug transport', 'placental transporters', 'placenta drug metabolism' and 'offspring outcomes'. OUTCOMES This article examines the evidence of foetal exposure to OTC analgesia, starting from different routes of exposure to evidence, or the lack thereof, linking maternal consumption to offspring ill health. There is a very high prevalence of maternal consumption of OTC analgesics globally, which is increasing sharply. The choice of analgesia selected by pregnant women differs across populations. Location was also observed to have an effect on prevalence of use, with more developed countries reporting the highest consumption rates. Some of the literature focuses on the association of in utero exposure at different pregnancy trimesters and the development of neurodevelopmental, cardiovascular, respiratory and reproductive defects. This is in contrast to other studies which report no associations. WIDER IMPLICATIONS The high prevalence and the challenges of reporting exact consumption rates make OTC analgesia during pregnancy a pressing reproductive health issue globally. Even though some healthcare policy-making authorities have declared the consumption of some OTC analgesics for most stages of pregnancy to be safe, such decisions are often based on partial review of literature. Our comprehensive review of current evidence highlights that important knowledge gaps still exist. Those areas require further research in order to provide pregnant mothers with clear guidance with regard to OTC analgesic use during pregnancy.
Collapse
Affiliation(s)
- Aikaterini Zafeiri
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
34
|
van den Anker JN, Allegaert K. Acetaminophen Use in Pregnant Women and Their Neonates: Safe or Unsafe till Proven Otherwise? Neonatology 2020; 117:249-251. [PMID: 32155624 DOI: 10.1159/000506837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 11/19/2022]
Affiliation(s)
- John N van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium, .,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium, .,Department of Clinical Pharmacy, Erasmus MC, Rotterdam, The Netherlands,
| |
Collapse
|