1
|
Bentivegna E, Luciani M, Ferrari V, Galastri S, Baldari F, Scarso F, Lamberti PA, Martelletti P. Recently approved and emerging drug options for migraine prophylaxis. Expert Opin Pharmacother 2022; 23:1325-1335. [PMID: 35850597 DOI: 10.1080/14656566.2022.2102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Migraine occupies the first position regarding to the disability caused in female working population (15-49 years). Research in the field of prophylaxis of this pathology has made enormous strides in recent years. AREAS COVERED In this narrative review we retrace the most important scientific evidence regarding recently approved and emerging drug for prophylactic treatment of migraine. The purpose of this article is in fact to evaluate currently approved or emerging pharmacological agents for migraine prophylaxis. This review is based on literature published in peer review journal obtained through PubMed, Cochrane library, Clinicaltrials.gov and US FDA. EXPERT OPINION : Monoclonal antibodies (mAbs) that target the calcitonin gene-related peptide signalling pathway (CGRP) have marked an innovation in prophylactic migraine therapy. The combination of Onabotulinumtoxin-A (OBTA) and mAbs appears to be an effective, but costly, therapeutic option for resistant cases. New classes of molecules like gepants and ditans seem to give exceptional results. In addition, new prophylactic drugs are emerging with several targets: the pituitary adenylate cyclase-activating polypeptide (PACAP), ion channels, several receptors coupled to G proteins, orexin, and glutamate. All these therapies will implement and improve migraine management, as well as personalized medicine for each patient.
Collapse
Affiliation(s)
- Enrico Bentivegna
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Valeria Ferrari
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Silvia Galastri
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Francesco Baldari
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Francesco Scarso
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Piera A Lamberti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
2
|
Sevivas H, Fresco P. Treatment of resistant chronic migraine with anti-CGRP monoclonal antibodies: a systematic review. Eur J Med Res 2022; 27:86. [PMID: 35659086 PMCID: PMC9167529 DOI: 10.1186/s40001-022-00716-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/15/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Resistant chronic migraine is a highly disabling condition which is very difficult to treat. The majority of the treatments for migraine prophylaxis are nonspecific and present weak safety profiles, leading to low adherence and discontinuation. Currently, monoclonal antibodies (mAb) targeting the trigeminal sensory neuropeptide, calcitonin gene-related peptide (CGRP), are available for migraine prophylaxis being the first drugs developed specifically to target migraine pathogenesis. The main objective of the current work is to carry out a systematic review of randomised controlled trials that specifically analyse the effectivity and safety of anti-CGRP mAb, comparatively to placebo, in patients with resistant chronic migraine and possibly fill the literature gap or be a source of information to health professionals. Additionally the current knowledge on migraine, particularly resistant chronic migraine, was revisited and summarised. METHODS Literature search was carried out on MEDLINE, Scopus, Science Direct and ClinicalTrials.gov database, from inception to December 2021. Articles were selected according to prespecified criteria of inclusion and exclusion. Efficacy and safety outcomes included were: change from baseline in monthly migraine days (MMD); ≥50% reduction of MMD values from baseline; change from baseline in monthly acute migraine-specific medication days (MAMD); Migraine-specific Quality of Life Questionnaire (MSQ); and registered adverse events. Additionally, we used the Cochrane risk of bias tool (RoB 2) to assess the risk of bias of the included studies. RESULTS Four studies were included in this systematic review, involving 2811 resistant chronic migraine patients, 667 in a study using erenumab, 838 in a study using fremanezumab and 1306 in two studies using galcanezumab. When compared to placebo, all investigated anti-CGRP mAb and respective doses demonstrate effectiveness in decreasing MMD, reducing acute medication use and improving the MSQ scores, including, sometimes, reversion of chronic to episodic migraine (efficacy outcomes). Regarding the safety outcomes, the number and type of adverse events did not differ between anti-CGRP mAb-treated and placebo groups. CONCLUSIONS Anti-CGRP or anti-CGRP receptor monoclonal antibodies are a promising preventive migraine therapy which can be particularly useful for resistant chronic migraine patients.
Collapse
Affiliation(s)
- Hugo Sevivas
- Faculdade de Medicina da Universidade Do Porto (FMUP), Al. Prof. Hernâni Monteiro, 4200 - 319, Porto, Portugal.
| | - Paula Fresco
- Laboratório de Farmacologia, Departamento de Ciências Do Medicamento, Faculdade de Farmácia da Universidade Do Porto (FFUP), Porto, Portugal
- I3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| |
Collapse
|
3
|
Skaria T, Vogel J. The Neuropeptide α-Calcitonin Gene-Related Peptide as the Mediator of Beneficial Effects of Exercise in the Cardiovascular System. Front Physiol 2022; 13:825992. [PMID: 35431990 PMCID: PMC9008446 DOI: 10.3389/fphys.2022.825992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Regular physical activity exerts cardiovascular protective effects in healthy individuals and those with chronic cardiovascular diseases. Exercise is accompanied by an increased plasma concentration of α-calcitonin gene-related peptide (αCGRP), a 37-amino acid peptide with vasodilatory effects and causative roles in migraine. Moreover, mouse models revealed that loss of αCGRP disrupts physiological adaptation of the cardiovascular system to exercise in normotension and aggravates cardiovascular impairment in primary chronic hypertension, both can be reversed by αCGRP administration. This suggests that αCGRP agonists could be a therapeutic option to mediate the cardiovascular protective effects of exercise in clinical setting where exercise is not possible or contraindicated. Of note, FDA has recently approved αCGRP antagonists for migraine prophylaxis therapy, however, the cardiovascular safety of long-term anti-CGRP therapy in individuals with cardiovascular diseases has yet to be established. Current evidence from preclinical models suggests that chronic αCGRP antagonism may abolish the cardiovascular protective effects of exercise in both normotension and chronic hypertension.
Collapse
Affiliation(s)
- Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Kerala, India
| | - Johannes Vogel
- Zürich Center for Integrative Human Physiology, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
- *Correspondence: Johannes Vogel,
| |
Collapse
|
4
|
Pergolizzi JV, Varrassi G, Magnusson P, Breve F, Raffa RB, Christo PJ, Chopra M, Paladini A, LeQuang JA, Mitchell K, Coluzzi F. Pharmacologic agents directed at the treatment of pain associated with maladaptive neuronal plasticity. Expert Opin Pharmacother 2021; 23:105-116. [PMID: 34461795 DOI: 10.1080/14656566.2021.1970135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The definition of nociplastic pain in 2016 has changed the way maladaptive chronic pain is viewed in that it may emerge without neural lesions or neural disease. Many endogenous and pharmacologic substances are being investigated for their role in treating the pain associated with neuronal plasticity. AREAS COVERED The authors review promising pharmacologic agents for the treatment of pain associated with maladaptive neuronal plasticity. The authors then provide the reader with their expert opinion and provide their perspectives for the future. EXPERT OPINION An imbalance between the amplification of ascending pain signals and the poor activation of descending inhibitory signals may be at the root of many chronic pain syndromes. The inhibitory activity of noradrenaline reuptake may play a role in neuropathic and nociplastic analgesia. A better understanding of the brain's pain matrix, its signaling cascades, and the complex bidirectional communication between the immune system and the nervous system may help meet the urgent and unmet medical need for safe, effective chronic pain treatment, particularly for pain with a neuropathic and/or nociplastic component.
Collapse
Affiliation(s)
| | | | - Peter Magnusson
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden.,Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Frank Breve
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, USA
| | - Robert B Raffa
- College of Pharmacy (Adjunct), University of Arizona, Tucson, USA.,Temple University School of Pharmacy (Professor Emeritus), Philadelphia, USA
| | - Paul J Christo
- Associate Professor, the Johns Hopkins School of Medicine, Baltimore, USA
| | | | | | | | | | - Flaminia Coluzzi
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
5
|
Real-Life Response to Erenumab in a Therapy-Resistant Case Series of Migraine Patients From the Province of Québec, Eastern Canada. Clin Drug Investig 2021; 41:733-739. [PMID: 34287786 DOI: 10.1007/s40261-021-01059-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Erenumab is the first migraine-specific preventive therapy approved by Health Canada since the approval of onabotulinumtoxinA 10 years ago. It is one of four calcitonin gene-related peptide antagonist monoclonal antibodies that have been commercialized worldwide for use in the headache pipeline. The objective of our study was to determine real-life efficacy of monthly erenumab for the prevention of migraine in a small case series of difficult-to-treat patients followed at a tertiary headache clinic from the Canadian province of Québec. METHODS We performed a retrospective chart audit of patients having failed four or more conventional migraine oral preventive therapies and who were treated with monthly self-administered subcutaneous erenumab (70 or 140 mg/mL dose) over a 1-year period. We assessed the patients' baseline characteristics, response to treatment, and tolerability. RESULTS A total of 18 patients with a diagnosis of high-frequency episodic migraines or chronic migraine met criteria (83.3% female; mean age: 48.7 years; mean duration of migraine condition: 32.9 years). Patients self-administered erenumab using a prefilled disposable autoinjector on a monthly basis; 16 patients received a 140 mg/mL dosage, two patients received a 70 mg/mL dosage. At 1 year follow-up, 50% of patients reported ≥ 50% reduction in migraine frequency and were deemed responders. Patients attempted six doses of erenumab therapy prior to discontinuation for non-response, except for two patients with other concomitant chronic pain conditions, who required ten doses to reach a 50% response. For the overall cohort, there was a decrease of 5.2 monthly migraine days; 9 days for responders and 1.3 days for non-responders (t-test (df = 16) = - 2.77, p = 0.014). There was an additional decrease of 7 monthly non-migraine days amongst patients with unremitting daily headaches; 8 days for responders and 5 days for non-responders (p > 0.05). There was a decrease of 5.4 monthly days using acute analgesics; 8.9 days for responders and 2 days for non-responders (T(16) = - 2.33, p = 0.033). The overall mean reduction in disability using the Headache Impact Test (HIT-6) score was 5.6 points; only responders showed a reduction in HIT-6 severity category (p > 0.05). The most commonly reported adverse event was constipation (16.7%), which did not lead to treatment discontinuation and was successfully managed in all patients with early counselling and intervention. CONCLUSION This study supports the efficacy of erenumab in a case series of therapy-resistant migraine patients from the region of Québec. A high rate of previously failed preventive oral agents and medication overuse did not predict response in our patient cohort. In the presence of real-world complexity factors, such as psychological distress, regular opioid consumption and concomitant chronic pain conditions, a longer therapy trial may be warranted in obtaining optimal response.
Collapse
|
6
|
Fiedler-Kelly J, Raddad E, de Hoon J, Ludwig EA, Passarell J, Kielbasa W, Collins EC. Relationship of the Calcitonin Gene-Related Peptide Monoclonal Antibody Galcanezumab Pharmacokinetics and Capsaicin-Induced Dermal Blood Flow in Healthy Subjects. Clin Pharmacol Drug Dev 2021; 10:440-452. [PMID: 33740315 DOI: 10.1002/cpdd.929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/02/2021] [Indexed: 11/05/2022]
Abstract
Galcanezumab, a humanized monoclonal antibody targeting calcitonin gene-related peptide, was recently approved for migraine prophylaxis. The pharmacokinetic/pharmacodynamic (PK/PD) relationship between galcanezumab concentration and inhibition of capsaicin-induced dermal blood flow (CIDBF) was evaluated using first-in-human data following 6 single subcutaneous doses (1 to 600 mg) or multiple (4) 150-mg doses every 2 weeks in 7 cohorts (7 actively treated subjects and 2 placebo-treated healthy subjects). Galcanezumab pharmacokinetics were best described by a 1-compartment model with delayed first-order absorption/linear elimination. Apparent estimates (between-subject variability) of clearance, volume of distribution, absorption rate constant, and lag time were 0.0106 L/h (27%CV), 11.2 L (21%CV), 0.0192 h-1 (89%CV), and 0.202 hours, respectively. Estimated elimination half-life was about 30 days. An effect compartment link model described the concentration-effect relationship; estimated maximum inhibitory effect was 70.5%, and 50% maximum inhibitory effect concentration (IC50 ) was 1060 ng/mL. Galcanezumab showed dose- and concentration-dependent potent and durable inhibition of CIDBF. Simulated effect compartment concentrations were maintained above IC50 after 12 weeks of dosing. Near-maximal CIDBF inhibition occurred with 150 mg biweekly for 12 weeks lasting ≥24 weeks or with ≥30 mg every 2 weeks or 195 mg every 13 weeks. Quantitative modeling of galcanezumab PK/PD supported dose selection for the phase 2 proof-of-concept study.
Collapse
Affiliation(s)
- Jill Fiedler-Kelly
- Cognigen Corporation, a Simulations Plus company, Buffalo, New York, USA
| | - Eyas Raddad
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Elizabeth A Ludwig
- Cognigen Corporation, a Simulations Plus company, Buffalo, New York, USA
| | - Julie Passarell
- Cognigen Corporation, a Simulations Plus company, Buffalo, New York, USA
| | | | | |
Collapse
|
7
|
Vécsei L, Lukács M, Tajti J, Fülöp F, Toldi J, Edvinsson L. The Therapeutic Impact of New Migraine Discoveries. Curr Med Chem 2019; 26:6261-6281. [PMID: 29848264 DOI: 10.2174/0929867325666180530114534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Migraine is one of the most disabling neurological conditions and associated with high socio-economic costs. Though certain aspects of the pathomechanism of migraine are still incompletely understood, the leading hypothesis implicates the role of the activation of the trigeminovascular system. Triptans are considered to be the current gold standard therapy for migraine attacks; however, their use in clinical practice is limited. Prophylactic treatment includes non-specific approaches for migraine prevention. All these support the need for future studies in order to develop innovative anti-migraine drugs. OBJECTIVE The present study is a review of the current literature regarding new therapeutic lines in migraine research. METHODS A systematic literature search in the database of PUBMED was conducted concerning therapeutic strategies in a migraine published until July 2017. RESULTS Ongoing clinical trials with 5-HT1F receptor agonists and glutamate receptor antagonists offer promising new aspects for acute migraine treatment. Monoclonal antibodies against CGRP and the CGRP receptor are revolutionary in preventive treatment; however, further long-term studies are needed to test their tolerability. Preclinical studies show positive results with PACAP- and kynurenic acid-related treatments. Other promising therapeutic strategies (such as those targeting TRPV1, substance P, NOS, or orexin) have failed to show efficacy in clinical trials. CONCLUSION Due to their side-effects, current therapeutic approaches are not suitable for all migraine patients. Especially frequent episodic and chronic migraine represents a therapeutic challenge for researchers. Clinical and preclinical studies are needed to untangle the pathophysiology of migraine in order to develop new and migraine-specific therapies.
Collapse
Affiliation(s)
- László Vécsei
- Department of Neurology, University of Szeged, Szeged, Hungary.,MTASZTE Neuroscience Research Group, Szeged, Hungary
| | - Melinda Lukács
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
8
|
Abstract
Introduction: Calcitonin Gene-Related Peptide (CGRP) plays a crucial role in migraine pathophysiology. A novel specific treatment strategy for the prevention of migraine incorporates monoclonal antibodies (mAbs) against CGRP and its canonical receptor. Eptinezumab, fremanezumab and galcanezumab block CGRP mediated effects by binding to the peptide, while erenumab blocks the CGRP receptor.Areas covered: Following a brief overview of pharmacological characteristics, we will review phase III trials for the use of CGRP mAbs in the prevention of episodic and chronic migraine.Expert opinion: All four CGRP mAbs demonstrated an excellent safety, tolerability and efficacy profile in migraine patients. Across all trials mAbs showed superior efficacy for the reduction of monthly migraine days compared to placebo with a net benefit of 2.8 days. Neither cardiovascular nor immunological safety concerns have emerged from clinical trials. Fremanezumab, galcanezumab, and erenumab are approved in the USA and Europe. Based on trial data there is no reason why these mAbs should not become first-line therapies in future. For now, we advocate for the use of mAbs in migraine prevention for patients who failed a minimum of two standard oral treatments based on the novelty and costs of this approach. mAbs are also effective in patients with medication overuse and with comorbid depression or anxiety disorders. Taken together, mAbs are likely to usher in a new era in migraine prevention and provide significant value to patients.
Collapse
Affiliation(s)
- Bianca Raffaelli
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Clinician Scientist Programm, Berlin Institute of Health (BIH), Berlin, Germany
| | - Lars Neeb
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Reuter
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Lionetto L, Curto M, Cisale GY, Capi M, Cipolla F, Guglielmetti M, Martelletti P. Fremanezumab for the preventive treatment of migraine in adults. Expert Rev Clin Pharmacol 2019; 12:741-748. [PMID: 31220963 DOI: 10.1080/17512433.2019.1635452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: The Calcitonin Gene-Related Peptide (CGRP) has been implicated in migraine pathophysiology due to its role in neurogenic inflammation and transmission of trigeminovascular nociceptive signal. New molecules targeting CGRP and its receptor have been developed as migraine-specific preventative treatments. Fremanezumab (or TEV-48,125, LBR-101), a human monoclonal antibody against CGRP, has been recently approved for clinical use by FDA and EMA. Areas covered: This paper briefly discusses the calcitonin family of neurotransmitters and resultant activation pathways and in-depth the chemical properties, pharmacodynamics, pharmacokinetics, clinical efficacy and safety of Fremanezumab for the prophylactic treatment of migraine. Expert opinion: Fremanezumab, a migraine-specific drug, is effective and safe as a prophylactic treatment of chronic and episodic migraine. As a monoclonal antibody, it was not associated to liver toxicity and is not expected to interact with other drugs. The long half-life might improve patients' compliance. Long-term effects of CGRP block in cardiovascular, grastrointestinal and bone functions should be evaluated in ongoing trials, since CGRP is involved in multiple biological activities in the human body. Nevertheless, targeting CGRP itself allows the receptor binding with other ligands involved in several physiological functions. Thus, the long-term treatment with Fremanezumab is expected to be associated with a lower risk of severe adverse effects.
Collapse
Affiliation(s)
- Luana Lionetto
- a Mass Spectrometry Laboratory Unit, Sant'Andrea University Hospital , Rome , Italy
| | - Martina Curto
- b Department of Human Neurosciences, Sapienza University of Rome , Rome , Italy.,c International Mood & Psychotic Disorders Research Consortium, Mailman Research Center , Belmont , MA , USA.,d Department of Mental Health , Colleferro (RM) , Italy
| | - Giusy Ylenia Cisale
- e Department of Physiology and Pharmacology, Sapienza University , Rome , Italy
| | - Matilde Capi
- a Mass Spectrometry Laboratory Unit, Sant'Andrea University Hospital , Rome , Italy
| | - Fabiola Cipolla
- f Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome , Italy
| | - Martina Guglielmetti
- g Department of Medical, Surgical and Experimental Sciences, University of Sassari , Sassari , Italy.,h Regional Referral Headache Center, Sant'Andrea University Hospital , Rome , Italy
| | - Paolo Martelletti
- f Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome , Italy.,h Regional Referral Headache Center, Sant'Andrea University Hospital , Rome , Italy
| |
Collapse
|
10
|
Bigal ME, Walter S, Rapoport AM. Fremanezumab as a preventive treatment for episodic and chronic migraine. Expert Rev Neurother 2019; 19:719-728. [PMID: 31043094 DOI: 10.1080/14737175.2019.1614742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: The importance of calcitonin gene-related peptide (CGRP) in migraine pathogenesis is well established. Fremanezumab is a humanized IgG2a monoclonal antibody that binds to CGRP. Areas covered: In this paper, we review the development of fremanezumab, from early development into approval. The authors focus on the efficacy and safety of fremanezumab in both migraine stages. The authors highlight studies conducted in special populations and focus on unique aspects of its development, as well as on clinical pearls supported by the data. Expert opinion: Fremanezumab was shown to be effective in episodic and chronic migraine, with a monthly and quarterly dose of administration, as monotherapy and add-on therapy. As with other monoclonal antibodies, the anti-CGRP onset of action was remarkably quick, and the effect seems to be maintained over time. No overt safety concerns emerged from the clinical studies, although long-term surveillance is necessary.
Collapse
Affiliation(s)
| | | | - Alan M Rapoport
- c Department of Neurology , The David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| |
Collapse
|
11
|
|
12
|
Ong JJY, Wei DYT, Goadsby PJ. Recent Advances in Pharmacotherapy for Migraine Prevention: From Pathophysiology to New Drugs. Drugs 2019; 78:411-437. [PMID: 29396834 DOI: 10.1007/s40265-018-0865-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Migraine is a common and disabling neurological disorder, with a significant socioeconomic burden. Its pathophysiology involves abnormalities in complex neuronal networks, interacting at different levels of the central and peripheral nervous system, resulting in the constellation of symptoms characteristic of a migraine attack. Management of migraine is individualised and often necessitates the commencement of preventive medication. Recent advancements in the understanding of the neurobiology of migraine have begun to account for some parts of the symptomatology, which has led to the development of novel target-based therapies that may revolutionise how migraine is treated in the future. This review will explore recent advances in the understanding of migraine pathophysiology, and pharmacotherapeutic developments for migraine prevention, with particular emphasis on novel treatments targeted at the calcitonin gene-related peptide (CGRP) pathway.
Collapse
Affiliation(s)
- Jonathan Jia Yuan Ong
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.,Division of Neurology, Department of Medicine, National University Health System, University Medicine Cluster, Singapore, Singapore
| | - Diana Yi-Ting Wei
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.
| |
Collapse
|
13
|
McCafferty EH, Lyseng-Williamson KA. Erenumab in the prophylaxis of migraine: a profile of its use. DRUGS & THERAPY PERSPECTIVES 2019. [DOI: 10.1007/s40267-018-0589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Taylor FR. CGRP, Amylin, Immunology, and Headache Medicine. Headache 2018; 59:131-150. [DOI: 10.1111/head.13432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
|
15
|
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide of importance in migraine pathogenesis. Its central role in migraine was proven pharmacologically by the development of CGRP receptor antagonists. Monoclonal antibodies targeting CGRP or its receptor are effective in the preventive treatment of episodic and chronic migraine and are considered potential breakthroughs in their treatment. Fremanezumab (previously known as TEV-48125, LBR-101, or RN-307) is a humanized IgG2a monoclonal antibody that binds to CGRP. The development of this antibody validated the role of CGRP in chronic migraine and the drug has been recently approved in the US by the FDA, while it continues to be reviewed by other regulatory agencies. Herein we provide an in-depth review of its development. We start by summarizing its in vitro and in vivo pharmacology, and the phase I studies. We then review the late-stage clinical development, with a focus on its efficacy, safety, similarities, and uniqueness relative to other CGRP antibodies. We close by discussing lessons learned on the mechanisms of migraine and areas for future development and exploration.
Collapse
|
16
|
Taylor FR. Antigens and Antibodies in Disease With Specifics About CGRP Immunology. Headache 2018; 58 Suppl 3:230-237. [PMID: 30187471 DOI: 10.1111/head.13409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 11/28/2022]
Abstract
Growth in knowledge about calcitonin gene-related peptide (CGRP) in the pathophysiology of migraine brought CGRP antagonism to headache medicine. Failures in development of small molecule CGRP receptor antagonists and increasing knowledge and use of monoclonal antibodies (mAbs) in medicine led to the breakthrough development of large molecule anti-CGRP mAbs: eptinezumab, erenumab, fremanezumab, and galcanezumab. This specifics about CGRP immunology aims to outline: (1) knowledge needed for CGRP antagonism and (2) developmental issues of specific CGRP antagonists for provider use. This clinically oriented review documents IgG structure and function; state of the art of monoclonal IgG production and ligand-antigen-antibodies in migraine therapeutics contributing to immunogenic risks and off-target toxicities. Specifics to CGRP ligand, receptor, antagonism, and molecules, small and large, complete this review. Completion will facilitate assessment of the similarities, differences, and application of the forthcoming anti-CGRP receptor and ligand antagonists for patients.
Collapse
Affiliation(s)
- Frederick R Taylor
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
17
|
Oakes TMM, Skljarevski V, Zhang Q, Kielbasa W, Hodsdon ME, Detke HC, Camporeale A, Saper JR. Safety of galcanezumab in patients with episodic migraine: A randomized placebo-controlled dose-ranging Phase 2b study. Cephalalgia 2018; 38:1015-1025. [PMID: 29310444 DOI: 10.1177/0333102417747230] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Safety findings from a Phase 2b study of galcanezumab, a humanized monoclonal antibody against calcitonin gene-related peptide, for prevention of migraine (NCT02163993) are reported here. Methods Patients aged 18-65 years with episodic migraine were evaluated in this multicenter, double-blind, randomized study. After randomization, 410 patients were administered 5, 50, 120 or 300 mg of galcanezumab or placebo subcutaneously once every 4 weeks for 12 weeks, followed by a post-treatment off-drug period lasting 12 weeks. Results Treatment-emergent adverse events (TEAEs) were primarily rated as mild to moderate. Serious adverse events reported in galcanezumab dose groups were appendicitis, Crohn's disease, suicidal ideation, and congenital ankyloglossia in an infant of a paternal pregnancy; each of these were reported by one patient. Adverse events leading to discontinuation with galcanezumab treatment were abdominal pain, visual impairment, and upper limb fracture, each reported by one patient. Treatment-emergent injection-site reactions were reported significantly more frequently ( p = 0.013) with galcanezumab (13.9%) than with placebo (5.8%). Injection-site pain was the most common injection-site reaction (galcanezumab 11.4%; placebo 2.9%, p = 0.004). Upper respiratory tract infection (galcanezumab 10.0%; placebo 8.8%) and nasopharyngitis (galcanezumab 7.0%; placebo 2.2%) also occurred more frequently with galcanezumab treatment. Potential hypersensitivity events were reported at similar frequencies in galcanezumab (3.3%) and placebo (5.1%) groups. Incidence of treatment-emergent anti-drug antibodies in galcanezumab dose groups (4.6% of patients during treatment period) did not appear to have any meaningful effects on safety, the pharmacokinetics of galcanezumab, or its ability to bind to the target ligand. Conclusion The results from this 3-month Phase 2b study support the initiation of larger Phase 3 trials of longer duration.
Collapse
Affiliation(s)
| | | | - Qi Zhang
- 1 Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | - Joel R Saper
- 3 Michigan Headache & Neurological Institute, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Hou M, Xing H, Cai Y, Li B, Wang X, Li P, Hu X, Chen J. The effect and safety of monoclonal antibodies to calcitonin gene-related peptide and its receptor on migraine: a systematic review and meta-analysis. J Headache Pain 2017; 18:42. [PMID: 28389966 PMCID: PMC5383797 DOI: 10.1186/s10194-017-0750-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Migraine has been recognized as one of the leading causes of disability in the 2013 Global Burden of Disease Study and seriously affects the quality of patients' life, current treatment options are not ideal. Monoclonal antibodies to calcitonin gene-related peptide and its receptor (CGRP-mAbs) appear more promising for migraine because of considerably better effect and safety profiles. The objective of this study is to systematically assess the clinical efficacy and safety of CGRP-mAbs for migraine therapy. METHODS A systematic literature search in PubMed, Cochrane Library and Baidu Scholar was performed to identify randomized controlled trials (RCTs), which compared the effect and safety of CGRP-mAbs with placebo on migraine. Regarding the efficacy, the reduction of monthly migraine days from baseline to weeks 1-4, 5-8, and 9-12; responder rates were extracted as the outcome measures of the effects of CGRP-mAbs. Regarding the safety, total adverse events, the main adverse events, and other adverse events were evaluated. RESULTS We found significant reduction of monthly migraine days in CGRP-mAbs vs. placebo (weeks 1-4: SMD -0.49, 95% CI -0.61 to -0.36; weeks 5-8: SMD -0.43, 95% CI -0.56 to -0.30; weeks 9-12: SMD -0.37, 95% CI -0.49 to -0.24). 50% and 75% responder rates (OR 2.59, 95% CI 1.99 to 3.37; and OR 2.91, 95% CI 2.06 to 4.10) were significantly increased compared with placebo. There was no significant difference in total adverse events (OR 1.17, 95% CI 0.91 to 1.51), and the main adverse events including upper respiratory tract infection (OR 1.44, 95% CI 0.82 to 2.55), nasopharyngitis (OR 0.59, 95% CI 0.30 to 1.16), nausea (OR 0.61, 95% CI 0.29 to 1.32), injection-site pain (OR 1.73, 95% CI 0.95 to 3.16) and back pain (OR 0.97, 95% CI 0.49 to 1.90) were not obviously changed compared with placebo control, but the results showed significant increase of dizziness in CGRP-mAbs vs. placebo (OR 3.22, 95% CI 1.09 to 9.45). CONCLUSIONS This meta-analysis suggests that CGRP-mAbs are effective in anti-migraine therapy with few adverse reactions, but more and larger sample-size RCTs are required to verify the current findings.
Collapse
Affiliation(s)
- Min Hou
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Haiyan Xing
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Yongqing Cai
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Bin Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Xianfeng Wang
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Pan Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Xiaolin Hu
- China Pharmacy Publishing House, Chongqing, 500000, People's Republic of China
| | - Jianhong Chen
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
19
|
Hay DL, Walker CS. CGRP and its receptors. Headache 2017; 57:625-636. [PMID: 28233915 DOI: 10.1111/head.13064] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 02/01/2023]
Abstract
The calcitonin gene-related peptide (CGRP) neuropeptide system is an important but still evolving target for migraine. A fundamental consideration for all of the current drugs in clinical trials and for ongoing development in this area is the identity, expression pattern, and function of CGRP receptors because this knowledge informs safety and efficacy considerations. In recent years, only the calcitonin receptor-like receptor/receptor activity-modifying protein 1 (RAMP1) complex, known as the CGRP receptor, has generally been considered relevant. However, CGRP is capable of activating multiple receptors and could have more than one endogenous receptor. The recent identification of the CGRP-responsive calcitonin receptor/RAMP1 complex (AMY1 receptor - amylin subtype 1 receptor) in the trigeminovascular system warrants a deeper consideration of the molecular identity of CGRP receptor(s) involved in the pathophysiology, and thus potential treatment of migraine. This perspective considers some of the issues and implications.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Walker CS, Raddant AC, Woolley MJ, Russo AF, Hay DL. CGRP receptor antagonist activity of olcegepant depends on the signalling pathway measured. Cephalalgia 2017; 38:437-451. [PMID: 28165287 DOI: 10.1177/0333102417691762] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Calcitonin gene-related peptide (CGRP) is a neuropeptide that acts in the trigeminovascular system and is believed to play an important role in migraine. CGRP activates two receptors that are both present in the trigeminovascular system; the CGRP receptor and the amylin 1 (AMY1) receptor. CGRP receptor antagonists, including olcegepant (BIBN4096BS) and telcagepant (MK-0974), can treat migraine. This study aimed to determine the effectiveness of these antagonists at blocking CGRP receptor signalling in trigeminal ganglia (TG) neurons and transfected CGRP and AMY1 receptors in Cos7 cells, to better understand their mechanism of action. Methods CGRP stimulation of four intracellular signalling molecules relevant to pain (cAMP, CREB, p38 and ERK) were examined in rat TG neurons and compared to transfected CGRP and AMY1 receptors in Cos7 cells. Results In TG neurons, olcegepant displayed signal-specific differences in antagonism of CGRP responses. This effect was also evident in transfected Cos7 cells, where olcegepant blocked CREB phosphorylation more potently than expected at the AMY1 receptor, suggesting that the affinity of this antagonist can be dependent on the signalling pathway activated. Conclusions CGRP receptor antagonist activity appears to be assay-dependent. Thus, these molecules may not be as selective for the CGRP receptor as commonly reported.
Collapse
Affiliation(s)
- Christopher S Walker
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand.,2 Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ann C Raddant
- 3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Michael J Woolley
- 4 Institute of Clinical Studies, University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew F Russo
- 3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,5 Department of Neurology, University of Iowa; Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Debbie L Hay
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand.,2 Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Yeh JF, Akinci A, Al Shaker M, Chang MH, Danilov A, Guillen R, Johnson KW, Kim YC, El-Shafei AA, Skljarevski V, Dueñas HJ, Tassanawipas W. Monoclonal antibodies for chronic pain: a practical review of mechanisms and clinical applications. Mol Pain 2017; 13:1744806917740233. [PMID: 29056066 PMCID: PMC5680940 DOI: 10.1177/1744806917740233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 12/24/2022] Open
Abstract
Context Monoclonal antibodies are being investigated for chronic pain to overcome the shortcomings of current treatment options. Objective To provide a practical overview of monoclonal antibodies in clinical development for use in chronic pain conditions, with a focus on mechanisms of action and relevance to specific classes. Methods Qualitative review using a systematic strategy to search for randomized controlled trials, systematic and nonsystematic (narrative) reviews, observational studies, nonclinical studies, and case reports for inclusion. Studies were identified via relevant search terms using an electronic search of MEDLINE via PubMed (1990 to June 2017) in addition to hand-searching reference lists of retrieved systematic and nonsystematic reviews. Results Monoclonal antibodies targeting nerve growth factor, calcitonin gene-related peptide pathways, various ion channels, tumor necrosis factor-α, and epidermal growth factor receptor are in different stages of development. Mechanisms of action are dependent on specific signaling pathways, which commonly involve those related to peripheral neurogenic inflammation. In clinical studies, there has been a mixed response to different monoclonal antibodies in several chronic pain conditions, including migraine, neuropathic pain conditions (e.g., diabetic peripheral neuropathy), osteoarthritis, chronic back pain, ankylosing spondylitis, and cancer. Adverse events observed to date have generally been mild, although further studies are needed to ensure safety of monoclonal antibodies in early stages of development, especially where there is an overlap with non-pain-related pathways. High acquisition cost remains another treatment limitation. Conclusion Monoclonal antibodies for chronic pain have the potential to overcome the limitations of current treatment options, but strategies to ensure their appropriate use need to be determined.
Collapse
Affiliation(s)
| | - Aysen Akinci
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Hacettepe, Ankara, Turkey
| | - Mohammed Al Shaker
- King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | | | - Andrei Danilov
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Rocio Guillen
- Pain Clinic, National Cancer Institute, México DF, México
| | | | - Yong-Chul Kim
- Seoul National University School of Medicine, Pain Management Center of the Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | - Warat Tassanawipas
- Department of Orthopaedics, Phramongkutklao Army Hospital, Bangkok, Thailand
| |
Collapse
|
22
|
Giamberardino MA, Affaitati G, Curto M, Negro A, Costantini R, Martelletti P. Anti-CGRP monoclonal antibodies in migraine: current perspectives. Intern Emerg Med 2016; 11:1045-1057. [PMID: 27339365 DOI: 10.1007/s11739-016-1489-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
Abstract
Migraine is a highly disabling neurological pain disorder in which management is frequently problematic. Most abortive and preventative treatments employed are classically non-specific, and their efficacy and safety and tolerability are often unsatisfactory. Mechanism-based therapies are, therefore, needed. Calcitonin gene-related peptide (CGRP) is recognized as crucial in the pathophysiology of migraine, and new compounds that target the peptide have been increasingly explored in recent years. First tested were CGRP receptor antagonists; they proved effective in acute migraine treatment in several trials, but were discontinued due to liver toxicity in long-term administration. Monoclonal antibodies against CGRP (LY2951742, ALD-403, and LBR-101/TEV-48125) or its receptor (AMG334) were subsequently developed. As reviewed in this study, numerous phase 1 and 2 trials and preliminary results of phase 3 trials have shown a good safety/tolerability profile and efficacy in migraine prevention, especially in high frequent episodic and chronic forms. Being macromolecules, these mAbs are not suitable for oral administration; however, their intravenous or subcutaneous delivery can be performed at relatively low frequency-every month or even quarterly-which enhances patients' compliance. Although not all migraineurs respond to this treatment, and longer administration periods will be needed to assess long-term effects, the results so far obtained are extraordinarily promising. The future introduction of mAbs on the market will probably represent a turning point for prevention similar to that represented by triptans for abortive treatment in migraine.
Collapse
Affiliation(s)
- Maria Adele Giamberardino
- Department of Medicine and Science of Aging, Headache Center and Geriatrics Clinic, Gabriele D'Annunzio University, Chieti, Italy
| | - Giannapia Affaitati
- Department of Medicine and Science of Aging, Headache Center and Geriatrics Clinic, Gabriele D'Annunzio University, Chieti, Italy
| | - Martina Curto
- Department of Clinical and Molecular Medicine, Regional Referral Headache Center, Sapienza University, Via di Grottarossa, 1035, 00189, Rome, Italy
- Regional Referral Headache Center, Sant'Andrea Hospital, Rome, Italy
- Department of Psychiatry, Harvard Medical School, Boston, USA
- Bipolar and Psychotic Disorders Program, McLean Hospital, Belmont, MA, USA
| | - Andrea Negro
- Department of Clinical and Molecular Medicine, Regional Referral Headache Center, Sapienza University, Via di Grottarossa, 1035, 00189, Rome, Italy
- Regional Referral Headache Center, Sant'Andrea Hospital, Rome, Italy
| | - Raffaele Costantini
- Institute of Surgical Pathology, Gabriele D'Annunzio University, Chieti, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Regional Referral Headache Center, Sapienza University, Via di Grottarossa, 1035, 00189, Rome, Italy.
- Regional Referral Headache Center, Sant'Andrea Hospital, Rome, Italy.
| |
Collapse
|
23
|
Targeting of calcitonin gene-related peptide action as a new strategy for migraine treatment. Neurol Neurochir Pol 2016; 50:463-467. [DOI: 10.1016/j.pjnns.2016.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 07/05/2016] [Indexed: 11/19/2022]
|
24
|
Botz B, Bölcskei K, Helyes Z. Challenges to develop novel anti-inflammatory and analgesic drugs. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27576790 DOI: 10.1002/wnan.1427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 12/11/2022]
Abstract
Chronic inflammatory diseases and persistent pain of different origin represent common medical, social, and economic burden, and their pharmacotherapy is still an unresolved issue. Therefore, there is a great and urgent need to develop anti-inflammatory and analgesic agents with novel mechanisms of action, but it is a very challenging task. The main problem is the relatively large translational gap between the preclinical experimental data and the clinical results due to characteristics of the models, difficulties with the investigational techniques particularly for pain, as well as species differences in the mechanisms. We summarize here the current state-of-the-art medication and related ongoing strategies, and the novel targets with lead molecules under clinical development. The first members of the gold-standard categories, such as nonsteroidal anti-inflammatory drugs, glucocorticoids, and opioids, were introduced decades ago, and since then very few drugs with novel mechanisms of action have been successfully taken to the clinics despite considerable development efforts. Several biologics targeting different key molecules have provided breakthrough in some autoimmune/inflammatory diseases, but they are expensive, only parenterally available, their long-term side effects often limit their administration, and they do not effectively reduce pain. Some kinase inhibitors and phosphodiesterase-4 blockers have recently been introduced as new directions. There are in fact some promising novel approaches at different clinical stages of drug development focusing on transient receptor potential vanilloid 1/ankyrin 1 channel antagonism, inhibition of voltage-gated sodium/calcium channels, several enzymes (kinases, semicarbazide-sensitive amine oxidases, and matrix metalloproteinases), cytokines/chemokines, transcription factors, nerve growth factor, and modulation of several G protein-coupled receptors (cannabinoids, purinoceptors, and neuropeptides). WIREs Nanomed Nanobiotechnol 2017, 9:e1427. doi: 10.1002/wnan.1427 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bálint Botz
- Department of Radiology, Faculty of Medicine, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kata Bölcskei
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Faculty of Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
25
|
Riera CE, Dillin A. Can aging be 'drugged'? Nat Med 2016; 21:1400-5. [PMID: 26646496 DOI: 10.1038/nm.4005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
The engines that drive the complex process of aging are being identified by model-organism research, thereby providing potential targets and rationale for drug studies. Several studies of small molecules have already been completed in animal models with the hope of finding an elixir for aging, with a few compounds showing early promise. What lessons can we learn from drugs currently being tested, and which pitfalls can we avoid in our search for a therapeutic for aging? Finally, we must also ask whether an elixir for aging would be applicable to everyone, or whether we age differently, thus potentially shortening lifespan in some individuals.
Collapse
Affiliation(s)
- Celine E Riera
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.,Glenn Center for Research on Aging, University of California at Berkeley, Berkeley, California, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.,Glenn Center for Research on Aging, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
26
|
Gazerani P. Toward mechanism-based treatment of migraine: spotlight on CGRP. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl-2016-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Parisa Gazerani
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark
| |
Collapse
|
27
|
Bigal ME, Walter S, Rapoport AM. Therapeutic antibodies against CGRP or its receptor. Br J Clin Pharmacol 2016; 79:886-95. [PMID: 25614243 DOI: 10.1111/bcp.12591] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 11/29/2022] Open
Abstract
CGRP is an extensively studied neuropeptide that has been implicated in the pathophysiology of migraine. While a number of small molecule antagonists against the CGRP receptor have demonstrated that targeting this pathway is a valid and effective way of treating migraine, off-target hepatoxicity and formulation issues have hampered the development for regulatory approval of any therapeutic in this class. The development of monoclonal antibodies to CGRP or its receptor as therapeutic agents has allowed this pathway to be re-investigated. Herein we review why CGRP is an ideal target for the prevention of migraine and describe four monoclonal antibodies against either CGRP or its receptor that are in clinical development for the treatment of both episodic and chronic migraine. We describe what has been publically disclosed about their clinical trials and future clinical development plans.
Collapse
Affiliation(s)
- Marcelo E Bigal
- Vice President, Migraine & Headache Clinical Development, Teva Pharmaceuticals, Frazer, PA.,Department of Neurology, Albert Einstein College of Medicine, Bronx, NY
| | - Sarah Walter
- Director of Preclinical Research, Labrys Biologics, Inc, San Mateo, CA
| | - Alan M Rapoport
- Director-Emeritus, New England Center for Headache, Stamford, CT.,Clinical Professor of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
28
|
Abstract
Migraine is a complex disorder of the brain that is common and highly disabling. As understanding of the neural pathways has advanced, and it has become clear that the vascular hypothesis does not explain the disorder, new therapeutic avenues have arisen. One such target is calcitonin gene-related peptide (CGRP)-based mechanisms. CGRP is found within the trigeminovascular nociceptive system widely from the trigeminal ganglion to second-order and third-order neurons and in regulatory areas in the brainstem. Studies have shown CGRP is released during severe migraine attacks and the reversal of the attack with effective triptan treatment normalizes those levels. CGRP administration triggers migraine in patients, and CGRP receptor antagonists have been shown to abort migraine. Here, we review the current state of CGRP mechanism antagonist therapy as its research and development is increasing in migraine therapeutics. We discuss several recent trials, highlighting the evidence base behind these novel drugs, and their potential future contribution to migraine management.
Collapse
|
29
|
Lundblad C, Haanes KA, Grände G, Edvinsson L. Experimental inflammation following dural application of complete Freund's adjuvant or inflammatory soup does not alter brain and trigeminal microvascular passage. J Headache Pain 2015; 16:91. [PMID: 26512021 PMCID: PMC4627622 DOI: 10.1186/s10194-015-0575-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/21/2015] [Indexed: 01/24/2023] Open
Abstract
Background Migraine is a paroxysmal, disabling primary headache that affects 16 % of the adult population. In spite of decades of intense research, the origin and the pathophysiology mechanisms involved are still not fully known. Although triptans and gepants provide effective relief from acute migraine for many patients, their site of action remains unidentified. It has been suggested that during migraine attacks the leakiness of the blood-brain barrier (BBB) is altered, increasing the passage of anti-migraine drugs. This study aimed to investigate the effect of experimental inflammation, following dural application of complete Freund’s adjuvant (CFA) or inflammatory soup (IS) on brain and trigeminal microvascular passage. Methods In order to address this issue, we induced local inflammation in male Sprague-Dawley-rats dura mater by the addition of CFA or IS directly on the dural surface. Following 2, 24 or 48 h of inflammation we calculated permeability-surface area product (PS) for [51Cr]-EDTA in the trigeminal ganglion (TG), spinal trigeminal nucleus, cortex, periaqueductal grey and cerebellum. Results We observed that [51Cr]-EDTA did not pass into the central nervous system (CNS) in a major way. However, [51Cr]-EDTA readily passed the TG by >30 times compared to the CNS. Application of CFA or IS did not show altered transfer constants. Conclusions With these experiments we show that dural IS/CFA triggered TG inflammation, did not increase the BBB passage, and that the TG is readily exposed to circulating molecules. The TG could provide a site of anti-migraine drug interaction with effect on the trigeminal system. Electronic supplementary material The online version of this article (doi:10.1186/s10194-015-0575-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cornelia Lundblad
- Department of Medicine, Institute of Clinical Sciences, University Hospital, Lund University, 22185, Lund, Sweden
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Glostrup, Denmark
| | - Gustaf Grände
- Department of Medicine, Institute of Clinical Sciences, University Hospital, Lund University, 22185, Lund, Sweden
| | - Lars Edvinsson
- Department of Medicine, Institute of Clinical Sciences, University Hospital, Lund University, 22185, Lund, Sweden. .,Department of Clinical Experimental Research, Copenhagen University Hospital, Glostrup, Denmark.
| |
Collapse
|
30
|
Edvinsson L. The Journey to Establish CGRP as a Migraine Target: A Retrospective View. Headache 2015; 55:1249-55. [PMID: 26368117 DOI: 10.1111/head.12656] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2015] [Indexed: 11/28/2022]
Abstract
In this retrospective, Dr. Lars Edvinsson recounts early steps and milestones in our understanding of the neuropeptide calcitonin gene-related peptide (CGRP) in the trigeminovascular system and its role in migraine. The discovery of the presence and function of CGRP and other neuropeptides in the cerebral vasculature and its sensory innervation is described. He relates the seminal finding that CGRP is uniquely released during migraine and the journey to develop blockers of CGRP effects. Now, over 30 years since its discovery, CGRP has become the target for a number of promising novel treatments for migraine patients.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Medicine, Institute of Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| |
Collapse
|
31
|
Abstract
Migraine is a disease that contributes to major disability. Perhaps because migraine attacks are not immediately life-threatening per se and individuals return to a "normal" state between attacks, it is not taken seriously. However, migraine is associated with a number of comorbidities, including psychiatric disease, stroke, and other chronic pain disorders. Current acute treatments for episodic migraine are relatively effective, but preventive treatments for episodic and chronic migraine are far less so. Recent functional imaging studies have shown that the disease affects brain function and structure (either as a result of its genetic predisposition or as a result of repeated attacks). The current evidence in the pain field is that changes observed in brain function and structure may be reversible, adding credence to the notion that treating the disease aggressively and early may be beneficial to patients. Here we suggest a change in our approach to a disease that is currently not treated with the urgency that it deserves given its global prevalence, disease burden, and effects on brain function.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain (DB), Boston Children's and Massachusetts General Hospitals, Harvard Medical School; Department of Anesthesia, Critical Care and Pain Medicine (DB), Boston Children's Hospital; and Department of Neurology (DWD), Mayo Clinic, Phoenix, AZ
| | - David W Dodick
- Center for Pain and the Brain (DB), Boston Children's and Massachusetts General Hospitals, Harvard Medical School; Department of Anesthesia, Critical Care and Pain Medicine (DB), Boston Children's Hospital; and Department of Neurology (DWD), Mayo Clinic, Phoenix, AZ
| |
Collapse
|
32
|
Tajti J, Szok D, Majláth Z, Tuka B, Csáti A, Vécsei L. Migraine and neuropeptides. Neuropeptides 2015; 52:19-30. [PMID: 26094101 DOI: 10.1016/j.npep.2015.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.
Collapse
Affiliation(s)
- János Tajti
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary.
| | - Délia Szok
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Bernadett Tuka
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Anett Csáti
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary; MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| |
Collapse
|
33
|
Vermeersch S, Benschop RJ, Van Hecken A, Monteith D, Wroblewski VJ, Grayzel D, de Hoon J, Collins EC. Translational Pharmacodynamics of Calcitonin Gene-Related Peptide Monoclonal Antibody LY2951742 in a Capsaicin-Induced Dermal Blood Flow Model. J Pharmacol Exp Ther 2015; 354:350-7. [PMID: 26116630 DOI: 10.1124/jpet.115.224212] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/26/2015] [Indexed: 01/06/2023] Open
Abstract
LY2951742, a monoclonal antibody targeting calcitonin gene-related peptide (CGRP), is being developed for migraine prevention and osteoarthritis pain. To support the clinical development of LY2951742, capsaicin-induced dermal blood flow (DBF) was used as a target engagement biomarker to assess CGRP activity in nonhuman primates and healthy volunteers. Inhibition of capsaicin-induced DBF in nonhuman primates, measured with laser Doppler imaging, was dose dependent and sustained for at least 29 days after a single intravenous injection of the CGRP antibody. This information was used to generate a pharmacokinetic/pharmacodynamic model, which correctly predicted inhibition of capsaicin-induced DBF in humans starting at a single subcutaneous 5-mg dose. As expected, the degree of inhibition in capsaicin-induced DBF increased with higher LY2951742 plasma concentrations. Utilization of this pharmacodynamic biomarker with pharmacokinetic data collected in phase I studies provided the dose-response relationship that assisted in dose selection for the phase II clinical development of LY2951742.
Collapse
Affiliation(s)
- Steve Vermeersch
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Robert J Benschop
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Anne Van Hecken
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - David Monteith
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Victor J Wroblewski
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - David Grayzel
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Emily C Collins
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| |
Collapse
|
34
|
Abstract
Migraine is a highly prevalent headache disease that typically affects patients during their most productive years. Despite significant progress in understanding the underlying pathophysiology of this disorder, its treatment so far continues to depend on drugs that, in their majority, were not specifically designed for this purpose. The neuropeptide calcitonin gene-related peptide (CGRP) has been indicated as playing a critical role in the central and peripheral pathways leading to a migraine attack. It is not surprising that drugs designed to specifically block its action are gaining remarkable attention from researchers in the field with, at least so far, a safe risk profile. In this article, we highlight the evolution from older traditional treatments to the innovative CGRP target drugs that are revolutionizing the way to approach this debilitating neurological disease. We provide a brief introduction on pathophysiology of migraine and details on the characteristic, function, and localization of CGRP to then focus on CGRP receptor antagonists (CGRP-RAs) and CGRP monoclonal antibodies (CGRP mAbs).
Collapse
Affiliation(s)
- Stephanie Wrobel Goldberg
- Department of Neurology, Jefferson Headache Center, Thomas Jefferson University, 900 Walnut Street, Suite 200, Philadelphia, PA, 19107, USA,
| | | |
Collapse
|
35
|
|
36
|
Hargreaves RJ, Hoppin J, Sevigny J, Patel S, Chiao P, Klimas M, Verma A. Optimizing Central Nervous System Drug Development Using Molecular Imaging. Clin Pharmacol Ther 2015; 98:47-60. [PMID: 25869938 DOI: 10.1002/cpt.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
Advances in multimodality fusion imaging technologies promise to accelerate the understanding of the systems biology of disease and help in the development of new therapeutics. The use of molecular imaging biomarkers has been proven to shorten cycle times for central nervous system (CNS) drug development and thereby increase the efficiency and return on investment from research. Imaging biomarkers can be used to help select the molecules, doses, and patients most likely to test therapeutic hypotheses by stopping those that have little chance of success and accelerating those with potential to achieve beneficial clinical outcomes. CNS imaging biomarkers have the potential to drive new medical care practices for patients in the latent phases of progressive neurodegenerative disorders by enabling the detection, preventative treatment, and tracking of disease in a paradigm shift from today's approaches that have to see the overt symptoms of disease before treating it.
Collapse
Affiliation(s)
| | - J Hoppin
- inviCRO, LLC, Boston, Massachusetts, USA
| | - J Sevigny
- Biogen, Cambridge, Massachusetts, USA
| | - S Patel
- Biogen, Cambridge, Massachusetts, USA
| | - P Chiao
- Biogen, Cambridge, Massachusetts, USA
| | - M Klimas
- Merck Research Laboratories, West Point, Pennsylvania, USA
| | - A Verma
- Biogen, Cambridge, Massachusetts, USA
| |
Collapse
|
37
|
Edvinsson L. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. Br J Clin Pharmacol 2015; 80:193-9. [PMID: 25731075 DOI: 10.1111/bcp.12618] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/15/2015] [Accepted: 02/25/2015] [Indexed: 01/16/2023] Open
Abstract
Recently developed calcitonin gene-related peptide (CGRP) receptor antagonistic molecules have shown promising results in clinical trials for acute treatment of migraine attacks. Drugs from the gepant class of CGRP receptor antagonists are effective and do not cause vasoconstriction, one of the major limitations in the use of triptans. However their use had to be discontinued because of risk of liver toxicity after continuous exposure. As an alternative approach to block CGRP transmission, fully humanized monoclonal antibodies towards CGRP and the CGRP receptor have been developed for treatment of chronic migraine (attacks >15 days/month). Initial results from phase I and II clinical trials have revealed promising results with minimal side effects and significant relief from chronic migraine as compared with placebo. The effectiveness of these various molecules raises the question of where is the target site(s) for antimigraine action. The gepants are small molecules that can partially pass the blood-brain barrier (BBB) and therefore, might have effects in the CNS. However, antibodies are large molecules and have limited possibility to pass the BBB, thus effectively excluding them from having a major site of action within the CNS. It is suggested that the antimigraine site should reside in areas not limited by the BBB such as intra- and extracranial vessels, dural mast cells and the trigeminal system. In order to clarify this topic and surrounding questions, it is important to understand the localization of CGRP and the CGRP receptor components in these possible sites of migraine-related regions and their relation to the BBB.
Collapse
|
38
|
Gottschalk PCH. Telcagepant—almost gone, but not to be forgotten (invited editorial related to Ho et al., 2015). Cephalalgia 2015; 36:103-5. [DOI: 10.1177/0333102415584311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Walker CS, Eftekhari S, Bower RL, Wilderman A, Insel PA, Edvinsson L, Waldvogel HJ, Jamaluddin MA, Russo AF, Hay DL. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann Clin Transl Neurol 2015; 2:595-608. [PMID: 26125036 PMCID: PMC4479521 DOI: 10.1002/acn3.197] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022] Open
Abstract
Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine.
Collapse
Affiliation(s)
- Christopher S Walker
- School of Biological Sciences, University of Auckland Auckland, 1142, New Zealand ; Centre for Brain Research, University of Auckland Auckland, 1142, New Zealand
| | - Sajedeh Eftekhari
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Lund, Sweden
| | - Rebekah L Bower
- School of Biological Sciences, University of Auckland Auckland, 1142, New Zealand ; Centre for Brain Research, University of Auckland Auckland, 1142, New Zealand
| | - Andrea Wilderman
- Departments of Pharmacology and Medicine, University of California at San Diego La Jolla, California
| | - Paul A Insel
- Departments of Pharmacology and Medicine, University of California at San Diego La Jolla, California
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Lund, Sweden
| | - Henry J Waldvogel
- Centre for Brain Research, University of Auckland Auckland, 1142, New Zealand ; Department of Anatomy with Radiology, Faculty of Medical and Health Science, University of Auckland Auckland, 1142, New Zealand
| | | | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa Iowa City, Iowa ; Department of Neurology, Veterans Affairs Medical Center, University of Iowa Iowa City, Iowa
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland Auckland, 1142, New Zealand ; Centre for Brain Research, University of Auckland Auckland, 1142, New Zealand
| |
Collapse
|
40
|
Vécsei L, Majláth Z, Szok D, Csáti A, Tajti J. Drug safety and tolerability in prophylactic migraine treatment. Expert Opin Drug Saf 2015; 14:667-81. [DOI: 10.1517/14740338.2015.1014797] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- László Vécsei
- 1University of Szeged, Department of Neurology, Semmelweis u. 6, H-6725 Szeged, Hungary ;
- 2University of Szeged, Department of Neurology, Semmelweis u. 6, H-6725 Szeged, Hungary
- 3MTA – SZTE Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Zsófia Majláth
- 4University of Szeged, Department of Neurology, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Délia Szok
- 5University of Szeged, Department of Neurology, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Anett Csáti
- 4University of Szeged, Department of Neurology, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - János Tajti
- 5University of Szeged, Department of Neurology, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
41
|
|
42
|
Tajti J, Csáti A, Vécsei L. Novel strategies for the treatment of migraine attacks via the CGRP, serotonin, dopamine, PAC1, and NMDA receptors. Expert Opin Drug Metab Toxicol 2014; 10:1509-20. [PMID: 25253587 DOI: 10.1517/17425255.2014.963554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Migraine is a common, paroxysmal, and disabling primary headache with a high personal and socioeconomic impact. It involves ∼ 16% of the general population. During the years, a number of hypotheses have been put forward concerning the exact pathomechanism, but the final solution is still undiscovered. AREAS COVERED Although the origin is enigmatic, parallel therapeutic efforts have been developed. Current attack therapy does not meet the expectations of the patients or the doctors. This article, based on a PubMed search, reviews the novel pharmacological possibilities that influence the peripheral and central sensitization involved in the disease. EXPERT OPINION In order to overcome the therapeutic insufficiency, a calcitonin gene-related peptide receptor antagonist without the side-effect of liver transaminase elevation is required. Another therapeutic option is to develop a neurally acting antimigraine agent, such as a serotonin-1F receptor agonist, with low adverse central nervous system events. Development of a potent dopamine receptor antagonist is necessary to diminish the premonitory symptoms of migraine. A further option is to decrease the headache intensity with a pituitary adenylate cyclase-activating polypeptide type 1 receptor blocker which can cross the blood-brain barrier. Finally, synthetic kynurenine analogues are required to block the pain transmission in the activated trigeminal system.
Collapse
Affiliation(s)
- János Tajti
- University of Szeged, Department of Neurology , Semmelweis u. 6, H-6725, Szeged , Hungary
| | | | | |
Collapse
|
43
|
Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014; 94:1099-142. [PMID: 25287861 PMCID: PMC4187032 DOI: 10.1152/physrev.00034.2013] [Citation(s) in RCA: 802] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule.
Collapse
Affiliation(s)
- F A Russell
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - R King
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S-J Smillie
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - X Kodji
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S D Brain
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| |
Collapse
|
44
|
Vermeer LMM, Gregory E, Winter MK, McCarson KE, Berman NEJ. Behavioral effects and mechanisms of migraine pathogenesis following estradiol exposure in a multibehavioral model of migraine in rat. Exp Neurol 2014; 263:8-16. [PMID: 25263582 DOI: 10.1016/j.expneurol.2014.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/27/2014] [Accepted: 09/16/2014] [Indexed: 01/07/2023]
Abstract
Migraine is one of the most common neurological disorders, leading to more than 1% of total disability reported and over 68 million visits to emergency rooms or physician's offices each year in the United States. Three times as many women as men have migraine, and while the mechanism behind this is not well understood, 17β-estradiol (estradiol) has been implicated to play a role. Studies have demonstrated that exposure to estrogen can lead to activation of inflammatory pathways, changes in sodium gated channel activity, as well as enhanced vasodilation and allodynia. Estradiol receptors are found in trigeminal nociceptors, which are involved in signaling during a migraine attack. The purpose of this study was to investigate the role of estradiol in migraine pathogenesis utilizing a multibehavioral model of migraine in rat. Animals were surgically implanted with a cannula system to induce migraine and behavior was assessed following exposure to a proestrus level of estradiol for total locomotor activity, light and noise sensitivity, evoked grooming patterns, and enhanced acoustic startle response. Results demonstrated decreased locomotor activity, increased light and noise sensitivity, altered facial grooming indicative of allodynia and enhanced acoustic startle. Further examination of tissue samples revealed increased expression of genes associated with inflammation and vasodilation. Overall, this study demonstrates exacerbation of migraine-like behaviors following exposure to estradiol and helps further explain the underlying mechanisms behind sex differences found in this common neurological disorder.
Collapse
Affiliation(s)
- Lydia M M Vermeer
- Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Eugene Gregory
- Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Kenneth E McCarson
- Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Institute for Neurological Disorders, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Kansas Intellectual and Developmental Disabilities Research Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Nancy E J Berman
- Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Institute for Neurological Disorders, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
45
|
Vécsei L, Szok D, Csáti A, Tajti J. CGRP antagonists and antibodies for the treatment of migraine. Expert Opin Investig Drugs 2014; 24:31-41. [DOI: 10.1517/13543784.2015.960921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
|