1
|
Liu B, Xiang M, Zhou M, Li C, Xin H, Zhang S, Lin J. Pharmacological effects and mechanisms of danlong oral liquid in asthma airway remodeling: Insights from serum medicinal chemistry, network pharmacology, and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119259. [PMID: 39694425 DOI: 10.1016/j.jep.2024.119259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danlong oral liquid (DLOL) is a traditional Chinese proprietary medicine commonly used to treat chronic respiratory diseases, including bronchial asthma and chronic obstructive pulmonary disease. However, the therapeutic effects and pharmacological mechanisms of DLOL in improving airway remodeling remain unclear. AIMS OF THE STUDY This study utilizes in vivo and in vitro experiments, serum pharmacological analysis, and network-based pharmacology approaches to investigate the effects and mechanisms of DLOL on airway remodeling and epithelial-mesenchymal transition (EMT) in asthma. METHODS An asthma model was established through ovalbumins (OVA) sensitization and challenge in BALB/c mice to observe the effects of DLOL on airway hyperresponsiveness (AHR), inflammation, remodeling, and molecular markers of EMT. The absorbed chemical prototype constituents of DLOL were analyzed using Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS), and targets for asthma and airway remodeling were predicted using a network pharmacology approach. Key biological processes and signaling pathways were analyzed. Additionally, TGF-β1 was used to induce EMT in BEAS-2B cells. TGF-β1 and DLOL-containing serum were screened to determine the optimal time and concentration in BEAS-2B cells using CCK8 assays. The cell scratch assay was used to assess cell migration, while immunofluorescence and immunohistochemistry were employed to evaluate protein expression levels. RESULTS DLOL improved AHR in asthmatic mice, reduced inflammatory cell infiltration in lung tissue, decreased airway wall and smooth muscle thickness, and reduced collagen deposition. It also down-regulated mesenchymal markers (N-cadherin, vimentin, α-SMA) and key remodeling factors (TGF-β1, MMP9), while up-regulating the epithelial marker E-cadherin. A total of 17 absorbed chemical prototype constituents were identified, predicting 54 core targets involved in airway remodeling. Following Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the key targets were found to be associated with the regulation of cell migration, cell-cell adhesion, and cell adhesion molecular processes, with the PI3K-Akt signaling pathway likely playing a critical role. Cellular experiments confirmed that DLOL-containing serum inhibited TGF-β1-induced EMT in BEAS-2B cells and suppressed the phosphorylation of Akt and GSK-3β. CONCLUSION This study identifies, for the first time, the serum medicinal chemistry of DLOL using UPLC-MS. Combining network pharmacology, in vivo and in vitro experiments, it elucidates the effects and potential mechanisms of the drug on airway remodeling and EMT. DLOL may offer a novel therapeutic approach for asthma-related airway remodeling.
Collapse
Affiliation(s)
- Bowen Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Min Xiang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Mengqi Zhou
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Chunxiao Li
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100730, China.
| | - Hou Xin
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100730, China.
| | - Shuwen Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100730, China.
| | - Jiangtao Lin
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
2
|
Huang D, Bai S, Qiu G, Jiang C, Huang M, Wang Y, Zhong M, Fang J, Cheng J, Zhao X, Wu B, Wu D. Myricetin ameliorates airway inflammation and remodeling in asthma by activating Sirt1 to regulate the JNK/Smad3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156044. [PMID: 39299094 DOI: 10.1016/j.phymed.2024.156044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Myricetin has various biological activities and health benefits; however, its effects on airway remodeling in asthma have not been reported. PURPOSE We aimed to investigate the possibility that myricetin improves airway remodeling by activating Sirt1 and has potential as a new treatment for asthma. METHODS RAW 264.7 cells were stimulated with lipopolysaccharide and co-cultured with 3T6 cells in vitro to simulate the in vivo effects of inflammation on airway remodeling. Using an ovalbumin-induced chronic asthma mouse model, we compared changes in inflammatory factors and airway remodeling-related factors under treatment with myricetin and/or the Sirt1 inhibitor EX-527 using western blotting and quantitative PCR. Expression plasmids carrying Smad3 site mutations were transfected into 3T6 cells to identify the Sirt1 deacetylation site on Smad3 protein. RESULTS Myricetin significantly reduced the infiltration of airway inflammatory cells and the production of interleukin (IL)-6 and IL-5, and inhibited mucus secretion by goblet cells, collagen fiber proliferation, and the increase in inflammatory cells in bronchoalveolar lavage fluid from asthmatic mice. Results of in vitro experiments were consistent with those conducted in vivo. Exploring the mechanism of action of myricetin, we found that myricetin downregulated the levels of phosphorylated (p)-JNK, p-Smad3, and acetylated Smad3 proteins by activating Sirt1 both in vivo and in vitro. K341 was identified as the main deacetylation site of Smad3 by myricetin-activated Sirt1. CONCLUSION Myricetin ameliorates airway inflammation and remodeling in asthma by activating Sirt1 to regulate the JNK/Smad3 pathway.
Collapse
Affiliation(s)
- Dan Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Shuyou Bai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guiqiang Qiu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chi Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mei Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingting Zhong
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiayan Fang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Junfen Cheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xuanna Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Bin Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
3
|
Liu Y, Cheng K, Sun M, Ding C, Li T, Jia Y, Wang C, Zhu X, Song X, Jia R, Wang Q, Zhang Y, Sun X. UBD participates in neutrophilic asthma by promoting the activation of IL-17 signaling. Int J Biol Macromol 2024; 264:130581. [PMID: 38447828 DOI: 10.1016/j.ijbiomac.2024.130581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Neutrophilic asthma is a persistent and severe inflammatory lung disease characterized by neutrophil activation and the mechanisms of which are not completely elucidated. Ubiquitin D (UBD) is a ubiquitin-like modifier participating in infections, immune responses, and tumorigenesis, while whether UBD involves in neutrophilic asthma needs further study. In this study, we initially found that UBD expression was significantly elevated and interleukin 17 (IL-17) signaling was enriched in the endobronchial biopsies of severe asthma along with neutrophils increasing by bioinformatics analysis. We further confirmed that UBD was upregulated in the lung tissues of neutrophilic asthma mouse model. UBD overexpression promoted IL-17 signaling activation. Knockdown of UBD suppressed the activation of IL-17 signaling. UBD interacted with TRAF2 and reduced the total and the K48-linked ubiquitination of TRAF2. However, IL-17 A stimulation increased both the total and the K48-linked ubiquitination of TRAF2. Together, these findings indicated that UBD was upregulated and played a critical role in IL-17 signaling which contributed to a better understanding of the complex mechanisms in neutrophilic asthma.
Collapse
Affiliation(s)
- Yuchun Liu
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 450000, China.
| | - Kang Cheng
- Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou 450000, China
| | - Meng Sun
- The Third People's Hospital of Zhengzhou, Cancer Hospital of Zhengzhou, The First Mercy Hospital of Henan Province, 450000, China
| | - Cong Ding
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 450000, China
| | - Tao Li
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 450000, China
| | - Yangyang Jia
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 450000, China
| | - Chengbo Wang
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 450000, China
| | - Xiangzhan Zhu
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 450000, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 450000, China
| | - Rui Jia
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 450000, China
| | - Qionglin Wang
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 450000, China
| | - Yaodong Zhang
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 450000, China
| | - Xiaomin Sun
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 450000, China.
| |
Collapse
|
4
|
Borkar NA, Thompson MA, Bartman CM, Sathish V, Prakash YS, Pabelick CM. Nicotine affects mitochondrial structure and function in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L803-L818. [PMID: 37933473 PMCID: PMC11068407 DOI: 10.1152/ajplung.00158.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Exposure to cigarette smoke and e-cigarettes, with nicotine as the active constituent, contributes to increased health risks associated with asthma. Nicotine exerts its functional activity via nicotinic acetylcholine receptors (nAChRs), and the alpha7 subtype (α7nAChR) has recently been shown to adversely affect airway dynamics. The mechanisms of α7nAChR action in airways, particularly in the context of airway smooth muscle (ASM), a key cell type in asthma, are still under investigation. Mitochondria have garnered increasing interest for their role in regulating airway tone and adaptations to cellular stress. Here mitochondrial dynamics such as fusion versus fission, and mitochondrial Ca2+ ([Ca2+]m), play an important role in mitochondrial homeostasis. There is currently no information on effects and mechanisms by which nicotine regulates mitochondrial structure and function in ASM in the context of asthma. We hypothesized that nicotine disrupts mitochondrial morphology, fission-fusion balance, and [Ca2+]m regulation, with altered mitochondrial respiration and bioenergetics in the context of asthmatic ASM. Using human ASM (hASM) cells from nonasthmatics, asthmatics, and smokers, we examined the effects of nicotine on mitochondrial dynamics and [Ca2+]m. Fluorescence [Ca2+]m imaging of hASM cells with rhod-2 showed robust responses to 10 μM nicotine, particularly in asthmatics and smokers. In both asthmatics and smokers, nicotine increased the expression of fission proteins while decreasing fusion proteins. Seahorse analysis showed blunted oxidative phosphorylation parameters in response to nicotine in these groups. α7nAChR siRNA blunted nicotine effects, rescuing [Ca2+]m, changes in mitochondrial structural proteins, and mitochondrial dysfunction. These data highlight mitochondria as a target of nicotine effects on ASM, where mitochondrial disruption and impaired buffering could permit downstream effects of nicotine in the context of asthma.NEW & NOTEWORTHY Asthma is a major healthcare burden, which is further exacerbated by smoking. Recognizing the smoking risk of asthma, understanding the effects of nicotine on asthmatic airways becomes critical. Surprisingly, the mechanisms of nicotine action, even in normal and especially asthmatic airways, are understudied. Accordingly, the goal of this research is to investigate how nicotine influences asthmatic airways in terms of mitochondrial structure and function, via the a7nAChR.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
5
|
He H, Ji X, Cao L, Wang Z, Wang X, Li XM, Miao M. Medicine Targeting Epithelial-Mesenchymal Transition to Treat Airway Remodeling and Pulmonary Fibrosis Progression. Can Respir J 2023; 2023:3291957. [PMID: 38074219 PMCID: PMC10701063 DOI: 10.1155/2023/3291957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/18/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Objective. Dysregulation of epithelial-mesenchymal transition (EMT) in the airway epithelium is associated with airway remodeling and the progression of pulmonary fibrosis. Many treatments have been shown to inhibit airway remodeling and pulmonary fibrosis progression in asthma and chronic obstructive pulmonary disease (COPD) by regulating EMT and have few side effects. This review aimed to describe the development of airway remodeling through the EMT pathway, as well as the potential therapeutic targets in these pathways. Furthermore, this study aimed to review the current research on drugs to treat airway remodeling and their effects on the EMT pathway. Findings. The dysregulation of EMT was associated with airway remodeling in various respiratory diseases. The cytokines released during inflammation may induce EMT and subsequent airway remodeling. Various drugs, including herbal formulations, specific herbal compounds, cytokines, amino acid or protein inhibitors, microRNAs, and vitamins, may suppress airway remodeling by inhibiting EMT-related pathways.
Collapse
Affiliation(s)
- Hongjuan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Xiaoyan Ji
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Lihua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Zhenzhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Xiaoyu Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Xiu-Min Li
- Department of Otolaryngology, Microbiology and Immunology, New York Medical College, New York, NY 10595, USA
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| |
Collapse
|
6
|
Figueiredo IAD, Ferreira SRD, Fernandes JM, Silva BA, Vasconcelos LHC, Cavalcante FA. A review of the pathophysiology and the role of ion channels on bronchial asthma. Front Pharmacol 2023; 14:1236550. [PMID: 37841931 PMCID: PMC10568497 DOI: 10.3389/fphar.2023.1236550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Asthma is one of the main non-communicable chronic diseases and affects a huge portion of the population. It is a multifactorial disease, classified into several phenotypes, being the allergic the most frequent. The pathophysiological mechanism of asthma involves a Th2-type immune response, with high concentrations of allergen-specific immunoglobulin E, eosinophilia, hyperreactivity and airway remodeling. These mechanisms are orchestrated by intracellular signaling from effector cells, such as lymphocytes and eosinophils. Ion channels play a fundamental role in maintaining the inflammatory response on asthma. In particular, transient receptor potential (TRP), stock-operated Ca2+ channels (SOCs), Ca2+-activated K+ channels (IKCa and BKCa), calcium-activated chloride channel (TMEM16A), cystic fibrosis transmembrane conductance regulator (CFTR), piezo-type mechanosensitive ion channel component 1 (PIEZO1) and purinergic P2X receptor (P2X). The recognition of the participation of these channels in the pathological process of asthma is important, as they become pharmacological targets for the discovery of new drugs and/or pharmacological tools that effectively help the pharmacotherapeutic follow-up of this disease, as well as the more specific mechanisms involved in worsening asthma.
Collapse
Affiliation(s)
- Indyra Alencar Duarte Figueiredo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Sarah Rebeca Dantas Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Jayne Muniz Fernandes
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Luiz Henrique César Vasconcelos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Fabiana de Andrade Cavalcante
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
7
|
Stolz D, Matera MG, Rogliani P, van den Berge M, Papakonstantinou E, Gosens R, Singh D, Hanania N, Cazzola M, Maitland-van der Zee AH, Fregonese L, Mathioudakis AG, Vestbo J, Rukhadze M, Page CP. Current and future developments in the pharmacology of asthma and COPD: ERS seminar, Naples 2022. Breathe (Sheff) 2023; 19:220267. [PMID: 37377851 PMCID: PMC10292790 DOI: 10.1183/20734735.0267-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/29/2023] Open
Abstract
Pharmacological management of airway obstructive diseases is a fast-evolving field. Several advances in unravelling disease mechanisms as well as intracellular and molecular pathways of drug action have been accomplished. While the clinical translation and implementation of in vitro results to the bedside remains challenging, advances in comprehending the mechanisms of respiratory medication are expected to assist clinicians and scientists in identifying meaningful read-outs and designing clinical studies. This European Respiratory Society Research Seminar, held in Naples, Italy, 5-6 May 2022, focused on current and future developments of the drugs used to treat asthma and COPD; on mechanisms of drug action, steroid resistance, comorbidities and drug interactions; on prognostic and therapeutic biomarkers; on developing novel drug targets based on tissue remodelling and regeneration; and on pharmacogenomics and emerging biosimilars. Related European Medicines Agency regulations are also discussed, as well as the seminar's position on the above aspects.
Collapse
Affiliation(s)
- Daiana Stolz
- Clinic of Pulmonary Medicine, Department of Internal Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, and Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eleni Papakonstantinou
- Clinic of Pulmonary Medicine, Department of Internal Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, and Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dave Singh
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Nicola Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Alexander G. Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Maia Rukhadze
- Center of Allergy and Immunology, Teaching University Geomedi LLC, Tbilisi, Georgia
| | - Clive P. Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
8
|
Wójcik-Pszczoła K, Pociecha K, Chłoń-Rzepa G, Zadrożna M, Nowak B, Plutecka H, Koczurkiewicz-Adamczyk P, Przejczowska-Pomierny K, Pękala E, Gosens R, Wyska E. Inhaled pan-phosphodiesterase inhibitors ameliorate ovalbumin-induced airway inflammation and remodeling in murine model of allergic asthma. Int Immunopharmacol 2023; 119:110264. [PMID: 37159965 DOI: 10.1016/j.intimp.2023.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Asthma is a heterogeneous, chronic respiratory disease characterized by airway inflammation and remodeling. Phosphodiesterase (PDE) inhibitors represent one of the intensively studied groups of potential anti-asthmatic agents due to their affecting both airway inflammation and remodeling. However, the effect of inhaled pan-PDE inhibitors on allergen induced asthma has not been reported to date. In this study we investigated the impact of two, representative strong pan-PDE inhibitors from the group of 7,8-disubstituted derivatives of 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione: compound 38 and 145, on airway inflammation and remodeling in murine model of ovalbumin (OVA)-challenged allergic asthma. Female Balb/c mice were sensitized and challenged with OVA, 38 and 145 were administrated by inhalation, before each OVA challenge. The inhaled pan-PDE inhibitors markedly reduced the OVA-induced airway inflammatory cell infiltration, eosinophil recruitment, Th2 cytokine level in bronchoalveolar lavage fluid, as well as both, total and OVA-specific IgE levels in plasma. In addition, inhaled 38 and 145 decreased many typical features of airway remodeling, including goblet cell metaplasia, mucus hypersecretion, collagen overproduction and deposition, as well as Tgfb1, VEGF, and α-SMA expression in airways of allergen challenged mice. We also demonstrated that both 38 and 145 alleviate airway inflammation and remodelling by inhibition of the TGF-β/Smad signaling pathway activated in OVA-challenged mice. Taken together, these results suggest that the investigated pan-PDE inhibitors administered by inhalation are dual acting agents targeting both airway inflammation and remodeling in OVA-challenged allergic asthma and may represent promising, anti-asthmatic drug candidates.
Collapse
Affiliation(s)
- Katarzyna Wójcik-Pszczoła
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Krzysztof Pociecha
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Zadrożna
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Cytobiology, Medyczna 9, 30-688 Kraków, Poland
| | - Barbara Nowak
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Cytobiology, Medyczna 9, 30-688 Kraków, Poland
| | - Hanna Plutecka
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Przejczowska-Pomierny
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Reinoud Gosens
- University of Groningen, Department of Molecular Pharmacology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
9
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
10
|
Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets 2023; 27:19-29. [PMID: 36744401 DOI: 10.1080/14728222.2023.2177533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Asthma is characterized by enhanced airway contractility and remodeling where airway smooth muscle (ASM) plays a key role, modulated by inflammation. Understanding the mechanisms by which ASM contributes to these features of asthma is essential for the development of novel asthma therapies. AREAS COVERED Inflammation in asthma contributes to a multitude of changes within ASM including enhanced airway contractility, proliferation, and fibrosis. Altered intracellular calcium ([Ca2+]i) regulation or Ca2+ sensitization contributes to airway hyperreactivity. Increased airway wall thickness from ASM proliferation and fibrosis contributes to structural changes seen with asthma. EXPERT OPINION ASM plays a significant role in multiple features of asthma. Increased ASM contractility contributes to hyperresponsiveness, while altered ASM proliferation and extracellular matrix production promote airway remodeling both influenced by inflammation of asthma and conversely even influencing the local inflammatory milieu. While standard therapies such as corticosteroids or biologics target inflammation, cytokines, or their receptors to alleviate asthma symptoms, these approaches do not address the underlying contribution of ASM to hyperresponsiveness and particularly remodeling. Therefore, novel therapies for asthma need to target abnormal contractility mechanisms in ASM and/or the contribution of ASM to remodeling, particularly in asthmatics resistant to current therapies.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Franova S, Molitorisova M, Kalmanova L, Palencarova J, Joskova M, Smiesko L, Mazerik J, Sutovska M. The anti-asthmatic potential of Rho-kinase inhibitor hydroxyfasudil in the model of experimentally induced allergic airway inflammation. Eur J Pharmacol 2022; 938:175450. [PMID: 36473595 DOI: 10.1016/j.ejphar.2022.175450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This experimental study evaluated the anti-asthmatic potential of the Rho-kinase inhibitor hydroxyfasudil in the settings of allergen-induced allergen-induced experimental asthma. METHODS Chronic allergic airway inflammation was caused by 28 days-sensitisation of guinea pigs with ovalbumin (OVA). Hydroxyfasudil was administered intraperitoneally in two doses for the last two weeks (1 mg/kg b.w.; 10 mg/kg b.w.). The degree of allergic inflammation was determined based on concentrations of inflammatory Th2 cytokines (IL-4, IL-13), Th1 cytokines (TNF-α and IFN-γ) in the lung homogenate and leukocyte count in the bronchoalveolar lavage fluid (BALF). The markers of remodelling and fibrosis, the growth factors (TGF-β1, EGF), EGF receptor, collagen type III and V were estimated in lung homogenate. The changes in specific airway resistance (sRaw) were used as an in vivo bronchial hyperreactivity parameter. RESULTS Hydroxyfasudil administration at both doses significantly reduced sRaw after a week of therapy. We observed a decline of IL-13, TNF-α and IFN-γ in lung homogenate and a lower presence of lymphocytes in BALF after 14 days of hydroxyfasudil administration at both tested doses. Hydroxyfasudil 14 days-treatment at both doses effectively reduced the concentrations of TGF-β1, EGF receptors, collagen type III and V in BALF and modulated EGF levels. CONCLUSIONS These findings indicate that RhoA/Rho-kinase is involved in the pathophysiology of allergic airway inflammation and suggest that Rho-kinase inhibitor hydroxyfasudil has therapeutic potential for asthma management.
Collapse
Affiliation(s)
- Sona Franova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia.
| | - Miroslava Molitorisova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Lenka Kalmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Jarmila Palencarova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Marta Joskova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Lukas Smiesko
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Jozef Mazerik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Martina Sutovska
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| |
Collapse
|
12
|
Current Limitations and Recent Advances in the Management of Asthma. Dis Mon 2022:101483. [DOI: 10.1016/j.disamonth.2022.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Savin IA, Markov AV, Zenkova MA, Sen’kova AV. Asthma and Post-Asthmatic Fibrosis: A Search for New Promising Molecular Markers of Transition from Acute Inflammation to Pulmonary Fibrosis. Biomedicines 2022; 10:biomedicines10051017. [PMID: 35625754 PMCID: PMC9138542 DOI: 10.3390/biomedicines10051017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Asthma is a heterogeneous pulmonary disorder, the progression and chronization of which leads to airway remodeling and fibrogenesis. To understand the molecular mechanisms of pulmonary fibrosis development, key genes forming the asthma-specific regulome and involved in lung fibrosis formation were revealed using a comprehensive bioinformatics analysis. The bioinformatics data were validated using a murine model of ovalbumin (OVA)-induced asthma and post-asthmatic fibrosis. The performed analysis revealed a range of well-known pro-fibrotic markers (Cat, Ccl2, Ccl4, Ccr2, Col1a1, Cxcl12, Igf1, Muc5ac/Muc5b, Spp1, Timp1) and a set of novel genes (C3, C3ar1, Col4a1, Col4a2, Cyp2e1, Fn1, Thbs1, Tyrobp) mediating fibrotic changes in lungs already at the stage of acute/subacute asthma-driven inflammation. The validation of genes related to non-allergic bleomycin-induced pulmonary fibrosis on asthmatic/fibrotic lungs allowed us to identify new universal genes (Col4a1 and Col4a2) associated with the development of lung fibrosis regardless of its etiology. The similarities revealed in the expression profiles of nodal fibrotic genes between asthma-driven fibrosis in mice and nascent idiopathic pulmonary fibrosis in humans suggest a tight association of identified genes with the early stages of airway remodeling and can be considered as promising predictors and early markers of pulmonary fibrosis.
Collapse
|
14
|
Pan-Phosphodiesterase Inhibitors Attenuate TGF-β-Induced Pro-Fibrotic Phenotype in Alveolar Epithelial Type II Cells by Downregulating Smad-2 Phosphorylation. Pharmaceuticals (Basel) 2022; 15:ph15040423. [PMID: 35455420 PMCID: PMC9024446 DOI: 10.3390/ph15040423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Airway remodeling is a pathological process that accompanies many chronic lung diseases. One of the important players in this process are epithelial cells, which under the influence of pro-inflammatory and pro-fibrotic factors present in the airway niche, actively participate in the remodeling process by increasing extracellular matrix secretion, acquiring migration properties, and overproducing pro-fibrotic transducers. Here, we investigated the effect of three new 8-arylalkylamino- and 8-alkoxy-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl-N-(5-(tert-butyl)-2-hydroxyphenyl)butanamides (1, 2, and 3), representing prominent pan-phosphodiesterase (pan-PDE) inhibitors on transforming growth factor type β (TGF-β)-induced alveolar epithelial type II cells (A549 cell line) of a pro-fibrotic phenotype. Our results demonstrate for the first time the strong activity of pan-PDE inhibitors in the prevention of TGF-β-induced mesenchymal markers’ expression and A549 cells’ migration. We also showed an increased p-CREB and decreased p-Smad-2 phosphorylation in TGF-β-induced A549 cells treated with 1, 2, and 3 derivatives, thereby confirming a pan-PDE inhibitor mesenchymal phenotype reducing effect in alveolar epithelial type II cells via suppression of the canonical Smad signaling pathway. Our observations confirmed that PDE inhibitors, and especially those active against various isoforms involved in the airway remodeling, constitute an interesting group of compounds modulating the pro-fibrotic response of epithelial cells.
Collapse
|
15
|
Asthma with Fixed Airflow Obstruction: From Fixed to Personalized Approach. J Pers Med 2022; 12:jpm12030333. [PMID: 35330333 PMCID: PMC8953236 DOI: 10.3390/jpm12030333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Asthma is generally characterized by variable symptoms such as dyspnea and wheezing and variable airflow obstruction. This review focuses on a subset of patients suffering from asthma with persistent airflow limitation that is not fully reversible (asthma with fixed airflow obstruction, FAO). The pathophysiology, the risk factors and the clinical outcomes associated with FAO are presented, as well as the distinct clinical entity of severe asthma and its inflammatory subtypes (T2 and non-T2). The current strategies for the treatment of these endotypes and treatment of the distinct Asthma/COPD overlap (ACO) phenotype are described. Management and medical interventions in FAO and/or ACO patients demand a holistic approach, which is not yet clearly established in guidelines worldwide. Finally, a treatment algorithm that includes FAO/ACO management based on pharmacological and non-pharmacological treatment, guideline-based management for specific co-morbidities, and modification of the risk factors is proposed.
Collapse
|
16
|
He H, Cao L, Wang Z, Wang Z, Miao J, Li XM, Miao M. Sinomenine Relieves Airway Remodeling By Inhibiting Epithelial-Mesenchymal Transition Through Downregulating TGF-β1 and Smad3 Expression In Vitro and In Vivo. Front Immunol 2021; 12:736479. [PMID: 34804018 PMCID: PMC8602849 DOI: 10.3389/fimmu.2021.736479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Airway remodeling is associated with dysregulation of epithelial-mesenchymal transition (EMT) in patients with asthma. Sinomenine (Sin) is an effective, biologically active alkaloid that has been reported to suppress airway remodeling in mice with asthma. However, the molecular mechanisms behind this effect remain unclear. We aimed to explore the potential relationship between Sin and EMT in respiratory epithelial cells in vitro and in vivo. First, 16HBE cells were exposed to 100 μg/mL LPS and treated with 200 μg/mL Sin. Cell proliferation, migration, and wound healing assays were performed to evaluate EMT, and EMT-related markers were detected using Western blotting. Mice with OVA-induced asthma were administered 35 mg/kg or 75 mg/kg Sin. Airway inflammation and remodeling detection experiments were performed, and EMT-related factors and proteins in the TGF-β1 pathway were detected using IHC and Western blotting. We found that Sin suppressed cell migration but not proliferation in LPS-exposed 16HBE cells. Sin also inhibited MMP7, MMP9, and vimentin expression in 16HBE cells and respiratory epithelial cells from mice with asthma. Furthermore, it decreased OVA-specific IgE and IL-4 levels in serum, relieved airway remodeling, attenuated subepithelial collagen deposition, and downregulating TGF-β1and Smad3 expression in mice with asthma. Our results suggest that Sin suppresses EMT by inhibiting IL-4 and downregulating TGF-β1 and Smad3 expression.
Collapse
Affiliation(s)
- Hongjuan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lihua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zheng Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiu-Min Li
- Microbiology and Immunology, and Department of Otolaryngology, New York Medical College, New York, NY, United States
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
17
|
Synthesis and in vitro evaluation of anti-inflammatory, antioxidant, and anti-fibrotic effects of new 8-aminopurine-2,6-dione-based phosphodiesterase inhibitors as promising anti-asthmatic agents. Bioorg Chem 2021; 117:105409. [PMID: 34749117 DOI: 10.1016/j.bioorg.2021.105409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/19/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023]
Abstract
Phosphodiesterase (PDE) inhibitors are currently an extensively studied group of compounds that can bring many benefits in the treatment of various inflammatory and fibrotic diseases, including asthma. Herein, we describe a series of novel N'-phenyl- or N'-benzylbutanamide and N'-arylidenebutanehydrazide derivatives of 8-aminopurine-2,6-dione (27-43) and characterized them as prominent pan-PDE inhibitors. Most of the compounds exhibited antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)-induced murine macrophages RAW264.7. The most active compounds (32-35 and 38) were evaluated in human bronchial epithelial cells (HBECs) derived from asthmatics. To better map the bronchial microenvironment in asthma, HBECs after exposure to selected 8-aminopurine-2,6-dione derivatives were incubated in the presence of two proinflammatory and/or profibrotic factors: transforming growth factor type β (TGF-β) and interleukin 13 (IL-13). Compounds 32-35 and 38 significantly reduced both IL-13- and TGF-β-induced expression of proinflammatory and profibrotic mediators, respectively. Detailed analysis of their inhibition preferences for selected PDEs showed high affinity for isoenzymes important in the pathogenesis of asthma, including PDE1, PDE3, PDE4, PDE7, and PDE8. The presented data confirm that structural modifications within the 7 and 8 positions of the purine-2,6-dione core result in obtaining preferable pan-PDE inhibitors which in turn exert an excellent anti-inflammatory and anti-fibrotic effect in the bronchial epithelial cells derived from asthmatic patients. This dual-acting pan-PDE inhibitors constitute interesting and promising lead structures for further anti-asthmatic agent discovery.
Collapse
|
18
|
Liu M, Shan M, Zhang Y, Guo Z. Progranulin Protects Against Airway Remodeling Through the Modulation of Autophagy via HMGB1 Suppression in House Dust Mite-Induced Chronic Asthma. J Inflamm Res 2021; 14:3891-3904. [PMID: 34408470 PMCID: PMC8367219 DOI: 10.2147/jir.s322724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Airway remodeling is an important feature of chronic asthma, and yet there are few effective therapeutic strategies. Progranulin (PGRN) has been shown to have lung protective functions, but the role of PGRN in asthmatic airway remodeling is unclear. We aim to explore the protective potential of PGRN on house dust mite (HDM)-induced airway remodeling and the underlying mechanisms. Methods In this study, a murine model of chronic asthma was established by HDM sensitization and challenge. Recombinant PGRN was intranasally administrated to mice during the phase of HDM challenge. TGF-β1-treated human airway epithelial BEAS-2B cells were utilized to explore the effect of PGRN on airway epithelia exposed to profibrotic conditions and molecular mechanisms. Results We found that PGRN treatment attenuated HDM-induced airway remodeling, as evidenced by the suppression of collagen accumulation, mucus overproduction and airway smooth muscle synthesis in HDM-challenged asthmatic mice lungs. Meanwhile, PGRN also reversed the increased levels of autophagy markers and autophagosomes in airway epithelia under mimic asthmatic conditions, thereby controlling the fibrotic process in vivo and in vitro. Specifically, overexpressed HMGB1 and the subsequent RAGE/MAPKs signaling activation due to HDM exposure were abrogated in PGRN-treated asthmatic mice. Furthermore, knockdown of HMGB1 expression significantly restrained the fibrosis formation in TGF-β1-induced airway epithelia accompanied by the downregulation of autophagic activity. However, enhancement of extracellular HMGB1 levels blunted the inhibition of autophagic flux by PGRN in airway epithelia, thereby resulting in the augmentation of collagen synthesis and fibrosis. Conclusion Taken together, our data revealed that PGRN protected against asthmatic airway remodeling by negatively regulating autophagy via HMGB1 suppression, which might provide new insights into the therapeutic options for HDM-induced chronic asthma.
Collapse
Affiliation(s)
- Meixuan Liu
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200123, People's Republic of China.,Department of Respiratory Medicine, Shanghai East Clinical Medical College, Nanjing Medical University, Shanghai, 200123, People's Republic of China
| | - Mengtian Shan
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200123, People's Republic of China
| | - Yunxuan Zhang
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Zhongliang Guo
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200123, People's Republic of China.,Department of Respiratory Medicine, Shanghai East Clinical Medical College, Nanjing Medical University, Shanghai, 200123, People's Republic of China
| |
Collapse
|
19
|
Lai SH, Tsai MH, Hua MC, Yeh KW, Yao TC, Huang JL, Liao SL. Distinct lung function and bronchodilator responses between term and preterm young children with recurrent wheezing. Pediatr Neonatol 2021; 62:394-399. [PMID: 33962900 DOI: 10.1016/j.pedneo.2021.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Recurrent or unresolved wheezing is a common complaint in certain young children populations, especially those born preterm. Using infant lung function testing, we aimed to distinguish the differences between term and preterm young children with recurrent wheezing. METHODS Children under 2 years of corrected age were enrolled if they had 3 or more wheezing episodes during the enrollment period. Healthy term controls of comparable age were also recruited for reference. Measurements of lung function were made, including tidal breathing, passive respiratory mechanics, and forced tidal and raised-volume expiration. For children with recurrent wheezing, raised-volume forced expiration was repeated after an adequate delivery of bronchodilator nebulization was achieved. RESULTS In total, 68 young children (40 with recurrent wheezing and 28 healthy controls) were recruited. Among children with recurrent wheezing, 23 preterm children (preterm group), and 17 term children (term group) were enrolled. Compared with healthy controls, both the term and preterm groups had lower lung function as measured by absolute values and z scores. The term group performed worse than the preterm group with regard to forced vital capacity, forced expiratory volume at 0.5 s (FEV0.5), and peak expiratory flow. Following bronchodilator nebulization, the term group had significantly higher increases in FEV0.5 and forced mid-expiratory flow than the preterm group. CONCLUSION Young children with recurrent wheezing, especially term infants, demonstrated lower lung function than healthy controls. Moreover, the term group evidenced greater responsiveness to bronchodilators than the preterm group. The distinct bronchodilator responses may offer further information to guide the diagnosis and treatment of young children with recurrent wheezing.
Collapse
Affiliation(s)
- Shen-Hao Lai
- Department of Pediatrics, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan; Prediction of Allergies in Taiwanese Children (PATCH) Cohort Study, Keelung, Taiwan
| | - Ming-Han Tsai
- Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital Keelung Branch, Keelung, Taiwan; Prediction of Allergies in Taiwanese Children (PATCH) Cohort Study, Keelung, Taiwan
| | - Man-Chin Hua
- Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital Keelung Branch, Keelung, Taiwan; Prediction of Allergies in Taiwanese Children (PATCH) Cohort Study, Keelung, Taiwan
| | - Kuo-Wei Yeh
- Department of Pediatrics, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan; Prediction of Allergies in Taiwanese Children (PATCH) Cohort Study, Keelung, Taiwan
| | - Tsung-Chieh Yao
- Department of Pediatrics, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan; Prediction of Allergies in Taiwanese Children (PATCH) Cohort Study, Keelung, Taiwan
| | - Jing-Long Huang
- Department of Pediatrics, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan; Prediction of Allergies in Taiwanese Children (PATCH) Cohort Study, Keelung, Taiwan
| | - Sui-Ling Liao
- Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital Keelung Branch, Keelung, Taiwan; Prediction of Allergies in Taiwanese Children (PATCH) Cohort Study, Keelung, Taiwan.
| |
Collapse
|
20
|
Sadeghdoust M, Mirsadraee M, Aligolighasemabadi F, Khakzad MR, Hashemi Attar A, Naghibi S. Effect of azithromycin on bronchial wall thickness in severe persistent asthma: A double-blind placebo-controlled randomized clinical trial. Respir Med 2021; 185:106494. [PMID: 34116330 DOI: 10.1016/j.rmed.2021.106494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/17/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Azithromycin reduced airway remodeling in animal models of asthma. However, its effect on human subjects has not been studied yet. This study aimed to investigate the effect of long-term treatment with azithromycin on airways wall thickness in patients with severe persistent asthma. METHODS In this randomized, double-blind, placebo-controlled clinical trial, patients with severe persistent asthma received azithromycin (250 mg, BID, three days a week), prednisolone (5 mg, BID), or placebo for eight months in three separate groups in addition to the standard therapy. The improvement in right upper lobe apical segmental bronchus (RB1) wall thickness obtained by high resolution computed tomography was set as the primary outcome. Secondary outcomes included: cough severity, dyspnea severity, asthma control test (ACT) score, asthma exacerbation rate, pulmonary function tests, and fractional exhaled nitric oxide (FENO). RESULTS Seventy-eight out of ninety randomized subjects completed eight months of treatment with azithromycin (n = 25), prednisolone (n = 27), or placebo (n = 26). Bronchial wall thickness percentage did not change significantly in any of the groups. However, the inner radius and lumen area of azithromycin and prednisolone-treated subjects increased significantly (p < 0.05 for both). Azithromycin also significantly improved the dyspnea severity, ACT score, FENO, and FEV1, FEF25-75, and FEV1/FVC (p < 0.05 for all). Cough severity or asthma exacerbation rate did not change significantly after eight months of treatment with azithromycin. CONCLUSION Long-term treatment with azithromycin increased lumen radius and lumen area in patients with severe persistent asthma. However, there was no significant change in wall thickness in any of the treatment groups. TRIAL REGISTRATION IRCT.com (IRCT20091111002695N8).
Collapse
Affiliation(s)
- Mohammadamin Sadeghdoust
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Majid Mirsadraee
- Internist and Pulmonologist, Department of Internal Medicine, Medical School, Islamic Azad University- Mashhad Branch, Mashhad, Iran.
| | - Farnaz Aligolighasemabadi
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Reza Khakzad
- Innovative Medical Research Center and Department of Immunology, Mashhad Branch Islamic Azad University, Mashhad, Iran.
| | | | - Saeed Naghibi
- Department of Radiology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
21
|
Li Q, Zhai C, Wang G, Zhou J, Li W, Xie L, Shi Z. Ginsenoside Rh1 attenuates ovalbumin-induced asthma by regulating Th1/Th2 cytokines balance. Biosci Biotechnol Biochem 2021; 85:1809-1817. [PMID: 34057179 DOI: 10.1093/bbb/zbab099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022]
Abstract
Ginsenoside Rh1 (Rh1) has anti-inflammatory effects in asthma mice, but the underlying mechanism remains unclear. BALB/c mice were sensitized and challenged with ovalbumin (OVA) to construct asthma model. Mice received Rh1 or tiotropium bromide 0.5 h before OVA challenge. Airway morphology and airway remodeling were assessed by HE staining and Masson's trichrome staining, respectively. Th1/Th2 cytokines in serum or broncho alveolar lavage fluid (BALF) were measured by ELISA kits. Rh1 significantly alleviated the lung resistance and airway resistance, and reduced the number of total inflammation cells, eosinophils, neutrophils, and lymphocytes in BALF of the asthmatic mice. The morphological changes and collagen deposition of airway were also reduced by Rh1 in asthmatic mice. The increase of Eotaxin, IL-4, IL-5, IL-13, and IL-33 and the decrease of IL-12 and IFN-γ in both BALF and serum of OVA exposed mice were reversed by Rh1. Rh1 attenuates OVA-induced asthma in the mice model by regulating Th1/Th2 cytokines balance.
Collapse
Affiliation(s)
- Qiang Li
- Department of Geriatrics, Hangzhou Hospital of Traditional Chinese Medicine, Xihu District, Hangzhou City, Zhejiang Province, China
| | - Chunmiao Zhai
- Department of Rehabilitation Medicine, Hangzhou Dingqiao Hospital, Jianggan District, Hangzhou City, Zhejiang Province, China
| | - Guodong Wang
- Department of Geriatrics, Hangzhou Hospital of Traditional Chinese Medicine, Xihu District, Hangzhou City, Zhejiang Province, China
| | - Jia Zhou
- Department of Geriatrics, Hangzhou Hospital of Traditional Chinese Medicine, Xihu District, Hangzhou City, Zhejiang Province, China
| | - Weiguang Li
- Department of Geriatrics, Hangzhou Hospital of Traditional Chinese Medicine, Xihu District, Hangzhou City, Zhejiang Province, China
| | - Liquan Xie
- Department of Geriatrics, Hangzhou Hospital of Traditional Chinese Medicine, Xihu District, Hangzhou City, Zhejiang Province, China
| | - Zhanli Shi
- Department of Geriatrics, Hangzhou Red Cross Hospital, Xiacheng District, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
22
|
Borkar NA, Roos B, Prakash YS, Sathish V, Pabelick CM. Nicotinic α7 acetylcholine receptor (α7nAChR) in human airway smooth muscle. Arch Biochem Biophys 2021; 706:108897. [PMID: 34004182 DOI: 10.1016/j.abb.2021.108897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022]
Abstract
Diseases such as asthma are exacerbated by inflammation, cigarette smoke and even nicotine delivery devices such as e-cigarettes. However, there is currently little information on how nicotine affects airways, particularly in humans, and changes in the context of inflammation or asthma. Here, a longstanding assumption is that airway smooth muscle (ASM) that is key to bronchoconstriction has muscarinic receptors while nicotinic receptors (nAChRs) are only on airway neurons. In this study, we tested the hypothesis that human ASM expresses α7nAChR and explored its profile in inflammation and asthma using ASM of non-asthmatics vs. mild-moderate asthmatics. mRNA and western analysis showed the α7 subunit is most expressed in ASM cells and further increased in asthmatics and smokers, or by exposure to nicotine, cigarette smoke or pro-inflammatory cytokines TNFα and IL-13. In these effects, signaling pathways relevant to asthma such as NFκB, AP-1 and CREB are involved. These novel data demonstrate the expression of α7nAChR in human ASM and suggest their potential role in asthma pathophysiology in the context of nicotine exposure.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Benjamin Roos
- Department of Anesthesiology and Perioperative Medicine, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Karvonen T, Sepponen-Lavikko A, Holm K, Schultz R, Moilanen E, Lehtimäki L. Onset of action of inhaled glucocorticoids on bronchial and alveolar nitric oxide output. J Breath Res 2020; 15:016008. [PMID: 33045700 DOI: 10.1088/1752-7163/abc054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fractional exhaled nitric oxide (FENO) is a marker of airway inflammation. Measuring FENO at multiple flow rates enables calculation of NO parameters: bronchial NO output (J awNO), bronchial wall (C awNO) and alveolar (C ANO) NO concentrations, and bronchial diffusion factor of NO (D awNO). FENO is known to rapidly reduce after the commencement of inhaled corticosteroid (ICS) treatment. However, little is known on the effect of ICS on the other NO parameters. We assessed (1) the onset of action of ICS treatment on the NO parameters and (2) whether the changes in bronchial NO output are due to changes in bronchial wall NO concentration or diffusion factor. FENO and other NO parameters were measured at baseline and after 1, 3 and 7 d of treatment with inhaled fluticasone propionate 250 μg b.i.d. in 23 allergic children with a history of asthma-like symptoms. There was a decrease in J awNO (from 680 (244/1791) (median (1st/3rd quartile)) to 357 (165/753) pl s-1, p < 0.001) and FENO50( from 13.8 (7.5/35) to 8.3 (5.36/17.0) ppb, p < 0.001) in 3 d from the first dose of ICS. Also, C awNO seemed to reduce after 3 d (from 171 (89/328) to 79 (54/157) ppb, p = 0.041), while D awNO remained unchanged. Furthermore, C ANO reduced during the 7 d treatment (from 3.0 (2.0/5.0) to 2.3 (1.9/2.6) ppb, p = 0.004). ICS treatment reduced FENO50 and J awNO rapidly and the decline was caused by decreased bronchial wall NO concentration while bronchial NO diffusion factor remained unchanged. These findings suggest that C awNO could be a more specific marker of airway inflammation and treatment response than J awNO or FENO50, which are both determined also by D awNO that seems to be resistant to the treatment with ICS.
Collapse
Affiliation(s)
- Tuomas Karvonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
24
|
Nam JH, Kim WK. The Role of TRP Channels in Allergic Inflammation and its Clinical Relevance. Curr Med Chem 2020; 27:1446-1468. [PMID: 30474526 DOI: 10.2174/0929867326666181126113015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
Allergy refers to an abnormal adaptive immune response to non-infectious environmental substances (allergen) that can induce various diseases such as asthma, atopic dermatitis, and allergic rhinitis. In this allergic inflammation, various immune cells, such as B cells, T cells, and mast cells, are involved and undergo complex interactions that cause a variety of pathophysiological conditions. In immune cells, calcium ions play a crucial role in controlling intracellular Ca2+ signaling pathways. Cations, such as Na+, indirectly modulate the calcium signal generation by regulating cell membrane potential. This intracellular Ca2+ signaling is mediated by various cation channels; among them, the Transient Receptor Potential (TRP) family is present in almost all immune cell types, and each channel has a unique function in regulating Ca2+ signals. In this review, we focus on the role of TRP ion channels in allergic inflammatory responses in T cells and mast cells. In addition, the TRP ion channels, which are attracting attention in clinical practice in relation to allergic diseases, and the current status of the development of therapeutic agents that target TRP channels are discussed.
Collapse
Affiliation(s)
- Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea.,Department of Internal Medicine Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| |
Collapse
|
25
|
Saunders R, Kaul H, Berair R, Gonem S, Singapuri A, Sutcliffe AJ, Chachi L, Biddle MS, Kaur D, Bourne M, Pavord ID, Wardlaw AJ, Siddiqui SH, Kay RA, Brook BS, Smallwood RH, Brightling CE. DP 2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment. Sci Transl Med 2020; 11:11/479/eaao6451. [PMID: 30760581 DOI: 10.1126/scitranslmed.aao6451] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 06/15/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022]
Abstract
Increased airway smooth muscle mass, a feature of airway remodeling in asthma, is the strongest predictor of airflow limitation and contributes to asthma-associated morbidity and mortality. No current drug therapy for asthma is known to affect airway smooth muscle mass. Although there is increasing evidence that prostaglandin D2 type 2 receptor (DP2) is expressed in airway structural and inflammatory cells, few studies have addressed the expression and function of DP2 in airway smooth muscle cells. We report that the DP2 antagonist fevipiprant reduced airway smooth muscle mass in bronchial biopsies from patients with asthma who had participated in a previous randomized placebo-controlled trial. We developed a computational model to capture airway remodeling. Our model predicted that a reduction in airway eosinophilia alone was insufficient to explain the clinically observed decrease in airway smooth muscle mass without a concomitant reduction in the recruitment of airway smooth muscle cells or their precursors to airway smooth muscle bundles that comprise the airway smooth muscle layer. We experimentally confirmed that airway smooth muscle migration could be inhibited in vitro using DP2-specific antagonists in an airway smooth muscle cell culture model. Our analyses suggest that fevipiprant, through antagonism of DP2, reduced airway smooth muscle mass in patients with asthma by decreasing airway eosinophilia in concert with reduced recruitment of myofibroblasts and fibrocytes to the airway smooth muscle bundle. Fevipiprant may thus represent a potential therapy to ameliorate airway remodeling in asthma.
Collapse
Affiliation(s)
| | - Himanshu Kaul
- University of Leicester, Leicester LE3 9QP, UK. .,University of Sheffield, Western Bank, Sheffield S1 4DP, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Blais-Lecours P, Laouafa S, Arias-Reyes C, Santos WL, Joseph V, Burgess JK, Halayko AJ, Soliz J, Marsolais D. Metabolic Adaptation of Airway Smooth Muscle Cells to an SPHK2 Substrate Precedes Cytostasis. Am J Respir Cell Mol Biol 2020; 62:35-42. [PMID: 31247144 PMCID: PMC6938129 DOI: 10.1165/rcmb.2018-0397oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Thickening of the airway smooth muscle is central to bronchial hyperreactivity. We have shown that the sphingosine analog (R)-2-amino-4-(4-heptyloxyphenyl)-2-methylbutanol (AAL-R) can reverse preestablished airway hyperreactivity in a chronic asthma model. Because sphingosine analogs can be metabolized by SPHK2 (sphingosine kinase 2), we investigated whether this enzyme was required for AAL-R to perturb mechanisms sustaining airway smooth muscle cell proliferation. We found that AAL-R pretreatment reduced the capacity of live airway smooth muscle cells to use oxygen for oxidative phosphorylation and increased lactate dehydrogenase activity. We also determined that SPHK2 was upregulated in airway smooth muscle cells bearing the proliferation marker Ki67 relative to their Ki67-negative counterpart. Comparing different stromal cell subsets of the lung, we found that high SPHK2 concentrations were associated with the ability of AAL-R to inhibit metabolic activity assessed by conversion of the tetrazolium dye MTT. Knockdown or pharmacological inhibition of SPHK2 reversed the effect of AAL-R on MTT conversion, indicating the essential role for this kinase in the metabolic perturbations induced by sphingosine analogs. Our results support the hypothesis that increased SPHK2 levels in proliferating airway smooth muscle cells could be exploited to counteract airway smooth muscle thickening with synthetic substrates.
Collapse
Affiliation(s)
- Pascale Blais-Lecours
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
| | - Sofien Laouafa
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
| | - Christian Arias-Reyes
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia
| | - Vincent Joseph
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
- Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research and
- GRIAC (Groningen Research Institute for Asthma and COPD), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew J. Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; and
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jorge Soliz
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
- Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - David Marsolais
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
- Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
27
|
Williams LM, Scott HA, Wood LG. Soluble fibre as a treatment for inflammation in asthma. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
28
|
He Y, Liang Y, Han R, Lu WL, Mak JCW, Zheng Y. Rational particle design to overcome pulmonary barriers for obstructive lung diseases therapy. J Control Release 2019; 314:48-61. [PMID: 31644935 DOI: 10.1016/j.jconrel.2019.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Pulmonary delivery of active drugs has been applied for the treatment of obstructive lung diseases, including asthma, chronic obstructive pulmonary disease and cystic fibrosis, for several decades and has achieved progress in symptom management by bronchodilator inhalation. However, substantial progress in anti-inflammation, prevention of airway remodeling and disease progression is limited, since the majority of the formulation strategies focus only on particle deposition, which is insufficient for pulmonary delivery of the drugs. The lack of knowledge on lung absorption barriers in obstructive lung diseases and on pathogenesis impedes the development of functional formulations by rational design. In this review, we describe the physiological structure and biological functions of the barriers in various regions of the lung, review the pathogenesis and functional changes of barriers in obstructive lung diseases, and examine the interaction of these barriers with particles to influence drug delivery efficiency. Subsequently, we review rational particle design for overcoming lung barriers based on excipients selection, particle size and surface properties, release properties and targeting ability. Additionally, useful particle fabrication strategies and commonly used drug carriers for pulmonary delivery in obstructive lung diseases are proposed in this article.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yingmin Liang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Run Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Judith Choi Wo Mak
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
29
|
Ito JT, Lourenço JD, Righetti RF, Tibério IFLC, Prado CM, Lopes FDTQS. Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies? Cells 2019; 8:E342. [PMID: 30979017 PMCID: PMC6523091 DOI: 10.3390/cells8040342] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
Abstract
Changes in extracellular matrix (ECM) components in the lungs are associated with the progression of respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Experimental and clinical studies have revealed that structural changes in ECM components occur under chronic inflammatory conditions, and these changes are associated with impaired lung function. In bronchial asthma, elastic and collagen fiber remodeling, mostly in the airway walls, is associated with an increase in mucus secretion, leading to airway hyperreactivity. In COPD, changes in collagen subtypes I and III and elastin, interfere with the mechanical properties of the lungs, and are believed to play a pivotal role in decreased lung elasticity, during emphysema progression. In ARDS, interstitial edema is often accompanied by excessive deposition of fibronectin and collagen subtypes I and III, which can lead to respiratory failure in the intensive care unit. This review uses experimental models and human studies to describe how inflammatory conditions and ECM remodeling contribute to the loss of lung function in these respiratory diseases.
Collapse
Affiliation(s)
- Juliana T Ito
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Juliana D Lourenço
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Renato F Righetti
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
- Rehabilitation service, Sírio-Libanês Hospital, Sao Paulo 01308-050, Brazil.
| | - Iolanda F L C Tibério
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Carla M Prado
- Department of Bioscience, Laboratory of Studies in Pulmonary Inflammation, Federal University of Sao Paulo, Santos 11015-020, Brazil.
| | - Fernanda D T Q S Lopes
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| |
Collapse
|
30
|
Fang L, Wang X, Sun Q, Papakonstantinou E, S'ng C, Tamm M, Stolz D, Roth M. IgE Downregulates PTEN through MicroRNA-21-5p and Stimulates Airway Smooth Muscle Cell Remodeling. Int J Mol Sci 2019; 20:ijms20040875. [PMID: 30781615 PMCID: PMC6412688 DOI: 10.3390/ijms20040875] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
The patho-mechanism leading to airway wall remodeling in allergic asthma is not well understood and remodeling is resistant to therapies. This study assessed the effect of immunoglobulin E (IgE) in the absence of allergens on human primary airway smooth muscle cell (ASMC) remodeling in vitro. ASMCs were obtained from five allergic asthma patients and five controls. Proliferation was determined by direct cell counts, mitochondrial activity by expression of cytochrome c, protein expression by immunoblotting and immuno-fluorescence, cell migration by microscopy imaging, and collagen deposition by cell based ELISA and RNA expression by real time PCR. Non-immune IgE activated two signaling pathways: (i) signal transducer and activator of transcription 3 (STAT3)→miR-21-5p→downregulating phosphatase and tensin homolog (PTEN) expression, and (ii) phosphatidylinositol 3-kinases (PI3K)→protein kinase B (Akt)→mammalian target of rapamycin (mTOR)→ribosomal protein S6 kinase beta-1 (p70s6k)→peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1-α)→peroxisome proliferator-activated receptor-γ (PPAR-γ)→cyclooxygenase-2 (COX-2)→mitochondrial activity, proliferation, migration, and extracellular matrix deposition. Reduced PTEN expression correlated with enhanced PI3K signaling, which upregulated ASMC remodeling. The inhibition of microRNA-21-5p increased PTEN and reduced mTOR signaling and remodeling. Mimics of microRNA-21-5p had opposing effects. IgE induced ASMC remodeling was significantly reduced by inhibition of mTOR or STAT3. In conclusion, non-immune IgE alone is sufficient for stimulated ASMC remodeling by upregulating microRNA-21-5p. Our findings suggest that the suppression of micoRNA-21-5p may present a therapeutic target to reduce airway wall remodeling.
Collapse
Affiliation(s)
- Lei Fang
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Xinggang Wang
- Gynecological Endocrinology, Department of Biomedicine, University & University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Qingzhu Sun
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Eleni Papakonstantinou
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
- Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | - Michael Tamm
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Daiana Stolz
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Michael Roth
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| |
Collapse
|
31
|
Luo J, Zhang L, Zhang X, Long Y, Zou F, Yan C, Zou W. Protective effects and active ingredients of Salvia miltiorrhiza Bunge extracts on airway responsiveness, inflammation and remodeling in mice with ovalbumin-induced allergic asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:168-177. [PMID: 30599896 DOI: 10.1016/j.phymed.2018.09.170] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/24/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Salvia miltiorrhiza Bunge (S. miltiorrhiza), a traditional Chinese medicine, has demonstrated antioxidant, anti-inflammatory, and antibacterial activities. However, its effects against asthma that shows chronic inflammation and oxidative damage remain unknown. PURPOSE To assess the effects of S. miltiorrhiza extracts on airway responsiveness, inflammation, and remodeling in ovalbumin (OVA)-induced asthmatic mice. METHODS Mice with ovalbumin (OVA)-induced allergic asthma were treated with S. miltiorrhiza extracts, and airway resistance (RL) to methacholine, inflammatory cell infiltration, Th1/Th2 cytokine levels, and airway remodeling were assessed. TGF-β1-induced BEAS-2B and MRC-5 cells were used to evaluate the effects of five S. miltiorrhiza compounds on epithelial-mesenchymal transition and fibrosis. RESULTS OVA-challenge resulted in remarkably increased RL, inflammatory cell infiltration, Th1/Th2 cytokine levels in BALF, goblet cell hyperplasia, collagen deposition, and airway wall thickening. Daily treatment with S. miltiorrhiza ethanolic (EE, 246 mg/kg) or water (WE, 156 mg/kg) extract significantly reduced OVA-induced airway inflammatory cell infiltration, Th1/Th2 cytokine amounts, and goblet cells hyperplasia. However, only WE remarkably decreased RL, collagen deposition, and airway wall thickening. Moreover, Chromatography showed that salvianic acid A and caffeic acid levels were much higher in WE than EE, while rosmarinic acid was slightly lower; salvianolic acid B and tanshinone IIA levels were much higher in EE than WE. Interestingly, caffeic acid and rosmarinic acid were more potent in reducing E-cadherin and vimentin levels in TGF-β1-induced BEAS-2B cells, and α-SMA and COL1A1 amounts in TGF-β1-induced MRC-5 cells. CONCLUSIONS Both S. miltiorrhiza WE and EE alleviate airway inflammation in mice with OVA-sensitized allergic asthma. S. miltiorrhiza WE is more potent in reducing responsiveness and airway remodeling.
Collapse
Affiliation(s)
- Junming Luo
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Li Zhang
- Hunan Provincal Maternal and Child Health Hospital, No.53 Xiangchun Road, Changsha 410008, People's Republic of China
| | - Xinyi Zhang
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Yingying Long
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Fang Zou
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Chunsong Yan
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China..
| | - Wei Zou
- Hunan Provincal Maternal and Child Health Hospital, No.53 Xiangchun Road, Changsha 410008, People's Republic of China.
| |
Collapse
|
32
|
Solidoro P, Patrucco F, de Blasio F, Brussino L, Bellocchia M, Dassetto D, Pivetta E, Riccio A, Heffler E, Canonica W, Rolla G, Bucca C. Predictors of reversible airway obstruction with omalizumab in severe asthma: a real-life study. Ther Adv Respir Dis 2019; 13:1753466619841274. [PMID: 31002021 PMCID: PMC6475845 DOI: 10.1177/1753466619841274] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Omalizumab may modulate airway remodeling in severe asthma. Using forced expiratory volume in 1 second (FEV1) as a surrogate of airway remodeling, we aimed to investigate if an omalizumab add-on in severe allergic asthma may lead to a persistent reversal of airway obstruction and to evaluate the potential biomarkers of airway obstruction reversibility. METHODS Data were collected before (T0) and after omalizumab add-on for 1 year (T1, 32 patients), 2 years (T2, 26 patients) and 4 years (T4, 13 patients). All patients had baseline FEV1 below 80 % predicted (60.5 ± 12.5 %). After omalizumab, 18 patients showed FEV1 normalization (reversible airway obstruction; RAO+) already at T1 (88.7 ± 14.9 %, p < 0.0001) that persisted up to T4 (83.2 ± 7.9, p < 0.01), while 14 patients (RAO-) had FEV1 persistently decreased, from T1 (65.2 ± 8.4%, p < 0.05) up to T4 (61.4 ± 6.2%, not significant). Both groups had significant improvement of symptoms and exacerbations after omalizumab at T1, which persisted up to T4. The comparison between pretreatment characteristics of the two groups showed that RAO+ patients, had higher values of circulating eosinophils, exhaled nitric oxide (FENO), prevalence of rhinitis and nasal polyps, need of oral corticosteroids, shorter asthma duration, higher FEV1 and response to albuterol test. The optimal cut-off points predicting FEV1 normalization after omalizumab add-on were 30.5 ppb for FENO and 305 cells/µl for eosinophils. CONCLUSIONS This study suggests that omalizumab add-on contributes to the persistent reversal of airway obstruction in a consistent number of patients with severe allergic asthma, and this beneficial effect is predicted by elevated pretreatment FENO and circulating eosinophils.
Collapse
Affiliation(s)
- Paolo Solidoro
- S.C. Pneumologia U, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Filippo Patrucco
- S.C. Pneumologia U, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | | | - Luisa Brussino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Michela Bellocchia
- S.C. Pneumologia U, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Davide Dassetto
- S.C. Pneumologia U, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Emanuele Pivetta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Annamaria Riccio
- Respiratory Diseases and Allergy Unit, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - Enrico Heffler
- Personalised Medicine Clinic Asthma & Allergy, Humanitas University, Department of Biomedical Sciences, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Walter Canonica
- Personalised Medicine Clinic Asthma & Allergy, Humanitas University, Department of Biomedical Sciences, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giovanni Rolla
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Caterina Bucca
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14 10126 Turin, Italy
| |
Collapse
|
33
|
Lee SH, Lee PH, Kim BG, Hong J, Jang AS. Annexin A5 Protein as a Potential Biomarker for the Diagnosis of Asthma. Lung 2018; 196:681-689. [PMID: 30182154 DOI: 10.1007/s00408-018-0159-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/30/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE Annexin A5 (ANXA5) has a potential role in cellular signal transduction, inflammation, and fibrosis. However, the exact role of ANXA5 in asthma remains to be clarified. The aims of the present study were to investigate ANXA5 protein expression in a mouse model of asthma and pollutant exposure and to elucidate the relationships between clinical variables and plasma ANXA5 levels in patients with asthma. METHODS A murine model of asthma induced by ovalbumin (OVA) and titanium dioxide (TiO2) nanoparticles has been established using BALB/c mice, and we examined ANXA5 expression and lung fibrosis using this model. Moreover, we also compared ANXA5 plasma levels in patients with controlled vs. exacerbated asthma. RESULTS ANXA5 protein levels were lower in lung tissue from OVA + OVA mice than in control mice. Lung ANXA5, connective tissue growth factor (CTGF), and transforming growth factor β1 (TGF-β1) protein levels were higher in OVA + TiO2-exposed mice than in control or OVA + OVA mice. Although Dermatophagoides pteronyssinus (Derp1) treatment increased lung ANXA5 protein levels in MRC-5 cells and A549 epithelial cells, it decreased lung ANXA5 levels in NHBE cells. Treatment with TiO2 nanoparticles increased lung ANXA5, CTGF, and TGF-β1 protein levels in MRC-5 cells, A549 epithelial cells, and NHBE cells. Plasma ANXA5 levels were lower in asthmatic patients than in healthy controls, and they were significantly enriched in patients with exacerbated asthma compared with those with controlled asthma (P < 0.05). ANXA5 levels were correlated with pulmonary function as assessed by spirometry. CONCLUSION Our results imply that ANXA5 plays a potential role in asthma pathogenesis and may be a promising marker for exacerbated bronchial asthma and exposure to air pollutants.
Collapse
Affiliation(s)
- Sun-Hye Lee
- Division of Respiratory and Allergy, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - Pureun-Haneul Lee
- Division of Respiratory and Allergy, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - Byeong-Gon Kim
- Division of Respiratory and Allergy, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - Jisu Hong
- Division of Respiratory and Allergy, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - An-Soo Jang
- Division of Respiratory and Allergy, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, Gyeonggi-do, 14584, Republic of Korea.
| |
Collapse
|
34
|
Airway remodeling in asthma: update on mechanisms and therapeutic approaches. Curr Opin Pulm Med 2018; 24:56-62. [PMID: 29076828 DOI: 10.1097/mcp.0000000000000441] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The term 'airway remodeling' reflects changes in the type, quantity, and nature of airway wall components and their organization. The purpose of this review is to look at recent publications on airway remodeling in asthma. RECENT FINDINGS Animal models and in-vitro studies have confirmed the involvement of airway epithelium, airway smooth muscle (ASM), and extracellular matrix components in asthma-related airway remodeling. They report influences on proliferation of ASM cells, and how their orientation or morphology, in addition to the heterogeneity of ASM mass at different levels of airways could influence their effects. Clinical benefits have been observed following reduction of ASM following bronchial thermoplasty. Asthmatic epithelial cell transcriptome alterations were found to involve metabolism and epigenetics, beyond epithelial mesenchymal trophic unit driven by injury and repair in chronic inflammation. New ways to explore airway remodeling such as imaging or endoscopic techniques have been evaluated. Finally, new data support the role of eosinophils and mast cells in remodeling and show the influence of new asthma drugs on this process. SUMMARY As recently stated by an American Thoracic Society task force, we need more research on airway remodeling, its determinants and clinical relevance, and on the effects of asthma drugs on its various components.
Collapse
|
35
|
Langton D, Ing A, Fielding D, Wang W, Plummer V, Thien F. Bronchodilator responsiveness as a predictor of success for bronchial thermoplasty. Respirology 2018; 24:63-67. [PMID: 30063104 DOI: 10.1111/resp.13375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVE A characteristic feature of asthma is hypertrophied airway smooth muscle, responsible for bronchoconstriction. This is the target of bronchial thermoplasty (BT). It is known that with increasing time and severity some patients develop remodelled airways with fixed airflow obstruction. The question arises whether these patients will still respond to BT. METHODS Forty-nine consecutive severe asthmatic patients were prospectively evaluated at baseline and then 6 months after BT. The characteristics recorded included medication usage, exacerbation history, spirometry and the Asthma Control Questionnaire 5-Item Version score (ACQ-5). Seven patients were excluded as they did not demonstrate airflow obstruction at baseline (forced expiratory ratio (forced expiratory volume in 1 s (FEV1 )/forced vital capacity (FVC)) < 70%). The remaining 42 patients were divided into two cohorts based on their response to bronchodilator. Eighteen patients in whom the FEV1 improved by at least 12% and 200 mL following bronchodilator were allocated to Group 1 (reversible). The remaining patients were allocated to Group 2 (fixed). The outcomes following BT in these two groups were then compared. RESULTS The patient age was 57.2 ± 12.4 years, the ACQ-5 was 3.2 ± 1.0 and the FEV1 56.0 ± 16.4% predicted. At baseline, the patient cohorts were very similar, save for the response to bronchodilator, which was 28.1 ± 12.5% in Group 1 and 4.1 ± 5.3% in Group 2. Both groups responded to BT equally well, with significant improvements in ACQ-5, salbutamol usage, exacerbation frequency and the weaning of oral corticosteroids. CONCLUSION In patients with severe asthma, the presence or absence of variable airflow obstruction as measured by spirometry does not appear to influence outcomes from BT.
Collapse
Affiliation(s)
- David Langton
- Department of Thoracic Medicine, Frankston Hospital, Peninsula Health, Melbourne, VIC, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Alvin Ing
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Thoracic Medicine, Concord Hospital, Sydney, NSW, Australia
| | - David Fielding
- Department of Thoracic Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Wei Wang
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Virginia Plummer
- Department of Thoracic Medicine, Frankston Hospital, Peninsula Health, Melbourne, VIC, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Francis Thien
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Zhu X, Li Q, Hu G, Wang J, Hu Q, Liu Z, Wu G, Zhong Y. BMS‑345541 inhibits airway inflammation and epithelial‑mesenchymal transition in airway remodeling of asthmatic mice. Int J Mol Med 2018; 42:1998-2008. [PMID: 30015827 PMCID: PMC6108878 DOI: 10.3892/ijmm.2018.3762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/28/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the possible effects and regulatory mechanism of the inhibitor of nuclear factor‑κB kinase complex β subunit (IKKβ) inhibitor BMS‑345541 on airway inflammation, airway remodeling and epithelial‑mesenchymal transition (EMT) in an ovalbumin (OVA) exposure asthma model in mice. The asthma mouse model was generated by sensitization and challenge with OVA. BMS‑345541/dimethyl sulfoxide (DMSO) was administered perorally dairy in two therapeutic groups throughout the entire OVA challenge process. At 24 h following the last challenge, airway hyperresponsiveness (AHR) and airway inflammation were examined, and serum, bronchoalveolar lavage fluid (BALF) and lung samples were collected. Lung tissue was stained and assessed for pathological changes. The total number and classification of inflammatory cells in the BALF were examined. Levels of transforming growth factor β1 (TGFβ1) in the serum and BALF were measured using an enzyme‑linked immunosorbent assay. The differential expression of EMT regulators E‑cadherin and vimentin was detected by immunohistochemical staining, reverse transcription‑quantitative polymerase chain reaction analysis and western blot analysis. The results showed that OVA successfully induced allergic asthma. The asthmatic mice had AHR, airway inflammation, airway remodeling, a high expression of TGFβ1, and evidence of EMT. Following BMS‑345541 treatment, there was significant inhibition of pathophysiological signs, including increased pulmonary eosinophilia infiltration, mucus hypersecretion and AHR. Treatment with BMS‑345541 significantly reduced levels of TGFβ1. In addition, BMS‑345541 notably downregulated the expression of vimentin and increased the expression of E‑cadherin. These data suggested that the increased secretion of TGFβ1 induced by asthmatic inflammation can lead to EMT, and the IKKβ inhibitor BMS‑345541 may alter airway remodeling by preventing EMT in an OVA asthma model. Therefore, IKKβ inhibitors require investigation as potential asthma therapies.
Collapse
Affiliation(s)
- Xiaohua Zhu
- Graduate School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiugen Li
- Respiratory Department, Jiangxi People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Guozhu Hu
- Central Laboratory, Jiangxi People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Wang
- Respiratory Department, Jiangxi People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Qinghua Hu
- Central Laboratory, Jiangxi Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang Liu
- Clinical Laboratory, Jiangxi Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Gang Wu
- Graduate School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Zhong
- Graduate School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
37
|
Tliba O, Panettieri RA. Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol 2018; 143:1287-1294. [PMID: 29928921 DOI: 10.1016/j.jaci.2018.06.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/17/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023]
Abstract
Among patients with asthma, heterogeneity exists regarding the pattern of airway inflammation and response to treatment, prompting the necessity of recognizing specific phenotypes. Based on the analysis of inflammatory cell counts in induced sputum, asthmatic patients can be classified into 4 unique phenotypes: eosinophilic asthma, neutrophilic asthma, mixed granulocytic asthma, and paucigranulocytic asthma (PGA). PGA is an asthma phenotype with no evidence of increased numbers of eosinophils or neutrophils in sputum or blood and in which anti-inflammatory therapies are ineffective at controlling symptoms. Although underinvestigated, PGA is the most common asthma phenotype in patients with stable asthma. However, PGA is sometimes underestimated because of the exclusive reliance on induced sputum cell counts, which are variable among cohorts of studies, prompting the necessity of developing improved biomarkers. Importantly, investigators have reported that inhaled corticosteroids had a limited effect on airway inflammatory markers in patients with PGA and therefore defining PGA as a potentially "steroid-insensitive" phenotype that requires exploration of alternative therapies. PGA manifests as an uncoupling of airway obstruction from airway inflammation that can be driven by structural changes within the airways, such as airway smooth muscle tissue hypertrophy. Animal models provide evidence that processes evoking airway hyperresponsiveness and airway smooth muscle thickening occur independent from inflammation and might be a consequence of a loss of negative homeostatic processes. Collectively, further understanding of PGA with a focus on the characterization, prevalence, clinical significance, and pathobiology derived from animal studies will likely provide precision therapies that will improve PGA clinical outcomes.
Collapse
Affiliation(s)
- Omar Tliba
- Rutgers Institute for Translational Medicine & Science, Robert Wood Johnson School of Medicine, Rutgers, State University of New Jersey, New Brunswick, NJ
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine & Science, Robert Wood Johnson School of Medicine, Rutgers, State University of New Jersey, New Brunswick, NJ.
| |
Collapse
|
38
|
Chernyavsky IL, Russell RJ, Saunders RM, Morris GE, Berair R, Singapuri A, Chachi L, Mansur AH, Howarth PH, Dennison P, Chaudhuri R, Bicknell S, Rose FRAJ, Siddiqui S, Brook BS, Brightling CE. In vitro, in silico and in vivo study challenges the impact of bronchial thermoplasty on acute airway smooth muscle mass loss. Eur Respir J 2018; 51:13993003.01680-2017. [PMID: 29700102 PMCID: PMC6003767 DOI: 10.1183/13993003.01680-2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/29/2018] [Indexed: 11/05/2022]
Abstract
Bronchial thermoplasty is a treatment for asthma. It is currently unclear whether its histopathological impact is sufficiently explained by the proportion of airway wall that is exposed to temperatures necessary to affect cell survival. Airway smooth muscle and bronchial epithelial cells were exposed to media (37–70°C) for 10 s to mimic thermoplasty. In silico we developed a mathematical model of airway heat distribution post-thermoplasty. In vivo we determined airway smooth muscle mass and epithelial integrity pre- and post-thermoplasty in 14 patients with severe asthma. In vitro airway smooth muscle and epithelial cell number decreased significantly following the addition of media heated to ≥65°C. In silico simulations showed a heterogeneous heat distribution that was amplified in larger airways, with <10% of the airway wall heated to >60°C in airways with an inner radius of ∼4 mm. In vivo at 6 weeks post-thermoplasty, there was an improvement in asthma control (measured via Asthma Control Questionnaire-6; mean difference 0.7, 95% CI 0.1–1.3; p=0.03), airway smooth muscle mass decreased (absolute median reduction 5%, interquartile range (IQR) 0–10; p=0.03) and epithelial integrity increased (14%, IQR 6–29; p=0.007). Neither of the latter two outcomes was related to improved asthma control. Integrated in vitro and in silico modelling suggest that the reduction in airway smooth muscle post-thermoplasty cannot be fully explained by acute heating, and nor did this reduction confer a greater improvement in asthma control. Bronchial thermoplasty treatment for asthma has unexpected possible mechanisms of actionhttp://ow.ly/ZcuE30jsaSa
Collapse
Affiliation(s)
- Igor L Chernyavsky
- School of Mathematics, University of Manchester, Manchester, UK.,These authors contributed equally to the study
| | - Richard J Russell
- Dept of Infection, Immunity and Inflammation, Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.,These authors contributed equally to the study
| | - Ruth M Saunders
- Dept of Infection, Immunity and Inflammation, Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.,These authors contributed equally to the study
| | - Gavin E Morris
- Dept of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Rachid Berair
- Dept of Infection, Immunity and Inflammation, Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Amisha Singapuri
- Dept of Infection, Immunity and Inflammation, Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Latifa Chachi
- Dept of Infection, Immunity and Inflammation, Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Peter H Howarth
- Clinical and Experimental Sciences, University of Southampton, Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Trust, Southampton, UK
| | - Patrick Dennison
- Clinical and Experimental Sciences, University of Southampton, Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Trust, Southampton, UK
| | - Rekha Chaudhuri
- Gartnavel General Hospital, Glasgow, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | - Salman Siddiqui
- Dept of Infection, Immunity and Inflammation, Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK.,Co-senior authors
| | - Christopher E Brightling
- Dept of Infection, Immunity and Inflammation, Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.,Co-senior authors
| |
Collapse
|
39
|
Siddiqui S, Shikotra A, Richardson M, Doran E, Choy D, Bell A, Austin CD, Eastham-Anderson J, Hargadon B, Arron JR, Wardlaw A, Brightling CE, Heaney LG, Bradding P. Airway pathological heterogeneity in asthma: Visualization of disease microclusters using topological data analysis. J Allergy Clin Immunol 2018; 142:1457-1468. [PMID: 29550052 DOI: 10.1016/j.jaci.2017.12.982] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Asthma is a complex chronic disease underpinned by pathological changes within the airway wall. How variations in structural airway pathology and cellular inflammation contribute to the expression and severity of asthma are poorly understood. OBJECTIVES Therefore we evaluated pathological heterogeneity using topological data analysis (TDA) with the aim of visualizing disease clusters and microclusters. METHODS A discovery population of 202 adult patients (142 asthmatic patients and 60 healthy subjects) and an external replication population (59 patients with severe asthma) were evaluated. Pathology and gene expression were examined in bronchial biopsy samples. TDA was applied by using pathological variables alone to create pathology-driven visual networks. RESULTS In the discovery cohort TDA identified 4 groups/networks with multiple microclusters/regions of interest that were masked by group-level statistics. Specifically, TDA group 1 consisted of a high proportion of healthy subjects, with a microcluster representing a topological continuum connecting healthy subjects to patients with mild-to-moderate asthma. Three additional TDA groups with moderate-to-severe asthma (Airway Smooth MuscleHigh, Reticular Basement MembraneHigh, and RemodelingLow groups) were identified and contained numerous microclusters with varying pathological and clinical features. Mutually exclusive TH2 and TH17 tissue gene expression signatures were identified in all pathological groups. Discovery and external replication applied to the severe asthma subgroup identified only highly similar "pathological data shapes" through analyses of persistent homology. CONCLUSIONS We have identified and replicated novel pathological phenotypes of asthma using TDA. Our methodology is applicable to other complex chronic diseases.
Collapse
Affiliation(s)
- Salman Siddiqui
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom.
| | - Aarti Shikotra
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Matthew Richardson
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | | | | | - Alex Bell
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | | | | | - Beverley Hargadon
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | | | - Andrew Wardlaw
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Christopher E Brightling
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Liam G Heaney
- Centre for Infection and Immunity, Health Sciences Building, Queens University Belfast, Belfast, United Kingdom
| | - Peter Bradding
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
40
|
Diver S, Russell RJ, Brightling CE. New and emerging drug treatments for severe asthma. Clin Exp Allergy 2018; 48:241-252. [PMID: 29315966 DOI: 10.1111/cea.13086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma is a common chronic inflammatory condition of the airways affecting over 300 million people world-wide. In 5%-10% of cases, it is severe, with disproportionate healthcare resource utilization including costs associated with frequent exacerbations and the long-term health effects of systemic steroids. Characterization of inflammatory pathways in severe asthma has led to the development of targeted biological and small molecule therapies which aim to achieve disease control while minimizing corticosteroid-associated morbidity. Herein, we review currently licensed agents and those in development, and speculate how drug therapy for severe asthma might evolve and impact on clinical outcomes in the near future.
Collapse
Affiliation(s)
- S Diver
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - R J Russell
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - C E Brightling
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
41
|
Walker JKL, Theriot BS, Ghio M, Trempus CS, Wong JE, McQuade VL, Liang J, Jiang D, Noble PW, Garantziotis S, Kraft M, Ingram JL. Targeted HAS2 Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease. Am J Respir Cell Mol Biol 2017; 57:702-710. [PMID: 28787175 PMCID: PMC5765419 DOI: 10.1165/rcmb.2017-0095oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/24/2017] [Indexed: 01/02/2023] Open
Abstract
Hyaluronan (HA), a major component of the extracellular matrix, is secreted by airway structural cells. Airway fibroblasts in allergic asthma secrete elevated levels of HA in association with increased HA synthase 2 (HAS2) expression. Thus, we hypothesized that HA accumulation in the airway wall may contribute to airway remodeling and hyperresponsiveness in allergic airways disease. To examine this hypothesis, transgenic mice in which the α-smooth muscle actin (α-SMA) promoter drives HAS2 expression were generated. Mixed male and female α-SMA-HAS2 mice (HAS2+ mice, n = 16; HAS2- mice, n = 13) were sensitized via intraperitoneal injection and then chronically challenged with aerosolized ovalbumin (OVA) for 6 weeks. To test airway responsiveness, increasing doses of methacholine were delivered intravenously and airway resistance was measured using the forced oscillation technique. HA, cytokines, and cell types were analyzed in bronchoalveolar lavage fluid, serum, and whole lung homogenates. Lung sections were stained using antibodies specific for HA-binding protein (HABP) and α-SMA, as well as Masson's trichrome stain. Staining of lung tissue demonstrated significantly increased peribronchial HA, α-SMA, and collagen deposition in OVA-challenged α-SMA-HAS2+ mice compared with α-SMA-HAS2- mice. Unexpectedly, OVA-challenged α-SMA-HAS2+ mice displayed significantly reduced airway responsiveness to methacholine compared with similarly treated α-SMA-HAS2- mice. The total numbers of inflammatory cell types in the bronchoalveolar lavage fluid did not differ significantly between OVA-challenged α-SMA-HAS2+ mice and α-SMA-HAS2- mice. We conclude that allergen-challenged mice that overexpress HAS2 in myofibroblasts and smooth muscle cells develop increased airway fibrosis, which lessens airway hyperresponsiveness to bronchoconstrictors.
Collapse
Affiliation(s)
- Julia K. L. Walker
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- School of Nursing, Duke University, Durham, North Carolina; and
| | - Barbara S. Theriot
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Michael Ghio
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Carol S. Trempus
- Laboratory of Immunity, Inflammation and Disease, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jordan E. Wong
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Victoria L. McQuade
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jiurong Liang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Dianhua Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Paul W. Noble
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Stavros Garantziotis
- Laboratory of Immunity, Inflammation and Disease, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Monica Kraft
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jennifer L. Ingram
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
42
|
Lin J, Nong Y, Yang D, Li S, Wang G, Su N, Zhong N. Chinese consensus statement on standard procedure and perioperative management of bronchial thermoplasty. J Thorac Dis 2017; 9:5507-5514. [PMID: 29312761 DOI: 10.21037/jtd.2017.12.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bronchial thermoplasty (BT) is a non-pharmacologic therapy for severe asthma. The proper procedure and perioperative management are very important for the effectiveness and safety of BT. China Asthma Alliance assembled a group of experts in asthma and BT to review the literature, drew on their own experiences, discussed, and then finalized by consensus to establish this standard practice guideline. This practice guideline is designed to guide clinicians as to proper patients' selection, preoperative assessment, postoperative management and follow-up. This practice guideline also proposed "China Alair System Registry Study (NCT02206269)" as the real-world study to enhance clinical utility of BT.
Collapse
Affiliation(s)
- Jiangtao Lin
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ying Nong
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dong Yang
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shiyue Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing 100034, China
| | - Nan Su
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Nanshan Zhong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
43
|
Zhu XH, Li QG, Wang J, Hu GZ, Liu ZQ, Hu QH, Wu G. [Mechanism of action of BET bromodomain inhibitor JQ1 in treating airway remodeling in asthmatic mice]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1278-1284. [PMID: 29237530 PMCID: PMC7389801 DOI: 10.7499/j.issn.1008-8830.2017.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the molecular mechanism of action of BET bromodomain inhibitor JQ1 in treating airway remodeling in asthmatic mice. METHODS A total of 24 mice were randomly divided into control group, ovalbumin (OVA)-induced asthma group (OVA group), and JQ1 intervention group (JQ1+OVA group), with 8 mice in each group. OVA sensitization/challenge was performed to establish a mouse model of asthma. At 1 hour before challenge, the mice in the JQ1+OVA group were given intraperitoneal injection of JQ1 solution (50 μg/g). Bronchoalveolar lavage fluid (BALF) and lung tissue samples were collected at 24 hours after the last challenge, and the total number of cells and percentage of eosinophils in BALF were calculated. Pathological staining was performed to observe histopathological changes in lung tissue. RT-PCR and Western blot were used to measure the mRNA and protein expression of E-cadherin and vimentin during epithelial-mesenchymal transition (EMT). RESULTS Compared with the control group, the OVA group had marked infiltration of inflammatory cells in the airway, thickening of the airway wall, increased secretion of mucus, and increases in the total number of cells and percentage of eosinophils in BALF (P<0.01). Compared with the OVA group, the JQ1+OVA group had significantly alleviated airway inflammatory response and significant reductions in the total number of cells and percentage of eosinophils in BALF (P<0.01). Compared with the control group, the OVA group had significant reductions in the mRNA and protein expression of E-cadherin and significant increases in the mRNA and protein expression of vimentin (P<0.01); compared with the OVA group, the JQ1+OVA group had significant increases in the mRNA and protein expression of E-cadherin and significant reductions in the mRNA and protein expression of vimentin (P<0.01); there were no significant differences in these indices between the JQ1+OVA group and the control group (P>0.05). CONCLUSIONS Mice with OVA-induced asthma have airway remodeling during EMT. BET bromodomain inhibitor JQ1 can reduce airway inflammation, inhibit EMT, and alleviate airway remodeling, which provides a new direction for the treatment of asthma.
Collapse
Affiliation(s)
- Xiao-Hua Zhu
- School of Medicine, Nanchang University, Nanchang 330006, China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhu W, Liu X, Wang Y, Tong Y, Hu Y. Discovery of a novel series of α-terpineol derivatives as promising anti-asthmatic agents: Their design, synthesis, and biological evaluation. Eur J Med Chem 2017; 143:419-425. [PMID: 29202404 DOI: 10.1016/j.ejmech.2017.07.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022]
Abstract
A series of novel α-terpineol derivatives were designed and synthesized through structural derivatization of the tertiary hydroxyl moiety or reduction of the double bond. Of the resulting compounds, eight compounds enhanced relaxation of airway smooth muscle (ASM) compared to the α-terpineol precursor, and four compounds (4a, 4d, 4e, and 4i)were superior or comparable to aminophylline at a concentration of 0.75 mmol/L. Assays for 3'-5'-Cyclic adenosine monophpsphate (cAMP) activation revealed that some representative α-terpineol derivatives in this series were capable of upregulating the level of cAMP in ASM cells. Further in vivo investigation using the asthmatic rat model, illustrated that treatment with the compounds 4a and 4e resulted in significantly lowered lung resistance (RL) and enhanced dynamic lung compliance (Cldyn), two important parameters for lung fuction. Moreover, treatment with 4e downregulated the levels of both IL-4 and IL-17. Due to its several favorable physiological functions, including ASM relaxation activity, cAMP activation capability, and in vivo anti-asthmatic efficacy, 4e is a promising remedy for bronchial asthma, meriting extensive development.
Collapse
Affiliation(s)
- Wanping Zhu
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China; ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xia Liu
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Yuji Wang
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Yeling Tong
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Prakash YS, Halayko AJ, Gosens R, Panettieri RA, Camoretti-Mercado B, Penn RB. An Official American Thoracic Society Research Statement: Current Challenges Facing Research and Therapeutic Advances in Airway Remodeling. Am J Respir Crit Care Med 2017; 195:e4-e19. [PMID: 28084822 DOI: 10.1164/rccm.201611-2248st] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Airway remodeling (AR) is a prominent feature of asthma and other obstructive lung diseases that is minimally affected by current treatments. The goals of this Official American Thoracic Society (ATS) Research Statement are to discuss the scientific, technological, economic, and regulatory issues that deter progress of AR research and development of therapeutics targeting AR and to propose approaches and solutions to these specific problems. This Statement is not intended to provide clinical practice recommendations on any disease in which AR is observed and/or plays a role. METHODS An international multidisciplinary group from within academia, industry, and the National Institutes of Health, with expertise in multimodal approaches to the study of airway structure and function, pulmonary research and clinical practice in obstructive lung disease, and drug discovery platforms was invited to participate in one internet-based and one face-to-face meeting to address the above-stated goals. Although the majority of the analysis related to AR was in asthma, AR in other diseases was also discussed and considered in the recommendations. A literature search of PubMed was performed to support conclusions. The search was not a systematic review of the evidence. RESULTS Multiple conceptual, logistical, economic, and regulatory deterrents were identified that limit the performance of AR research and impede accelerated, intensive development of AR-focused therapeutics. Complementary solutions that leverage expertise of academia and industry were proposed to address them. CONCLUSIONS To date, numerous factors related to the intrinsic difficulty in performing AR research, and economic forces that are disincentives for the pursuit of AR treatments, have thwarted the ability to understand AR pathology and mechanisms and to address it clinically. This ATS Research Statement identifies potential solutions for each of these factors and emphasizes the importance of educating the global research community as to the extent of the problem as a critical first step in developing effective strategies for: (1) increasing the extent and impact of AR research and (2) developing, testing, and ultimately improving drugs targeting AR.
Collapse
|
46
|
Pathogenesis of asthma: implications for precision medicine. Clin Sci (Lond) 2017; 131:1723-1735. [PMID: 28667070 DOI: 10.1042/cs20160253] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 01/03/2023]
Abstract
The pathogenesis of asthma is complex and multi-faceted. Asthma patients have a diverse range of underlying dominant disease processes and pathways despite apparent similarities in clinical expression. Here, we present the current understanding of asthma pathogenesis. We discuss airway inflammation (both T2HIGH and T2LOW), airway hyperresponsiveness (AHR) and airways remodelling as four key factors in asthma pathogenesis, and also outline other contributory factors such as genetics and co-morbidities. Response to current asthma therapies also varies greatly, which is probably related to the inter-patient differences in pathogenesis. Here, we also summarize how our developing understanding of detailed pathological processes potentially translates into the targeted treatment options we require for optimal asthma management in the future.
Collapse
|
47
|
Royce SG, Nold MF, Bui C, Donovan C, Lam M, Lamanna E, Rudloff I, Bourke JE, Nold-Petry CA. Airway Remodeling and Hyperreactivity in a Model of Bronchopulmonary Dysplasia and Their Modulation by IL-1 Receptor Antagonist. Am J Respir Cell Mol Biol 2017; 55:858-868. [PMID: 27482635 DOI: 10.1165/rcmb.2016-0031oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic disease of extreme prematurity that has serious long-term consequences including increased asthma risk. We earlier identified IL-1 receptor antagonist (IL-1Ra) as a potent inhibitor of murine BPD induced by combining perinatal inflammation (intraperitoneal LPS to pregnant dams) and exposure of pups to hyperoxia (fraction of inspired oxygen = 0.65). In this study, we determined whether airway remodeling and hyperresponsiveness similar to asthma are evident in this model, and whether IL-1Ra is protective. During 28-day exposure to air or hyperoxia, pups received vehicle or 10 mg/kg IL-1Ra by daily subcutaneous injection. Lungs were then prepared for histology and morphometry of alveoli and airways, or for real-time PCR, or inflated with agarose to prepare precision-cut lung slices to visualize ex vivo intrapulmonary airway contraction and relaxation by phase-contrast microscopy. In pups reared under normoxic conditions, IL-1Ra treatment did not affect alveolar or airway structure or airway responses. Pups reared in hyperoxia developed a severe BPD-like lung disease, with fewer, larger alveoli, increased subepithelial collagen, and increased expression of α-smooth muscle actin and cyclin D1. After hyperoxia, methacholine elicited contraction with similar potency but with an increased maximum reduction in lumen area (air, 44%; hyperoxia, 89%), whereas dilator responses to salbutamol were maintained. IL-1Ra treatment prevented hyperoxia-induced alveolar disruption and airway fibrosis but, surprisingly, not the increase in methacholine-induced airway contraction. The current study is the first to demonstrate ex vivo airway hyperreactivity caused by systemic maternal inflammation and postnatal hyperoxia, and it reveals further preclinical mechanistic insights into IL-1Ra as a treatment targeting key pathophysiological features of BPD.
Collapse
Affiliation(s)
- Simon G Royce
- 1 Biomedicine Discovery Institute, Department of Pharmacology
| | - Marcel F Nold
- 2 Ritchie Centre, Hudson Institute of Medical Research, and.,3 Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Christine Bui
- 2 Ritchie Centre, Hudson Institute of Medical Research, and.,3 Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Chantal Donovan
- 1 Biomedicine Discovery Institute, Department of Pharmacology
| | - Maggie Lam
- 1 Biomedicine Discovery Institute, Department of Pharmacology
| | - Emma Lamanna
- 1 Biomedicine Discovery Institute, Department of Pharmacology
| | - Ina Rudloff
- 2 Ritchie Centre, Hudson Institute of Medical Research, and.,3 Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Jane E Bourke
- 1 Biomedicine Discovery Institute, Department of Pharmacology
| | - Claudia A Nold-Petry
- 2 Ritchie Centre, Hudson Institute of Medical Research, and.,3 Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
48
|
Liu T, Liu Y, Miller M, Cao L, Zhao J, Wu J, Wang J, Liu L, Li S, Zou M, Xu J, Broide DH, Dong L. Autophagy plays a role in FSTL1-induced epithelial mesenchymal transition and airway remodeling in asthma. Am J Physiol Lung Cell Mol Physiol 2017; 313:L27-L40. [PMID: 28473327 DOI: 10.1152/ajplung.00510.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 02/08/2023] Open
Abstract
Asthma is a chronic disease related to airway hyperresponsiveness and airway remodeling. Airway remodeling is the important reason of refractory asthma and is associated with differentiation of airway epithelia into myofibroblasts via epithelial-mesenchymal transition (EMT) to increase the process of subepithelial fibrosis. There is growing evidence that autophagy modulates remodeling. However, the underlying molecular mechanisms of these effects are still unclear. In this study, we hypothesized that Follistatin-like 1 (FSTL1) promotes EMT and airway remodeling by intensifying autophagy. With the use of transmission electron microscopy (TEM), double-membrane autophagosomes were detected in the airways of patients and mice. More autophagosomes were in patients with asthma and OVA-challenged mice compared with healthy controls. The expression of FSTL1 and beclin-1 was upregulated in the airways of patients with asthma and OVA-challenged mice, accompanied by airway EMT and remodeling. In OVA-challenged Fstl1+/- mice, the degree of airway remodeling and autophagy was decreased compared with control mice. The effects of FSTL1 on autophagy and EMT were also tested in 16HBE cells in vitro. Additionally, inhibition of autophagy by using LY-294002 and siRNA-ATG5 reduced the FSTL1-induced EMT in 16HBE cells, as measured by E-cadherin, N-cadherin, and vimentin expression. In line herewith, administration of LY-294002 reduced the expression of autophagy, EMT, and airway remodeling markers in FSTL1-challenged WT mice. Taken together, our study suggests that FSTL1 may induce EMT and airway remodeling by activating autophagy. These findings may provide novel avenues for therapeutic research targeting the autophagy and FSTL1 pathway, which may be beneficial to patients with refractory asthma.
Collapse
Affiliation(s)
- Tian Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yahui Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Marina Miller
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Liuzhao Cao
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiping Zhao
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jinxiang Wu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Junfei Wang
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China.,Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Lin Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shuo Li
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Minfang Zou
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiawei Xu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - David H Broide
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Liang Dong
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China;
| |
Collapse
|
49
|
Berair R, Hartley R, Mistry V, Sheshadri A, Gupta S, Singapuri A, Gonem S, Marshall RP, Sousa AR, Shikotra A, Kay R, Wardlaw A, Bradding P, Siddiqui S, Castro M, Brightling CE. Associations in asthma between quantitative computed tomography and bronchial biopsy-derived airway remodelling. Eur Respir J 2017; 49:49/5/1601507. [PMID: 28461289 DOI: 10.1183/13993003.01507-2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Abstract
Airway remodelling in asthma remains poorly understood. This study aimed to determine the association of airway remodelling measured on bronchial biopsies with 1) lung function impairment and 2) thoracic quantitative computed tomography (QCT)-derived morphometry and densitometry measures of proximal airway remodelling and air trapping.Subjects were recruited from a single centre. Bronchial biopsy remodelling features that were the strongest predictors of lung function impairment and QCT-derived proximal airway morphometry and air trapping markers were determined by stepwise multiple regression. The best predictor of air trapping was validated in an independent replication group.Airway smooth muscle % was the only predictor of post-bronchodilator forced expiratory volume in 1 s (FEV1) % pred, while both airway smooth muscle % and vascularity were predictors of FEV1/forced vital capacity. Epithelial thickness and airway smooth muscle % were predictors of mean segmental bronchial luminal area (R2=0.12; p=0.02 and R2=0.12; p=0.015), whereas epithelial thickness was the only predictor of wall area % (R2=0.13; p=0.018). Vascularity was the only significant predictor of air trapping (R2=0.24; p=0.001), which was validated in the replication group (R2=0.19; p=0.031).In asthma, airway smooth muscle content and vascularity were both associated with airflow obstruction. QCT-derived proximal airway morphometry was most strongly associated with epithelial thickness and airway smooth muscle content, whereas air trapping was related to vascularity.
Collapse
Affiliation(s)
- Rachid Berair
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.,These authors contributed equally to this work
| | - Ruth Hartley
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.,These authors contributed equally to this work
| | - Vijay Mistry
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Ajay Sheshadri
- Dept of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Sumit Gupta
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Amisha Singapuri
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Sherif Gonem
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | | | - Aarti Shikotra
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Richard Kay
- Novartis Pharmaceuticals, Basel, Switzerland.,Medpace (UK) Ltd, Stirling, UK
| | - Andrew Wardlaw
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Peter Bradding
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Salman Siddiqui
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Mario Castro
- Dept of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher E Brightling
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
50
|
Hong GH, Kwon HS, Lee KY, Ha EH, Moon KA, Kim SW, Oh W, Kim TB, Moon HB, Cho YS. hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma. Exp Mol Med 2017; 49:e288. [PMID: 28127050 PMCID: PMC5291839 DOI: 10.1038/emm.2016.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Although chronic eosinophilic inflammation is a common feature in patients with asthma, some patients have neutrophil-dominant inflammation, which is known to be associated with severe asthma.Human mesenchymal stem cells (hMSCs) have shown promise in treating various refractory immunological diseases. Thus, hMSCs may represent an alternative therapeutic option for asthma patients with neutrophil-dominant inflammation, in whom current treatments are ineffective. BALB/c mice exposed to ovalbumin and polyinosinic:polycytidylic acid (Poly I:C) to induce neutrophilic airway inflammation were systemically treated with hMSCs to examine whether the hMSCs can modulate neutrophilic airway inflammation. In addition, cytokine production was evaluated in co-cultures of hMSCs with either anti-CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) obtained from asthmatic patients or cells of the human bronchial epithelial cell line BEAS-2B to assess the response to hMSC treatment. The total number of immune cells in bronchoalveolar lavage fluid (BALF) showed a dramatic decrease in hMSC-treated asthmatic mice, and, in particular, neutrophilic infiltration was significantly attenuated. This phenomenon was accompanied by reduced CXCL15 production in the BALF. BEAS-2B cells co-cultured with hMSCs showed reduced secretion of IL-8. Moreover, decreased secretion of IL-4, IL-13 and IFN-γ was observed when human PBMCs were cultured with hMSCs, whereas IL-10 production was greatly enhanced. Our data imply that hMSCs may have a role in reducing neutrophilic airway inflammation by downregulating neutrophil chemokine production and modulating T-cell responses.
Collapse
Affiliation(s)
- Gyong Hwa Hong
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung Young Lee
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Hee Ha
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keun-Ai Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, ASAN Medical Center, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co. Ltd, Gyeonggi-do, Korea
| | - Tae-Bum Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Bom Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|