1
|
Dwivedi AR, Jaiswal S, Kukkar D, Kumar R, Singh TG, Singh MP, Gaidhane AM, Lakhanpal S, Prasad KN, Kumar B. A decade of pyridine-containing heterocycles in US FDA approved drugs: a medicinal chemistry-based analysis. RSC Med Chem 2024:d4md00632a. [PMID: 39493227 PMCID: PMC11528346 DOI: 10.1039/d4md00632a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Heterocyclic scaffolds, particularly, pyridine-containing azaheterocycles, constitute a major part of the drugs approved in the past decade. In the present review, we explored the pyridine ring part of US FDA-approved small molecules (2014-2023). The analysis of the approved drugs bearing a pyridine ring revealed that a total of 54 drugs were approved. Among them, the significant number comprised the anticancer category (18 drugs, 33%), followed by drugs affecting the CNS system (11 drugs, 20%), which include drugs to treat migraines, Parkinsonism disorders, chemotherapeutic-induced nausea, insomnia, and ADHD or as CNS-acting analgesics or sedatives. Next, six drugs (11%) were also approved to treat rare conditions, followed by five drugs that affect the hematopoietic system. The analysis also revealed that drug approval was granted for antibiotics, antivirals, and antifungals, including drugs for the treatment of tropical and sub-tropical diseases. Primary drug targets explored were kinases, and the major metabolizing enzyme was CYP3A4. Further analysis of formulation types revealed that 50% of the approved drugs were tablets, followed by 17% capsules and 15% injections. Elemental analysis showed that most approved drugs contained sulfur, while fluorine was noted in 32 compounds. Therefore, the present review is a concerted effort to cover drugs bearing pyridine rings approved in the last decade and provide thorough discussion and commentary on their pharmacokinetics and pharmacodynamics aspects. Furthermore, in-depth structural and elemental analyses were explored, thus providing comprehensive guidance for medicinal chemists and scientists working in allied science domains.
Collapse
Affiliation(s)
| | - Shivani Jaiswal
- Institute of Pharmaceutical Research, GLA University Mathura, 17, Km Stone, National Highway #2, Delhi-Mathura Road India
| | - Deepak Kukkar
- University Centre for Research and Development, Chandigarh University Gharuan 140413 Punjab India
| | - Roshan Kumar
- Graphic Era (Deemed to be University) Clement Town Dehradun 248002 India
- Department Of Microbiology, Central University of Punjab VPO-Ghudda Punjab-151401 India
| | - Thakur Gurjeet Singh
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Mahendra Pratap Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education Wardha India
| | - Sorabh Lakhanpal
- Division of Research and Development, Lovely Professional University Phagwara-144411 India
| | | | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, Chauras Campus, HNB Garhwal University (A Central University) Srinagar Uttarakhand 246174 India
| |
Collapse
|
2
|
Liu HN, Zhu Y, Chi Y, Sun FF, Shan LS, Wang YT, Dai B. Synthetic approaches and application of representative clinically approved fluorine-enriched anti-cancer medications. Eur J Med Chem 2024; 276:116722. [PMID: 39079309 DOI: 10.1016/j.ejmech.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
Fluorine possesses distinctive chemical characteristics, such as its strong electron-withdrawing ability and small atomic size, which render it an invaluable asset in the design and optimization of pharmaceuticals. The utilization of fluorine-enriched medications for combating cancer has emerged as a prominent approach in medicinal chemistry and drug discovery, offering improved clinical outcomes and enhanced pharmacological properties. This comprehensive review explores the synthetic approaches and clinical applications of approved 22 representative fluorinated anti-cancer drugs from 2019 to present, shedding light on their historical development, brand names, drug target activity, mechanism of action, preclinical pharmacodynamics, clinical efficacy, and toxicity. Additionally, the review provides an extensive analysis of the representative synthetic techniques employed. Overall, this review emphasizes the significance of incorporating fluorine chemistry into anti-cancer drug research while highlighting promising future prospects for exploring compounds enriched with fluorine in the battle against cancer.
Collapse
Affiliation(s)
- He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Chi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei-Fei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li-Shen Shan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ya-Tao Wang
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Malik S, Sureka N, Ahuja S, Aden D, Zaheer S, Zaheer S. Tumor-associated macrophages: A sentinel of innate immune system in tumor microenvironment gone haywire. Cell Biol Int 2024; 48:1406-1449. [PMID: 39054741 DOI: 10.1002/cbin.12226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The tumor microenvironment (TME) is a critical determinant in the initiation, progression, and treatment outcomes of various cancers. Comprising of cancer-associated fibroblasts (CAF), immune cells, blood vessels, and signaling molecules, the TME is often likened to the soil supporting the seed (tumor). Among its constituents, tumor-associated macrophages (TAMs) play a pivotal role, exhibiting a dual nature as both promoters and inhibitors of tumor growth. This review explores the intricate relationship between TAMs and the TME, emphasizing their diverse functions, from phagocytosis and tissue repair to modulating immune responses. The plasticity of TAMs is highlighted, showcasing their ability to adopt either protumorigenic or anti-tumorigenic phenotypes based on environmental cues. In the context of cancer, TAMs' pro-tumorigenic activities include promoting angiogenesis, inhibiting immune responses, and fostering metastasis. The manuscript delves into therapeutic strategies targeting TAMs, emphasizing the challenges faced in depleting or inhibiting TAMs due to their multifaceted roles. The focus shifts towards reprogramming TAMs to an anti-tumorigenic M1-like phenotype, exploring interventions such as interferons, immune checkpoint inhibitors, and small molecule modulators. Noteworthy advancements include the use of CSF1R inhibitors, CD40 agonists, and CD47 blockade, demonstrating promising results in preclinical and clinical settings. A significant section is dedicated to Chimeric Antigen Receptor (CAR) technology in macrophages (CAR-M cells). While CAR-T cells have shown success in hematological malignancies, their efficacy in solid tumors has been limited. CAR-M cells, engineered to infiltrate solid tumors, are presented as a potential breakthrough, with a focus on their development, challenges, and promising outcomes. The manuscript concludes with the exploration of third-generation CAR-M technology, offering insight into in-vivo reprogramming and nonviral vector approaches. In conclusion, understanding the complex and dynamic role of TAMs in cancer is crucial for developing effective therapeutic strategies. While early-stage TAM-targeted therapies show promise, further extensive research and larger clinical trials are warranted to optimize their targeting and improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaivy Malik
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| |
Collapse
|
4
|
Kirkman T, Dos Santos Silva C, Tosin M, Bertacine Dias MV. How to Find a Fragment: Methods for Screening and Validation in Fragment-Based Drug Discovery. ChemMedChem 2024:e202400342. [PMID: 39198213 DOI: 10.1002/cmdc.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
Fragment-based drug discovery (FBDD) is a crucial strategy for developing new drugs that have been applied to diverse targets, from neglected infectious diseases to cancer. With at least seven drugs already launched to the market, this approach has gained interest in both academics and industry in the last 20 years. FBDD relies on screening small libraries with about 1000-2000 compounds of low molecular weight (about 300 Da) using several biophysical methods. Because of the reduced size of the compounds, the chemical space and diversity can be better explored than large libraries used in high throughput screenings. This review summarises the most common biophysical techniques used in fragment screening and orthogonal validation. We also explore the advantages and drawbacks of the different biophysical techniques and examples of applications and strategies.
Collapse
Affiliation(s)
- Tim Kirkman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Catharina Dos Santos Silva
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP, Brazil
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Lorestani P, Dashti M, Nejati N, Habibi MA, Askari M, Robat-Jazi B, Ahmadpour S, Tavakolpour S. The complex role of macrophages in pancreatic cancer tumor microenvironment: a review on cancer progression and potential therapeutic targets. Discov Oncol 2024; 15:369. [PMID: 39186144 PMCID: PMC11347554 DOI: 10.1007/s12672-024-01256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers worldwide with low survival rates and poor outcomes. The treatment landscape for PC is fraught with obstacles, including drug resistance, lack of effective targeted therapies and the immunosuppressive tumor microenvironment (TME). The resistance of PC to existing immunotherapies highlights the need for innovative approaches, with the TME emerging as a promising therapeutic target. The recent advancements in understanding the role of macrophages, this context highlight their significant impact on tumor development and progression. There are two important types of macrophages: M1 and M2, which play critical roles in the TME. Therapeutics strategies including, depletion of tumor-associated macrophages (TAMs), reprogramming TAMs to promote anti-tumor activity, and targeting macrophage recruitment can lead to promising outcomes. Targeting macrophage-related pathways may offer novel strategies for modulating immune responses, inhibiting angiogenesis, and overcoming resistance to chemotherapy in PC treatment.
Collapse
Affiliation(s)
- Parsa Lorestani
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Dashti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Askari
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behruz Robat-Jazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Soheil Tavakolpour
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Spokeviciute B, Kholia S, Brizzi MF. Chimeric antigen receptor (CAR) T-cell therapy: Harnessing extracellular vesicles for enhanced efficacy. Pharmacol Res 2024; 208:107352. [PMID: 39147005 DOI: 10.1016/j.phrs.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
A cutting-edge approach in cell-based immunotherapy for combating resistant cancer involves genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes. In recent years, these therapies have demonstrated effectiveness, leading to their commercialization and clinical application against certain types of cancer. However, CAR-T therapy faces limitations, such as the immunosuppressive tumour microenvironment (TME) that can render CAR-T cells ineffective, and the adverse side effects of the therapy, including cytokine release syndrome (CRS). Extracellular vesicles (EVs) are a diverse group of membrane-bound particles released into the extracellular environment by virtually all cell types. They are essential for intercellular communication, transferring cargoes such as proteins, lipids, various types of RNAs, and DNA fragments to target cells, traversing biological barriers both locally and systemically. EVs play roles in numerous physiological processes, with those from both immune and non-immune cells capable of modulating the immune system through activation or suppression. Leveraging this capability of EVs to enhance CAR-T cell therapy could represent a significant advancement in overcoming its current limitations. This review examines the current landscape of CAR-T cell immunotherapy and explores the potential role of EVs in augmenting its therapeutic efficacy.
Collapse
Affiliation(s)
| | - Sharad Kholia
- Department of Medical Sciences, University of Torino, Turin, Italy
| | | |
Collapse
|
7
|
Kulkarni AM, Gayam PKR, Aranjani JM. Advances in Understanding and Management of Erdheim-Chester Disease. Life Sci 2024; 348:122692. [PMID: 38710283 DOI: 10.1016/j.lfs.2024.122692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Erdheim Chester Disease (ECD) is a rare histiocytic disorder marked by infiltration of organs with CD68+ histiocytes. ECD stems from mutations of BRAF and MAP2K1 in hematopoietic stem and progenitor cells (HSPCs), which further differentiate into monocytes and histiocytes. Histopathology reveals lipid-containing histiocytes, which test positive for CD68 and CD133 in immunohistochemistry. Signs and symptoms vary and depend on the organ/s of manifestation. Definitive radiological results associated with ECD include hairy kidney, coated aorta, and cardiac pseudotumor. Treatment options primarily include anti-cytokine therapy and inhibitors of BRAF and MEK signaling.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
8
|
Qin X, Wang Y, Ye Q, Hakenjos JM, Wang J, Teng M, Guo L, Tan Z, Young DW, MacKenzie KR, Li F. CYP3A Mediates an Unusual C(sp 2)-C(sp 3) Bond Cleavage via Ipso-Addition of Oxygen in Drug Metabolism. Angew Chem Int Ed Engl 2024; 63:e202405197. [PMID: 38574245 PMCID: PMC11126355 DOI: 10.1002/anie.202405197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Mammalian cytochrome P450 drug-metabolizing enzymes rarely cleave carbon-carbon (C-C) bonds and the mechanisms of such cleavages are largely unknown. We identified two unusual cleavages of non-polar, unstrained C(sp2)-C(sp3) bonds in the FDA-approved tyrosine kinase inhibitor pexidartinib that are mediated by CYP3A4/5, the major human phase I drug metabolizing enzymes. Using a synthetic ketone, we rule out the Baeyer-Villiger oxidation mechanism that is commonly invoked to address P450-mediated C-C bond cleavages. Our studies in 18O2 and H2 18O enriched systems reveal two unusual distinct mechanisms of C-C bond cleavage: one bond is cleaved by CYP3A-mediated ipso-addition of oxygen to a C(sp2) site of N-protected pyridin-2-amines, and the other occurs by a pseudo-retro-aldol reaction after hydroxylation of a C(sp3) site. This is the first report of CYP3A-mediated C-C bond cleavage in drug metabolism via ipso-addition of oxygen mediated mechanism. CYP3A-mediated ipso-addition is also implicated in the regioselective C-C cleavages of several pexidartinib analogs. The regiospecificity of CYP3A-catalyzed oxygen ipso-addition under environmentally friendly conditions may be attractive and inspire biomimetic or P450-engineering methods to address the challenging task of C-C bond cleavages.
Collapse
Affiliation(s)
- Xuan Qin
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Yong Wang
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Qiuji Ye
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - John M Hakenjos
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Lei Guo
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, Arkansas, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Damian W Young
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| |
Collapse
|
9
|
Alreemi RM. Decoding the anti-cancer potential of Pexidartinib (PLX3397), a Fms-like tyrosine kinase 3 inhibitor, using next-generation knowledge discovery methods. Bioinformation 2024; 20:460-472. [PMID: 39132250 PMCID: PMC11309106 DOI: 10.6026/973206300200460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a complex hematologic malignancy characterized by the rapid proliferation of abnormal myeloid precursor cells. The FMS-like tyrosine kinase 3 (FLT3), a receptor tyrosine kinase, plays a pivotal role in regulating cell survival, proliferation, and differentiation within the hematopoietic system. Mutations in FLT3, particularly internal tandem duplications (ITDs) and point mutations within the tyrosine kinase domain (TKD), are prevalent in AML and are associated with poor prognosis and increased risk of relapse. The development of targeted therapies has revolutionized the landscape of cancer treatment by focusing on the inhibition of kinase signalling. Small-molecule inhibitors designed to selectively target receptor tyrosine kinases, such as PLX3397, have shown promising results in preclinical studies and early phase clinical trials. PLX3397 exerts its inhibitory effects by targeting CSF1R and KIT, leading to the disruption of receptor tyrosine kinase signalling cascades, suppression of leukemic cell growth, and induction of apoptosis. This study emphasizes the significance of FLT3 as a receptor tyrosine kinase as a therapeutic target for PLX3397. After evaluating the usefulness of PLX3397 as an enzyme inhibitor using ADMET prediction, PLX3397 was prepared for molecular docking in the FLT3 crystal structure (PDB: 4XUF). A molecular dynamics simulation was performed on PLX3397 to evaluate its binding affinity and protein stability in a simulated physiological environment. In conclusion, targeting FLT3 as a receptor tyrosine kinase with PLX3397 represents a promising therapeutic strategy for improving outcomes in patients with FLT3-mutated AML. Further clinical investigations are warranted to validate the efficacy and safety of PLX3397 and to optimize treatment strategies for AML patients based on the FLT3 mutational status.
Collapse
Affiliation(s)
- Roaa Mahdi Alreemi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Nishio J, Nakayama S, Koga K, Aoki M. Keratin-Positive Giant Cell-Rich Tumor: A Review and Update. Cancers (Basel) 2024; 16:1940. [PMID: 38792018 PMCID: PMC11120402 DOI: 10.3390/cancers16101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Keratin-positive giant cell-rich tumor (KPGCT) is an extremely rare and recently described mesenchymal neoplasm that occurs in both soft tissue and bone, frequently found in young women. It has locally recurrent potential if incompletely excised but low risk for metastasis. KPGCT is histologically similar to conventional giant cell tumors of soft tissue but shows the presence of keratin-positive mononuclear cells. Interestingly, KPGCT also shares some morphological features with xanthogranulomatous epithelial tumors. These two tumors have recently been shown to harbor an HMGA2-NCOR2 fusion, arguing in favor of a single entity. Surgery is the treatment of choice for localized KPGCT. Therapeutic options for advanced or metastatic disease are unknown. This review provides an overview of the current knowledge on the clinical presentation, pathogenesis, histopathology, and treatment of KPGCT. In addition, we will discuss the differential diagnosis of this emerging entity.
Collapse
Affiliation(s)
- Jun Nishio
- Section of Orthopaedic Surgery, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Shizuhide Nakayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (K.K.); (M.A.)
| | - Mikiko Aoki
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (K.K.); (M.A.)
| |
Collapse
|
11
|
Li J, Gong C, Zhou H, Liu J, Xia X, Ha W, Jiang Y, Liu Q, Xiong H. Kinase Inhibitors and Kinase-Targeted Cancer Therapies: Recent Advances and Future Perspectives. Int J Mol Sci 2024; 25:5489. [PMID: 38791529 PMCID: PMC11122109 DOI: 10.3390/ijms25105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Over 120 small-molecule kinase inhibitors (SMKIs) have been approved worldwide for treating various diseases, with nearly 70 FDA approvals specifically for cancer treatment, focusing on targets like the epidermal growth factor receptor (EGFR) family. Kinase-targeted strategies encompass monoclonal antibodies and their derivatives, such as nanobodies and peptides, along with innovative approaches like the use of kinase degraders and protein kinase interaction inhibitors, which have recently demonstrated clinical progress and potential in overcoming resistance. Nevertheless, kinase-targeted strategies encounter significant hurdles, including drug resistance, which greatly impacts the clinical benefits for cancer patients, as well as concerning toxicity when combined with immunotherapy, which restricts the full utilization of current treatment modalities. Despite these challenges, the development of kinase inhibitors remains highly promising. The extensively studied tyrosine kinase family has 70% of its targets in various stages of development, while 30% of the kinase family remains inadequately explored. Computational technologies play a vital role in accelerating the development of novel kinase inhibitors and repurposing existing drugs. Recent FDA-approved SMKIs underscore the importance of blood-brain barrier permeability for long-term patient benefits. This review provides a comprehensive summary of recent FDA-approved SMKIs based on their mechanisms of action and targets. We summarize the latest developments in potential new targets and explore emerging kinase inhibition strategies from a clinical perspective. Lastly, we outline current obstacles and future prospects in kinase inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.)
| |
Collapse
|
12
|
Strachowska M, Robaszkiewicz A. Characteristics of anticancer activity of CBP/p300 inhibitors - Features of their classes, intracellular targets and future perspectives of their application in cancer treatment. Pharmacol Ther 2024; 257:108636. [PMID: 38521246 DOI: 10.1016/j.pharmthera.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.
Collapse
Affiliation(s)
- Magdalena Strachowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland; University of Lodz, Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute of Fundamental and Basic Research, 600 5(th) Street South, Saint Petersburg FL33701, United States of America.
| |
Collapse
|
13
|
Wang M, Caryotakis SE, Smith GG, Nguyen AV, Pleasure DE, Soulika AM. CSF1R antagonism results in increased supraspinal infiltration in EAE. J Neuroinflammation 2024; 21:103. [PMID: 38643194 PMCID: PMC11031888 DOI: 10.1186/s12974-024-03063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Colony stimulating factor 1 receptor (CSF1R) signaling is crucial for the maintenance and function of various myeloid subsets. CSF1R antagonism was previously shown to mitigate clinical severity in experimental autoimmune encephalomyelitis (EAE). The associated mechanisms are still not well delineated. METHODS To assess the effect of CSF1R signaling, we employed the CSF1R antagonist PLX5622 formulated in chow (PLX5622 diet, PD) and its control chow (control diet, CD). We examined the effect of PD in steady state and EAE by analyzing cells isolated from peripheral immune organs and from the CNS via flow cytometry. We determined CNS infiltration sites and assessed the extent of demyelination using immunohistochemistry of cerebella and spinal cords. Transcripts of genes associated with neuroinflammation were also analyzed in these tissues. RESULTS In addition to microglial depletion, PD treatment reduced dendritic cells and macrophages in peripheral immune organs, both during steady state and during EAE. Furthermore, CSF1R antagonism modulated numbers and relative frequencies of T effector cells both in the periphery and in the CNS during the early stages of the disease. Classical neurological symptoms were milder in PD compared to CD mice. Interestingly, a subset of PD mice developed atypical EAE symptoms. Unlike previous studies, we observed that the CNS of PD mice was infiltrated by increased numbers of peripheral immune cells compared to that of CD mice. Immunohistochemical analysis showed that CNS infiltrates in PD mice were mainly localized in the cerebellum while in CD mice infiltrates were primarily localized in the spinal cords during the onset of neurological deficits. Accordingly, during the same timepoint, cerebella of PD but not of CD mice had extensive demyelinating lesions, while spinal cords of CD but not of PD mice were heavily demyelinated. CONCLUSIONS Our findings suggest that CSF1R activity modulates the cellular composition of immune cells both in the periphery and within the CNS, and affects lesion localization during the early EAE stages.
Collapse
Affiliation(s)
- Marilyn Wang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Sofia E Caryotakis
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- University of California, San Francisco, San Francisco, CA, USA
| | - Glendalyn G Smith
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
| | - Alan V Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Sutro Biosciences, South San Francisco, CA, USA
| | - David E Pleasure
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA.
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA.
| |
Collapse
|
14
|
Pallarés-Moratalla C, Bergers G. The ins and outs of microglial cells in brain health and disease. Front Immunol 2024; 15:1305087. [PMID: 38665919 PMCID: PMC11043497 DOI: 10.3389/fimmu.2024.1305087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Microglia are the brain's resident macrophages that play pivotal roles in immune surveillance and maintaining homeostasis of the Central Nervous System (CNS). Microglia are functionally implicated in various cerebrovascular diseases, including stroke, aneurysm, and tumorigenesis as they regulate neuroinflammatory responses and tissue repair processes. Here, we review the manifold functions of microglia in the brain under physiological and pathological conditions, primarily focusing on the implication of microglia in glioma propagation and progression. We further review the current status of therapies targeting microglial cells, including their re-education, depletion, and re-population approaches as therapeutic options to improve patient outcomes for various neurological and neuroinflammatory disorders, including cancer.
Collapse
|
15
|
Lin C, Chu Y, Zheng Y, Gu S, Hu Y, He J, Shen Z. Macrophages: plastic participants in the diagnosis and treatment of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1337129. [PMID: 38650924 PMCID: PMC11033442 DOI: 10.3389/fimmu.2024.1337129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) rank among the most prevalent types of head and neck cancer globally. Unfortunately, a significant number of patients receive their diagnoses at advanced stages, limiting the effectiveness of available treatments. The tumor microenvironment (TME) is a pivotal player in HNSCC development, with macrophages holding a central role. Macrophages demonstrate diverse functions within the TME, both inhibiting and facilitating cancer progression. M1 macrophages are characterized by their phagocytic and immune activities, while M2 macrophages tend to promote inflammation and immunosuppression. Striking a balance between these different polarization states is essential for maintaining overall health, yet in the context of tumors, M2 macrophages typically prevail. Recent efforts have been directed at controlling the polarization states of macrophages, paving the way for novel approaches to cancer treatment. Various drugs and immunotherapies, including innovative treatments based on macrophages like engineering macrophages and CAR-M cell therapy, have been developed. This article provides an overview of the roles played by macrophages in HNSCC, explores potential therapeutic targets and strategies, and presents fresh perspectives on the future of HNSCC treatment.
Collapse
Affiliation(s)
- Chen Lin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yidian Chu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Ye Zheng
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yanghao Hu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jiali He
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhisen Shen
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Nakayama S, Lukacova V, Tanabe S, Watanabe A, Mullin J, Suarez-Sharp S, Shimizu T. Physiologically Based Pharmacokinetic Absorption Model for Pexidartinib to Evaluate the Impact of Meal Contents and Intake Timing on Drug Exposure. Clin Pharmacol Drug Dev 2024; 13:440-448. [PMID: 38396317 DOI: 10.1002/cpdd.1385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Pexidartinib is a systemic treatment for patients with tenosynovial giant cell tumor not amenable to surgery. Oral absorption of pexidartinib is affected by food; administration with a high-fat meal (HFM) or low-fat meal (LFM) increases absorption by approximately 100% and approximately 60%, respectively, compared with the fasted state. Pexidartinib is currently dosed 250 mg orally twice daily with an LFM (approximately 11-14 g of total fat). We developed a physiologically based pharmacokinetic model to determine the impact on drug exposure of dose timing with respect to meals, meal type, and caloric content. A 15%-16% increase in plasma exposure was predicted when consuming an HFM 1 hour after dosing with an LFM, but almost no effect on pharmacokinetics was predicted when an HFM was consumed 3 hours or more before or after pexidartinib dosing with an LFM. Exposure was not significantly affected when pexidartinib was taken with a 500-kcal LFM over the range of fat (approximately 11-14 g of total fat; 20%-25% calories from fat) for an LFM. These findings on timing of pexidartinib dose with respect to meals should be considered by patients and physicians to reduce the potential for side effects.
Collapse
Affiliation(s)
- Shintaro Nakayama
- Quantitative Clinical Pharmacology Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | | | - Shuichi Tanabe
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Akiko Watanabe
- Quantitative Clinical Pharmacology Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Jim Mullin
- Simulations Plus, Inc., Lancaster, CA, USA
| | | | - Takako Shimizu
- Quantitative Clinical Pharmacology Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| |
Collapse
|
17
|
Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, Yang C, Zheng Y, Li X, Lu Y, To KKW, Xia C, Zhang J, Shi Z, Hu Z, Huang M, Fu L. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B 2024; 14:905-952. [PMID: 38486980 PMCID: PMC10935485 DOI: 10.1016/j.apsb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaopeng Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
18
|
Maddeboina K, Yada B, Kumari S, McHale C, Pal D, Durden DL. Recent advances in multitarget-directed ligands via in silico drug discovery. Drug Discov Today 2024; 29:103904. [PMID: 38280625 DOI: 10.1016/j.drudis.2024.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
To combat multifactorial refractory diseases, such as cancer, cardiovascular, and neurodegenerative diseases, multitarget drugs have become an emerging area of research aimed at 'synthetic lethality' (SL) relationships associated with drug-resistance mechanisms. In this review, we discuss the in silico design of dual and triple-targeted ligands, strategies by which specific 'warhead' groups are incorporated into a parent compound or scaffold with primary inhibitory activity against one target to develop one small molecule that inhibits two or three molecular targets in an effort to increase potency against multifactorial diseases. We also discuss the analytical exploration of structure-activity relationships (SARs), physicochemical properties, polypharmacology, scaffold feature extraction of US Food and Drug Administration (FDA)-approved multikinase inhibitors (MKIs), and updates regarding the clinical status of dual-targeted chemotypes.
Collapse
Affiliation(s)
- Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA; Department of Biochemistry, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| | - Bharath Yada
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Shikha Kumari
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Cody McHale
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Dhananjaya Pal
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Donald L Durden
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA; Department of Biochemistry, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
19
|
Adhikari A, Chauhan K, Adhikari M, Tiwari AK. Colony Stimulating Factor-1 Receptor: An emerging target for neuroinflammation PET imaging and AD therapy. Bioorg Med Chem 2024; 100:117628. [PMID: 38330850 DOI: 10.1016/j.bmc.2024.117628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Although neuroinflammation is a significant pathogenic feature of many neurologic disorders, its precise function in-vivo is still not completely known. PET imaging enables the longitudinal examination, quantification, and tracking of different neuroinflammation biomarkers in living subjects. Particularly, PET imaging of Microglia, specialised dynamic immune cells crucial for maintaining brain homeostasis in central nervous system (CNS), is crucial for staging the neuroinflammation. Colony Stimulating Factor- 1 Receptor (CSF-1R) PET imaging is a novel method for the quantification of neuroinflammation. CSF-1R is mainly expressed on microglia, and neurodegenerative disorders greatly up-regulate its expression. The present review primarily focuses on the development, pros and cons of all the CSF-1R PET tracers reported for neuroinflammation imaging. Apart from neuroinflammation imaging, CSF-1R inhibitors are also reported for the therapy of neurodegenerative diseases such as Alzheimer's disease (AD). AD is a prevalent, advancing, and fatal neurodegenerative condition that have the characteristic feature of persistent neuroinflammation and primarily affects the elderly. The aetiology of AD is profoundly influenced by amyloid-beta (Aβ) plaques, intracellular neurofibrillary tangles, and microglial dysfunction. Increasing evidence suggests that CSF-1R inhibitors (CSF-1Ri) can be helpful in preclinical models of neurodegenerative diseases. This review article also summarises the most recent developments of CSF-1Ri-based therapy for AD.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Graphic Era Hill University, Clement Town, Dehradun, Uttarakhand, India.
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California 22860, Mexico
| | - Manish Adhikari
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb, Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
20
|
Kim AB, Xiao Q, Yan P, Pan Q, Pandey G, Grathwohl S, Gonzales E, Xu I, Cho Y, Haecker H, Epelman S, Diwan A, Lee JM, DeSelm CJ. Chimeric antigen receptor macrophages target and resorb amyloid plaques. JCI Insight 2024; 9:e175015. [PMID: 38516884 PMCID: PMC11063938 DOI: 10.1172/jci.insight.175015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Substantial evidence suggests a role for immunotherapy in treating Alzheimer's disease (AD). While the precise pathophysiology of AD is incompletely understood, clinical trials of antibodies targeting aggregated forms of β amyloid (Aβ) have shown that reducing amyloid plaques can mitigate cognitive decline in patients with early-stage AD. Here, we describe what we believe to be a novel approach to target and degrade amyloid plaques by genetically engineering macrophages to express an Aβ-targeting chimeric antigen receptor (CAR-Ms). When injected intrahippocampally, first-generation CAR-Ms have limited persistence and fail to significantly reduce plaque load, which led us to engineer next-generation CAR-Ms that secrete M-CSF and self-maintain without exogenous cytokines. Cytokine secreting "reinforced CAR-Ms" have greater survival in the brain niche and significantly reduce plaque load locally in vivo. These findings support CAR-Ms as a platform to rationally target, resorb, and degrade pathogenic material that accumulates with age, as exemplified by targeting Aβ in AD.
Collapse
Affiliation(s)
- Alexander B. Kim
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| | - Qingli Xiao
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ping Yan
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qiuyun Pan
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| | - Gaurav Pandey
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| | - Susie Grathwohl
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ernesto Gonzales
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Isabella Xu
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yoonho Cho
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hans Haecker
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Slava Epelman
- Department of Medicine, Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Abhinav Diwan
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- Departments of Medicine, Cell Biology and Physiology, Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
- Medicine Service, St. Louis VA Medical Center, St. Louis, Missouri, USA
| | - Jin-Moo Lee
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carl J. DeSelm
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| |
Collapse
|
21
|
Spierenburg G, Staals EL, Palmerini E, Randall RL, Thorpe SW, Wunder JS, Ferguson PC, Verspoor FGM, Houdek MT, Bernthal NM, Schreuder BHWB, Gelderblom H, van de Sande MAJ, van der Heijden L. Active surveillance of diffuse-type tenosynovial giant cell tumors: A retrospective, multicenter cohort study. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:107953. [PMID: 38215550 DOI: 10.1016/j.ejso.2024.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Diffuse-type tenosynovial giant cell tumor (D-TGCT) is a mono-articular, soft-tissue tumor. Although it can behave locally aggressively, D-TGCT is a non-malignant disease. This is the first study describing the natural course of D-TGCT and evaluating active surveillance as possible treatment strategy. METHODS This retrospective, multicenter study included therapy naïve patients with D-TGCT from eight sarcoma centers worldwide between 2000 and 2019. Patients initially managed by active surveillance following their first consultation were eligible. Data regarding the radiological and clinical course and subsequent treatments were collected. RESULTS Sixty-one patients with primary D-TGCT were initially managed by active surveillance. Fifty-nine patients had an MRI performed around first consultation: D-TGCT was located intra-articular in most patients (n = 56; 95 %) and extra-articular in 14 cases (24 %). At baseline, osteoarthritis was observed in 13 patients (22 %) on MRI. Most of the patients' reported symptoms: pain (n = 43; 70 %), swelling (n = 33; 54 %). Eight patients (13 %) were asymptomatic. Follow-up data were available for 58 patients; the median follow-up was 28 months. Twenty-one patients (36 %) had radiological progression after 21 months (median). Eight of 45 patients (18 %) without osteoarthritis at baseline developed osteoarthritis during follow-up. Thirty-seven patients (64 %) did not clinically deteriorate during follow-up. Finally, eighteen patients (31 %) required a subsequent treatment. CONCLUSION Active surveillance can be considered adequate for selected therapy naïve D-TGCT patients. Although follow-up data was limited, almost two-thirds of the patients remained progression-free, and 69 % did not need treatment during the follow-up period. However, one-fifth of patients developed secondary osteoarthritis. Prospective studies on active surveillance are warranted.
Collapse
Affiliation(s)
- Geert Spierenburg
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden, the Netherlands.
| | - Eric L Staals
- Third Orthopaedic Clinic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Emanuela Palmerini
- Osteooncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Robert Lor Randall
- Department of Orthopaedic Surgery, University of California-Davis, Sacramento, CA, USA
| | - Steven W Thorpe
- Department of Orthopaedic Surgery, University of California-Davis, Sacramento, CA, USA
| | - Jay S Wunder
- Division of Orthopaedic Surgery, University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Peter C Ferguson
- Division of Orthopaedic Surgery, University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Floortje G M Verspoor
- Department of Orthopedic Surgery, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Matthew T Houdek
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA, USA
| | | | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Lizz van der Heijden
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
22
|
Hu Y, Nie W, Lyu L, Zhang X, Wang W, Zhang Y, He S, Guo A, Liu F, Wang B, Qian Z, Gao X. Tumor-Microenvironment-Activatable Nanoparticle Mediating Immunogene Therapy and M2 Macrophage-Targeted Inhibitor for Synergistic Cancer Immunotherapy. ACS NANO 2024; 18:3295-3312. [PMID: 38252684 DOI: 10.1021/acsnano.3c10037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Immunotherapy has achieved prominent clinical efficacy in combating cancer and has recently become a mainstream treatment strategy. However, achieving broad efficacy with a single modality is challenging, and the heterogeneity of the tumor microenvironment (TME) restricts the accuracy and effectiveness of immunotherapy strategies for tumors. Herein, a TME-responsive targeted nanoparticle to enhance antitumor immunity and reverse immune escape by codelivering interleukin-12 (IL-12) expressing gene and colony-stimulating factor-1 receptor (CSF-1R) inhibitor PLX3397 (PLX) is presented. The introduction of disulfide bonds and cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGD) peptides conferred reduction reactivity and tumor targeting to the nanoparticles, respectively. It is hypothesized that activating host immunity by the local expression of IL-12, while modulating the tumor-associated macrophages (TAM) function through blocking CSF-1/CSF-1R signaling, could constitute a feasible approach for cancer immunotherapy. The fabricated functional nanoparticle successfully ameliorated the TME by stimulating the proliferation and activation of T lymphocytes, promoting the repolarization of TAMs, reducing myeloid-derived suppressor cells (MDSCs), and promoting the maturation of dendritic cells (DC) as well as the secretion of antitumor cytokines, which efficiently suppressed tumor growth and metastasis. Finally, substantial changes in the TME were deciphered by single-cell analysis including infiltration of different cells, transcriptional states, secretory signaling and cell-cell communications. These findings provide a promising combinatorial immunotherapy strategy through immunomodulatory nanoparticles.
Collapse
Affiliation(s)
- Yuzhu Hu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
- Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Wen Nie
- Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Liang Lyu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Xifeng Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Wanyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Yunchu Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Anjie Guo
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Fei Liu
- Department of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
23
|
Voissière A, Gomez-Roca C, Chabaud S, Rodriguez C, Nkodia A, Berthet J, Montane L, Bidaux AS, Treilleux I, Eberst L, Terret C, Korakis I, Garin G, Pérol D, Delord JP, Caux C, Dubois B, Ménétrier-Caux C, Bendriss-Vermare N, Cassier PA. The CSF-1R inhibitor pexidartinib affects FLT3-dependent DC differentiation and may antagonize durvalumab effect in patients with advanced cancers. Sci Transl Med 2024; 16:eadd1834. [PMID: 38266104 DOI: 10.1126/scitranslmed.add1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Tumor-associated macrophages (TAMs) are a critical determinant of resistance to PD-1/PD-L1 blockade. This phase 1 study (MEDIPLEX, NCT02777710) investigated the safety and efficacy of pexidartinib, a CSF-1R-directed tyrosine kinase inhibitor (TKI), and durvalumab (anti-PD-L1) in patients with advanced colorectal and pancreatic carcinoma with the aim to enhance responses to PD-L1 blockade by eliminating CSF-1-dependent suppressive TAM. Forty-seven patients were enrolled. No unexpected toxicities were observed, one (2%) high microsatellite instability CRC patient had a partial response, and seven (15%) patients experienced stable disease as their best response. Increase of CSF-1 concentrations and decrease of CD14lowCD16high monocytes in peripheral blood mononuclear cells (PBMCs) confirmed CSF-1R engagement. Treatment decreased blood dendritic cell (DC) subsets and impaired IFN-λ/IL-29 production by type 1 conventional DCs in ex vivo TLR3-stimulated PBMCs. Pexidartinib also targets c-KIT and FLT3, both key growth factor receptors of DC development and maturation. In patients, FLT3-L concentrations increased with pexidartinib treatment, and AKT phosphorylation induced by FLT3-L ex vivo stimulation was abrogated by pexidartinib in human blood DC subsets. In addition, pexidartinib impaired the FLT3-L- but not GM-CSF-dependent generation of DC subsets from murine bone marrow (BM) progenitors in vitro and decreased DC frequency in BM and tumor-draining lymph node in vivo. Our results demonstrate that pexidartinib, through the inhibition of FLT3 signaling, has a deleterious effect on DC differentiation, which may explain the limited antitumor clinical activity observed in this study. This work suggests that inhibition of FLT3 should be considered when combining TKIs with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Aurélien Voissière
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
| | - Carlos Gomez-Roca
- Department of Medical Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Sylvie Chabaud
- Clinical Research Platform (DRCI), Centre Léon Bérard, Lyon, France
| | - Céline Rodriguez
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Axelle Nkodia
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Justine Berthet
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Laure Montane
- Clinical Research Platform (DRCI), Centre Léon Bérard, Lyon, France
| | | | | | - Lauriane Eberst
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| | - Catherine Terret
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| | - Iphigénie Korakis
- Department of Medical Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Gwenaelle Garin
- Clinical Research Platform (DRCI), Centre Léon Bérard, Lyon, France
| | - David Pérol
- Clinical Research Platform (DRCI), Centre Léon Bérard, Lyon, France
| | - Jean-Pierre Delord
- Department of Medical Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Christophe Caux
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Bertrand Dubois
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Christine Ménétrier-Caux
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Nathalie Bendriss-Vermare
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Philippe A Cassier
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| |
Collapse
|
24
|
Liu J, Lu J, Wu L, Zhang T, Wu J, Li L, Tai Z, Chen Z, Zhu Q. Targeting tumor-associated macrophages: Novel insights into immunotherapy of skin cancer. J Adv Res 2024:S2090-1232(24)00026-2. [PMID: 38242529 DOI: 10.1016/j.jare.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The incidence of skin cancer is currently increasing, and conventional treatment options inadequately address the demands of disease management. Fortunately, the recent rapid advancement of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has ushered in a new era for numerous cancer patients. However, the efficacy of immunotherapy remains suboptimal due to the impact of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs), a major component of the TME, play crucial roles in tumor invasion, metastasis, angiogenesis, and immune evasion, significantly impacting tumor development. Consequently, TAMs have gained considerable attention in recent years, and their roles have been extensively studied in various tumors. However, the specific roles of TAMs and their regulatory mechanisms in skin cancer remain unclear. AIM OF REVIEW This paper aims to elucidate the origin and classification of TAMs, investigate the interactions between TAMs and various immune cells, comprehensively understand the precise mechanisms by which TAMs contribute to the pathogenesis of different types of skin cancer, and finally discuss current strategies for targeting TAMs in the treatment of skin cancer. KEY SCIENTIFIC CONCEPTS OF OVERVIEW With a specific emphasis on the interrelationship between TAMs and skin cancer, this paper posits that therapeutic modalities centered on TAMs hold promise in augmenting and harmonizing with prevailing clinical interventions for skin cancer, thereby charting a novel trajectory for advancing the landscape of immunotherapeutic approaches for skin cancer.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Ling Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
25
|
Cersosimo F, Lonardi S, Ulivieri C, Martini P, Morrione A, Vermi W, Giordano A, Giurisato E. CSF-1R in Cancer: More than a Myeloid Cell Receptor. Cancers (Basel) 2024; 16:282. [PMID: 38254773 PMCID: PMC10814415 DOI: 10.3390/cancers16020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Colony-stimulating factor 1 receptor (CFS-1R) is a myeloid receptor with a crucial role in monocyte survival and differentiation. Its overexpression is associated with aggressive tumors characterized by an immunosuppressive microenvironment and poor prognosis. CSF-1R ligands, IL-34 and M-CSF, are produced by many cells in the tumor microenvironment (TME), suggesting a key role for the receptor in the crosstalk between tumor, immune and stromal cells in the TME. Recently, CSF-1R expression was reported in the cell membrane of the cancer cells of different solid tumors, capturing the interest of various research groups interested in investigating the role of this receptor in non-myeloid cells. This review summarizes the current data available on the expression and activity of CSF-1R in different tumor types. Notably, CSF-1R+ cancer cells have been shown to produce CSF-1R ligands, indicating that CSF-1R signaling is positively regulated in an autocrine manner in cancer cells. Recent research demonstrated that CSF-1R signaling enhances cell transformation by supporting tumor cell proliferation, invasion, stemness and drug resistance. In addition, this review covers recent therapeutic strategies, including monoclonal antibodies and small-molecule inhibitors, targeting the CSF-1R and designed to block the pro-oncogenic role of CSF-1R in cancer cells.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Andrea Morrione
- Center for Biotechnology, Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Antonio Giordano
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
26
|
Huang C, Ma X, Wang M, Cao H. Drugs in the GIST Field (Therapeutic Targets and Clinical Trial Staging). Curr Drug Deliv 2024; 21:80-90. [PMID: 36415101 PMCID: PMC10661963 DOI: 10.2174/1567201820666221122120657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Molecular targeted therapies are the most important type of medical treatment for GIST, but the development of GIST drugs and their targets have not been summarized. METHODS Drugs in the field of GIST were analyzed and collated through Pharmaprojects, ClinicalTrials. gov and PharmaGO databases. RESULTS As of 2021, there are 75 drugs that have appeared in the GIST clinical trials. The six most frequent targets in GIST clinical trials, in descending order of frequency, were KIT, PDGFRA, KDR (VEGFR2), FLT3, FLT1 (VEGFR1), and FLT4/VEGFR3. Only 8 drugs are in preclinical research. There are challenges in the development of new drugs for GIST. CONCLUSION This article analyzes and summarizes the general situation of GIST drugs, the target distribution of GIST drugs, and the trends in GIST drug-related clinical trials.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinli Ma
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Cao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Kim JD, Copperi F, Diano S. Microglia in Central Control of Metabolism. Physiology (Bethesda) 2024; 39:0. [PMID: 37962895 PMCID: PMC11283896 DOI: 10.1152/physiol.00021.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their role as brain immune cells, microglia act as metabolic sensors in response to changes in nutrient availability, thus playing a role in energy homeostasis. This review highlights the evidence and challenges of studying the role of microglia in metabolism regulation.
Collapse
Affiliation(s)
- Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
28
|
Geiger EJ, Jensen AR, Singh AS, Nelson SD, Bernthal NM. Use of neoadjuvant pexidartinib with limb salvage surgery for diffuse tenosynovial giant cell tumor: A case report. J Orthop Sci 2024; 29:458-462. [PMID: 36402606 DOI: 10.1016/j.jos.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/24/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Erik J Geiger
- Department of Orthopaedic Surgery, The Rothman Institute at Thomas Jefferson University, Philadelphia, PA, USA.
| | - Andrew R Jensen
- Department of Orthopaedic Surgery, University of California-Los Angeles, Santa Monica, CA, USA
| | - Arun S Singh
- Department of Medicine, Division of Hematology-Oncology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Scott D Nelson
- Departments of Pathology and Orthopaedic Surgery, University of California-Los Angeles, Santa Monica, CA, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, University of California-Los Angeles, Santa Monica, CA, USA
| |
Collapse
|
29
|
Townley C, Branduardi D, Chessari G, Cons BD, Griffiths-Jones C, Hall RJ, Johnson CN, Ochi Y, Whibley S, Grainger R. Enabling synthesis in fragment-based drug discovery (FBDD): microscale high-throughput optimisation of the medicinal chemist's toolbox reactions. RSC Med Chem 2023; 14:2699-2713. [PMID: 38107176 PMCID: PMC10718589 DOI: 10.1039/d3md00495c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 12/19/2023] Open
Abstract
Miniaturised high-throughput experimentation (HTE) is widely employed in industrial and academic laboratories for rapid reaction optimisation using material-limited, multifactorial reaction condition screening. In fragment-based drug discovery (FBDD), common toolbox reactions such as the Suzuki-Miyaura and Buchwald-Hartwig cross couplings can be hampered by the fragment's intrinsic heteroatom-rich pharmacophore which is required for ligand-protein binding. At Astex, we are using microscale HTE to speed up reaction optimisation and prevent target down-prioritisation. By identifying catalyst/base/solvent combinations which tolerate unprotected heteroatoms we can rapidly optimise key cross-couplings and expedite route design by avoiding superfluous protecting group manipulations. However, HTE requires extensive upfront training, and this modern automated synthesis technique largely differs to the way organic chemists are traditionally trained. To make HTE accessible to all our synthetic chemists we have developed a semi-automated workflow enabled by pre-made 96-well screening kits, rapid analytical methods and in-house software development, which is empowering chemists at Astex to run HTE screens independently with minimal training.
Collapse
Affiliation(s)
- Chloe Townley
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Davide Branduardi
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Gianni Chessari
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Benjamin D Cons
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Richard J Hall
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Yuji Ochi
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Stuart Whibley
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Rachel Grainger
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| |
Collapse
|
30
|
Lougiakis N, Sakalis N, Georgiou M, Marakos P, Pouli N, Skaltsounis AL, Mavrogonatou E, Pratsinis H, Kletsas D. Synthesis, cytotoxic activity evaluation and mechanistic investigation of novel 3,7-diarylsubstituted 6-azaindoles. Eur J Med Chem 2023; 261:115804. [PMID: 37729693 DOI: 10.1016/j.ejmech.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
A number of new disubstituted 6-azaindoles have been designed and synthesized bearing a crucial structural modification in respect to an analogous antiproliferative hit compound. The synthesis was performed using 2-amino-3-nitro-4-picoline, that was suitably modified and converted to 7-chloro-3-iodo-6-azaindole and this central scaffold was used for successive Suzuki-type couplings, to result in the target compounds. The evaluation of the cytotoxic activity was performed against four human cancer cell lines, as well as a normal human fibroblast strain. Certain compounds possessed strong anticancer activity without affecting normal cells. At subcytotoxic concentrations for cancer cells, these compounds displayed an anti-proliferative effect by arresting the cells at the G2/M phase of the cell cycle, which could be associated with the observed decrease in the phosphorylation levels of the MEK1- ERK1/2 pathway and/or the activation of the p53-p21WAF1 axis.
Collapse
Affiliation(s)
- Nikolaos Lougiakis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| | - Nikolaos Sakalis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Maria Georgiou
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Panagiotis Marakos
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nicole Pouli
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, NCSR ''Demokritos'', 15310, Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, NCSR ''Demokritos'', 15310, Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, NCSR ''Demokritos'', 15310, Athens, Greece
| |
Collapse
|
31
|
Alkubaisi BO, Aljobowry R, Ali SM, Sultan S, Zaraei SO, Ravi A, Al-Tel TH, El-Gamal MI. The latest perspectives of small molecules FMS kinase inhibitors. Eur J Med Chem 2023; 261:115796. [PMID: 37708796 DOI: 10.1016/j.ejmech.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.
Collapse
Affiliation(s)
- Bilal O Alkubaisi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raya Aljobowry
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Salma M Ali
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sara Sultan
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
32
|
Majeed J, Sabbagh MN, Kang MH, Lawrence JJ, Pruitt K, Bacus S, Reyna E, Brown M, Decourt B. Cancer drugs with high repositioning potential for Alzheimer's disease. Expert Opin Emerg Drugs 2023; 28:311-332. [PMID: 38100555 PMCID: PMC10877737 DOI: 10.1080/14728214.2023.2296079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Despite the recent full FDA approval of lecanemab, there is currently no disease modifying therapy (DMT) that can efficiently slow down the progression of Alzheimer's disease (AD) in the general population. This statement emphasizes the need to identify novel DMTs in the shortest time possible to prevent a global epidemic of AD cases as the world population experiences an increase in lifespan. AREAS COVERED Here, we review several classes of anti-cancer drugs that have been or are being investigated in Phase II/III clinical trials for AD, including immunomodulatory drugs, RXR agonists, sex hormone therapies, tyrosine kinase inhibitors, and monoclonal antibodies. EXPERT OPINION Given the overall course of brain pathologies during the progression of AD, we express a great enthusiasm for the repositioning of anti-cancer drugs as possible AD DMTs. We anticipate an increasing number of combinatorial therapy strategies to tackle AD symptoms and their underlying pathologies. However, we strongly encourage improvements in clinical trial study designs to better assess target engagement and possible efficacy over sufficient periods of drug exposure.
Collapse
Affiliation(s)
- Jad Majeed
- University of Arizona Honors College, Tucson, Arizona, USA
| | - Marwan N. Sabbagh
- Alzheimer’s and Memory Disorders Division, Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Min H. Kang
- Department of Pediatrics, Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Ellie Reyna
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Maddy Brown
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
- Roseman University of Health Sciences, Las Vegas, Nevada, USA
| |
Collapse
|
33
|
Hadiloo K, Taremi S, Heidari M, Esmaeilzadeh A. The CAR macrophage cells, a novel generation of chimeric antigen-based approach against solid tumors. Biomark Res 2023; 11:103. [PMID: 38017494 PMCID: PMC10685521 DOI: 10.1186/s40364-023-00537-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Today, adoptive cell therapy has many successes in cancer therapy, and this subject is brilliant in using chimeric antigen receptor T cells. The CAR T cell therapy, with its FDA-approved drugs, could treat several types of hematological malignancies and thus be very attractive for treating solid cancer. Unfortunately, the CAR T cell cannot be very functional in solid cancers due to its unique features. This treatment method has several harmful adverse effects that limit their applications, so novel treatments must use new cells like NK cells, NKT cells, and macrophage cells. Among these cells, the CAR macrophage cells, due to their brilliant innate features, are more attractive for solid tumor therapy and seem to be a better candidate for the prior treatment methods. The CAR macrophage cells have vital roles in the tumor microenvironment and, with their direct effect, can eliminate tumor cells efficiently. In addition, the CAR macrophage cells, due to being a part of the innate immune system, attended the tumor sites. With the high infiltration, their therapy modulations are more effective. This review investigates the last achievements in CAR-macrophage cells and the future of this immunotherapy treatment method.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Department of Immunology, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Heidari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
34
|
Sheikhi N, Bahraminejad M, Saeedi M, Mirfazli SS. A review: FDA-approved fluorine-containing small molecules from 2015 to 2022. Eur J Med Chem 2023; 260:115758. [PMID: 37657268 DOI: 10.1016/j.ejmech.2023.115758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Fluorine-containing small molecules have occupied a special position in drug discovery research. The successful clinical use of fluorinated corticosteroids in the 1950s and fluoroquinolones in the 1980s led to an ever-increasing number of approved fluorinated compounds over the last 50 years. They have shown various biological properties such as antitumor, antimicrobial, and anti-inflammatory activities. Fluoro-pharmaceuticals have been considered a strong and practical tool in the rational drug design approach due to their benefits from potency and ADME (absorption, distribution, metabolism, and excretion) points of view. Herein, approved fluorinated drugs from 2015 to 2022 were reviewed.
Collapse
Affiliation(s)
- Negar Sheikhi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Bahraminejad
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Zhang Q, Gao X, Duan X, Liang H, Gao M, Dong D, Guo C, Huang L. Design, synthesis and SAR of novel 7-azaindole derivatives as potential Erk5 kinase inhibitor with anticancer activity. Bioorg Med Chem 2023; 95:117503. [PMID: 37862935 DOI: 10.1016/j.bmc.2023.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
The extracellular signal-regulated kinase 5 (Erk5) signaling plays a crucial role in cancer, and regulating its activity may have potential in cancer chemotherapy. In this study, a series of novel 7-azaindole derivatives (4a-5o) were designed and synthesized. Their antitumor activities on human lung cancer A549 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4',6-diamidino-2-phenylindole (DAPI) staining and colony formation assay. Among them, compounds 4a, 4 h, 5d and 5j exhibited good anti-proliferative activity with the IC50 values of 6.23 µg/mL, 8.52 µg/mL, 7.33 µg/mL and 4.56 µg/mL, respectively, equivalent to Erk5 positive control XMD8-92 (IC50 = 5.36 µg/mL). The results of structure-activity relationships (SAR) showed that double bond on the piperidine ring and N atoms at the N7 position of 7-azaindole was essential for their antiproliferative activity. Furthermore, compounds 4a and 5j exhibited good inhibition on Erk5 kinase through Western blot analysis and possible action site of compounds with Erk5 kinase was elucidated by molecular docking.
Collapse
Affiliation(s)
- Qin Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Xintao Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Xiyu Duan
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Han Liang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Mingyuan Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Dianquan Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Chuanlong Guo
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China.
| | - Longjiang Huang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China.
| |
Collapse
|
36
|
Fermi V, Warta R, Wöllner A, Lotsch C, Jassowicz L, Rapp C, Knoll M, Jungwirth G, Jungk C, Dao Trong P, von Deimling A, Abdollahi A, Unterberg A, Herold-Mende C. Effective Reprogramming of Patient-Derived M2-Polarized Glioblastoma-Associated Microglia/Macrophages by Treatment with GW2580. Clin Cancer Res 2023; 29:4685-4697. [PMID: 37682326 DOI: 10.1158/1078-0432.ccr-23-0576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/26/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE Targeting immunosuppressive and pro-tumorigenic glioblastoma (GBM)-associated macrophages and microglial cells (GAM) has great potential to improve patient outcomes. Colony-stimulating factor-1 receptor (CSF1R) has emerged as a promising target for reprograming anti-inflammatory M2-like GAMs. However, treatment data on patient-derived, tumor-educated GAMs and their influence on the adaptive immunity are lacking. EXPERIMENTAL DESIGN CD11b+-GAMs freshly isolated from patient tumors were treated with CSF1R-targeting drugs PLX3397, BLZ945, and GW2580. Phenotypical changes upon treatment were assessed using RNA sequencing, flow cytometry, and cytokine quantification. Functional analyses included inducible nitric oxide synthase activity, phagocytosis, transmigration, and autologous tumor cell killing assays. Antitumor effects and changes in GAM activation were confirmed in a complex patient-derived 3D tumor organoid model serving as a tumor avatar. RESULTS The most effective reprogramming of GAMs was observed upon GW2580 treatment, which led to the downregulation of M2-related markers, IL6, IL10, ERK1/2, and MAPK signaling pathways, while M1-like markers, gene set enrichment indicating activated MHC-II presentation, phagocytosis, and T-cell killing were substantially increased. Moreover, treatment of patient-derived GBM organoids with GW2580 confirmed successful reprogramming, resulting in impaired tumor cell proliferation. In line with its failure in clinical trials, PLX3397 was ineffective in our analysis. CONCLUSIONS This comparative analysis of CSF1R-targeting drugs on patient-derived GAMs and human GBM avatars identified GW2580 as the most powerful inhibitor with the ability to polarize immunosuppressive GAMs to a proinflammatory phenotype, supporting antitumor T-cell responses while also exerting a direct antitumor effect. These data indicate that GW2580 could be an important pillar in future therapies for GBM.
Collapse
Affiliation(s)
- Valentina Fermi
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Rolf Warta
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Amélie Wöllner
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Catharina Lotsch
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Lena Jassowicz
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 522, Heidelberg, Germany
| | - Carmen Rapp
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Maximilian Knoll
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Gerhard Jungwirth
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Philip Dao Trong
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Andreas von Deimling
- Dept. of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
| |
Collapse
|
37
|
Kannampuzha S, Murali R, Gopalakrishnan AV, Mukherjee AG, Wanjari UR, Namachivayam A, George A, Dey A, Vellingiri B. Novel biomolecules in targeted cancer therapy: a new approach towards precision medicine. Med Oncol 2023; 40:323. [PMID: 37804361 DOI: 10.1007/s12032-023-02168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 10/09/2023]
Abstract
Cancer is a major threat to human life around the globe, and the discovery of novel biomolecules continue to be an urgent therapeutic need that is still unmet. Precision medicine relies on targeted therapeutic strategies. Researchers are better equipped to develop therapies that target proteins as they understand more about the genetic alterations and molecules that cause progression of cancer. There has been a recent diversification of the sorts of targets exploited in treatment. Therapeutic antibody and biotechnology advancements enabled curative treatments to reach previously inaccessible sites. New treatment strategies have been initiated for several undruggable targets. The application of tailored therapy has been proven to have efficient results in controlling cancer progression. Novel biomolecules like SMDCs, ADCs, mABs, and PROTACS has gained vast attention in the recent years. Several studies have shown that using these novel technology helps in reducing the drug dosage as well as to overcome drug resistance in different cancer types. Therefore, it is crucial to fully untangle the mechanism and collect evidence to understand the significance of these novel drug targets and strategies. This review article will be discussing the importance and role of these novel biomolecules in targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Abhijit Dey
- Department of Medical Services, MGM Cancer Institute, Chennai, Tamil Nadu, 600029, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
38
|
Du X, Xia A, Sun J, Ye Y. Localized tenosynovial giant cell tumor in children. J Child Orthop 2023; 17:420-427. [PMID: 37799313 PMCID: PMC10549694 DOI: 10.1177/18632521231186795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/01/2023] [Indexed: 10/07/2023] Open
Abstract
Background To investigate the clinical characteristics and surgical efficacy of localized tenosynovial giant cell tumors in children. Methods The clinical data, surgery, and follow-up results of 17 children with localized tenosynovial giant cell tumors who visited our hospital from 2011 to 2021 were collected for statistical analysis. Results The median patient age was 7 years and 8 months, and the ratio of males to females was 1.43 (10/7). The predilection of disease was similar in hands and feet, and the common presenting symptom was mass. One patient experienced recurrence after surgery, and one child had postoperative functional limitations. Conclusion Extremities are common sites of localized tenosynovial giant cell tumors in children. Complete surgical resection helps reduce the recurrence rate. Level of evidence Level III.
Collapse
Affiliation(s)
| | - Anning Xia
- Anning Xia, Department of Orthopedics, Shenzhen Children’s Hospital, No. 7019 Yitian Road, Futian District, Shenzhen 518000, Guangdong, China.
| | - Junying Sun
- Department of Orthopedics, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yinting Ye
- Department of Orthopedics, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
39
|
Qin X, Wang Y, MacKenzie KR, Hakenjos JM, Chen S, Khalil SM, Jung SY, Young DW, Guo L, Li F. Identifying the Reactive Metabolites of Tyrosine Kinase Inhibitor Pexidartinib In Vitro Using LC-MS-Based Metabolomic Approaches. Chem Res Toxicol 2023; 36:1427-1438. [PMID: 37531179 PMCID: PMC10445284 DOI: 10.1021/acs.chemrestox.3c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 08/03/2023]
Abstract
Pexidartinib (PEX, TURALIO), a selective and potent inhibitor of the macrophage colony-stimulating factor-1 receptor, has been approved for the treatment of tenosynovial giant cell tumor. However, frequent and severe adverse effects have been reported in the clinic, resulting in a boxed warning on PEX for its risk of liver injury. The mechanisms underlying PEX-related hepatotoxicity, particularly metabolism-related toxicity, remain unknown. In the current study, the metabolic activation of PEX was investigated in human/mouse liver microsomes (HLM/MLM) and primary human hepatocytes (PHH) using glutathione (GSH) and methoxyamine (NH2OMe) as trapping reagents. A total of 11 PEX-GSH and 7 PEX-NH2OMe adducts were identified in HLM/MLM using an LC-MS-based metabolomics approach. Additionally, 4 PEX-GSH adducts were detected in the PHH. CYP3A4 and CYP3A5 were identified as the primary enzymes responsible for the formation of these adducts using recombinant human P450s and CYP3A chemical inhibitor ketoconazole. Overall, our studies suggested that PEX metabolism can produce reactive metabolites mediated by CYP3A, and the association of the reactive metabolites with PEX hepatotoxicity needs to be further studied.
Collapse
Affiliation(s)
- Xuan Qin
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Yong Wang
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kevin R. MacKenzie
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
- NMR
and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, Texas 77030, United States
- Department
of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - John M. Hakenjos
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Si Chen
- Division
of Biochemical Toxicology, National Center
for Toxicological Research/U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, United States
| | - Saleh M. Khalil
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Sung Yun Jung
- Department
of Molecular & Cellular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Damian W. Young
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
- Department
of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Lei Guo
- Division
of Biochemical Toxicology, National Center
for Toxicological Research/U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, United States
| | - Feng Li
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
- NMR
and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, Texas 77030, United States
- Department
of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
40
|
Maleddu A, Zhu J, Clay MR, Wilky BA. Current therapies and future prospective for locally aggressive mesenchymal tumors. Front Oncol 2023; 13:1160239. [PMID: 37546427 PMCID: PMC10401592 DOI: 10.3389/fonc.2023.1160239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/11/2023] [Indexed: 08/08/2023] Open
Abstract
Locally aggressive mesenchymal tumors comprise a heterogeneous group of soft tissue and bone tumors with intermediate histology, incompletely understood biology, and highly variable natural history. Despite having a limited to absent ability to metastasize and excellent survival prognosis, locally aggressive mesenchymal tumors can be symptomatic, require prolonged and repeat treatments including surgery and chemotherapy, and can severely impact patients' quality of life. The management of locally aggressive tumors has evolved over the years with a focus on minimizing morbid treatments. Extensive oncologic surgeries and radiation are pillars of care for high grade sarcomas, however, play a more limited role in management of locally aggressive mesenchymal tumors, due to propensity for local recurrence despite resection, and the risk of transformation to a higher-grade entity following radiation. Patients should ideally be evaluated in specialized sarcoma centers that can coordinate complex multimodal decision-making, taking into consideration the individual patient's clinical presentation and history, as well as any available prognostic factors into customizing therapy. In this review, we aim to discuss the biology, clinical management, and future treatment frontiers for three representative locally aggressive mesenchymal tumors: desmoid-type fibromatosis (DF), tenosynovial giant cell tumor (TSGCT) and giant cell tumor of bone (GCTB). These entities challenge clinicians with their unpredictable behavior and responses to treatment, and still lack a well-defined standard of care despite recent progress with newly approved or promising experimental drugs.
Collapse
Affiliation(s)
- Alessandra Maleddu
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jessica Zhu
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Michael Roy Clay
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Breelyn Ann Wilky
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
41
|
Palmerini E, Healey JH, Bernthal NM, Bauer S, Schreuder H, Leithner A, Martin-Broto J, Gouin F, Lopez-Bastida J, Gelderblom H, Staals EL, Mercier F, Laeis P, Ye X, van de Sande M. Tenosynovial Giant Cell Tumor Observational Platform Project (TOPP) Registry: A 2-Year Analysis of Patient-Reported Outcomes and Treatment Strategies. Oncologist 2023; 28:e425-e435. [PMID: 36869793 PMCID: PMC10243766 DOI: 10.1093/oncolo/oyad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/27/2022] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND The Tenosynovial giant cell tumor Observational Platform Project (TOPP) registry is an international prospective study that -previously described the impact of diffuse-type tenosynovial giant cell tumour (D-TGCT) on patient-reported outcomes (PROs) from a baseline snapshot. This analysis describes the impact of D-TGCT at 2-year follow-up based on treatment strategies. MATERIAL AND METHODS TOPP was conducted at 12 sites (EU: 10; US: 2). Captured PRO measurements assessed at baseline, 1-year, and 2-year follow-ups were Brief Pain Inventory (BPI), Pain Interference, BPI Pain Severity, Worst Pain, EQ-5D-5L, Worst Stiffness, and -Patient-Reported Outcomes Measurement Information System. Treatment interventions were no current/planned treatment (Off-Treatment) and systemic treatment/surgery (On-Treatment). RESULTS A total of 176 patients (mean age: 43.5 years) were included in the full analysis set. For patients without active treatment strategy -(Off-Treatment) at baseline (n = 79), BPI Pain Interference (1.00 vs. 2.86) and BPI Pain Severity scores (1.50 vs. 3.00) were numerically favorable in patients remaining Off-Treatment compared with those who switched to an active treatment strategy at year 1. From 1-year to 2-year -follow-ups, patients who remained Off-Treatment had better BPI Pain Interference (0.57 vs. 2.57) and Worst Pain (2.0 vs. 4.5) scores compared with patients who switched to an alternative treatment strategy. In addition, EQ-5D VAS scores (80.0 vs. 65.0) were higher in patients who remained -Off-Treatment between 1-year and 2-year follow-ups compared with patients who changed treatment strategy. For patients receiving systemic treatment at baseline, numerically favorable scores were seen in patients remaining on systemic therapy at 1-year follow-up: BPI Pain Interference (2.79 vs. 5.93), BPI Pain Severity (3.63 vs. 6.38), Worst Pain (4.5 vs. 7.5), and Worst Stiffness (4.0 vs. 7.5). From 1-year to 2-year follow-up, EQ-5D VAS scores (77.5 vs. 65.0) were higher in patients who changed from systemic treatment to a different treatment strategy. CONCLUSION These findings highlight the impact D-TGCT has on patient quality of life, and how treatment strategies may be influenced by these outcome measures. (ClinicalTrials.gov number: NCT02948088).
Collapse
Affiliation(s)
| | - John H Healey
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Sebastian Bauer
- West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | | | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Javier Martin-Broto
- Fundacíon Jiménez Díaz University Hospital, ATBSARC lab in General Hospital of Villalba, IIS-FJD, Madrid, Spain
| | | | | | | | | | | | | | - Xin Ye
- Daiichi Sankyo, Inc., Basking Ridge, NJ, USA
| | | |
Collapse
|
42
|
Zhang W, Chen H, Ding L, Huang J, Zhang M, Liu Y, Ma R, Zheng S, Gong J, Piña‐Crespo JC, Zhang Y. Microglial targeted therapy relieves cognitive impairment caused by Cntnap4 deficiency. EXPLORATION (BEIJING, CHINA) 2023; 3:20220160. [PMID: 37933376 PMCID: PMC10624376 DOI: 10.1002/exp.20220160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/10/2023] [Indexed: 11/08/2023]
Abstract
Contactin-associated protein-like 4 (Cntnap4) is critical for GABAergic transmission in the brain. Impaired Cntnap4 function is implicated in neurological disorders, such as autism; however, the role of Cntnap4 on memory processing is poorly understood. Here, we demonstrate that hippocampal Cntnap4 deficiency in female mice manifests as impaired cognitive function and synaptic plasticity. The underlying mechanisms may involve effects on the pro-inflammatory response resulting in dysfunctional GABAergic transmission and activated tryptophan metabolism. To efficiently and accurately inhibit the pro-inflammatory reaction, we established a biomimetic microglial nanoparticle strategy to deliver FDA-approved PLX3397 (termed MNPs@PLX). We show MNPs@PLX successfully penetrates the blood brain barrier and facilitates microglial-targeted delivery of PLX3397. Furthermore, MNPs@PLX attenuates cognitive decline, dysfunctional synaptic plasticity, and pro-inflammatory response in female heterozygous Cntnap4 knockout mice. Together, our findings show loss of Cntnap4 causes pro-inflammatory cognitive decline that is effectively prevented by supplementation with microglia-specific inhibitors; thus validating the targeting of microglial function as a therapeutic intervention in neurocognitive disorders.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Huaqing Chen
- Shenzhen Key Laboratory of Gene and Antibody TherapyCenter for Biotechnology and BiomedicineState Key Laboratory of Chemical OncogenomicsState Key Laboratory of Health Sciences and TechnologyInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Liuyan Ding
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Jie Huang
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Mengran Zhang
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Yan Liu
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Runfang Ma
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Shaohui Zheng
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Junwei Gong
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Juan C. Piña‐Crespo
- Degenerative Diseases ProgramCenter for Genetic Disorders and Aging ResearchSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Yunlong Zhang
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| |
Collapse
|
43
|
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023; 8:207. [PMID: 37211559 DOI: 10.1038/s41392-023-01452-1] [Citation(s) in RCA: 312] [Impact Index Per Article: 312.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
Macrophages exist in various tissues, several body cavities, and around mucosal surfaces and are a vital part of the innate immune system for host defense against many pathogens and cancers. Macrophages possess binary M1/M2 macrophage polarization settings, which perform a central role in an array of immune tasks via intrinsic signal cascades and, therefore, must be precisely regulated. Many crucial questions about macrophage signaling and immune modulation are yet to be uncovered. In addition, the clinical importance of tumor-associated macrophages is becoming more widely recognized as significant progress has been made in understanding their biology. Moreover, they are an integral part of the tumor microenvironment, playing a part in the regulation of a wide variety of processes including angiogenesis, extracellular matrix transformation, cancer cell proliferation, metastasis, immunosuppression, and resistance to chemotherapeutic and checkpoint blockade immunotherapies. Herein, we discuss immune regulation in macrophage polarization and signaling, mechanical stresses and modulation, metabolic signaling pathways, mitochondrial and transcriptional, and epigenetic regulation. Furthermore, we have broadly extended the understanding of macrophages in extracellular traps and the essential roles of autophagy and aging in regulating macrophage functions. Moreover, we discussed recent advances in macrophages-mediated immune regulation of autoimmune diseases and tumorigenesis. Lastly, we discussed targeted macrophage therapy to portray prospective targets for therapeutic strategies in health and diseases.
Collapse
Affiliation(s)
- Shanze Chen
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Abdullah F U H Saeed
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, China
| | - Qiong Jiang
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Haizhao Xu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Department of Respiratory, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
44
|
Han J, Dong L, Wu M, Ma F. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: from mechanistic insights to therapeutic opportunities. Front Immunol 2023; 14:1160340. [PMID: 37251409 PMCID: PMC10219223 DOI: 10.3389/fimmu.2023.1160340] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Immunotherapy has brought a paradigm shift in the treatment of tumors in recent decades. However, a significant proportion of patients remain unresponsive, largely due to the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play crucial roles in shaping the TME by exhibiting dual identities as both mediators and responders of inflammation. TAMs closely interact with intratumoral T cells, regulating their infiltration, activation, expansion, effector function, and exhaustion through multiple secretory and surface factors. Nevertheless, the heterogeneous and plastic nature of TAMs renders the targeting of any of these factors alone inadequate and poses significant challenges for mechanistic studies and clinical translation of corresponding therapies. In this review, we present a comprehensive summary of the mechanisms by which TAMs dynamically polarize to influence intratumoral T cells, with a focus on their interaction with other TME cells and metabolic competition. For each mechanism, we also discuss relevant therapeutic opportunities, including non-specific and targeted approaches in combination with checkpoint inhibitors and cellular therapies. Our ultimate goal is to develop macrophage-centered therapies that can fine-tune tumor inflammation and empower immunotherapy.
Collapse
Affiliation(s)
- Jiashu Han
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Luochu Dong
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Fei Ma
- Center for National Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Pan Q, Yan P, Kim AB, Xiao Q, Pandey G, Haecker H, Epelman S, Diwan A, Lee JM, DeSelm CJ. Chimeric Antigen Receptor Macrophages Target and Resorb Amyloid Plaques in a Mouse Model of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538637. [PMID: 37162824 PMCID: PMC10168376 DOI: 10.1101/2023.04.28.538637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Substantial evidence suggests a role for immunotherapy in treating Alzheimer's disease (AD). Several monoclonal antibodies targeting aggregated forms of beta amyloid (Aβ), have been shown to reduce amyloid plaques and in some cases, mitigate cognitive decline in early-stage AD patients. We sought to determine if genetically engineered macrophages could improve the targeting and degradation of amyloid plaques. Chimeric antigen receptor macrophages (CAR-Ms), which show promise as a cancer treatment, are an appealing strategy to enhance target recognition and phagocytosis of amyloid plaques in AD. We genetically engineered macrophages to express a CAR containing the anti-amyloid antibody aducanumab as the external domain and the Fc receptor signaling domain internally. CAR-Ms recognize and degrade Aβ in vitro and on APP/PS1 brain slices ex vivo; however, when injected intrahippocampally, these first-generation CAR-Ms have limited persistence and fail to reduce plaque load. We overcame this limitation by creating CAR-Ms that secrete M-CSF and self-maintain without exogenous cytokines. These CAR-Ms have greater survival in the brain niche, and significantly reduce plaque load locally in vivo. These proof-of-principle studies demonstrate that CAR-Ms, previously only applied to cancer, may be utilized to target and degrade unwanted materials, such as amyloid plaques in the brains of AD mice.
Collapse
Affiliation(s)
- Qiuyun Pan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ping Yan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander B. Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingli Xiao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaurav Pandey
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Hans Haecker
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Slava Epelman
- Department of Medicine, Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Abhinav Diwan
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Medicine Service, Saint Louis VA Medical Center, St. Louis, MO, USA
- Departments of Medicine, Cell Biology and Physiology, Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Carl J. DeSelm
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
46
|
Rizzo C, Amata S, Pibiri I, Pace A, Buscemi S, Palumbo Piccionello A. FDA-Approved Fluorinated Heterocyclic Drugs from 2016 to 2022. Int J Mol Sci 2023; 24:ijms24097728. [PMID: 37175436 PMCID: PMC10178595 DOI: 10.3390/ijms24097728] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The inclusion of fluorine atoms or heterocyclic moiety into drug structures represents a recurrent motif in medicinal chemistry. The combination of these two features is constantly appearing in new molecular entities with various biological activities. This is demonstrated by the increasing number of newly synthesized fluorinated heterocyclic compounds among the Food and Drug Administration FDA-approved drugs. In this review, the biological activity, as well as the synthetic aspects, of 33 recently FDA-approved fluorinated heterocyclic drugs from 2016 to 2022 are highlighted.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Sara Amata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
47
|
Brady RV, Thamm DH. Tumor-associated macrophages: Prognostic and therapeutic targets for cancer in humans and dogs. Front Immunol 2023; 14:1176807. [PMID: 37090720 PMCID: PMC10113558 DOI: 10.3389/fimmu.2023.1176807] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Macrophages are ancient, phagocytic immune cells thought to have their origins 500 million years ago in metazoan phylogeny. The understanding of macrophages has evolved to encompass their foundational roles in development, homeostasis, tissue repair, inflammation, and immunity. Notably, macrophages display high plasticity in response to environmental cues, capable of a strikingly wide variety of dynamic gene signatures and phenotypes. Macrophages are also involved in many pathological states including neural disease, asthma, liver disease, heart disease, cancer, and others. In cancer, most tumor-associated immune cells are macrophages, coined tumor-associated macrophages (TAMs). While some TAMs can display anti-tumor properties such as phagocytizing tumor cells and orchestrating an immune response, most macrophages in the tumor microenvironment are immunosuppressive and pro-tumorigenic. Macrophages have been implicated in all stages of cancer. Therefore, interest in manipulating macrophages as a therapeutic strategy against cancer developed as early as the 1970s. Companion dogs are a strong comparative immuno-oncology model for people due to documented similarities in the immune system and spontaneous cancers between the species. Data from clinical trials in humans and dogs can be leveraged to further scientific advancements that benefit both species. This review aims to provide a summary of the current state of knowledge on macrophages in general, and an in-depth review of macrophages as a therapeutic strategy against cancer in humans and companion dogs.
Collapse
Affiliation(s)
- Rachel V. Brady
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Douglas H. Thamm
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
48
|
Zahir H, Yin O, Hsu C, Wagner AJ, Jiang J, Wang X, Greenberg J, Shuster DE, Kakkar T, LaCreta F. Dosing Recommendation Based on the Effects of Different Meal Types on Pexidartinib Pharmacokinetics in Healthy Subjects: Implementation of Model-informed Drug Development Strategy. Clin Pharmacol Drug Dev 2023; 12:475-483. [PMID: 36942508 DOI: 10.1002/cpdd.1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/03/2023] [Indexed: 03/23/2023]
Abstract
Pexidartinib, an oral small molecule inhibitor of the colony-stimulating factor 1 receptor, is approved for treatment of adults with symptomatic tenosynovial giant cell tumor associated with severe morbidity or functional limitations and not amenable to improvement with surgery. The original dosing regimen is 400 mg of pexidartinib (2 × 200-mg capsules) twice daily, administered on an empty stomach at least 1 hour before or 2 hours after a meal or snack. Because pexidartinib is likely to be taken over an extended period of time, the ability to take pexidartinib with a meal would simplify timing of administration and potentially improve compliance. Since administering 400 mg of pexidartinib with a low-fat meal increases exposure by ≈60% relative to the fasted state, administering 250 mg of pexidartinib with a low-fat meal (low-fat meal dosing regimen) was predicted to achieve an exposure similar to 400 mg administered during a fasted state (original dosing regimen). Based on clinical trial simulations with two one-sided t-tests and bootstrapping (ie, resampling) analyses, a bioequivalence study (n = 24) would have >90% power to conclude that the original dosing regimen (400 mg fasted twice daily) and the low-fat meal dosing regimen (250 mg with a low-fat meal twice daily) are bioequivalent. This report provides the outcome of the implementation of the model-informed drug development strategy to recommend and justify a low-fat meal dosing regimen for pexidartinib that has the potential to improve patient compliance while maintaining drug exposure.
Collapse
Affiliation(s)
- Hamim Zahir
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | - Ophelia Yin
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | - Ching Hsu
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | | | - Jason Jiang
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | - Xiaoning Wang
- Metrum Research Group, Tariffville, Connecticut, USA
| | - Jon Greenberg
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | | | | | - Frank LaCreta
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| |
Collapse
|
49
|
Mader MMD, Napole A, Wu D, Shibuya Y, Scavetti A, Foltz A, Atkins M, Hahn O, Yoo Y, Danziger R, Tan C, Wyss-Coray T, Steinman L, Wernig M. Augmentation of a neuroprotective myeloid state by hematopoietic cell transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532123. [PMID: 36945385 PMCID: PMC10028976 DOI: 10.1101/2023.03.10.532123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease associated with inflammatory demyelination in the central nervous system (CNS). Autologous hematopoietic cell transplantation (HCT) is under investigation as a promising therapy for treatment-refractory MS. Here we identify a reactive myeloid state in chronic experimental autoimmune encephalitis (EAE) mice and MS patients that is surprisingly associated with neuroprotection and immune suppression. HCT in EAE mice leads to an enhancement of this myeloid state, as well as clinical improvement, reduction of demyelinated lesions, suppression of cytotoxic T cells, and amelioration of reactive astrogliosis reflected in reduced expression of EAE-associated gene signatures in oligodendrocytes and astrocytes. Further enhancement of myeloid cell incorporation into the CNS following a modified HCT protocol results in an even more consistent therapeutic effect corroborated by additional amplification of HCT-induced transcriptional changes, underlining myeloid-derived beneficial effects in the chronic phase of EAE. Replacement or manipulation of CNS myeloid cells thus represents an intriguing therapeutic direction for inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Marius Marc-Daniel Mader
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Alan Napole
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Danwei Wu
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
- Department of Neurology and Neurosciences, Division of
Neuroimmunology and Multiple Sclerosis Center, Stanford University of Medicine, Stanford, CA
94305, USA
| | - Yohei Shibuya
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Alexa Scavetti
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Aulden Foltz
- Department of Neurology and Neurological Sciences, Stanford
University School of Medicine, Stanford, CA 94305, USA
- Veterans Administration Palo Alto Healthcare System, Palo Alto,
CA 94304, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford
University School of Medicine, Stanford, CA 94305, USA
- Veterans Administration Palo Alto Healthcare System, Palo Alto,
CA 94304, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford
University School of Medicine, Stanford, CA 94305, USA
- Veterans Administration Palo Alto Healthcare System, Palo Alto,
CA 94304, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Ron Danziger
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Christina Tan
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford
University School of Medicine, Stanford, CA 94305, USA
- Veterans Administration Palo Alto Healthcare System, Palo Alto,
CA 94304, USA
| | - Lawrence Steinman
- Department of Neurology and Neurosciences, Division of
Neuroimmunology and Multiple Sclerosis Center, Stanford University of Medicine, Stanford, CA
94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| |
Collapse
|
50
|
Liang DS, You WP, Zhu FF, Wang JH, Guo F, Xu JJ, Liu XL, Zhong HJ. Targeted delivery of pexidartinib to tumor-associated macrophages via legumain-sensitive dual-coating nanoparticles for cancer immunotherapy. Colloids Surf B Biointerfaces 2023; 226:113283. [PMID: 37030033 DOI: 10.1016/j.colsurfb.2023.113283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Tumor-associated macrophage (TAM) is regarded as an appealing cell target for cancer immunotherapy. However, it remains challenging to selectively eliminate M2-like TAM in tumor microenvironment. In this work, we employed a legumain-sensitive dual-coating nanosystem (s-Tpep-NPs) to deliver CSF-1R inhibitor pexidartinib (PLX3397) for targeting TAM therapy. The PLX3397-loaded NPs exhibited uniform size of ∼240 nm in diameter, good drug loading capacity and efficiency, as well as sustained drug release profile. Compared to non-sensitive counterpart ns-Tpep-NPs, s-Tpep-NPs showed distinguished selectivity upon M1 and M2 macrophage uptake with relation to incubation time and dose. Besides, the selectivity of anti-proliferation effect was also identified for s-Tpep-NPs against M1 and M2 macrophage. In vivo imaging demonstrated that s-Tpep-NPs exhibited much higher tumoral accumulation and TAM recognition specificity as compared to non-sensitive ns-Tpep-NPs. In vivo efficacy verified that s-Tpep-NPs formulation was much more effective than ns-Tpep-NPs and other PLX3397 formulations to treat B16F10 melanoma via targeting TAM depletion and modulating tumor immune microenvironment. Overall, this study provides a robust and promising nanomedicine strategy for TAM-targeted cancer immunotherapy.
Collapse
|