1
|
D’Haese S, Claes L, de Laat I, Van Campenhout S, Deluyker D, Heeren E, Haesen S, Lambrichts I, Wouters K, Schalkwijk CG, Hansen D, Eijnde BO, Bito V. Moderate-Intensity and High-Intensity Interval Exercise Training Offer Equal Cardioprotection, with Different Mechanisms, during the Development of Type 2 Diabetes in Rats. Nutrients 2024; 16:431. [PMID: 38337716 PMCID: PMC10856993 DOI: 10.3390/nu16030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Endurance exercise training is a promising cardioprotective strategy in type 2 diabetes mellitus (T2DM), but the impact of its intensity is not clear. We aimed to investigate whether and how isocaloric moderate-intensity exercise training (MIT) and high-intensity interval exercise training (HIIT) could prevent the adverse cardiac remodeling and dysfunction that develop T2DM in rats. Male rats received a Western diet (WD) to induce T2DM and underwent a sedentary lifestyle (n = 7), MIT (n = 7) or HIIT (n = 8). Insulin resistance was defined as the HOMA-IR value. Cardiac function was assessed with left ventricular (LV) echocardiography and invasive hemodynamics. A qPCR and histology of LV tissue unraveled underlying mechanisms. We found that MIT and HIIT halted T2DM development compared to in sedentary WD rats (p < 0.05). Both interventions prevented increases in LV end-systolic pressure, wall thickness and interstitial collagen content (p < 0.05). In LV tissue, HIIT tended to upregulate the gene expression of an ROS-generating enzyme (NOX4), while both modalities increased proinflammatory macrophage markers and cytokines (CD86, TNF-α, IL-1β; p < 0.05). HIIT promoted antioxidant and dicarbonyl defense systems (SOD2, glyoxalase 1; p < 0.05) whereas MIT elevated anti-inflammatory macrophage marker expression (CD206, CD163; p < 0.01). We conclude that both MIT and HIIT limit WD-induced T2DM with diastolic dysfunction and pathological LV hypertrophy, possibly using different adaptive mechanisms.
Collapse
Affiliation(s)
- Sarah D’Haese
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Lisa Claes
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Iris de Laat
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Sven Van Campenhout
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Dorien Deluyker
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Ellen Heeren
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Sibren Haesen
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Ivo Lambrichts
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Kristiaan Wouters
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Dominique Hansen
- UHasselt, Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Centre, Agoralaan, 3590 Diepenbeek, Belgium;
- Department of Cardiology, Heart Centre Hasselt, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - BO Eijnde
- SMRc-Sports Medicine Research Center, BIOMED-Biomedical Research Institute, Faculty of Medicine & Life Sciences, Hasselt University, 3500 Diepenbeek, Belgium;
- Division of Sport Science, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Virginie Bito
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| |
Collapse
|
2
|
Shabab S, Mahmoudabady M, Gholamnezhad Z, Fouladi M, Asghari AA. Diabetic cardiomyopathy in rats was attenuated by endurance exercise through the inhibition of inflammation and apoptosis. Heliyon 2024; 10:e23427. [PMID: 38163155 PMCID: PMC10757033 DOI: 10.1016/j.heliyon.2023.e23427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), as a ventricular dysfunction, is one of the main causes of death in diabetic patients. Former evidence revealed the beneficial effects of exercise on cardiovascular complications of diabetes. We aimed to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on DCM. Male Wistar rats were divided into control, diabetic, metformin (300 mg/kg), HIIT, MICT, metformin + HIIT, and metformin + MICT diabetic groups. Serum biochemical, inflammatory, and oxidative stress indicators, gene expression of BCL2 and BAX, and histopathologic changes of cardiac tissue were assessed. Our analysis revealed an increase in fasting blood sugar (FBS), creatine kinase MB (CK-MB), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) in diabetes. Also, the superoxide dismutase (SOD) and catalase (CAT) activity, and the total thiol were decreased, in contrast, malondialdehyde (MDA) levels increased in the cardiac tissue of the diabetic group. All of these changes were significantly ameliorated in diabetic animals treated with exercise and metformin + exercise. The level of tumor necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β), as well as the infiltration of inflammatory cells, were decreased in the heart of all exercise training groups. Up-regulation of BCL2 and down-regulation of BAX gene expressions were observed in the cardiac tissue of all exercise-treated groups. In conclusion, HIIT and MICT exercises are effective in preventing DCM development. Exercise training, besides improving oxidative stress and inflammation in cardiac tissue, alleviates cardiac damage by modulating the apoptotic gene expression in diabetic rats.
Collapse
Affiliation(s)
- Sadegh Shabab
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahtab Fouladi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Akbar Asghari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
D’Haese S, Verboven M, Evens L, Deluyker D, Lambrichts I, Eijnde BO, Hansen D, Bito V. Moderate- and High-Intensity Endurance Training Alleviate Diabetes-Induced Cardiac Dysfunction in Rats. Nutrients 2023; 15:3950. [PMID: 37764732 PMCID: PMC10535416 DOI: 10.3390/nu15183950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Exercise training is an encouraging approach to treat cardiac dysfunction in type 2 diabetes (T2DM), but the impact of its intensity is not understood. We aim to investigate whether and, if so, how moderate-intensity training (MIT) and high-intensity interval training (HIIT) alleviate adverse cardiac remodeling and dysfunction in rats with T2DM. Male rats received standard chow (n = 10) or Western diet (WD) to induce T2DM. Hereafter, WD rats were subjected to a 12-week sedentary lifestyle (n = 8), running MIT (n = 7) or HIIT (n = 7). Insulin resistance and glucose tolerance were assessed during the oral glucose tolerance test. Plasma advanced glycation end-products (AGEs) were evaluated. Echocardiography and hemodynamic measurements evaluated cardiac function. Underlying cardiac mechanisms were investigated by histology, western blot and colorimetry. We found that MIT and HIIT lowered insulin resistance and blood glucose levels compared to sedentary WD rats. MIT decreased harmful plasma AGE levels. In the heart, MIT and HIIT lowered end-diastolic pressure, left ventricular wall thickness and interstitial collagen deposition. Cardiac citrate synthase activity, mitochondrial oxidative capacity marker, raised after both exercise training modalities. We conclude that MIT and HIIT are effective in alleviating diastolic dysfunction and pathological cardiac remodeling in T2DM, by lowering fibrosis and optimizing mitochondrial capacity.
Collapse
Affiliation(s)
- Sarah D’Haese
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Maxim Verboven
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - Lize Evens
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - Dorien Deluyker
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - Ivo Lambrichts
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - BO Eijnde
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
- UHasselt, SMRC Sports Medical Research Center, Agoralaan, 3590 Diepenbeek, Belgium
- Division of Sport Science, Faculty of Medicine & Health Sciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Dominique Hansen
- UHasselt, REVAL Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Agoralaan, 3590 Diepenbeek, Belgium
- Department of Cardiology, Heart Centre Hasselt, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - Virginie Bito
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| |
Collapse
|
4
|
Bletsa E, Oikonomou E, Dimitriadis K, Stampouloglou PK, Fragoulis C, Lontou SP, Korakas E, Beneki E, Kalogeras K, Lambadiari V, Tsioufis K, Vavouranakis M, Siasos G. Exercise Effects on Left Ventricular Remodeling in Patients with Cardiometabolic Risk Factors. Life (Basel) 2023; 13:1742. [PMID: 37629599 PMCID: PMC10456116 DOI: 10.3390/life13081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Left ventricular (LV) remodeling is a dynamic process, which is characterized by changes in ventricular size, shape, and wall thickness, thus altering myocardial geometry and function, and is considered as a negative prognostic factor in patients with heart failure (HF). Hypertension, type 2 diabetes (T2D), and obesity are strongly correlated with the development and the progression of LV remodeling, LV hypertrophy, and LV systolic and/or diastolic dysfunction. Indeed, the beneficial impact of exercise training on primary and secondary prevention of cardiovascular disease (CVD) has been well-established. Recent studies have highlighted that exercise training enhances functional capacity, muscle strength and endurance, cardiac function, and cardiac-related biomarkers among patients with established coronary artery disease (CAD) or HF, thus substantially improving their cardiovascular prognosis, survival rates, and need for rehospitalization. Therefore, in this review article, we discuss the evidence of LV remodeling in patients with cardiometabolic risk factors, such as hypertension, T2D, and obesity, and also highlight the current studies evaluating the effect of exercise training on LV remodeling in these patients.
Collapse
Affiliation(s)
- Evanthia Bletsa
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece; (E.B.); (P.K.S.); (K.K.); (M.V.); (G.S.)
- Cardiometabolic Disease Unit, 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece; (E.K.); (V.L.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece; (E.B.); (P.K.S.); (K.K.); (M.V.); (G.S.)
- Cardiometabolic Disease Unit, 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece; (E.K.); (V.L.)
| | - Kyriakos Dimitriadis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokrateion General Hospital, 11527 Athens, Greece; (K.D.); (C.F.); (E.B.); (K.T.)
| | - Panagiota K. Stampouloglou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece; (E.B.); (P.K.S.); (K.K.); (M.V.); (G.S.)
| | - Christos Fragoulis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokrateion General Hospital, 11527 Athens, Greece; (K.D.); (C.F.); (E.B.); (K.T.)
- Heart and Diabetes Center, National and Kapodistrian University of Athens, Medical School, Hippokrateion General Hospital, 11527 Athens, Greece;
| | - Stavroula P. Lontou
- Heart and Diabetes Center, National and Kapodistrian University of Athens, Medical School, Hippokrateion General Hospital, 11527 Athens, Greece;
| | - Emmanouil Korakas
- Cardiometabolic Disease Unit, 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece; (E.K.); (V.L.)
- 2nd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Eirini Beneki
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokrateion General Hospital, 11527 Athens, Greece; (K.D.); (C.F.); (E.B.); (K.T.)
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece; (E.B.); (P.K.S.); (K.K.); (M.V.); (G.S.)
| | - Vaia Lambadiari
- Cardiometabolic Disease Unit, 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece; (E.K.); (V.L.)
- 2nd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokrateion General Hospital, 11527 Athens, Greece; (K.D.); (C.F.); (E.B.); (K.T.)
- Heart and Diabetes Center, National and Kapodistrian University of Athens, Medical School, Hippokrateion General Hospital, 11527 Athens, Greece;
| | - Manolis Vavouranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece; (E.B.); (P.K.S.); (K.K.); (M.V.); (G.S.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece; (E.B.); (P.K.S.); (K.K.); (M.V.); (G.S.)
- Cardiometabolic Disease Unit, 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece; (E.K.); (V.L.)
| |
Collapse
|
5
|
Petronilho A, Gois MDO, Sakaguchi C, Frade MCM, Roscani MG, Catai AM. Effects of Physical Exercise on Left Ventricular Function in Type 2 Diabetes Mellitus: A Systematic Review. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2023. [DOI: 10.36660/ijcs.20220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
6
|
Dasgupta K, Boulé N, Henson J, Chevalier S, Redman E, Chan D, McCarthy M, Champagne J, Arsenyadis F, Rees J, Da Costa D, Gregg E, Yeung R, Hadjiconstantinou M, Dattani A, Friedrich MG, Khunti K, Rahme E, Fortier I, Prado CM, Sherman M, Thompson RB, Davies MJ, McCann GP, Yates T. Remission of type 2 diabetes and improved diastolic function by combining structured exercise with meal replacement and food reintroduction among young adults: the RESET for REMISSION randomised controlled trial protocol. BMJ Open 2022; 12:e063888. [PMID: 36130753 PMCID: PMC9494595 DOI: 10.1136/bmjopen-2022-063888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) onset before 40 years of age has a magnified lifetime risk of cardiovascular disease. Diastolic dysfunction is its earliest cardiac manifestation. Low energy diets incorporating meal replacement products can induce diabetes remission, but do not lead to improved diastolic function, unlike supervised exercise interventions. We are examining the impact of a combined low energy diet and supervised exercise intervention on T2DM remission, with peak early diastolic strain rate, a sensitive MRI-based measure, as a key secondary outcome. METHODS AND ANALYSIS This prospective, randomised, two-arm, open-label, blinded-endpoint efficacy trial is being conducted in Montreal, Edmonton and Leicester. We are enrolling 100 persons 18-45 years of age within 6 years' T2DM diagnosis, not on insulin therapy, and with obesity. During the intensive phase (12 weeks), active intervention participants adopt an 800-900 kcal/day low energy diet combining meal replacement products with some food, and receive supervised exercise training (aerobic and resistance), three times weekly. The maintenance phase (12 weeks) focuses on sustaining any weight loss and exercise practices achieved during the intensive phase; products and exercise supervision are tapered but reinstituted, as applicable, with weight regain and/or exercise reduction. The control arm receives standard care. The primary outcome is T2DM remission, (haemoglobin A1c of less than 6.5% at 24 weeks, without use of glucose-lowering medications during maintenance). Analysis of remission will be by intention to treat with stratified Fisher's exact test statistics. ETHICS AND DISSEMINATION The trial is approved in Leicester (East Midlands - Nottingham Research Ethics Committee (21/EM/0026)), Montreal (McGill University Health Centre Research Ethics Board (RESET for remission/2021-7148)) and Edmonton (University of Alberta Health Research Ethics Board (Pro00101088). Findings will be shared widely (publications, presentations, press releases, social media platforms) and will inform an effectiveness trial. TRIAL REGISTRATION NUMBER ISRCTN15487120.
Collapse
Affiliation(s)
- Kaberi Dasgupta
- Department of Medicine, McGill University and Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Normand Boulé
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Henson
- Diabetes Research Centre, University of Leicester and NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Emma Redman
- Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust and NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Deborah Chan
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Matthew McCarthy
- Diabetes Research Centre, University of Leicester and NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Julia Champagne
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Frank Arsenyadis
- Diabetes Research Centre, University of Leicester and NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jordan Rees
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Deborah Da Costa
- Department of Medicine, McGill University and Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Edward Gregg
- School of Public Health, Imperial College London, London, UK
| | - Roseanne Yeung
- Division of Endocrinology & Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Michelle Hadjiconstantinou
- Diabetes Research Centre, University of Leicester and NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Abhishek Dattani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Matthias G Friedrich
- Courtois Cardiovascular Signature Centre, McGill University Health Centre and Departments of Medicine and Diagnostic Radiology, McGill University, Montreal, Quebec, Canada
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester and NIHR Applied Research Collaboration - East Midlands (ARC-EM), University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Elham Rahme
- Department of Medicine, McGill University and Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Isabel Fortier
- Department of Medicine, McGill University and Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Carla M Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Sherman
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Melanie J Davies
- Diabetes Research Centre, University of Leicester and NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Thomas Yates
- Diabetes Research Centre, University of Leicester and NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
7
|
Wang T, Li J, Li H, Zhong X, Wang L, Zhao S, Liu X, Huang Z, Wang Y. Aerobic Exercise Inhibited P2X7 Purinergic Receptors to Improve Cardiac Remodeling in Mice With Type 2 Diabetes. Front Physiol 2022; 13:828020. [PMID: 35711309 PMCID: PMC9197582 DOI: 10.3389/fphys.2022.828020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM), the main complication of diabetes mellitus, presents as cardiac dysfunction by ventricular remodeling. In addition, the inhibition of P2X7 purinergic receptors (P2X7R) alleviates cardiac fibrosis and apoptosis in Type 1 diabetes. However, whether exercise training improves cardiac remodeling by regulating P2X7R remains unknown. Methods: Db/db mice spontaneously induced with type 2 diabetes and high-fat diet (HFD) and mice with streptozotocin (STZ)-induced type 2 diabetes mice were treated by 12-week treadmill training. Cardiac functions were observed by two-dimensional echocardiography. Hematoxylin-eosin staining, Sirius red staining and transmission electron microscopy were respectively used to detect cardiac morphology, fibrosis and mitochondria. In addition, real-time polymerase chain reaction and Western Blot were used to detect mRNA and protein levels. Results: Studying the hearts of db/db mice and STZ-induced mice, we found that collagen deposition and the number of disordered cells significantly increased compared with the control group. However, exercise markedly reversed these changes, and the same tendency was observed in the expression of MMP9, COL-I, and TGF-β, which indicated cardiac fibrotic and hypertrophic markers, including ANP and MyHC expression. In addition, the increased Caspase-3 level and the ratio of Bax/Bcl2 were reduced by exercise training, and similar results were observed in the TUNEL test. Notably, the expression of P2X7R was greatly upregulated in the hearts of db/db mice and HFD + STZ-induced DM mice and downregulated by aerobic exercise. Moreover, we indicated that P2X7R knock out significantly reduced the collagen deposition and disordered cells in the DM group. Furthermore, the apoptosis levels and TUNEL analysis were greatly inhibited by exercise or in the P2X7R-/- group in DM. We found significant differences between the P2X7R-/- + DM + EX group and DM + EX group in myocardial tissue apoptosis and fibrosis, in which the former is significantly milder. Moreover, compared with the P2X7R-/- + DM group, the P2X7R-/- + DM + EX group represented a lower level of cardiac fibrosis. The expression levels of TGF-β at the protein level and TGF-β and ANP at the genetic level were evidently decreased in the P2X7R-/- + DM + EX group. Conclusion: Aerobic exercise reversed cardiac remodeling in diabetic mice at least partly through inhibiting P2X7R expression in cardiomyocytes.
Collapse
Affiliation(s)
- Ting Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Li
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Zhong
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luya Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shujue Zhao
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuesheng Liu
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yonghua Wang
- Department of Physical Education, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Van Ryckeghem L, Keytsman C, De Brandt J, Verboven K, Verbaanderd E, Marinus N, Franssen WMA, Frederix I, Bakelants E, Petit T, Jogani S, Stroobants S, Dendale P, Bito V, Verwerft J, Hansen D. Impact of continuous vs. interval training on oxygen extraction and cardiac function during exercise in type 2 diabetes mellitus. Eur J Appl Physiol 2022; 122:875-887. [PMID: 35038022 DOI: 10.1007/s00421-022-04884-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/28/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Exercise training improves exercise capacity in type 2 diabetes mellitus (T2DM). It remains to be elucidated whether such improvements result from cardiac or peripheral muscular adaptations, and whether these are intensity dependent. METHODS 27 patients with T2DM [without known cardiovascular disease (CVD)] were randomized to high-intensity interval training (HIIT, n = 15) or moderate-intensity endurance training (MIT, n = 12) for 24 weeks (3 sessions/week). Exercise echocardiography was applied to investigate cardiac output (CO) and oxygen (O2) extraction during exercise, while exercise capacity [([Formula: see text] (mL/kg/min)] was examined via cardiopulmonary exercise testing at baseline and after 12 and 24 weeks of exercise training, respectively. Changes in glycaemic control (HbA1c and glucose tolerance), lipid profile and body composition were also evaluated. RESULTS 19 patients completed 24 weeks of HIIT (n = 10, 66 ± 11 years) or MIT (n = 9, 61 ± 5 years). HIIT and MIT similarly improved glucose tolerance (pTime = 0.001, pInteraction > 0.05), [Formula: see text] (mL/kg/min) (pTime = 0.001, pInteraction > 0.05), and exercise performance (Wpeak) (pTime < 0.001, pInteraction > 0.05). O2 extraction increased to a greater extent after 24 weeks of MIT (56.5%, p1 = 0.009, pTime = 0.001, pInteraction = 0.007). CO and left ventricular longitudinal strain (LS) during exercise remained unchanged (pTime > 0.05). A reduction in HbA1c was correlated with absolute changes in LS after 12 weeks of MIT (r = - 0.792, p = 0.019, LS at rest) or HIIT (r = - 0.782, p = 0.038, LS at peak exercise). CONCLUSION In patients with well-controlled T2DM, MIT and HIIT improved exercise capacity, mainly resulting from increments in O2 extraction capacity, rather than changes in cardiac output. In particular, MIT seemed highly effective to generate these peripheral adaptations. TRIAL REGISTRATION NCT03299790, initially released 09/12/2017.
Collapse
Affiliation(s)
- Lisa Van Ryckeghem
- REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium. .,BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Charly Keytsman
- REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium.,BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jana De Brandt
- REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium.,BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Kenneth Verboven
- REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium.,BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Elvire Verbaanderd
- Physical Activity, Sport and Health Research Group, Faculty of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Nastasia Marinus
- REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium.,BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wouter M A Franssen
- REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium.,BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ines Frederix
- BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Cardiology, Virga Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium.,Faculty of Medicine and Health Sciences, Antwerp University, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Elise Bakelants
- Department of Cardiology, Virga Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium.,Hôpitaux Universitaires de Genève (HUG), Geneva, Switzerland
| | - Thibault Petit
- Department of Cardiology, Virga Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium.,Department of Cardiology, Hospital Oost-Limburg, Genk, Belgium
| | - Siddharth Jogani
- Department of Cardiology, Virga Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium
| | - Sarah Stroobants
- Department of Cardiology, Virga Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium
| | - Paul Dendale
- BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Cardiology, Virga Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium
| | - Virginie Bito
- BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jan Verwerft
- Department of Cardiology, Virga Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium
| | - Dominique Hansen
- REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium.,BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Cardiology, Virga Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium
| |
Collapse
|
9
|
Zhang T, Gao Z, Chen K. Exosomal microRNAs: potential targets for the prevention and treatment of diabetic cardiomyopathy. J Cardiol 2022; 80:423-431. [PMID: 35000826 DOI: 10.1016/j.jjcc.2021.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/06/2023]
Abstract
Diabetic cardiomyopathy (DCM), a condition in which myocardial dysfunction is caused by diabetes mellitus, has become an epidemic disorder in the world. DCM initially presents as diastolic relaxation dysfunction and will progress to heart failure in the absence of coronary artery disease, valvular disease, and other conventional cardiovascular risk factors such as hypertension and dyslipidemia. However, the underlying molecular mechanisms of DCM are poorly understood. Recent studies reveal that exosomal miRNAs are associated with multiple DCM risk factors and may act as potential therapeutic targets. Therefore, this review summarizes the recent advancements to understand the role of exosomal miRNAs in DCM development and explores potential preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Zhe Gao
- Ningbo Institute of Medical Sciences, Ningbo, China.
| | - Kuihao Chen
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China.
| |
Collapse
|
10
|
Alhumaid W, Small SD, Kirkham AA, Becher H, Pituskin E, Prado CM, Thompson RB, Haykowsky MJ, Paterson DI. A Contemporary Review of the Effects of Exercise Training on Cardiac Structure and Function and Cardiovascular Risk Profile: Insights From Imaging. Front Cardiovasc Med 2022; 9:753652. [PMID: 35265675 PMCID: PMC8898950 DOI: 10.3389/fcvm.2022.753652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Exercise is a commonly prescribed therapy for patients with established cardiovascular disease or those at high risk for de novo disease. Exercise-based, multidisciplinary programs have been associated with improved clinical outcomes post myocardial infarction and is now recommended for patients with cancer at elevated risk for cardiovascular complications. Imaging studies have documented numerous beneficial effects of exercise on cardiac structure and function, vascular function and more recently on the cardiovascular risk profile. In this contemporary review, we will discuss the effects of exercise training on imaging-derived cardiovascular outcomes. For cardiac imaging via echocardiography or magnetic resonance, we will review the effects of exercise on left ventricular function and remodeling in patients with established or at risk for cardiac disease (myocardial infarction, heart failure, cancer survivors), and the potential utility of exercise stress to assess cardiac reserve. Exercise training also has salient effects on vascular function and health including the attenuation of age-associated arterial stiffness and thickening as assessed by Doppler ultrasound. Finally, we will review recent data on the relationship between exercise training and regional adipose tissue deposition, an emerging marker of cardiovascular risk. Imaging provides comprehensive and accurate quantification of cardiac, vascular and cardiometabolic health, and may allow refinement of risk stratification in select patient populations. Future studies are needed to evaluate the clinical utility of novel imaging metrics following exercise training.
Collapse
Affiliation(s)
- Waleed Alhumaid
- Division of Cardiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Amy A. Kirkham
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
| | - Harald Becher
- Division of Cardiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Edith Pituskin
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Carla M. Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Richard B. Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mark J. Haykowsky
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - D. Ian Paterson
- Division of Cardiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- *Correspondence: D. Ian Paterson
| |
Collapse
|
11
|
Ren W, Duan Y, Jan YK, Ye W, Li J, Liu W, Liu H, Guo J, Pu F, Fan Y. Effect of Exercise Volume on Plantar Microcirculation and Tissue Hardness in People With Type 2 Diabetes. Front Bioeng Biotechnol 2021; 9:732628. [PMID: 34900954 PMCID: PMC8660562 DOI: 10.3389/fbioe.2021.732628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023] Open
Abstract
Objective: Exercise has been reported to be beneficial for people with type 2 diabetes (T2DM), but exercise, especially weight-bearing exercise, may increase the risk of diabetic foot ulcers (DFUs). This study aimed to explore the associations between different volumes of weight-bearing physical activities and plantar microcirculation and tissue hardness in people with T2DM. Methods: 130 elderly people with T2DM were enrolled for this cross-sectional study. They were classified into the high exercise volume group and the low exercise volume group based on their weekly energy expenditure (metabolic equivalents per week) in the past year. Weekly energy expenditure was calculated using the International Physical Activity Questionnaire and the Compendium of Physical Activities. The plantar oxygen saturation (SO2) and soft tissue hardness of each participant’s right foot were measured. Results: A total of 80 participants completed the trial. The average exercise energy expenditure of the high exercise volume group and the low exercise volume group were significantly different (p < 0.05). The results showed that the SO2 of the high exercise volume group (67.25 ± 6.12%) was significantly higher than the low exercise volume group (63.75 ± 8.02%, p < 0.05). The plantar tissue hardness of the high exercise volume group was lower than the low exercise volume group in the big toe, midfoot and hindfoot regions (p < 0.05). Conclusion: This study demonstrates that higher volumes of exercise are associated with better plantar microcirculation and lower plantar tissue hardness in people with T2DM. The findings of this study indicate that weight-bearing exercise may not increase risk of developing diabetic foot ulcers.
Collapse
Affiliation(s)
- Weiyan Ren
- Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Yijie Duan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yih-Kuen Jan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Rehabilitation Engineering Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Wenqiang Ye
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jianchao Li
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wei Liu
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongmei Liu
- Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China.,Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Junchao Guo
- Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Fang Pu
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
12
|
Zhang X, Hu C, Yuan XP, Yuan YP, Song P, Kong CY, Teng T, Hu M, Xu SC, Ma ZG, Tang QZ. Osteocrin, a novel myokine, prevents diabetic cardiomyopathy via restoring proteasomal activity. Cell Death Dis 2021; 12:624. [PMID: 34135313 PMCID: PMC8209005 DOI: 10.1038/s41419-021-03922-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Proteasomal activity is compromised in diabetic hearts that contributes to proteotoxic stresses and cardiac dysfunction. Osteocrin (OSTN) acts as a novel exercise-responsive myokine and is implicated in various cardiac diseases. Herein, we aim to investigate the role and underlying molecular basis of OSTN in diabetic cardiomyopathy (DCM). Mice received a single intravenous injection of the cardiotrophic adeno-associated virus serotype 9 to overexpress OSTN in the heart and then were exposed to intraperitoneal injections of streptozotocin (STZ, 50 mg/kg) for consecutive 5 days to generate diabetic models. Neonatal rat cardiomyocytes were isolated and stimulated with high glucose to verify the role of OSTN in vitro. OSTN expression was reduced by protein kinase B/forkhead box O1 dephosphorylation in diabetic hearts, while its overexpression significantly attenuated cardiac injury and dysfunction in mice with STZ treatment. Besides, OSTN incubation prevented, whereas OSTN silence aggravated cardiomyocyte apoptosis and injury upon hyperglycemic stimulation in vitro. Mechanistically, OSTN treatment restored protein kinase G (PKG)-dependent proteasomal function, and PKG or proteasome inhibition abrogated the protective effects of OSTN in vivo and in vitro. Furthermore, OSTN replenishment was sufficient to prevent the progression of pre-established DCM and had synergistic cardioprotection with sildenafil. OSTN protects against DCM via restoring PKG-dependent proteasomal activity and it is a promising therapeutic target to treat DCM.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Xiao-Pin Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Si-Chi Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China.
| |
Collapse
|
13
|
Bowman PRT, Smith GL, Gould GW. Run for your life: can exercise be used to effectively target GLUT4 in diabetic cardiac disease? PeerJ 2021; 9:e11485. [PMID: 34113491 PMCID: PMC8162245 DOI: 10.7717/peerj.11485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
The global incidence, associated mortality rates and economic burden of diabetes are now such that it is considered one of the most pressing worldwide public health challenges. Considerable research is now devoted to better understanding the mechanisms underlying the onset and progression of this disease, with an ultimate aim of improving the array of available preventive and therapeutic interventions. One area of particular unmet clinical need is the significantly elevated rate of cardiomyopathy in diabetic patients, which in part contributes to cardiovascular disease being the primary cause of premature death in this population. This review will first consider the role of metabolism and more specifically the insulin sensitive glucose transporter GLUT4 in diabetic cardiac disease, before addressing how we may use exercise to intervene in order to beneficially impact key functional clinical outcomes.
Collapse
Affiliation(s)
- Peter R T Bowman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
14
|
De Groote E, Deldicque L. Is Physical Exercise in Hypoxia an Interesting Strategy to Prevent the Development of Type 2 Diabetes? A Narrative Review. Diabetes Metab Syndr Obes 2021; 14:3603-3616. [PMID: 34413663 PMCID: PMC8370110 DOI: 10.2147/dmso.s322249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
Impaired metabolism is becoming one of the main causes of mortality and the identification of strategies to cure those diseases is a major public health concern. A number of therapies are being developed to treat type 2 diabetes mellitus (T2DM), but few of them focus on situations prior to diabetes. Obesity, aging and insulin resistance are all risk factors, which fortunately can be reversed to some extent. Non-drug interventions, such as exercise, are interesting strategies to prevent the onset of diabetes, but it remains to determine the optimal dose and conditions. In the search of optimizing the effects of physical exercise to prevent T2DM, hypoxic training has emerged as an interesting and original strategy. Several recent studies have chosen to look at the effects of hypoxic training in people at risk of developing T2DM. Therefore, the purpose of this narrative review is to give an overview of all original articles having tested the effects of a single exercise or exercise training in hypoxia on glucose metabolism and other health-related parameters in people at risk of developing T2DM. Taken together, the data on the effects of hypoxic training on glucose metabolism, insulin sensitivity and the health status of people at risk of T2DM are inconclusive. Some studies show that hypoxic training can improve glucose metabolism and the health status to a greater extent than normoxic training, while others do not corroborate the latter. When an additional benefit of hypoxic vs normoxic training is found, it still remains to determine which signaling pathways and molecular mechanisms are involved.
Collapse
Affiliation(s)
- Estelle De Groote
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Correspondence: Louise Deldicque Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin, 1 Box L08.10.01, Louvain-la-Neuve, 1348, BelgiumTel +32 10 47 44 43 Email
| |
Collapse
|
15
|
Sadighi A, abdi A, Azarbayjani MA, barari A. Response of Some Apoptotic Indices to Six Weeks of Aerobic Training in Streptozotocin-Induced Diabetic Rats. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.29252/mlj.15.1.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
16
|
Brinsley J, Girard D, Smout M, Davison K. Is yoga considered exercise within systematic reviews of exercise interventions? A scoping review. Complement Ther Med 2020; 56:102618. [PMID: 33189861 DOI: 10.1016/j.ctim.2020.102618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/08/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE Yoga is an increasingly popular choice of exercise for the Western population, with people engaging in yoga for a range of physical and mental health and well-being reasons. The aim of this scoping review is to examine whether yoga is considered an exercise modality within relevant leading journals, as evidenced by its consideration in systematic reviews (SRs) of exercise interventions for health-related outcomes. METHODS Design: Scoping review. DATA SOURCES Three leading sources (Sports Medicine, British Journal of Sports Medicine and Cochrane Collaboration) were searched. Eligibility criteria for selecting studies: The ten most recently published systematic reviews of exercise interventions for health-related outcomes from each journal were included (N = 30) that met these criteria: systematic review studying humans participating in general exercise and measuring a health-related outcome. Exercise interventions with any specific qualifying terms (e.g. aquatic, strength, aerobic) were excluded. RESULTS The articles retrieved were published between 2007 and 2019, and collectively included 991 interventions. Seven reviews explicitly stated that yoga was to be included/excluded while twenty-three studies made no mention of how yoga was being considered in the methodology. Five studies included yoga in the search strategy, implying its inclusion. Post-hoc analyses found that the definitions of exercise in general were also variable. Exercise definition specificity was not associated with whether or not yoga was assessed for inclusion. CONCLUSIONS Systematic reviews of exercise and physical activity interventions for health-related outcomes do not consistently make clear whether or not they include or exclude yoga as a form of exercise.
Collapse
Affiliation(s)
- Jacinta Brinsley
- Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Allied Health and Human Performance, Adelaide, Australia.
| | - Danielle Girard
- Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Allied Health and Human Performance, Adelaide, Australia
| | - Matthew Smout
- Justice and Society, University of South Australia, Adelaide, Australia
| | - Kade Davison
- Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Allied Health and Human Performance, Adelaide, Australia
| |
Collapse
|
17
|
Wake AD. Antidiabetic Effects of Physical Activity: How It Helps to Control Type 2 Diabetes. Diabetes Metab Syndr Obes 2020; 13:2909-2923. [PMID: 32884317 PMCID: PMC7443456 DOI: 10.2147/dmso.s262289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the improvements in clinical care of the patients, research updates, and public health interventions, there is still an increase in the prevalence, incidence, and mortality because of diabetes mellitus (DM). DM is a public health problem in both developed and developing countries. It has increased alarmingly, putting this disease in the dimension of an epidemic. Diabetes is associated with several complications which increase the risk of many serious health problems on the other side. Therefore, this review was aimed to discuss the antidiabetic effects of physical activity (PA) on type 2 DM (T2DM) by summarizing the significant studies on this topic. This review found that several studies have recommended the utilization of PA for the effective management of T2DM. PA is a non-pharmacologic therapy which is a significant strategy for the management of T2DM and is an appropriate lifestyle modification approach to be practiced by these patients. The studies showed that PA has antidiabetic effects which are evidenced by its substantial role in improving the blood glucose (BG) levels of the individuals with T2DM where it helps them to control their levels of glucose in the blood. It plays a significant role in glycemic control of this disease by lowering the BG levels through possible mechanisms such as decreasing insulin resistance, increasing production of glucose transporter type 4 (GLUT-4), lowering visceral adipose tissue (VAT), increasing pancreatic β-cell functions, using glucose for energy, and so on. In turn, the controlled glycemia helps to prevent the complications associated with uncontrolled T2DM and this would further improve the overall health of the patients and the burden on the health professionals as well. Finally, this review concludes that PA is the cornerstone in the management of T2DM. It also suggests that more attention is needed to its significance in the prevention, glycemic control, and its role in the management of the morbidity and mortality associated with T2DM. Practical PA recommendations and suggestions for the future direction of research in this area are also provided.
Collapse
Affiliation(s)
- Addisu Dabi Wake
- Nursing Department, College of Health Sciences, Arsi University, Assela, Oromia, Ethiopia
| |
Collapse
|
18
|
Christensen RH, Wedell-Neergaard AS, Lehrskov LL, Legaard GE, Dorph E, Larsen MK, Launbo N, Fagerlind SR, Seide SK, Nymand S, Ball M, Vinum NB, Dahl CN, Henneberg M, Ried-Larsen M, Boesen MP, Christensen R, Karstoft K, Krogh-Madsen R, Rosenmeier JB, Pedersen BK, Ellingsgaard H. Effect of Aerobic and Resistance Exercise on Cardiac Adipose Tissues: Secondary Analyses From a Randomized Clinical Trial. JAMA Cardiol 2020; 4:778-787. [PMID: 31268469 DOI: 10.1001/jamacardio.2019.2074] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Epicardial and pericardial adipose tissues are emerging as important risk factors for cardiovascular disease, and there is a growing interest in discovering strategies to reduce the accumulation of fat in these depots. Objective To investigate whether a 12-week endurance or resistance training intervention regulates epicardial and pericardial adipose tissue mass. Design, Setting, and Participants Secondary analysis of a randomized, assessor-blinded clinical trial initiated on August 2016 and completed April 2018. This single-center, community-based study included 50 physically inactive participants with abdominal obesity. Interventions Participants were randomized to a supervised high-intensity interval endurance training (3 times a week for 45 minutes), resistance training (3 times a week for 45 minutes), or no exercise (control group). Main Outcomes and Measures Change in epicardial and pericardial adipose tissue mass assessed by magnetic resonance imaging, based on a prespecified secondary analysis plan including 3 of 5 parallel groups. Results Of 50 participants (mean [SD] age, 41 [14] years, 10 men [26%]; mean [SD] body mass index [calculated as weight in kilograms divided by height in meters squared], 32 [5]), 39 [78%] completed the study. Endurance training and resistance training reduced epicardial adipose tissue mass by 32% (95% CI, 10%-53%) and 24% (95% CI, 1%-46%), respectively, compared with the no exercise control group (56% [95% CI, 24%-88%]; P = .001 and 48% [95% CI, 15%-81%]; P < .001, respectively). While there was a nonsignificant reduction in pericardial adipose tissue mass after endurance training (11% [95% CI, -5% to 27%]; P = .17), resistance training significantly reduced pericardial adipose tissue mass by 31% (95% CI, 16%-47%; P < .001) when compared with the no exercise control group. Compared with the no exercise control group, there was an increase in left ventricular mass by endurance (20 g [95% CI, 11%-30%]; P < .001) and resistance training (18 g [95% CI, 8%-28%]; P < .001). Other cardiometabolic outcomes remained unchanged after the 12-week trial period. Conclusions and Relevance In individuals with abdominal obesity, both endurance and resistance training reduced epicardial adipose tissue mass, while only resistance training reduced pericardial adipose tissue mass. These data highlight the potential preventive importance of different exercise modalities as means to reduce cardiac fat in individuals with abdominal obesity. Trial Registration ClinicalTrials.gov identifier: NCT02901496.
Collapse
Affiliation(s)
- Regitse Højgaard Christensen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sophie Wedell-Neergaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Louise Lang Lehrskov
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Grit Elster Legaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Emma Dorph
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Monica Korsager Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Natja Launbo
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sabrina Ravn Fagerlind
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sidsel Kofoed Seide
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stine Nymand
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Maria Ball
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Buchner Vinum
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Nørfelt Dahl
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marie Henneberg
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Ploug Boesen
- Department of Radiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Robin Christensen
- Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.,Department of Rheumatology, Institute of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Kristian Karstoft
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jaya Birgitte Rosenmeier
- Department of Cardiology, Copenhagen University Hospital Bispebjerg, Capital Region of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Helga Ellingsgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Gulsin GS, Swarbrick DJ, Athithan L, Brady EM, Henson J, Baldry E, Argyridou S, Jaicim NB, Squire G, Walters Y, Marsh AM, McAdam J, Parke KS, Biglands JD, Yates T, Khunti K, Davies MJ, McCann GP. Effects of Low-Energy Diet or Exercise on Cardiovascular Function in Working-Age Adults With Type 2 Diabetes: A Prospective, Randomized, Open-Label, Blinded End Point Trial. Diabetes Care 2020; 43:1300-1310. [PMID: 32220917 DOI: 10.2337/dc20-0129] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/02/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To confirm the presence of subclinical cardiovascular dysfunction in working-age adults with type 2 diabetes (T2D) and determine whether this is improved by a low-energy meal replacement diet (MRP) or exercise training. RESEARCH DESIGN AND METHODS This article reports on a prospective, randomized, open-label, blinded end point trial with nested case-control study. Asymptomatic younger adults with T2D were randomized 1:1:1 to a 12-week intervention of 1) routine care, 2) supervised aerobic exercise training, or 3) a low-energy (∼810 kcal/day) MRP. Participants underwent echocardiography, cardiopulmonary exercise testing, and cardiac magnetic resonance (CMR) at baseline and 12 weeks. The primary outcome was change in left ventricular (LV) peak early diastolic strain rate (PEDSR) as measured by CMR. Healthy volunteers were enrolled for baseline case-control comparison. RESULTS Eighty-seven participants with T2D (age 51 ± 7 years, HbA1c 7.3 ± 1.1%) and 36 matched control participants were included. At baseline, those with T2D had evidence of diastolic dysfunction (PEDSR 1.01 ± 0.19 vs. 1.10 ± 0.16 s-1, P = 0.02) compared with control participants. Seventy-six participants with T2D completed the trial (30 routine care, 22 exercise, and 24 MRP). The MRP arm lost 13 kg in weight and had improved blood pressure, glycemia, LV mass/volume, and aortic stiffness. The exercise arm had negligible weight loss but increased exercise capacity. PEDSR increased in the exercise arm versus routine care (β = 0.132, P = 0.002) but did not improve with the MRP (β = 0.016, P = 0.731). CONCLUSIONS In asymptomatic working-age adults with T2D, exercise training improved diastolic function. Despite beneficial effects of weight loss on glycemic control, concentric LV remodeling, and aortic stiffness, a low-energy MRP did not improve diastolic function.
Collapse
Affiliation(s)
- Gaurav S Gulsin
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, U.K
| | - Daniel J Swarbrick
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, U.K
| | - Lavanya Athithan
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, U.K
| | - Emer M Brady
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, U.K
| | - Joseph Henson
- Diabetes Research Centre, University of Leicester and the NIHR Leicester Biomedical Research Centre, Leicester, U.K
| | - Emma Baldry
- Diabetes Research Centre, University of Leicester and the NIHR Leicester Biomedical Research Centre, Leicester, U.K
| | - Stavroula Argyridou
- Diabetes Research Centre, University of Leicester and the NIHR Leicester Biomedical Research Centre, Leicester, U.K
| | - Nishal B Jaicim
- Leicester Clinical Trials Unit, University of Leicester, Leicester, U.K
| | - Gareth Squire
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, U.K
| | - Yvette Walters
- Leicester Clinical Trials Unit, University of Leicester, Leicester, U.K
| | - Anna-Marie Marsh
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, U.K
| | - John McAdam
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, U.K
| | - Kelly S Parke
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, U.K
| | | | - Thomas Yates
- Diabetes Research Centre, University of Leicester and the NIHR Leicester Biomedical Research Centre, Leicester, U.K
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester and the NIHR Leicester Biomedical Research Centre, Leicester, U.K
| | - Melanie J Davies
- Diabetes Research Centre, University of Leicester and the NIHR Leicester Biomedical Research Centre, Leicester, U.K
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, U.K.
| |
Collapse
|
20
|
Exercise as A Potential Therapeutic Target for Diabetic Cardiomyopathy: Insight into the Underlying Mechanisms. Int J Mol Sci 2019; 20:ijms20246284. [PMID: 31842522 PMCID: PMC6940726 DOI: 10.3390/ijms20246284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is associated with cardiovascular, ophthalmic, and renal comorbidities. Among these, diabetic cardiomyopathy (DCM) causes the most severe symptoms and is considered to be a major health problem worldwide. Exercise is widely known as an effective strategy for the prevention and treatment of many chronic diseases. Importantly, the onset of complications arising due to diabetes can be delayed or even prevented by exercise. Regular exercise is reported to have positive effects on diabetes mellitus and the development of DCM. The protective effects of exercise include prevention of cardiac apoptosis, fibrosis, oxidative stress, and microvascular diseases, as well as improvement in cardiac mitochondrial function and calcium regulation. This review summarizes the recent scientific findings to describe the potential mechanisms by which exercise may prevent DCM and heart failure.
Collapse
|
21
|
VERBOVEN KENNETH, WENS INEZ, VANDENABEELE FRANK, STEVENS AN, CELIE BERT, LAPAUW BRUNO, DENDALE PAUL, VAN LOON LUCJC, CALDERS PATRICK, HANSEN DOMINIQUE. Impact of Exercise–Nutritional State Interactions in Patients with Type 2 Diabetes. Med Sci Sports Exerc 2019; 52:720-728. [DOI: 10.1249/mss.0000000000002165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Association Between Cardiorespiratory Fitness and Risk of Heart Failure: A Meta-Analysis. J Card Fail 2019; 25:537-544. [DOI: 10.1016/j.cardfail.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/22/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
|
23
|
Ferraro B, Donniacuo M, Sodano L, Ferraraccio F, Maisto R, Gulotta E, Pieretti G, D'Amico M, Trotta MC, Rinaldi B. Addition of the Aldose Reductase Inhibitor Benzofuroxane Derivative BF-5m to Prolonged and Moderate Exercise Training Enhanced Protection of the Rat Heart From Type-1 Diabetes. Front Pharmacol 2019; 10:392. [PMID: 31040781 PMCID: PMC6476970 DOI: 10.3389/fphar.2019.00392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/29/2019] [Indexed: 11/30/2022] Open
Abstract
Moderate exercise training may not be sufficient to exert beneficial effects on the cardiovascular system because of the long-term multifactorial etiology of diabetic complications. The addition of a proper pharmacological tool to the physical exercise should improve the outcomes of the diabetic damage. Here it is shown that 8 weeks exercise training of type 1 diabetic Sprague-Dawley (SD) rats resulted in a significantly increased heart rate, a 14% increase in the left ventricular ejection fraction (LVEF) increased plasma insulin levels and a 13% decrease in plasma glucose with respect to sedentary animals. The training also resulted in a 22% reduction in cardiac QT interval from a diabetic sedentary value of 185 ± 19 ms. Treatment of trained rats with the new antioxidant and NO-releasing aldose reductase 2 inhibitor 5(6)-(benzo[d]thiazol-2-ylmethoxy) benzofuroxane BF-5m, 20 mg/kg/day, added a further and significant (P < 0.01 vs. sedentary) increase of the LVEF up to 38% at 8 week time point. The long QT interval recorded in trained rats was reduced to further 12% by addition to the training of pharmacological treatment with 20 mg/kg/day BF-5m. At this time, the association of the two treatments improved the expression into the cardiac tissue of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and manganese superoxide dismutase (MnSOD), and reduced the fibrosis.
Collapse
Affiliation(s)
- Bartolo Ferraro
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.,DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | - Maria Donniacuo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Naples, Italy
| | - Loredana Sodano
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Naples, Italy
| | - Franca Ferraraccio
- Department of Clinical, Public and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Rosa Maisto
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Naples, Italy
| | - Eliana Gulotta
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, Palermo, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Surgical and Dental Specialities, University of Campania "L. Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Naples, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Naples, Italy
| | - Barbara Rinaldi
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|