1
|
Collij LE, Farrar G, Zwan M, van de Giessen E, Ossenkoppele R, Barkhof F, Rozemuller AJM, Pijnenburg YAL, van der Flier WM, Bouwman F. Clinical outcomes up to 9 years after [ 18F]flutemetamol amyloid-PET in a symptomatic memory clinic population. Alzheimers Res Ther 2023; 15:207. [PMID: 38012799 PMCID: PMC10680192 DOI: 10.1186/s13195-023-01351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Previous studies demonstrated increases in diagnostic confidence and change in patient management after amyloid-PET. However, studies investigating longitudinal outcomes over an extended period of time are limited. Therefore, we aimed to investigate clinical outcomes up to 9 years after amyloid-PET to support the clinical validity of the imaging technique. METHODS We analyzed longitudinal data from 200 patients (Mage = 61.8, 45.5% female, MMMSE = 23.3) suspected of early-onset dementia that underwent [18F]flutemetamol-PET. Baseline amyloid status was determined through visual read (VR). Information on mortality was available with a mean follow-up of 6.7 years (range = 1.1-9.3). In a subset of 108 patients, longitudinal cognitive scores and clinical etiological diagnosis (eDx) at least 1 year after amyloid-PET acquisition were available (M = 3.06 years, range = 1.00-7.02). VR - and VR + patients were compared on mortality rates with Cox Hazard's model, prevalence of stable eDx using chi-square test, and longitudinal cognition with linear mixed models. Neuropathological data was available for 4 patients (mean delay = 3.59 ± 1.82 years, range = 1.2-6.3). RESULTS At baseline, 184 (92.0%) patients were considered to have dementia. The majority of VR + patients had a primary etiological diagnosis of AD (122/128, 95.3%), while the VR - group consisted mostly of non-AD etiologies, most commonly frontotemporal lobar degeneration (30/72, 40.2%). Overall mortality rate was 48.5% and did not differ between VR - and VR + patients. eDx at follow-up was consistent with baseline diagnosis for 92/108 (85.2%) patients, with most changes observed in VR - cases (VR - = 14/35, 40% vs VR + = 2/73, 2.7%, χ2 = 26.03, p < 0.001), who at no time received an AD diagnosis. VR + patients declined faster than VR - patients based on MMSE (β = - 1.17, p = 0.004), episodic memory (β = - 0.78, p = 0.003), fluency (β = - 1.44, p < 0.001), and attention scores (β = 16.76, p = 0.03). Amyloid-PET assessment was in line with post-mortem confirmation in all cases; two cases were VR + and showed widespread AD pathology, while the other two cases were VR - and showed limited amyloid pathology. CONCLUSION In a symptomatic population, we observed that amyloid-status did not impact mortality rates, but is predictive of cognitive functioning over time across several domains. Also, we show particular validity for a negative amyloid-PET assessment, as these patients did not receive an AD diagnosis at follow-up.
Collapse
Affiliation(s)
- Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| | | | - Marissa Zwan
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Centre for Medical Image Computing, and Queen Square Institute of Neurology, UCL, London, UK
| | | | - Yolande A L Pijnenburg
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
| | - Femke Bouwman
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Topçuoğlu ES, Akdemir ÜÖ, Atay LÖ. What is New in Nuclear Medicine Imaging for Dementia. Noro Psikiyatr Ars 2022; 59:S17-S23. [PMID: 36578980 PMCID: PMC9767133 DOI: 10.29399/npa.28155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/02/2022] [Indexed: 12/31/2022] Open
Abstract
Advances in the molecular biology, pathology and genetics of Alzheimer's disease (AD) and other degenerative dementias have led to the development of biomarkers specific to these diseases and radiotracers that are used in nuclear medicine. Imaging and non-imaging markers have enabled very early recognition of these diseases and have caused significant changes in their definitions. Amyloid positron emission tomography (PET) and tau PET, which are molecular imaging methods, [F18]fluorodeoxyglucose (FDG) PET showing the glucose metabolism pattern in the brain, dopamine transporter single photon emission computerized tomography (SPECT) that marks dopaminergic terminals are valuable tools for early recognition and differentiation of AD and its atypical variants, frontotemporal dementias and dementia with Lewy bodies. These imaging methods, which have different advantages over each other, have different indications for use and sometimes provide complementary information. In addition, research on radiotracers targeting neuroinflammation, astrocytes, synaptic density, and cholinergic terminals is ongoing. In this review, routinely used and newly developed nuclear imaging methods in AD and other neurodegenerative dementias, the agents used and their diagnostic features will be presented together with case examples.
Collapse
Affiliation(s)
- Esen Saka Topçuoğlu
- Hacettepe University Faculty of Medicine, Department of Neurology, Ankara, Turkey,Correspondence Address: Esen Saka Topçuoğlu, Maidan İş Merkezi, B-blok, 146 no’lu ofis, Mustafa Kemal Mah. Ankara, Turkey • E-mail:
| | - Ümit Özgür Akdemir
- Gazi University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey
| | - Lütfiye Özlem Atay
- Gazi University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Zhang J, Dong A, Wang Y. Solitary Isolated Dural Metastasis From Lung Adenocarcinoma Mimicking Meningioma. Clin Nucl Med 2022; 47:283-285. [PMID: 34619702 DOI: 10.1097/rlu.0000000000003923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Solitary isolated dural metastasis is extremely rare. Distinguishing solitary dural metastasis from meningioma based on radiological findings can be challenging. We describe MRI and FDG PET/CT findings in 2 cases of histologically proved solitary isolated dural metastasis from lung adenocarcinoma. Enhanced brain MRI of the 2 cases showed parafalcine extra-axial, dural-based tumors with hypervascularity mimicking meningioma. Preoperative FDG PET/CT was performed in one case with a known history of lung adenocarcinoma showing intense FDG uptake of the parafalcine tumor. Postoperative FDG PET/CT was performed in the other case showing solitary lung tumor, suggestive of the primary tumor.
Collapse
Affiliation(s)
- Jun Zhang
- From the Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Jiaxing University, Jiaxing, Zhejiang Province
| | - Aisheng Dong
- Department of Nuclear Medicine, Changhai Hospital, Navy Medical University
| | - Yang Wang
- Department of Pathology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Li R, Lu F, Sun X, He L, Duan H, Peng W, Wu C. Development and in vivo Evaluation of Hydroxy-α-Sanshool Intranasal Liposomes as a Potential Remedial Treatment for Alzheimer’s Disease. Int J Nanomedicine 2022; 17:185-201. [PMID: 35046654 PMCID: PMC8761002 DOI: 10.2147/ijn.s339979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Hydroxy-α-sanshool (HAS) improves cognitive dysfunction, but its structural instability has limited its clinical application. The present study was conducted to investigate the optimal formulation of hydroxy-α-sanshool liposomes (HAS-LPs) and its effect on ameliorating learning and memory disorders in an Alzheimer’s disease (AD) model. Methods In this study, HAS was prepared as HAS-LP using a thin film dispersion method. After selecting the optimal preparation conditions, HAS-LP was characterized using transmission electron microscopy (TEM) and by measuring the zeta potential, particle size, and in vitro drug release. Next, evaluated the effect of HAS-LP on the rat nasal mucosa and then applied it to AD mice. By performing behaviour experiments, pathological test and related pharmacokinetic parameters, we explored its effect on attenuating learning and memory impairment in mice. Results When the mass ratio of HAS:cholesterol:soybean lecithin was 1:4:16 and 15 mL of ultrapure water were added, the highest encapsulation efficiency and drug loading were obtained. HAS-LP had a particle size of 181.77 nm, a polydispersity index of 0.207 and a zeta potential of −53.8 mV, and it remained stable at 25 °C for 1 week and 4 °C for 8 weeks. Moreover, HAS-LP exhibited slow drug release and was highly consistent with the Higuchi release model. HAS-LP was not significantly toxic to the nasal mucosa and effectively alleviated D-galactose-induced learning memory deficits and protected mouse hippocampal neuronal cells. HAS-LP was highly enriched in plasma and brain tissue after administration via the nasal route and obtained some ability to target the brain. Conclusion HAS encapsulated in soybean lecithin and cholesterol was successfully developed, suggesting that treatment with the nanoparticles might reverse some AD symptoms. Therefore, these nanoparticles might be used as promising new candidates for the delivery of HAS to treat AD.
Collapse
Affiliation(s)
- Ruolan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Feng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Xue Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Liying He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - HuXinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
- Correspondence: Wei Peng; ChunJie Wu Tel/Fax +86-28-61801001 Email ;
| | - ChunJie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| |
Collapse
|
5
|
Ni R. Positron Emission Tomography in Animal Models of Alzheimer's Disease Amyloidosis: Translational Implications. Pharmaceuticals (Basel) 2021; 14:1179. [PMID: 34832961 PMCID: PMC8623863 DOI: 10.3390/ph14111179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models of Alzheimer's disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research and have greatly enabled the mechanistic understanding of Alzheimer's disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models is essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models and in patients with Alzheimer's disease. These tools have facilitated our understanding of disease mechanisms and provided longitudinal monitoring of treatment effects in animal models of Alzheimer's disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment, and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer's disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes and discuss outstanding challenges in disease animal models and future outlook in the on-chip characterization of imaging biomarkers towards clinical translation.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
6
|
18F-florbetapir PET as a marker of myelin integrity across the Alzheimer's disease spectrum. Eur J Nucl Med Mol Imaging 2021; 49:1242-1253. [PMID: 34581847 PMCID: PMC8921113 DOI: 10.1007/s00259-021-05493-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/08/2021] [Indexed: 01/23/2023]
Abstract
Purpose Recent evidence suggests that PET imaging with amyloid-β (Aβ) tracers can be used to assess myelin integrity in cerebral white matter (WM). Alzheimer’s disease (AD) is characterized by myelin changes that are believed to occur early in the disease course. Nevertheless, the extent to which demyelination, as measured with Aβ PET, contributes to AD progression remains unexplored. Methods Participants with concurrent 18F-florbetapir (FBP) PET, MRI, and cerebrospinal fluid (CSF) examinations were included (241 cognitively normal, 347 Aβ-positive cognitively impaired, and 207 Aβ-negative cognitively impaired subjects). A subset of these participants had also available diffusion tensor imaging (DTI) images (n = 195). We investigated cross-sectional associations of FBP retention in the white matter (WM) with MRI-based markers of WM degeneration, AD clinical progression, and fluid biomarkers. In longitudinal analyses, we used linear mixed models to assess whether FBP retention in normal-appearing WM (NAWM) predicted progression of WM hyperintensity (WMH) burden and clinical decline. Results In AD-continuum individuals, FBP retention in NAWM was (1) higher compared with WMH regions, (2) associated with DTI-based measures of WM integrity, and (3) associated with longitudinal progression of WMH burden. FBP uptake in WM decreased across the AD continuum and with increasingly abnormal CSF biomarkers of AD. Furthermore, FBP retention in the WM was associated with large-calibre axon degeneration as reflected by abnormal plasma neurofilament light chain levels. Low FBP uptake in NAWM predicted clinical decline in preclinical and prodromal AD, independent of demographics, global cortical Aβ, and WMH burden. Most of these associations were also observed in Aβ-negative cognitively impaired individuals. Conclusion These results support the hypothesis that FBP retention in the WM is myelin-related. Demyelination levels progressed across the AD continuum and were associated with clinical progression at early stages, suggesting that this pathologic process might be a relevant degenerative feature in the disease course. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05493-y.
Collapse
|
7
|
Royse SK, Minhas DS, Lopresti BJ, Murphy A, Ward T, Koeppe RA, Bullich S, DeSanti S, Jagust WJ, Landau SM. Validation of amyloid PET positivity thresholds in centiloids: a multisite PET study approach. ALZHEIMERS RESEARCH & THERAPY 2021; 13:99. [PMID: 33971965 PMCID: PMC8111744 DOI: 10.1186/s13195-021-00836-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
Background Inconsistent positivity thresholds, image analysis pipelines, and quantitative outcomes are key challenges of multisite studies using more than one β-amyloid (Aβ) radiotracer in positron emission tomography (PET). Variability related to these factors contributes to disagreement and lack of replicability in research and clinical trials. To address these problems and promote Aβ PET harmonization, we used [18F]florbetaben (FBB) and [18F]florbetapir (FBP) data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to derive (1) standardized Centiloid (CL) transformations and (2) internally consistent positivity thresholds based on separate young control samples. Methods We analyzed Aβ PET data using a native-space, automated image processing pipeline that is used for PET quantification in many large, multisite AD studies and trials and made available to the research community. With this pipeline, we derived SUVR-to-CL transformations using the Global Alzheimer’s Association Interactive Network data; we used reference regions for cross-sectional (whole cerebellum) and longitudinal (subcortical white matter, brain stem, whole cerebellum) analyses. Finally, we developed a FBB positivity threshold using an independent young control sample (N=62) with methods parallel to our existing FBP positivity threshold and validated the FBB threshold using a data-driven approach in ADNI participants (N=295). Results The FBB threshold based on the young sample (1.08; 18 CL) was consistent with that of the data-driven approach (1.10; 21 CL), and the existing FBP threshold converted to CL with the derived transformation (1.11; 20 CL). The following equations can be used to convert whole cerebellum- (cross-sectional) and composite- (longitudinal) normalized FBB and FBP data quantified with the native-space pipeline to CL units: [18F]FBB: CLwhole cerebellum = 157.15 × SUVRFBB − 151.87; threshold=1.08, 18 CL [18F]FBP: CLwhole cerebellum = 188.22 × SUVRFBP − 189.16; threshold=1.11, 20 CL [18F]FBB: CLcomposite = 244.20 × SUVRFBB − 170.80 [18F]FBP: CLcomposite = 300.66 × SUVRFBP − 208.84 Conclusions FBB and FBP positivity thresholds derived from independent young control samples and quantified using an automated, native-space approach result in similar CL values. These findings are applicable to thousands of available and anticipated outcomes analyzed using this pipeline and shared with the scientific community. This work demonstrates the feasibility of harmonized PET acquisition and analysis in multisite PET studies and internal consistency of positivity thresholds in standardized units. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00836-1.
Collapse
Affiliation(s)
- Sarah K Royse
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Davneet S Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alice Murphy
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Tyler Ward
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Robert A Koeppe
- Division of Nuclear Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
8
|
Patel KP, Wymer DT, Bhatia VK, Duara R, Rajadhyaksha CD. Multimodality Imaging of Dementia: Clinical Importance and Role of Integrated Anatomic and Molecular Imaging. Radiographics 2021; 40:200-222. [PMID: 31917652 DOI: 10.1148/rg.2020190070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are a devastating group of disorders that can be difficult to accurately diagnose. Although these disorders are difficult to manage owing to relatively limited treatment options, an early and correct diagnosis can help with managing symptoms and coping with the later stages of these disease processes. Both anatomic structural imaging and physiologic molecular imaging have evolved to a state in which these neurodegenerative processes can be identified relatively early with high accuracy. To determine the underlying disease, the radiologist should understand the different distributions and pathophysiologic processes involved. High-spatial-resolution MRI allows detection of subtle morphologic changes, as well as potential complications and alternate diagnoses, while molecular imaging allows visualization of altered function or abnormal increased or decreased concentration of disease-specific markers. These methodologies are complementary. Appropriate workup and interpretation of diagnostic studies require an integrated, multimodality, multidisciplinary approach. This article reviews the protocols and findings at MRI and nuclear medicine imaging, including with the use of flurodeoxyglucose, amyloid tracers, and dopaminergic transporter imaging (ioflupane). The pathophysiology of some of the major neurodegenerative processes and their clinical presentations are also reviewed; this information is critical to understand how these imaging modalities work, and it aids in the integration of clinical data to help synthesize a final diagnosis. Radiologists and nuclear medicine physicians aiming to include the evaluation of neurodegenerative diseases in their practice should be aware of and familiar with the multiple imaging modalities available and how using these modalities is essential in the multidisciplinary management of patients with neurodegenerative diseases.©RSNA, 2020.
Collapse
Affiliation(s)
- Kunal P Patel
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - David T Wymer
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - Vinay K Bhatia
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - Ranjan Duara
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - Chetan D Rajadhyaksha
- From the Department of Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| |
Collapse
|
9
|
Ricci M, Cimini A, Chiaravalloti A, Filippi L, Schillaci O. Positron Emission Tomography (PET) and Neuroimaging in the Personalized Approach to Neurodegenerative Causes of Dementia. Int J Mol Sci 2020; 21:ijms21207481. [PMID: 33050556 PMCID: PMC7589353 DOI: 10.3390/ijms21207481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Generally, dementia should be considered an acquired syndrome, with multiple possible causes, rather than a specific disease in itself. The leading causes of dementia are neurodegenerative and non-neurodegenerative alterations. Nevertheless, the neurodegenerative group of diseases that lead to cognitive impairment and dementia includes multiple possibilities or mixed pathologies with personalized treatment management for each cause, even if Alzheimer's disease is the most common pathology. Therefore, an accurate differential diagnosis is mandatory in order to select the most appropriate therapy approach. The role of personalized assessment in the treatment of dementia is rapidly growing. Neuroimaging is an essential tool for differential diagnosis of multiple causes of dementia and allows a personalized diagnostic and therapeutic protocol based on risk factors that may improve treatment management, especially in early diagnosis during the prodromal stage. The utility of structural and functional imaging could be increased by standardization of acquisition and analysis methods and by the development of algorithms for automated assessment. The aim of this review is to focus on the most commonly used tracers for differential diagnosis in the dementia field. Particularly, we aim to explore 18F Fluorodeoxyglucose (FDG) and amyloid positron emission tomography (PET) imaging in Alzheimer's disease and in other neurodegenerative causes of dementia.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (A.C.); (O.S.)
- Correspondence:
| | - Andrea Cimini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Luca Filippi
- Nuclear Medicine Section, “Santa Maria Goretti” Hospital, 04100 Latina, Italy;
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
10
|
Collij LE, Heeman F, Salvadó G, Ingala S, Altomare D, de Wilde A, Konijnenberg E, van Buchem M, Yaqub M, Markiewicz P, Golla SSV, Wottschel V, Wink AM, Visser PJ, Teunissen CE, Lammertsma AA, Scheltens P, van der Flier WM, Boellaard R, van Berckel BNM, Molinuevo JL, Gispert JD, Schmidt ME, Barkhof F, Lopes Alves I. Multitracer model for staging cortical amyloid deposition using PET imaging. Neurology 2020; 95:e1538-e1553. [PMID: 32675080 PMCID: PMC7713745 DOI: 10.1212/wnl.0000000000010256] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To develop and evaluate a model for staging cortical amyloid deposition using PET with high generalizability. METHODS Three thousand twenty-seven individuals (1,763 cognitively unimpaired [CU], 658 impaired, 467 with Alzheimer disease [AD] dementia, 111 with non-AD dementia, and 28 with missing diagnosis) from 6 cohorts (European Medical Information Framework for AD, Alzheimer's and Family, Alzheimer's Biomarkers in Daily Practice, Amsterdam Dementia Cohort, Open Access Series of Imaging Studies [OASIS]-3, Alzheimer's Disease Neuroimaging Initiative [ADNI]) who underwent amyloid PET were retrospectively included; 1,049 individuals had follow-up scans. With application of dataset-specific cutoffs to global standard uptake value ratio (SUVr) values from 27 regions, single-tracer and pooled multitracer regional rankings were constructed from the frequency of abnormality across 400 CU individuals (100 per tracer). The pooled multitracer ranking was used to create a staging model consisting of 4 clusters of regions because it displayed a high and consistent correlation with each single-tracer ranking. Relationships between amyloid stage, clinical variables, and longitudinal cognitive decline were investigated. RESULTS SUVr abnormality was most frequently observed in cingulate, followed by orbitofrontal, precuneal, and insular cortices and then the associative, temporal, and occipital regions. Abnormal amyloid levels based on binary global SUVr classification were observed in 1.0%, 5.5%, 17.9%, 90.0%, and 100.0% of individuals in stage 0 to 4, respectively. Baseline stage predicted decline in Mini-Mental State Examination (MMSE) score (ADNI: n = 867, F = 67.37, p < 0.001; OASIS: n = 475, F = 9.12, p < 0.001) and faster progression toward an MMSE score ≤25 (ADNI: n = 787, hazard ratio [HR]stage1 2.00, HRstage2 3.53, HRstage3 4.55, HRstage4 9.91, p < 0.001; OASIS: n = 469, HRstage4 4.80, p < 0.001). CONCLUSION The pooled multitracer staging model successfully classified the level of amyloid burden in >3,000 individuals across cohorts and radiotracers and detects preglobal amyloid burden and distinct risk profiles of cognitive decline within globally amyloid-positive individuals.
Collapse
Affiliation(s)
- Lyduine E Collij
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Fiona Heeman
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Gemma Salvadó
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Silvia Ingala
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Daniele Altomare
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Arno de Wilde
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Elles Konijnenberg
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Marieke van Buchem
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Maqsood Yaqub
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Pawel Markiewicz
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Sandeep S V Golla
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Viktor Wottschel
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Alle Meije Wink
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Pieter Jelle Visser
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Charlotte E Teunissen
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Adriaan A Lammertsma
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Philip Scheltens
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Wiesje M van der Flier
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Ronald Boellaard
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Bart N M van Berckel
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - José Luis Molinuevo
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Juan Domingo Gispert
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Mark E Schmidt
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Frederik Barkhof
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium
| | - Isadora Lopes Alves
- From Department of Radiology and Nuclear Medicine (L.E.C., F.H., S.I., M.Y., S.S.V.G., V.W., A.M.W., A.A.L., R.B., B.N.M.v.B., F.B., I.L.A.), Neurochemistry Laboratory (C.E.T.), Alzheimer Center (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), and Department of Neurology (D.A., A.d.W., E.K., M.v.B., P.J.V., P.S., W.M.v.d.F.), Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands; Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation (G.S., J.L.M., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (J.D.G.); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (J.L.M.), Madrid; IMIM (Hospital del Mar Medical Research Institute) (G.S., J.L.M., J.D.G.), Barcelona; Universitat Pompeu Fabra (J.L.M., J.D.G.), Barcelona, Spain; Laboratory of Neuroimaging of Aging (D.A.), University of Geneva; Memory Clinic (D.A.), University Hospital of Geneva, Switzerland; Centre for Medical Image Computing (P.M., F.B.), Medical Physics and Biomedical Engineering, University College London, London, UK; and Janssen Pharmaceutica NV (M.E.S.), Beerse, Belgium.
| |
Collapse
|
11
|
Möckelind S, Axelsson J, Pilebro B, Lindqvist P, Suhr OB, Sundström T. Quantification of cardiac amyloid with [ 18F]Flutemetamol in patients with V30M hereditary transthyretin amyloidosis. Amyloid 2020; 27:191-199. [PMID: 32400202 DOI: 10.1080/13506129.2020.1760237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Hereditary transthyretin amyloid (ATTRv) is a systemic amyloidosis with mainly neurological and cardiac symptoms. The aim of this study was to evaluate the outcome of [18F]Flutemetamol PET/CT-scan of the heart in long-term survivors with ATTRV30M amyloidosis.Methods: Twenty-one patients with ATTRV30M amyloidosis and predominantly neurological symptoms, mainly negative on cardiac 99mtechnetium-3,3-diphosphono-1,2-propanodicarboxylic acid (DPD)-scintigraphy, were examined with a dynamic [18F]Flutemetamol PET/CT-scan. Five patients suffering from Alzheimer's disease and one healthy individual served as controls. Volumes of interests were drawn over the intraventricular septum, lateral wall of the left ventricle and free wall of the right ventricle. Clinical records were reviewed for data from previous completed DPD-scintigraphy of the heart and echocardiography.Results: Patients with ATTRv amyloidosis had a higher cardiac uptake than the control-group in all analysed regions of the heart and could be identified with high accuracy (sensitivity 88%, specificity 100%) in static image acquisition at 30 or 60 min. We found no correlation between cardiac [18F]Flutemetamol uptake and clinical variables.Conclusion: In this small study of selected patients, cardiac [18F]Flutemetamol PET/CT could differentiate between healthy individuals and patients with ATTRV30M. [18F]Flutemetamol PET/CT imaging of amyloidosis in patients with a negative DPD-scintigraphy has a potential as a diagnostic method.
Collapse
Affiliation(s)
- Sofia Möckelind
- Department of Radiation Science, Radiation Physics, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Science, Radiation Physics, Umeå University, Umeå, Sweden
| | - Björn Pilebro
- Department of Public Health and Clinical medicine, Umeå University, Umeå, Sweden
| | - Per Lindqvist
- Department of Surgical and Perioperative Science, Umeå University, Umeå, Sweden
| | - Ole B Suhr
- Department of Public Health and Clinical medicine, Umeå University, Umeå, Sweden
| | - Torbjörn Sundström
- Department of Radiation Science, Diagnostic Radiology, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Vaz SC, Oliveira F, Herrmann K, Veit-Haibach P. Nuclear medicine and molecular imaging advances in the 21st century. Br J Radiol 2020; 93:20200095. [PMID: 32401541 PMCID: PMC10993229 DOI: 10.1259/bjr.20200095] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Currently, Nuclear Medicine has a clearly defined role in clinical practice due to its usefulness in many medical disciplines. It provides relevant diagnostic and therapeutic options leading to patients' healthcare and quality of life improvement. During the first two decades of the 21stt century, the number of Nuclear Medicine procedures increased considerably.Clinical and research advances in Nuclear Medicine and Molecular Imaging have been based on developments in radiopharmaceuticals and equipment, namely, the introduction of multimodality imaging. In addition, new therapeutic applications of radiopharmaceuticals, mainly in oncology, are underway.This review will focus on radiopharmaceuticals for positron emission tomography (PET), in particular, those labeled with Fluorine-18 and Gallium-68. Multimodality as a key player in clinical practice led to the development of new detector technology and combined efforts to improve resolution. The concept of dual probe (a single molecule labeled with a radionuclide for single photon emission computed tomography)/positron emission tomography and a light emitter for optical imaging) is gaining increasing acceptance, especially in minimally invasive radioguided surgery. The expansion of theranostics, using the same molecule for diagnosis (γ or positron emitter) and therapy (β minus or α emitter) is reshaping personalized medicine.Upcoming research and development efforts will lead to an even wider array of indications for Nuclear Medicine both in diagnosis and treatment.
Collapse
Affiliation(s)
- Sofia C. Vaz
- Nuclear Medicine - Radiopharmacology, Champalimaud Centre for
the Unknown, Champalimaud Foundation,
Lisbon, Portugal
| | - Francisco Oliveira
- Nuclear Medicine - Radiopharmacology, Champalimaud Centre for
the Unknown, Champalimaud Foundation,
Lisbon, Portugal
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen,
University of Duisburg-Essen,
Essen, Germany
| | | |
Collapse
|
13
|
Ros Forteza F. Alzheimer disease triggered by reversible posterior leukoencephalopathy syndrome. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2018.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Enfermedad de Alzheimer precipitada por el síndrome de leucoencefalopatía posterior reversible. Neurologia 2020. [DOI: 10.1016/j.nrl.2018.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Kim YJ, Ha S, Kim YI. Cardiac amyloidosis imaging with amyloid positron emission tomography: A systematic review and meta-analysis. J Nucl Cardiol 2020; 27:123-132. [PMID: 30022405 DOI: 10.1007/s12350-018-1365-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recent progress in amyloid positron emission tomography (PET) has enabled the targeted imaging of cardiac amyloidosis with accuracy. We performed a systematic review and meta-analysis on the diagnostic performance of cardiac amyloidosis using amyloid PET. METHODS A systematic search was performed using key words: cardiac amyloidosis, amyloid, and PET. We estimated the pooled sensitivity, specificity, positive and negative likelihood ratio (LR), and diagnostic odds ratio (DOR). Furthermore, the semiquantitative parameters of PET were evaluated to diagnose cardiac amyloidosis and discern its type [systemic light chain amyloidosis (AL) vs transthyretin amyloidosis (ATTR)] using the pooled standardized mean difference (SMD). RESULTS In total, six eligible studies with a total of 98 subjects were included in this meta-analysis. The pooled sensitivity was 0.95, the specificity was 0.98, positive LR was 10.130, negative LR was 0.1, and DOR was 148.83. The semiquantitative parameters of amyloid PET showed significantly higher values for cardiac amyloidosis patients than those for controls (pooled SMD = 1.42; P < .001), and in AL than ATTR (pooled SMD = 0.96; P < .001). CONCLUSION Amyloid PET imaging can be a useful method for diagnosing cardiac amyloidosis. The semiquantitative parameters of amyloid PET can help diagnose cardiac amyloidosis and discern its type.
Collapse
Affiliation(s)
- Yong Joong Kim
- Department of Family Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sejin Ha
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yong-Il Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
16
|
Pytel V, Matias-Guiu JA, Matías-Guiu J, Cortés-Martínez A, Montero P, Moreno-Ramos T, Arrazola J, Carreras JL, Cabrera-Martín MN. Amyloid PET findings in multiple sclerosis are associated with cognitive decline at 18 months. Mult Scler Relat Disord 2020; 39:101926. [PMID: 31918239 DOI: 10.1016/j.msard.2020.101926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 01/01/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To study the clinical, cognitive, and radiological progression of a cohort of patients with MS, taking into account the amyloid PET with 18F-florbetaben analyses. METHODS Twenty-nine patients with MS were assessed with longitudinal structural MRI and a clinical and comprehensive neuropsychological protocol, with a mean interval between assessments of 18 ± 3.31 months. 18F-florbetaben PET was performed at baseline. Uptake was analysed in demyelinating plaques (DWM) and normal-appearing white matter (NAWM). Results were correlated with clinical, cognitive and MRI data. RESULTS Patients with cognitive decline over the follow-up period showed a lower standardised uptake value ratio in NAWM and lower thalamic volume and a higher lesion load in the baseline MRI. Myelin status was correlated with EDSS and cognitive tests mainly evaluating visuospatial function and working memory. Lower uptake in NAWM at baseline was also associated with a growth in white matter lesion volume over time. CONCLUSIONS Lower white matter uptake in amyloid PET is associated with cognitive decline and an increase in white matter lesion volume during the follow-up. Our study suggests that 18F-florbetaben may be a useful biomarker in assessing myelin status in MS, understanding MS pathophysiology, and predicting cognitive outcomes.
Collapse
Affiliation(s)
- Vanesa Pytel
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain.
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - Ana Cortés-Martínez
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - Paloma Montero
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - Teresa Moreno-Ramos
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - Juan Arrazola
- Department of Radiology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - José Luis Carreras
- Department of Nuclear Medicine, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| |
Collapse
|
17
|
Perani D, Iaccarino L, Lammertsma AA, Windhorst AD, Edison P, Boellaard R, Hansson O, Nordberg A, Jacobs AH. A new perspective for advanced positron emission tomography-based molecular imaging in neurodegenerative proteinopathies. Alzheimers Dement 2019; 15:1081-1103. [PMID: 31230910 DOI: 10.1016/j.jalz.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Recent studies in neurodegenerative conditions have increasingly highlighted that the same neuropathology can trigger different clinical phenotypes or, vice-versa, that similar phenotypes can be triggered by different neuropathologies. This evidence has called for the adoption of a pathology spectrum-based approach to study neurodegenerative proteinopathies. These conditions share brain deposition of abnormal protein aggregates, leading to aberrant biochemical, metabolic, functional, and structural changes. Positron emission tomography (PET) is a well-recognized and unique tool for the in vivo assessment of brain neuropathology, and novel PET techniques are emerging for the study of specific protein species. Today, key applications of PET range from early research and clinical diagnostic tools to their use in clinical trials for both participants screening and outcome evaluation. This position article critically reviews the role of distinct PET molecular tracers for different neurodegenerative proteinopathies, highlighting their strengths, weaknesses, and opportunities, with special emphasis on methodological challenges and future applications.
Collapse
Affiliation(s)
- Daniela Perani
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Iaccarino
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Edison
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK; Neurology Imaging Unit, Imperial College London, London, UK
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany.
| | | |
Collapse
|
18
|
Adlimoghaddam A, Snow WM, Stortz G, Perez C, Djordjevic J, Goertzen AL, Ko JH, Albensi BC. Regional hypometabolism in the 3xTg mouse model of Alzheimer's disease. Neurobiol Dis 2019; 127:264-277. [PMID: 30878533 DOI: 10.1016/j.nbd.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease. Although neurofibrillary tangles and amyloid beta are classic hallmarks of AD, the earliest deficits in AD progression may be caused by unknown factors. One suspected factor has to do with brain energy metabolism. To investigate this factor, brain metabolic activity in 3xTg-AD mice and age-matched controls were measured with FDG-PET. Significant hypometabolic changes (p < .01) in brain metabolism were detected in the cortical piriform and insular regions of AD brains relative to controls. These regions are associated with olfaction, which is a potential clinical marker for AD progression as well as neurogenesis. The activity of the terminal component of the mitochondrial respiratory chain (complex IV) and the expression of complex I-V were significantly decreased (p < .05), suggesting that impaired metabolic activity coupled with impaired oxidative phosphorylation leads to decreased mitochondrial bioenergetics and subsequent Neurodegeneration. Although there is an association between neuroinflammatory pathological markers (microglial) and hypometabolism in AD, there was no association found between neuropathological (Aβ, tau, and astrocytes) and functional changes in AD sensitive brain regions, also suggesting that brain hypometabolism occurs prior to AD pathology. Therefore, targeting metabolic mechanisms in cortical piriform and insular regions at early stages may be a promising approach for preventing, slowing, and/or blocking the onset of AD and preserving neurogenesis.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada.
| | | | | | - Claudia Perez
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada
| | - Jelena Djordjevic
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada
| | | | - Ji Hyun Ko
- Dept. of Human Anatomy and Cell Science, University of Manitoba, Canada; Health Sciences Centre, Canada
| | - Benedict C Albensi
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada.
| |
Collapse
|
19
|
Rivera-Marrero S, Fernández-Maza L, León-Chaviano S, Sablón-Carrazana M, Bencomo-Martínez A, Perera-Pintado A, Prats-Capote A, Zoppolo F, Kreimerman I, Pardo T, Reyes L, Balcerzyk M, Dubed-Bandomo G, Mercerón-Martínez D, Espinosa-Rodríguez LA, Engler H, Savio E, Rodríguez-Tanty C. [ 18F]Amylovis as a Potential PET Probe for β-Amyloid Plaque: Synthesis, In Silico, In vitro and In vivo Evaluations. Curr Radiopharm 2019; 12:58-71. [PMID: 30605068 PMCID: PMC6463402 DOI: 10.2174/1874471012666190102165053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia. Neuroimaging methods have widened the horizons for AD diagnosis and therapy. The goals of this work are the synthesis of 2-(3-fluoropropyl)-6-methoxynaphthalene (5) and its [18F]-radiolabeled counterpart ([18F]Amylovis), the in silico and in vitro comparative evaluations of [18F]Amylovis and [11C]Pittsburg compound B (PIB) and the in vivo preclinical evaluation of [18F]Amylovis in transgenic and wild mice. METHODS Iron-catalysis cross coupling reaction, followed by fluorination and radiofluorination steps were carried out to obtain 5 and 18F-Amylovis. Protein/Aß plaques binding, biodistribution, PET/CT Imaging and immunohistochemical studies were conducted in healthy/transgenic mice. RESULTS The synthesis of 5 was successful obtained. Comparative in silico studies predicting that 5 should have affinity to the Aβ-peptide, mainly through π-π interactions. According to a dynamic simulation study the ligand-Aβ peptide complexes are stable in simulation-time (ΔG = -5.31 kcal/mol). [18F]Amylovis was obtained with satisfactory yield, high radiochemical purity and specific activity. The [18F]Amylovis log Poct/PBS value suggests its potential ability for crossing the blood brain barrier (BBB). According to in vitro assays, [18F]Amylovis has an adequate stability in time. Higher affinity to Aβ plaques were found for [18F]Amylovis (Kd 0.16 nmol/L) than PIB (Kd 8.86 nmol/L) in brain serial sections of 3xTg-AD mice. Biodistribution in healthy mice showed that [18F]Amylovis crosses the BBB with rapid uptake (7 %ID/g at 5 min) and good washout (0.11±0.03 %ID/g at 60 min). Comparative PET dynamic studies of [18F]Amylovis in healthy and transgenic APPSwe/PS1dE9 mice, revealed a significant high uptake in the mice model. CONCLUSION The in silico, in vitro and in vivo results justify that [18F]Amylovis should be studied as a promissory PET imaging agent to detect the presence of Aβ senile plaques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eduardo Savio
- Address correspondence to this author at Radiopharmacy R&D, Uruguayan Center of Molecular Imaging (CUDIM), Montevideo, Uruguay; Tel: 598-24803238; Ext: 122; E-mail:
| | - Chryslaine Rodríguez-Tanty
- Address correspondence to this author at Radiopharmacy R&D, Uruguayan Center of Molecular Imaging (CUDIM), Montevideo, Uruguay; Tel: 598-24803238; Ext: 122; E-mail:
| |
Collapse
|
20
|
Nai YH, Watanuki S, Tashiro M, Okamura N, Watabe H. Investigation of the quantitative accuracy of low-dose amyloid and tau PET imaging. Radiol Phys Technol 2018; 11:451-459. [PMID: 30328073 DOI: 10.1007/s12194-018-0485-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
With the increasing incidence of dementia worldwide, the frequent use of amyloid and tau positron emission tomography imaging requires low-dose protocols for the differential diagnoses of various neurodegenerative diseases and the monitoring of disease progression. In this study, we investigated the feasibility to reduce the PET dose without a significant loss of quantitative accuracy in 3D dynamic row action maximum likelihood algorithm-reconstructed PET images using [11C]PIB and [18F]THK5351. Eighteen cognitively normal young controls, cognitively normal elderly controls, and patients with probable Alzheimer's disease (n = 6 each), were included. Reduced doses were simulated by randomly sampling half and quarter of the full counts in list mode data for one independent realization at each simulated dose. Bias was evaluated between the reduced dose from the full dose of standardized uptake value ratio (SUVR), distribution volume ratio (DVR) from reference Logan, and non-displaceable binding potential (BPND) from simplified reference tissue model (SRTM). DVR yielded the least bias at low dose compared to SUVR and BPND, and thus, is highly recommended. The dose of [18F]THK5351 and [11C]PIB can be reduced to a quarter of the full dose using DVR for evaluation, whereas the dose can only be reduced to half and a quarter of the full dose for [18F]THK5351 and [11C]PIB using SUVR. BPND showed inconsistent trend and large bias at low dose. The feasibility of dose reduction was dependent on the selected parameters of interest, reconstruction algorithms, reference regions, and to a lesser degree by motion effects.
Collapse
Affiliation(s)
- Ying-Hwey Nai
- Division of Radiation Informatics for Medical Imaging, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Shoichi Watanuki
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Manabu Tashiro
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | | | - Hiroshi Watabe
- Division of Radiation Informatics for Medical Imaging, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan. .,Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
21
|
Lowe VJ, Lundt ES, Senjem ML, Schwarz CG, Min HK, Przybelski SA, Kantarci K, Knopman D, Petersen RC, Jack CR. White Matter Reference Region in PET Studies of 11C-Pittsburgh Compound B Uptake: Effects of Age and Amyloid-β Deposition. J Nucl Med 2018; 59:1583-1589. [PMID: 29674420 PMCID: PMC6167534 DOI: 10.2967/jnumed.117.204271] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Amyloid-β (Aβ) deposition as seen on PET using an Aβ-binding agent is a critical diagnostic biomarker for Alzheimer disease (AD). Some reports suggest using white matter (WM) as a reference region for quantification of serial Aβ PET studies; however, nonspecific WM retention in Aβ PET in people with dementia or cognitively unimpaired (CU) has been widely reported and is poorly understood. Methods: To investigate the suitability of WM as a reference region and the factors affecting WM 11C-Pittsburgh compound B (11C-PiB) uptake variability, we conducted a retrospective study on 2 large datasets: a longitudinal study of participants (n = 577) who were CU, had mild cognitive impairment, or had dementia likely due to AD; and a cross-sectional study of single-scan PET imaging in CU subjects (n = 1,349). In the longitudinal study, annual changes in WM 11C-PiB uptake were assessed, and in the cross-sectional study, WM 11C-PiB uptake was assessed relative to subject age. Results: Overall, we found that WM 11C-PiB uptake showed age-related increases, which varied with the WM regions selected. Further, variable annual WM 11C-PiB uptake changes were seen with different gray matter (GM) 11C-PiB baseline uptake levels. Conclusion: WM binding increases with age and varies with GM 11C-PiB. These correlations should be considered when using WM for normalization in 11C-PiB PET studies. The cerebellar crus1+crus2 showed no increase with age and cerebellar GM+WM showed minimal increase, supporting their use as reference regions for cross-sectional studies comparing wide age spans. In longitudinal studies, the increase in WM uptake may be minimal in the short-term and thus using WM as a reference region in these studies seems reasonable. However, as participants age, the findings may be affected by changes in WM uptake. Changes in WM 11C-PiB uptake may relate to disease progression, warranting examination of the causes of WM 11C-PiB uptake.
Collapse
Affiliation(s)
- Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Emily S Lundt
- Division of Biostatistics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
- Department of Information Technology, Mayo Clinic, Rochester, Minnesota; and
| | | | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Scott A Przybelski
- Division of Biostatistics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | |
Collapse
|
22
|
Lee BG, Leavitt MJ, Bernick CB, Leger GC, Rabinovici G, Banks SJ. A Systematic Review of Positron Emission Tomography of Tau, Amyloid Beta, and Neuroinflammation in Chronic Traumatic Encephalopathy: The Evidence To Date. J Neurotrauma 2018; 35:2015-2024. [PMID: 29609516 PMCID: PMC6421996 DOI: 10.1089/neu.2017.5558] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is associated with pathological changes, yet detecting these changes during life has proven elusive. Positron emission tomography (PET) offers the potential for identifying such pathology. Few studies have been completed to date and their approaches and results have been diverse. It was the objective of this review to systematically examine relevant research using ligands for PET that bind to identified pathology in CTE. We focused on identification of patterns of binding and addressing gaps in knowledge of PET imaging for CTE. A comprehensive literature search was conducted. Data used were published on or before May 22, 2017. As the extant literature is limited, any peer-reviewed article assessing military, contact sports athletes, or professional fighters was considered for inclusion. The main outcomes were regional binding to brain regions identified through control comparisons or through clinical metrics (e.g., standardized uptake volume ratios). A total of 1207 papers were identified for review, of which six met inclusion criteria. Meta-analyses were planned but were deemed inappropriate given the small number of studies identified. Methodological concerns in these initial papers included small sample sizes, lack of a control comparison, use of nonstandard statistical procedures to quantify data, and interpretation of potentially off-target binding areas. Across studies, the hippocampi, amygdalae, and midbrain had reasonably consistent increased uptake. Evidence for increased uptake in cortical regions was less consistent. The evidence suggests that the field of PET imaging in those at risk for CTE remains nascent. As the field evolves to include more stringent studies, ligands for PET may prove an important tool in identifying CTE in vivo.
Collapse
Affiliation(s)
- Bern G. Lee
- Cleveland Clinic Lou Ruvo Center for Brain Health and Lerner College of Medicine, Las Vegas, Nevada
- University of Nevada, Las Vegas, Las Vegas, Nevada
| | - MacKenzie J. Leavitt
- Cleveland Clinic Lou Ruvo Center for Brain Health and Lerner College of Medicine, Las Vegas, Nevada
| | - Charles B. Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health and Lerner College of Medicine, Las Vegas, Nevada
| | - Gabriel C. Leger
- Cleveland Clinic Lou Ruvo Center for Brain Health and Lerner College of Medicine, Las Vegas, Nevada
| | - Gil Rabinovici
- Department of Neurology, Memory and Aging Center, University of California, San Francisco
| | - Sarah J. Banks
- Cleveland Clinic Lou Ruvo Center for Brain Health and Lerner College of Medicine, Las Vegas, Nevada
| |
Collapse
|
23
|
Sánchez-Vañó R, Prado-Wohlwend S, Sopena-Novales P, Uruburu-García E, Monedero-Picazo M, Martínez-Carsí C. 18 F-florbetapir uptake in a primary intraosseous haemangioma displayed in a cerebral PET/CT. Rev Esp Med Nucl Imagen Mol 2018. [DOI: 10.1016/j.remnie.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Captación de 18 F-florbetapir en un hemangioma intraóseo visualizado en una PET/TC cerebral. Rev Esp Med Nucl Imagen Mol 2018; 37:59-60. [DOI: 10.1016/j.remn.2017.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/18/2022]
|
25
|
Ottoy J, Verhaeghe J, Niemantsverdriet E, Engelborghs S, Stroobants S, Staelens S. A simulation study on the impact of the blood flow-dependent component in [18F]AV45 SUVR in Alzheimer's disease. PLoS One 2017; 12:e0189155. [PMID: 29211812 PMCID: PMC5718604 DOI: 10.1371/journal.pone.0189155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
Background Increased brain uptake on [18F]AV45 PET is a biomarker for Alzheimer’s disease (AD). The standardised uptake value ratio (SUVR) is widely used for quantification but is subject to variability. Here we evaluate how SUVR of a cortical target region is affected by blood flow changes in the target and two frequently used reference regions. Methods Regional baseline time-activity curves (TACs) were simulated based on metabolite-corrected plasma input functions and pharmacokinetic parameters obtained from our previously acquired data in healthy control (HC; n = 10), amnestic mild cognitive impairment (aMCI; n = 15) and AD cohorts (n = 9). Blood flow changes were simulated by altering the regional tracer delivery rate K1 (and clearance rate k2) between -40% and +40% from its regional baseline value in the target region and/or cerebellar grey (CB) or subcortical white matter (WM) reference regions. The corresponding change in SUVR was calculated at 50–60 min post-injection. Results A -40% blood flow reduction in the target resulted in an increased SUVRtarget (e.g. SUVRprecuneus: +10.0±5% in HC, +2.5±2% in AD), irrespective of the used reference region. A -40% blood flow reduction in the WM reference region increased SUVRWM (+11.5±4% in HC, +13.5±3% in AD) while a blood flow reduction in CB decreased SUVRCB (-9.5±6% in HC, -5.5±2% in AD), irrespective of the used target region. A -40% flow reduction in both the precuneus and reference WM (i.e., global flow change) induced an increased SUVR (+22.5±8% in HC, +16.0±4% in AD). When considering reference CB instead, SUVR was decreased by less than -5% (both in HC and AD). Conclusion Blood flow changes introduce alterations in [18F]AV45 PET SUVR. Flow reductions in the CB and WM reference regions resulted in a decreased and increased SUVR of the target, respectively. SUVR was more affected by global blood flow changes when considering WM instead of CB normalization.
Collapse
Affiliation(s)
- Julie Ottoy
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Ellis Niemantsverdriet
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Hoge Beuken en Middelheim, Antwerp, Belgium
| | - Sigrid Stroobants
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
26
|
Vāvere AL, Scott PJH. Clinical Applications of Small-molecule PET Radiotracers: Current Progress and Future Outlook. Semin Nucl Med 2017; 47:429-453. [PMID: 28826519 DOI: 10.1053/j.semnuclmed.2017.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotracers, or radiopharmaceuticals, are bioactive molecules tagged with a radionuclide used for diagnostic imaging or radiotherapy and, when a positron-emitting radionuclide is chosen, the radiotracers are used for PET imaging. The development of novel PET radiotracers in many ways parallels the development of new pharmaceuticals, and small molecules dominate research and development pipelines in both disciplines. The 4 decades since the introduction of [18F]FDG have seen the development of many small molecule PET radiotracers. Ten have been approved by the US Food and Drug Administration as of 2016, whereas hundreds more are being evaluated clinically. These radiotracers are being used in personalized medicine and to support drug discovery programs where they are greatly improving our understanding of and ability to treat diseases across many areas of medicine including neuroscience, cardiovascular medicine, and oncology.
Collapse
Affiliation(s)
- Amy L Vāvere
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
27
|
Omar SH. Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed Pharmacother 2017; 89:396-413. [DOI: 10.1016/j.biopha.2017.02.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
|
28
|
Schönecker S, Prix C, Raiser T, Ackl N, Wlasich E, Stenglein-Krapf G, Mille E, Brendel M, Sabri O, Patt M, Barthel H, Bartenstein P, Levin J, Rominger A, Danek A. [Amyloid positron-emission-tomography with [ 18 F]-florbetaben in the diagnostic workup of dementia patients]. DER NERVENARZT 2017; 88:156-161. [PMID: 27913818 DOI: 10.1007/s00115-016-0249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND To this day the definite diagnosis of Alzheimer's disease still relies on post-mortem histopathological detection of neurofibrillary tangles and beta-amyloid deposits. Amyloid positron emission tomography (PET) is a new diagnostic tool that enables the in vivo quantification of pathological beta-amyloid deposits. The aim of the current study was to evaluate to what extent 18F-florbetaben-PET (FBB-PET) influences the diagnosis of patients with dementia. MATERIAL AND METHODS Imaging with FBB-PET was performed on 33 patients from our outpatient department for cognitive neurology. Beforehand all patients underwent a comprehensive clinical, neuropsychiatric and laboratory examination as well as imaging by means of magnetic resonance imaging (MRI) and fluorodeoxyglucose-PET. The working diagnoses before and after FBB-PET imaging were compared. RESULTS 17 out of 33 patients were scored as FBB-PET positive. In four cases the initial diagnosis had to be changed to Alzheimer's disease (three cases) and cerebral amyloid angiopathy (one case) due to the positive FBB-PET scan. 16 patients showed a negative FBB-PET scan. In three patients the initial diagnosis of Alzheimer's disease could be ruled out due to the negative FBB-PET scan. Overall, in 7 out of 33 examined patients the initial diagnosis had to be changed because of the findings of the FBB-PET scan. In 24 patients the initial diagnosis was confirmed by the results of the FBB-PET scan. CONCLUSION Amyloid-PET is currently no standard procedure in the diagnosis of dementia; however, it can be a helpful additional diagnostic tool when used according to the "Appropriate Use Criteria" and the S3 guidelines on dementia in cases of unclear clinical presentation, atypically early age of onset as well as in patients with persistent or progressive unexplained mild cognitive impairment. By facilitating early diagnosis amyloid-PET imaging allows patient selection for therapeutic drug trials.
Collapse
Affiliation(s)
- S Schönecker
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, München, Deutschland.
| | - C Prix
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, München, Deutschland
| | - T Raiser
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Deutschland
| | - N Ackl
- Memory Clinic, Psychiatrische Dienste Thurgau, Münsterlingen, Schweiz
| | - E Wlasich
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, München, Deutschland
| | - G Stenglein-Krapf
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, München, Deutschland
| | - E Mille
- Klinik und Poliklinik für Nuklearmedizin, Ludwig-Maximilians-Universität, München, Deutschland
| | - M Brendel
- Klinik und Poliklinik für Nuklearmedizin, Ludwig-Maximilians-Universität, München, Deutschland
| | - O Sabri
- Klinik und Poliklinik für Nuklearmedizin, Universität Leipzig, Leipzig, Deutschland
| | - M Patt
- Klinik und Poliklinik für Nuklearmedizin, Universität Leipzig, Leipzig, Deutschland
| | - H Barthel
- Klinik und Poliklinik für Nuklearmedizin, Universität Leipzig, Leipzig, Deutschland
| | - P Bartenstein
- Klinik und Poliklinik für Nuklearmedizin, Ludwig-Maximilians-Universität, München, Deutschland.,Munich Cluster Syst Neurol SyNergy, München, Deutschland
| | - J Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, München, Deutschland.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Deutschland
| | - A Rominger
- Klinik und Poliklinik für Nuklearmedizin, Ludwig-Maximilians-Universität, München, Deutschland.,Munich Cluster Syst Neurol SyNergy, München, Deutschland
| | - A Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, München, Deutschland
| |
Collapse
|
29
|
Correlation of Cerebral Microbleed Distribution to Amyloid Burden in Patients with Primary Intracerebral Hemorrhage. Sci Rep 2017; 7:44715. [PMID: 28303922 PMCID: PMC5356186 DOI: 10.1038/srep44715] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
The underlying pathology of cerebral microbleeds (CMBs) with mixed lobar and deep distribution remains contentious. The aim of this study was to correlate CMBs distribution to β-amyloid burden in patients with primary intracerebral hemorrhage (ICH). Fourty-seven ICH patients underwent magnetic resonance susceptibility-weighted imaging and 11C-Pittsburgh Compound B positron emission tomography. The amyloid burden was expressed as standardized uptake value ratio with reference to cerebellum, and presented as median (interquartile range). Patients were categorized into the lobar, mixed (both lobar and deep regions), and deep types of CMB. Comparing the lobar (17%), mixed (59.6%) and deep (23.4%) CMB types, the global amyloid burden was significantly higher in the mixed type than the deep type (1.10 [1.03–1.25] vs 1.00 [0.97–1.09], p = 0.011), but lower than in the lobar type (1.48 [1.18–1.50], p = 0.048). On multivariable analysis, the ratio of lobar to deep CMB number was positively correlated with global (p = 0.028) and occipital (p = 0.031) amyloid burden. In primary ICH, patients with lobar and mixed CMB types are associated with increased amyloid burden than patients with deep type. The ratio of lobar to deep CMB number is an independent indicator of cerebral β-amyloid deposition.
Collapse
|
30
|
Del Sole A, Malaspina S, Magenta Biasina A. Magnetic resonance imaging and positron emission tomography in the diagnosis of neurodegenerative dementias. FUNCTIONAL NEUROLOGY 2017; 31:205-215. [PMID: 28072381 DOI: 10.11138/fneur/2016.31.4.205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuroimaging, both with magnetic resonance imaging (MRI) and positron emission tomography (PET), has gained a pivotal role in the diagnosis of primary neurodegenerative diseases. These two techniques are used as biomarkers of both pathology and progression of Alzheimer's disease (AD) and to differentiate AD from other neurodegenerative diseases. MRI is able to identify structural changes including patterns of atrophy characterizing neurodegenerative diseases, and to distinguish these from other causes of cognitive impairment, e.g. infarcts, space-occupying lesions and hydrocephalus. PET is widely used to identify regional patterns of glucose utilization, since distinct patterns of distribution of cerebral glucose metabolism are related to different subtypes of neurodegenerative dementia. The use of PET in mild cognitive impairment, though controversial, is deemed helpful for predicting conversion to dementia and the dementia clinical subtype. Recently, new radiopharmaceuticals for the in vivo imaging of amyloid burden have been licensed and more tracers are being developed for the assessment of tauopathies and inflammatory processes, which may underlie the onset of the amyloid cascade. At present, the cerebral amyloid burden, imaged with PET, may help to exclude the presence of AD as well as forecast its possible onset. Finally PET imaging may be particularly useful in ongoing clinical trials for the development of dementia treatments. In the near future, the use of the above methods, in accordance with specific guidelines, along with the use of effective treatments will likely lead to more timely and successful treatment of neurodegenerative dementias.
Collapse
|
31
|
Gao M, Wang M, Zheng QH. Synthesis of carbon-11-labeled isonicotinamides as new potential PET agents for imaging of GSK-3 enzyme in Alzheimer’s disease. Bioorg Med Chem Lett 2017; 27:740-743. [DOI: 10.1016/j.bmcl.2017.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/29/2022]
|
32
|
Giacomelli C, Daniele S, Martini C. Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 2017; 131:1-15. [PMID: 28159621 DOI: 10.1016/j.bcp.2017.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The aggregation of specific proteins plays a pivotal role in the etiopathogenesis of several neurodegenerative diseases (NDs). β-Amyloid (Aβ) peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated protein tau are the two main neuropathological lesions in Alzheimer's disease. Meanwhile, Parkinson's disease is defined by the presence of intraneuronal inclusions (Lewy bodies), in which α-synuclein (α-syn) has been identified as a major protein component. The current literature provides considerable insights into the mechanisms underlying oligomeric-related neurodegeneration, as well as the relationship between protein aggregation and ND, thus facilitating the development of novel putative biomarkers and/or pharmacological targets. Recently, α-syn, tau and Aβ have been shown to interact each other or with other "pathological proteins" to form toxic heteroaggregates. These latest findings are overcoming the concept that each neurodegenerative disease is related to the misfolding of a single specific protein. In this review, potential opportunities and pharmacological approaches targeting α-syn, tau and Aβ and their oligomeric forms are highlighted with examples from recent studies. Protein aggregation as a biomarker of NDs, in both the brain and peripheral fluids, is deeply explored. Finally, the relationship between biomarker establishment and assessment and their use as diagnostics or therapeutic targets are discussed.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
33
|
Abstract
We report the case of a 73-year-old man with a documented (renal biopsy) light-chain amyloidosis (AL) imaged with F-AV-1 (F-florbetaben) compared with a volunteer. A cardiac amyloidosis was suspected. As it was an AL and not a transthyretin amyloidosis, F-FDG and F-florbetaben PET/CT were preferred to bone scan. F-FDG scintigraphy showed a focal cardiac hypermetabolism. In addition of the heart, F-florbetaben scintigraphy showed an intense spleen and thyroid pathologic uptake and a moderate salivary gland and kidney uptake. F-florbetaben PET/CT appears to be useful for staging systemic amyloidosis.
Collapse
|
34
|
Salat DH, Robinson ME, Miller DR, Clark DC, McGlinchey RE. Neuroimaging of deployment-associated traumatic brain injury (TBI) with a focus on mild TBI (mTBI) since 2009. Brain Inj 2017; 31:1204-1219. [PMID: 28981347 PMCID: PMC9206728 DOI: 10.1080/02699052.2017.1327672] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES A substantial body of recent research has aimed to better understand the clinical sequelae of military trauma through the application of advanced brain imaging procedures in Veteran populations. The primary objective of this review was to highlight a portion of these recent studies to demonstrate how imaging tools can be used to understand military-associated brain injury. METHODS We focus here on the phenomenon of mild traumatic brain injury (mTBI) given its high prevalence in the Veteran population and current recognition of the need to better understand the clinical implications of this trauma. This is intended to provide readers with an initial exposure to the field of neuroimaging of mTBI with a brief introduction to the concept of traumatic brain injury, followed by a summary of the major imaging techniques that have been applied to the study of mTBI. RESULTS Taken together, the collection of studies reviewed demonstrates a clear role for neuroimaging towards understanding the various neural consequences of mTBI as well as the clinical complications of such brain changes. CONCLUSIONS This information must be considered in the larger context of research into mTBI, including the potentially unique nature of blast exposure and the long-term consequences of mTBI.
Collapse
Affiliation(s)
- David H. Salat
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Department of Radiology, Charlestown, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
| | - Meghan E. Robinson
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Danielle R. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Dustin C. Clark
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
| | - Regina E. McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Geriatric Research, Education and Clinical Center (GRECC), Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Mathews PM, Levy E. Cystatin C in aging and in Alzheimer's disease. Ageing Res Rev 2016; 32:38-50. [PMID: 27333827 DOI: 10.1016/j.arr.2016.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
Under normal conditions, the function of catalytically active proteases is regulated, in part, by their endogenous inhibitors, and any change in the synthesis and/or function of a protease or its endogenous inhibitors may result in inappropriate protease activity. Altered proteolysis as a result of an imbalance between active proteases and their endogenous inhibitors can occur during normal aging, and such changes have also been associated with multiple neuronal diseases, including Amyotrophic Lateral Sclerosis (ALS), rare heritable neurodegenerative disorders, ischemia, some forms of epilepsy, and Alzheimer's disease (AD). One of the most extensively studied endogenous inhibitor is the cysteine-protease inhibitor cystatin C (CysC). Changes in the expression and secretion of CysC in the brain have been described in various neurological disorders and in animal models of neurodegeneration, underscoring a role for CysC in these conditions. In the brain, multiple in vitro and in vivo findings have demonstrated that CysC plays protective roles via pathways that depend upon the inhibition of endosomal-lysosomal pathway cysteine proteases, such as cathepsin B (Cat B), via the induction of cellular autophagy, via the induction of cell proliferation, or via the inhibition of amyloid-β (Aβ) aggregation. We review the data demonstrating the protective roles of CysC under conditions of neuronal challenge and the protective pathways induced by CysC under various conditions. Beyond highlighting the essential role that balanced proteolytic activity plays in supporting normal brain aging, these findings suggest that CysC is a therapeutic candidate that can potentially prevent brain damage and neurodegeneration.
Collapse
Affiliation(s)
- Paul M Mathews
- Departments of Psychiatry, New York University School of Medicine, USA; Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Efrat Levy
- Departments of Psychiatry, New York University School of Medicine, USA; Biochemistry and Molecular Pharmacology, New York University School of Medicine, USA; Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA.
| |
Collapse
|
36
|
Sarro L, Senjem ML, Lundt ES, Przybelski SA, Lesnick TG, Graff-Radford J, Boeve BF, Lowe VJ, Ferman TJ, Knopman DS, Comi G, Filippi M, Petersen RC, Jack CR, Kantarci K. Amyloid-β deposition and regional grey matter atrophy rates in dementia with Lewy bodies. Brain 2016; 139:2740-2750. [PMID: 27452602 PMCID: PMC5035818 DOI: 10.1093/brain/aww193] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease pathology frequently coexists with Lewy body disease at autopsy in patients with probable dementia with Lewy bodies. More than half of patients with probable dementia with Lewy bodies have high amyloid-β deposition as measured with 11C-Pittsburgh compound B binding on positron emission tomography. Biomarkers of amyloid-β deposition precede neurodegeneration on magnetic resonance imaging during the progression of Alzheimer's disease, but little is known about how amyloid-β deposition relates to longitudinal progression of atrophy in patients with probable dementia with Lewy bodies. We investigated the associations between baseline 11C-Pittsburgh compound B binding on positron emission tomography and the longitudinal rates of grey matter atrophy in a cohort of clinically diagnosed patients with dementia with Lewy bodies (n = 20), who were consecutively recruited to the Mayo Clinic Alzheimer's Disease Research Centre. All patients underwent 11C-Pittsburgh compound B positron emission tomography and magnetic resonance imaging examinations at baseline. Follow-up magnetic resonance imaging was performed after a mean (standard deviation) interval of 2.5 (1.1) years. Regional grey matter loss was determined on three-dimensional T1-weighted magnetic resonance imaging with the tensor-based morphometry-symmetric normalization technique. Linear regression was performed between baseline 11C-Pittsburgh compound B standard unit value ratio and longitudinal change in regional grey matter volumes from an in-house modified atlas. We identified significant associations between greater baseline 11C-Pittsburgh compound B standard unit value ratio and greater grey matter loss over time in the posterior cingulate gyrus, lateral and medial temporal lobe, and occipital lobe as well as caudate and putamen nuclei, after adjusting for age (P < 0.05). Greater baseline 11C-Pittsburgh compound B standard unit value ratio was also associated with greater ventricular expansion rates (P < 0.01) and greater worsening over time in Clinical Dementia Rating Scale, sum of boxes (P = 0.02). In conclusion, in patients with probable dementia with Lewy bodies, higher amyloid-β deposition at baseline is predictive of faster neurodegeneration in the cortex and also in the striatum. This distribution is suggestive of possible interactions among amyloid-β, tau and α-synuclein aggregates, which needs further investigation. Furthermore, higher amyloid-β deposition at baseline predicts a faster clinical decline over time in patients with probable dementia with Lewy bodies.
Collapse
Affiliation(s)
- Lidia Sarro
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA 2 Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy 3 Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Matthew L Senjem
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA 4 Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Emily S Lundt
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Scott A Przybelski
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | - Val J Lowe
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J Ferman
- 7 Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Giancarlo Comi
- 3 Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- 2 Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy 3 Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Ronald C Petersen
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA 6 Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Kejal Kantarci
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Jovalekic A, Koglin N, Mueller A, Stephens AW. New protein deposition tracers in the pipeline. EJNMMI Radiopharm Chem 2016; 1:11. [PMID: 29564387 PMCID: PMC5843813 DOI: 10.1186/s41181-016-0015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Traditional nuclear medicine ligands were designed to target cellular receptors or transporters with a binding pocket and a defined structure-activity relationship. More recently, tracers have been developed to target pathological protein aggregations, which have less well-defined structure-activity relationships. Aggregations of proteins such as tau, α-synuclein, and β-amyloid (Aβ) have been identified in neurodegenerative diseases, including Alzheimer's disease (AD) and other dementias, and Parkinson's disease (PD). Indeed, Aβ deposition is a hallmark of AD, and detection methods have evolved from coloured dyes to modern 18F-labelled positron emission tomography (PET) tracers. Such tracers are becoming increasingly established in routine clinical practice for evaluation of Aβ neuritic plaque density in the brains of adults who are being evaluated for AD and other causes of cognitive impairment. While similar in structure, there are key differences between the available compounds in terms of dosing/dosimetry, pharmacokinetics, and interpretation of visual reads. In the future, quantification of Aβ-PET may further improve its utility. Tracers are now being developed for evaluation of tau protein, which is associated with decreased cognitive function and neurodegenerative changes in AD, and is implicated in the pathogenesis of other neurodegenerative diseases. While no compound has yet been approved for tau imaging in clinical use, it is a very active area of research. Development of tau tracers comprises in-depth characterisation of existing radiotracers, clinical validation, a better understanding of uptake patterns, test-retest/dosimetry data, and neuropathological correlations with PET. Tau imaging may allow early, more accurate diagnosis, and monitoring of disease progression, in a range of conditions. Another marker for which imaging modalities are needed is α-synuclein, which has potential for conditions including PD and dementia with Lewy bodies. Efforts to develop a suitable tracer are ongoing, but are still in their infancy. In conclusion, several PET tracers for detection of pathological protein depositions are now available for clinical use, particularly PET tracers that bind to Aβ plaques. Tau-PET tracers are currently in clinical development, and α-synuclein protein deposition tracers are at early stage of research. These tracers will continue to change our understanding of complex disease processes.
Collapse
Affiliation(s)
| | - Norman Koglin
- Piramal Imaging GmbH, Tegeler Straße 6-7, 13353 Berlin, Germany
| | - Andre Mueller
- Piramal Imaging GmbH, Tegeler Straße 6-7, 13353 Berlin, Germany
| | | |
Collapse
|
38
|
Montagne A, Nation DA, Pa J, Sweeney MD, Toga AW, Zlokovic BV. Brain imaging of neurovascular dysfunction in Alzheimer's disease. Acta Neuropathol 2016; 131:687-707. [PMID: 27038189 PMCID: PMC5283382 DOI: 10.1007/s00401-016-1570-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/29/2022]
Abstract
Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other.
Collapse
Affiliation(s)
- Axel Montagne
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daniel A Nation
- Department of Psychology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Judy Pa
- Department of Neurology, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, 90089, USA
| | - Melanie D Sweeney
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Arthur W Toga
- Department of Neurology, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, 90089, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
39
|
Matías-Guiu JA, Oreja-Guevara C, Cabrera-Martín MN, Moreno-Ramos T, Carreras JL, Matías-Guiu J. Amyloid Proteins and Their Role in Multiple Sclerosis. Considerations in the Use of Amyloid-PET Imaging. Front Neurol 2016; 7:53. [PMID: 27065425 PMCID: PMC4814935 DOI: 10.3389/fneur.2016.00053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/22/2016] [Indexed: 02/06/2023] Open
Abstract
Thioflavin T derivatives are used in positron-emission tomography (PET) studies to detect amyloid protein deposits in patients with Alzheimer disease. These tracers bind extensively to white matter, which suggests that they may be useful in studies of multiple sclerosis (MS), and that proteins resulting from proteolytic processing of the amyloid precursor protein (APP) may contribute to MS. This article reviews data from both clinical and preclinical studies addressing the role of these proteins, whether they are detected in CSF studies or using PET imaging. APP is widely expressed in demyelinated axons and may have a protective effect in MS and in experimental allergic encephalomyelitis in animals. Several mechanisms associated with this increased expression may affect the degree of remyelination in MS. Amyloid-PET imaging may help determine the degree of demyelination and provide information on the molecular changes linked to APP proteolytic processing experienced by patients with MS.
Collapse
Affiliation(s)
- Jordi A Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - Teresa Moreno-Ramos
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - José Luis Carreras
- Department of Nuclear Medicine, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| |
Collapse
|
40
|
Abstract
PET studies play an important role in the early detection of Alzheimer's and Parkinson's diseases (AD and PD). Fluorine-18 fluorodeoxyglucose (F-FDG) PET imaging of regional cerebral glucose metabolism and PET amyloid imaging are the two major PET studies for AD. F-FDG PET is highly sensitive for the early diagnosis of AD, in predicting conversion from mild cognitive impairment to AD, and in differentiating AD from other dementias. PET amyloid imaging is positive in the majority of patients with AD. Negative amyloid PET reduces the likelihood of AD. The main limitations of PET amyloid imaging is its high positivity in the normal elderly population and in other medical conditions with amyloid pathologies. Various PET tracers are available to assess motor and cognitive dysfunctions in PD. PET tracers targeting presynaptic dopaminergic function (F-DOPA, radiolabeled PET tracers assessing the availability of dopamine transporters and vesicular monoamine transporters) and postsynaptic dopamine receptors are used to assess motor dysfunction in PD. PET tracers, particularly dopamine transporters, are highly sensitive in the early diagnosis of PD. Uptake of PET tracers in the striatum is inversely correlated with disease severity. PET is valuable in differentiating PD from other movement disorders. PET studies, particularly F-FDG PET, help to evaluate cortical metabolism in PD patients with cognitive dysfunction and dementia.
Collapse
|
41
|
Ren W, Xu M, Liang SH, Xiang H, Tang L, Zhang M, Ding D, Li X, Zhang H, Hu Y. Discovery of a novel fluorescent probe for the sensitive detection of β-amyloid deposits. Biosens Bioelectron 2016; 75:136-41. [PMID: 26313423 PMCID: PMC4874256 DOI: 10.1016/j.bios.2015.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023]
Abstract
Here we reported the development of the first photoinduced electron transfer (PeT) probe (1) to directly locate β-amyloid aggregates (Aβ plaques) in the brain without the need of post-washing procedures. The probe showed a high affinity for Aβ aggregates with a Kd value of 3.5nM. It is weakly emissive by itself with its fluorescence quenched by electron transfer from PeT donor to the excited fluorophore. But selective binding to Aβ plaques would attenuate the PeT process and restore the fluorescence, therefore facilitating the tracking of Aβ plaques. The probe is advantageous in that its fluorescence is environment-less-sensitive and no washing procedure is required to provide high contrast fluorescent signal when applied to stain brain tissues. As a proof of concept, its application has been exemplified by staining Aβ plaques in slices of brain tissue from double transgenic (APP/PS1) mice of Alzheimer's disease.
Collapse
Affiliation(s)
- Wenming Ren
- State Key Laborarory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingming Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Huaijiang Xiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang road, Hangzhou, China
| | - Li Tang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang road, Hangzhou, China
| | - Minkui Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang road, Hangzhou, China
| | - Dejun Ding
- State Key Laborarory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang road, Hangzhou, China.
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Youhong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang road, Hangzhou, China; State Key Laborarory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
42
|
Ono M, Doi Y, Watanabe H, Ihara M, Ozaki A, Saji H. Structure–activity relationships of radioiodinated diphenyl derivatives with different conjugated double bonds as ligands for α-synuclein aggregates. RSC Adv 2016. [DOI: 10.1039/c6ra02710e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the structure–activity relationships of radioiodinated diphenyl (IDP) derivatives with different conjugated double bonds as ligands for α-syn aggregates.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Sakyo-ku
- Japan
| | - Yuki Doi
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Sakyo-ku
- Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Sakyo-ku
- Japan
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases
- National Cerebral and Cardiovascular Center
- Suita-shi
- Japan
| | - Akihiko Ozaki
- Department of Neurology
- Osaka Saiseikai Nakatsu Hospital
- Kita-ku
- Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Sakyo-ku
- Japan
| |
Collapse
|
43
|
Lai X, Ren J, Lu Y, Cui S, Chen J, Huang Y, Tang C, Shan B, Nie B. Effects of acupuncture at HT7 on glucose metabolism in a rat model of Alzheimer's disease: an 18F-FDG-PET study. Acupunct Med 2015; 34:215-22. [PMID: 26654890 PMCID: PMC4941154 DOI: 10.1136/acupmed-2015-010865] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 12/21/2022]
Abstract
Objective To explore the effects of acupuncture at HT7 on different cerebral regions in a rat model of Alzheimer's disease (AD) with the application of 18F-2-fluoro-deoxy-D-glucose positron emission tomography (FDG-PET). Methods Sixty Wistar rats were included after undergoing a Y-maze electric sensitivity test. Ten rats were used as a healthy control group. The remaining 50 rats were injected stereotaxically with ibotenic acid into the right nucleus basalis magnocellularis and injected intraperitoneally with D-galactose. AD was successfully modelled in 36 rats, which were randomly divided into three groups (n=12 each): the AD group, which remained untreated; the AD+HT7 group, which received 20 sessions of acupuncture at HT7 over 1 month; and the AD+Sham group, which received acupuncture at a distant non-acupuncture point. Total reaction time (TRT) was measured by Y-maze and 18F-FDG-PET scans were conducted on day 1 and 30. PET images were processed with Statistical Parametric Mapping 8.0. Results Pre-treatment, TRT was greater in all AD groups versus controls (mean±SD 24.10±2.48 vs 41.34±5.00 s). Post-treatment, TRT was shortened in AD+HT7 versus AD+Sham and AD groups (p<0.0001, two-way analysis of variance). Glucose metabolic activity in the hippocampus, thalamus, hypothalamus, frontal lobe, and temporal lobe was decreased in AD rats compared with healthy controls and relatively elevated after HT7 acupuncture. Compared with sham acupuncture, HT7 needling had a greater positive influence on brain glucose metabolism. Conclusions Needling at HT7 can improve memory ability and cerebral glucose metabolic activity of the hippocampus, thalamus, hypothalamus, and frontal/temporal lobes in an AD rat model.
Collapse
Affiliation(s)
- Xinsheng Lai
- Department of Acupuncture and Massage, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jie Ren
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yangjia Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Medical College, Dongguan, China
| | - Shaoyang Cui
- Department of Acupuncture and Massage, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- Department of Acupuncture and Moxibustion, Futian TCM Hospital, Shenzhen, China
| | - Junqi Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Rehabilitation, The 3rd affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunzhi Tang
- Department of Acupuncture and Massage, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Baoci Shan
- Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Bingbing Nie
- Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Matías-Guiu JA, Cabrera-Martín MN, Matías-Guiu J, Oreja-Guevara C, Riola-Parada C, Moreno-Ramos T, Arrazola J, Carreras JL. Amyloid PET imaging in multiple sclerosis: an (18)F-florbetaben study. BMC Neurol 2015; 15:243. [PMID: 26607782 PMCID: PMC4660647 DOI: 10.1186/s12883-015-0502-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022] Open
Abstract
Background Positron emission tomography (PET) images with amyloid tracers show normal uptake in healthy white matter, which suggests that amyloid tracers are potentially useful for studying such white matter diseases as multiple sclerosis (MS). Methods Twelve patients diagnosed with MS (5 with RRMS, 5 with SPMS, and 2 with PPMS) and 3 healthy controls underwent studies with MRI and 18F-florbetaben-PET imaging. Images were preprocessed using Statistical Parametric Mapping software. We analysed 18F-florbetaben uptake in demyelinating plaques (appearing as hyperintense lesions in FLAIR sequences), in normal-appearing white matter, and in grey matter. Results Mean standardized uptake value relative to cerebellum was higher in normally appearing white matter (NAWM) (1.51 ± 0.12) than in damaged white matter (DWM) (1.24 ± 0.12; P = .002). Mean percentage of change between NAWM and DWM was −17.56 % ± 6.22 %. This percentage of change correlated negatively with EDSS scores (r = −0.61, p < .05) and with age (r = −0.83, p < 0.01). Progressive forms of MS showed a more pronounced reduction of the uptake in DWM in comparison to relapsing-remitting form. Conclusions Uptake of 18F-florbetaben in damaged white matter is lower than that occurring in normally-appearing white matter. These findings indicate that amyloid tracers may be useful in studies of MS, although further research is needed to evaluate the utility of amyloid-PET in monitoring MS progression. Electronic supplementary material The online version of this article (doi:10.1186/s12883-015-0502-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jordi A Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - Cristina Riola-Parada
- Department of Nuclear Medicine, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - Teresa Moreno-Ramos
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - Juan Arrazola
- Department of Radiology, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - José Luis Carreras
- Department of Nuclear Medicine, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| |
Collapse
|
45
|
Heurling K, Leuzy A, Zimmer ER, Lubberink M, Nordberg A. Imaging β-amyloid using [18F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis. Eur J Nucl Med Mol Imaging 2015; 43:362-373. [DOI: 10.1007/s00259-015-3208-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
|
46
|
Farid K, Hong YT, Aigbirhio FI, Fryer TD, Menon DK, Warburton EA, Baron JC. Early-Phase 11C-PiB PET in Amyloid Angiopathy-Related Symptomatic Cerebral Hemorrhage: Potential Diagnostic Value? PLoS One 2015; 10:e0139926. [PMID: 26439113 PMCID: PMC4595277 DOI: 10.1371/journal.pone.0139926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/19/2015] [Indexed: 01/06/2023] Open
Abstract
Although late-phase (>35min post-administration) 11C-PiB-PET has good sensitivity in cerebral amyloid angiopathy (CAA), its specificity is poor due to frequently high uptake in healthy aged subjects. By detecting perfusion-like abnormalities, early-phase 11C-PiB-PET might add diagnostic value. Early-frame (1-6min) 11C-PiB-PET was obtained in 11 non-demented patients with probable CAA-related symptomatic lobar intracerebral haemorrhage (70±7yrs), 9 age-matched healthy controls (HCs) and 10 HCs <55yrs. There was a significant decrease in early-phase atrophy-corrected whole-cortex SUV relative to cerebellar vermis (SUVR) in the CAA vs age-matched HC group. None of the age-matched controls fell below the lower 95% confidence limit derived from the young HCs, while 6/11 CAA patients did (sensitivity = 55%, specificity = 100%). Combining both early- and late-phase 11C-PiB data did not change the sensitivity and specificity of late-phase PiB, but combined early- and late-phase positivity entails a very high suspicion of underlying Aβ-related clinical disorder, i.e., CAA or Alzheimer disease (AD). In order to clarify this ambiguity, we then show that the occipital/posterior cingulate ratio is markedly lower in CAA than in AD (N = 7). These pilot data suggest that early-phase 11C-PiB-PET may not only add to late-phase PiB-PET with respect to the unclear situation of late-phase positivity, but also help differentiate CAA from AD.
Collapse
Affiliation(s)
- Karim Farid
- APHP, Hotel-Dieu Hospital, Department of Nuclear Medicine, Paris, France
- Dept of Nuclear Medicine, Martinique University Hospital, Fort-de-France, French West Indies
| | - Young T. Hong
- Wolfson Brain Imaging Centre, Dept of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Franklin I. Aigbirhio
- Wolfson Brain Imaging Centre, Dept of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Tim D. Fryer
- Wolfson Brain Imaging Centre, Dept of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth A. Warburton
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Stroke Unit, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Jean-Claude Baron
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- INSERM U894, Centre Hospitalier Sainte Anne, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
47
|
Korner G, Noain D, Ying M, Hole M, Flydal MI, Scherer T, Allegri G, Rassi A, Fingerhut R, Becu-Villalobos D, Pillai S, Wueest S, Konrad D, Lauber-Biason A, Baumann CR, Bindoff LA, Martinez A, Thöny B. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency. Brain 2015; 138:2948-63. [PMID: 26276013 DOI: 10.1093/brain/awv224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2023] Open
Abstract
Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum.
Collapse
Affiliation(s)
- Germaine Korner
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Daniela Noain
- 4 Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
| | - Ming Ying
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Magnus Hole
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marte I Flydal
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Tanja Scherer
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Gabriella Allegri
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Anahita Rassi
- 6 Division of Clinical Chemistry and Biochemistry, Department of Paediatrics, University of Zürich, Zürich, Switzerland
| | - Ralph Fingerhut
- 7 Swiss Newborn Screening Laboratory, University Children's Hospital, Zurich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | | | - Samyuktha Pillai
- 9 Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - Stephan Wueest
- 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland 10 Division of Endocrinology, Department of Pediatrics, University of Zurich, Switzerland
| | - Daniel Konrad
- 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland 10 Division of Endocrinology, Department of Pediatrics, University of Zurich, Switzerland
| | - Anna Lauber-Biason
- 11 Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Christian R Baumann
- 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 4 Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
| | - Laurence A Bindoff
- 12 Department of Clinical Medicine K1, University of Bergen, Norway 13 Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Aurora Martinez
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Beat Thöny
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| |
Collapse
|
48
|
Wang M, Gao M, Xu Z, Zheng QH. Synthesis of a PET tau tracer [(11)C]PBB3 for imaging of Alzheimer's disease. Bioorg Med Chem Lett 2015; 25:4587-92. [PMID: 26323870 DOI: 10.1016/j.bmcl.2015.08.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 11/17/2022]
Abstract
The authentic standard PBB3 and its precursor N-desmethyl-PBB3 as well as TBS-protected N-desmethyl-PBB3 precursor for radiolabeling were synthesized from 5-bromo-2-nitropyridine, acrolein diethyl acetal, 6-methoxy-2-methylbenzothiazole, and diethylchlorophosphate with overall chemical yield 1% in six steps, 2% in five steps, and 1% in six steps, respectively. [(11)C]PBB3 was prepared from either desmethyl-PBB3 or TBS-protected desmethyl-PBB3 with [(11)C]CH3OTf through N-[(11)C]methylation and isolated by HPLC combined with SPE in 20-25% and 15-20% radiochemical yield, respectively, based on [(11)C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the specific activity at EOB was 370-1110 GBq/μmol with a total synthesis time of ~40-min from EOB.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA
| | - Mingzhang Gao
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA
| | - Zhidong Xu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA.
| |
Collapse
|
49
|
Gao M, Wang M, Zheng QH. Fully automated synthesis of [18F]T807, a PET tau tracer for Alzheimer’s disease. Bioorg Med Chem Lett 2015; 25:2953-7. [DOI: 10.1016/j.bmcl.2015.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 01/14/2023]
|