1
|
Maurin M, Hennebique A, Brunet C, Pondérand L, Pelloux I, Boisset S, Caspar Y. Non-vaccinal prophylaxis of tularemia. Front Microbiol 2024; 15:1507469. [PMID: 39669787 PMCID: PMC11635305 DOI: 10.3389/fmicb.2024.1507469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Tularemia is a re-emerging zoonosis in many endemic countries. It is caused by Francisella tularensis, a gram-negative bacterium and biological threat agent. Humans are infected from the wild animal reservoir, the environmental reservoir or by the bite of arthropod vectors. This infection occurs through the cutaneous, conjunctival, digestive or respiratory routes. Tularemia generally manifests itself as an infection at the site of entry of the bacteria with regional lymphadenopathy, or as a systemic disease, particularly pulmonary. It is often a debilitating condition due to persistent symptoms and sometimes a life-threatening condition. There is effective antibiotic treatment for this disease but no vaccine is currently available for humans or animals. Due to the complexity of the F. tularensis life cycle and multiple modes of human infection, non-vaccine prophylaxis of tularemia is complex and poorly defined. In this review, we summarize the various individual prophylactic measures available against tularemia based on the different risk factors associated with the disease. We also discuss the currently underdeveloped possibilities for collective prophylaxis. Prophylactic measures must be adapted in each tularemia endemic area according to the predominant modes of human and animal infection. They requires a One Health approach to control both animal and environmental reservoirs of F. tularensis, as well as arthropod vectors, to slow the current expansion of endemic areas of this disease in a context of climate change.
Collapse
Affiliation(s)
- Max Maurin
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Recherche Translationnelle et Innovation en Médecine et Complexité (TIMC), Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes, Grenoble, France
| | - Aurélie Hennebique
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Recherche Translationnelle et Innovation en Médecine et Complexité (TIMC), Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes, Grenoble, France
| | - Camille Brunet
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
| | - Léa Pondérand
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Isabelle Pelloux
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
| | - Sandrine Boisset
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Yvan Caspar
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
2
|
Weyna AAW, Andreasen VA, Burrell CE, Kunkel MR, Radisic R, Goodwin CC, Fenton H, Dugovich BS, Poulson RL, Ruder MG, Yabsley MJ, Sanchez S, Nemeth NM. Causes of morbidity and mortality in wild cottontail rabbits in the eastern United States, 2013-2022. J Vet Diagn Invest 2024; 36:655-665. [PMID: 38853709 PMCID: PMC11457750 DOI: 10.1177/10406387241259000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Interest in causes of mortality of free-ranging, native North American lagomorphs has grown with the emergence of rabbit hemorrhagic disease virus 2 (RHDV2). Over the years 2013-2022, the Southeastern Cooperative Wildlife Disease Study received 119 Sylvilagus spp. case submissions from the central and eastern United States, comprising 147 rabbits. Most (86%) of these submissions occurred after detecting RHDV2 in the United States in 2020. Laboratory data from these rabbits were retrospectively evaluated for major causes, contributors to mortality, and pathogen detections. Gross and histologic examination was performed for 112 rabbits. Common primary causes of death included trauma (n = 49), bacterial disease (n = 31), emaciation (n = 6), and parasitism (n = 6). Among the 32 rabbits with bacterial disease, 12 were diagnosed with tularemia and 7 with pasteurellosis. Rabbits with pasteurellosis had disseminated abscessation, septicemia, and/or polyserositis. Less commonly, cutaneous fibroma (n = 2), notoedric mange (n = 2), encephalitozoonosis (n = 2), neoplasia (round-cell sarcoma; n = 1), and congenital abnormalities (n = 1) were diagnosed. RHDV2 was not detected in 123 rabbits tested. Although RHDV2 has not been detected in wild lagomorphs in the eastern United States, detections in domestic rabbits from the region emphasize the need for continued surveillance. Furthermore, continued surveillance for Francisella tularensis informs public health risk. Overall, increased knowledge of Sylvilagus spp. health furthers our understanding of diseases affecting these important prey and game species.
Collapse
Affiliation(s)
- Alisia A. W. Weyna
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Victoria A. Andreasen
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Caitlin E. Burrell
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Melanie R. Kunkel
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Rebecca Radisic
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Chloe C. Goodwin
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Heather Fenton
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Brian S. Dugovich
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Nicole M. Nemeth
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Narayanan S, Couger B, Bates H, Gupta SK, Malayer J, Ramachandran A. Characterization of three Francisella tularensis genomes from Oklahoma, USA. Access Microbiol 2023; 5:acmi000451. [PMID: 37424551 PMCID: PMC10323801 DOI: 10.1099/acmi.0.000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 03/08/2023] [Indexed: 07/11/2023] Open
Abstract
Francisella tularensis , the causative agent for tularaemia, is a Tier 1 select agent, and a pan-species pathogen of global significance due to its zoonotic potential. Consistent genome characterization of the pathogen is essential to identify novel genes, virulence factors, antimicrobial resistance genes, for studying phylogenetics and other features of interest. This study was conducted to understand the genetic variations among genomes of F. tularensis isolated from two felines and one human source. Pan-genome analysis revealed that 97.7 % of genes were part of the core genome. All three F. tularensis isolates were assigned to sequence type A based on single nucleotide polymorphisms (SNPs) in sdhA. Most of the virulence genes were part of the core genome. An antibiotic resistance gene coding for class A beta-lactamase was detected in all three isolates. Phylogenetic analysis showed that these isolates clustered with other isolates reported from Central and South-Central USA. Assessment of large sets of the F. tularensis genome sequences is essential in understanding pathogen dynamics, geographical distribution and potential zoonotic implications.
Collapse
Affiliation(s)
- Sai Narayanan
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, 1950 W Farm Rd, Stillwater, OK 74078, USA
| | - Brian Couger
- Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Haley Bates
- Yale School of Nursing, 400 W Campus Dr., Orange, CT 06477, USA
| | - Sushim Kumar Gupta
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, 1950 W Farm Rd, Stillwater, OK 74078, USA
| | - Jerry Malayer
- College of Veterinary Medicine, Oklahoma State University, 208 S McFarland St., Stillwater, OK 74078, USA
| | - Akhilesh Ramachandran
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, 1950 W Farm Rd, Stillwater, OK 74078, USA
| |
Collapse
|
4
|
Bishop A, Wang HH, Donaldson TG, Brockinton EE, Kothapalli E, Clark S, Vishwanath T, Canales T, Sreekumar K, Grant WE, Teel PD. Tularemia cases increase in the USA from 2011 through 2019. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 3:100116. [PMID: 36865594 PMCID: PMC9972391 DOI: 10.1016/j.crpvbd.2023.100116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Tularemia is a rare but potentially serious bacterial zoonosis, which has been reported in the 47 contiguous states of the USA during 2001-2010. This report summarizes the passive surveillance data of tularemia cases reported to the Centers for Disease Control and Prevention from 2011 through 2019. There were 1984 cases reported in the USA during this period. The average national incidence was 0.07 cases per 100,000 person-years (PY), compared to 0.04 cases per 100,000 PY during 2001-2010. The highest statewide reported case 2011-2019 was in Arkansas (374 cases, 20.4% of total), followed by Missouri (13.1%), Oklahoma (11.9%), and Kansas (11.2%). Regarding race, ethnicity, and sex, tularemia cases were reported more frequently among white, non-Hispanic, and male patients. Cases were reported in all age groups; however, individuals 65 years-old and older exhibited the highest incidence. The seasonal distribution of cases generally paralleled the seasonality of tick activity and human outdoor activity, increasing during spring through mid-summer and decreasing through late summer and fall to winter lows. Improved surveillance and education of ticks and tick- and water-borne pathogens should play a key role in efforts to decrease the incidence of tularemia in the USA.
Collapse
Affiliation(s)
- Alexandra Bishop
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Hsiao-Hsuan Wang
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA,Corresponding author.
| | - Taylor G. Donaldson
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, USA
| | - Emily E. Brockinton
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, USA
| | - Esha Kothapalli
- The Department of Public Health Studies, Texas A&M University, College Station, TX, USA
| | - Scott Clark
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Tanvi Vishwanath
- Department of Mathematics, Texas A&M University, College Station, TX, USA
| | - Tatyana Canales
- Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX, USA
| | - Krishnendu Sreekumar
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - William E. Grant
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Pete D. Teel
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, USA
| |
Collapse
|
5
|
Disler G, Schlaht R, Hahn MB. Perspectives on and prevalence of ticks and tick-borne diseases in Alaskan veterinary clinics. J Am Vet Med Assoc 2022; 261:1-8. [PMID: 35921400 PMCID: PMC10424748 DOI: 10.2460/javma.22.04.0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Objective To assess knowledge, attitudes, and practices (KAP) of veterinary personnel and pet owners regarding ticks and tick-borne diseases in Alaska and to conduct a serosurvey for tick-borne disease pathogens among domestic animals visiting veterinary clinics for preventative care. Sample Across 8 veterinary clinics, we sampled 31 veterinary personnel, 81 pet owners, 102 client-owned dogs, and 1 client-owned cat. Procedures Information on KAP among veterinary staff and pet owners was collected via self-administered questionnaires. Tick and tick-borne disease prevalence were assessed via tick checks and benchtop ELISA antibody tests detecting Anaplasma phagocytophilum, Anaplasma platys, Erlichia canis, Erlichia ewingii, and Borrelia burgdorferi. Results The veterinary personnel KAP survey showed a low average knowledge score (53.5%) but a moderate attitude score (71.7%). In contrast, owner average knowledge score was higher (67.5%) and attitude score was comparatively low (50.6%). Both veterinary personnel and owners had low average practice scores (64.5% and 56.3%, respectively). One dog was positive for anaplasmosis (unknown species) antibody, and 1 dog was positive for B burgdorferi antibody. No ticks were found during the study. Clinical Relevance This study was the first of its kind in the state and indicated a low prevalence of ticks and tick-borne diseases in the domestic pet population and highlighted significant knowledge gaps that could be targeted by public health efforts. Our results suggest the value of a One Health approach and of the veterinary-client relationship to address ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Gale Disler
- Institute for Circumpolar Health Studies, University of Alaska, Anchorage, AK
| | | | - Micah B. Hahn
- Institute for Circumpolar Health Studies, University of Alaska, Anchorage, AK
| |
Collapse
|
6
|
Clary SJ, Brubacher JW, Kubat RC. Tularemia Proximal Interphalangeal Joint Septic Arthritis: A Case Report. JBJS Case Connect 2022; 12:01709767-202209000-00032. [PMID: 36049027 DOI: 10.2106/jbjs.cc.22.00287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CASE A case of Francisella tularensis finger proximal interphalangeal joint septic arthritis secondary to feral cat bite is presented. The patient underwent operative debridement on presentation. On postoperative day 5, a gram-negative rod resembling F. tularensis was identified. The patient received 4 weeks of gentamicin for culture-confirmed ulceroglandular tularemia. At the final follow-up, the infection had resolved, and full function of the digit had been regained. CONCLUSION Francisella tularensis septic arthritis secondary to a feral cat bite is exceedingly rare but should be considered in the appropriate clinical context. Proper identification and treatment with antibiotics is essential for a positive outcome.
Collapse
Affiliation(s)
- Steven J Clary
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jacob W Brubacher
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ryan C Kubat
- Department of Infectious Diseases, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
7
|
Mlynek KD, Lopez CT, Fetterer DP, Williams JA, Bozue JA. Phase Variation of LPS and Capsule Is Responsible for Stochastic Biofilm Formation in Francisella tularensis. Front Cell Infect Microbiol 2022; 11:808550. [PMID: 35096655 PMCID: PMC8795689 DOI: 10.3389/fcimb.2021.808550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Biofilms have been established as an important lifestyle for bacteria in nature as these structured communities often enable survivability and persistence in a multitude of environments. Francisella tularensis is a facultative intracellular Gram-negative bacterium found throughout much of the northern hemisphere. However, biofilm formation remains understudied and poorly understood in F. tularensis as non-substantial biofilms are typically observed in vitro by the clinically relevant subspecies F. tularensis subsp. tularensis and F. tularensis subsp. holarctica (Type A and B, respectively). Herein, we report conditions under which robust biofilm development was observed in a stochastic, but reproducible manner in Type A and B isolates. The frequency at which biofilm was observed increased temporally and appeared switch-like as progeny from the initial biofilm quickly formed biofilm in a predictable manner regardless of time or propagation with fresh media. The Type B isolates used for this study were found to more readily switch on biofilm formation than Type A isolates. Additionally, pH was found to function as an environmental checkpoint for biofilm initiation independently of the heritable cellular switch. Multiple colony morphologies were observed in biofilm positive cultures leading to the identification of a particular subset of grey variants that constitutively produce biofilm. Further, we found that constitutive biofilm forming isolates delay the onset of a viable non-culturable state. In this study, we demonstrate that a robust biofilm can be developed by clinically relevant F. tularensis isolates, provide a mechanism for biofilm initiation and examine the potential role of biofilm formation.
Collapse
Affiliation(s)
- Kevin D. Mlynek
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Christopher T. Lopez
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - David P. Fetterer
- Division of Biostatistics, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Janice A. Williams
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Joel A. Bozue
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| |
Collapse
|
8
|
Herrero-Cófreces S, Mougeot F, Lambin X, Luque-Larena JJ. Linking Zoonosis Emergence to Farmland Invasion by Fluctuating Herbivores: Common Vole Populations and Tularemia Outbreaks in NW Spain. Front Vet Sci 2021; 8:698454. [PMID: 34458354 PMCID: PMC8397442 DOI: 10.3389/fvets.2021.698454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
The expansion and intensification of agriculture are driving profound changes in ecosystems worldwide, favoring the (re)emergence of many human infectious diseases. Muroid rodents are a key host group for zoonotic infectious pathogens and frequently invade farming environments, promoting disease transmission and spillover. Understanding the role that fluctuating populations of farm dwelling rodents play in the epidemiology of zoonotic diseases is paramount to improve prevention schemes. Here, we review a decade of research on the colonization of farming environments in NW Spain by common voles (Microtus arvalis) and its public health impacts, specifically periodic tularemia outbreaks in humans. The spread of this colonizing rodent was analogous to an invasion process and was putatively triggered by the transformation and irrigation of agricultural habitats that created a novel terrestrial-aquatic interface. This irruptive rodent host is an effective amplifier for the Francisella tularensis bacterium during population outbreaks, and human tularemia episodes are tightly linked in time and space to periodic (cyclic) variations in vole abundance. Beyond the information accumulated to date, several key knowledge gaps about this pathogen-rodent epidemiological link remain unaddressed, namely (i) did colonizing vole introduce or amplified pre-existing F. tularensis? (ii) which features of the “Francisella—Microtus” relationship are crucial for the epidemiology of tularemia? (iii) how virulent and persistent F. tularensis infection is for voles under natural conditions? and (iv) where does the bacterium persist during inter-epizootics? Future research should focus on more integrated, community-based approaches in order to understand the details and dynamics of disease circulation in ecosystems colonized by highly fluctuating hosts.
Collapse
Affiliation(s)
- Silvia Herrero-Cófreces
- Dpto. Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Universidad de Valladolid, Palencia, Spain
| | - François Mougeot
- Grupo de Gestión de Recursos Cinegéticos y Fauna Silvestre, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Juan José Luque-Larena
- Dpto. Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Universidad de Valladolid, Palencia, Spain
| |
Collapse
|
9
|
Vatta AF, Everett WR, Cherni JA, King VL, Rugg D. The speed of kill of a topical combination of selamectin plus sarolaner against induced infestations of Ixodes scapularis ticks on cats. Vet Parasitol 2019; 270 Suppl 1:S26-S30. [DOI: 10.1016/j.vetpar.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/30/2023]
|
10
|
Reif KE, Ujczo JK, Alperin DC, Noh SM. Francisella tularensis novicida infection competence differs in cell lines derived from United States populations of Dermacentor andersoni and Ixodes scapularis. Sci Rep 2018; 8:12685. [PMID: 30140074 PMCID: PMC6107653 DOI: 10.1038/s41598-018-30419-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 01/08/2023] Open
Abstract
In the United States, Dermacentor spp. are common vectors of Francisella tularensis subspecies (ssp.), while Ixodes scapularis is not, though the geographic distribution and host range of pathogen and tick overlap. To examine if differences in infection competence at the cellular level underpin these ecological differences, we evaluated the competence of D. andersoni (DAE100) and I. scapularis (ISE6) cell lines to support F. tularensis ssp. novicida (F. novicida) infection. Importantly, D. andersoni is a vector for both F. tularensis spp. tularensis, and F. novicida. We hypothesized F. novicida infection would be more productive in D. andersoni than in I. scapularis cells. Specifically, we determined if there are differences in F. novicida i) invasion, ii) replication, or iii) tick cell viability between DAE100 and ISE6 cells. We further examined the influence of temperature on infection kinetics. Both cell lines were permissive to F. novicida infection; however, there were significantly higher bacterial levels and mortality in DAE100 compared to ISE6 cells. Infection at environmental temperatures prolonged the time bacteria were maintained at high levels and reduced tick cell mortality in both cell lines. Identifying cellular determinants of vector competence is essential in understanding tick-borne disease ecology and designing effective intervention strategies.
Collapse
Affiliation(s)
- Kathryn E Reif
- Animal Disease Research Unit, Agriculture Research Service, US Department of Agriculture, Pullman, Washington, USA.
| | - Jessica K Ujczo
- Animal Disease Research Unit, Agriculture Research Service, US Department of Agriculture, Pullman, Washington, USA
| | - Debra C Alperin
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Susan M Noh
- Animal Disease Research Unit, Agriculture Research Service, US Department of Agriculture, Pullman, Washington, USA
| |
Collapse
|
11
|
Toepp AJ, Willardson K, Larson M, Scott BD, Johannes A, Senesac R, Petersen CA. Frequent Exposure to Many Hunting Dogs Significantly Increases Tick Exposure. Vector Borne Zoonotic Dis 2018; 18:519-523. [PMID: 30016206 DOI: 10.1089/vbz.2017.2238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Certain professionals have more exposure to animals and therefore an increased risk of zoonoses. Professional hunting dog caretakers work with upwards of 50 dogs and are exposed to zoonoses through exposure to multiple potentially infectious canine secretions or excretions, as well as to the ticks that dogs carry. Dog caretakers reported having found embedded ticks on their bodies 5.83 times more than environment-only controls. Zoonotic Lyme disease, first in the United States for morbidity due to a vector-borne infection, has dramatically expanded its geographic range over the last two decades. This finding emphasizes the increased risk of tick-borne diseases, including Lyme disease, based on dog exposure and in areas of disease emergence.
Collapse
Affiliation(s)
- Angela J Toepp
- 1 Department of Epidemiology, University of Iowa College of Public Health , Iowa City, Iowa
| | - Kelsey Willardson
- 1 Department of Epidemiology, University of Iowa College of Public Health , Iowa City, Iowa
| | - Mandy Larson
- 1 Department of Epidemiology, University of Iowa College of Public Health , Iowa City, Iowa
| | - Benjamin D Scott
- 1 Department of Epidemiology, University of Iowa College of Public Health , Iowa City, Iowa
| | - Ashlee Johannes
- 2 Department of Occupational and Environmental Health, University of Iowa College of Public Health , Iowa City, Iowa
| | - Reid Senesac
- 1 Department of Epidemiology, University of Iowa College of Public Health , Iowa City, Iowa
| | - Christine A Petersen
- 1 Department of Epidemiology, University of Iowa College of Public Health , Iowa City, Iowa
| |
Collapse
|
12
|
Stidham RA, Freeman DB, von Tersch RL, Sullivan PJ, Tostenson SD. Epidemiological Review of Francisella Tularensis: A Case Study in the Complications of Dual Diagnoses. PLOS CURRENTS 2018; 10:ecurrents.outbreaks.8eb0b55f377abc2d250314bbb8fc9d6d. [PMID: 29399382 PMCID: PMC5774973 DOI: 10.1371/currents.outbreaks.8eb0b55f377abc2d250314bbb8fc9d6d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Tularemia is a rare but potentially fatal disease that develops in numerous wild and domestic animals, including lagomorphs, rodents, cats, and humans. Francisella tularensis bacterium, the causative agent of tularemia, was identified by veterinary personnel at Fort Riley, Kansas during a routine post-mortum evaluation of a domestic feline. However, before formal diagnosis was confirmed, the sample was sent and prepared for rabies testing at the Department of Defense (DoD) U.S. Army Public Health Command Central (PHC-C), Food Analysis and Diagnostic Laboratory (FADL). This case report provides insight on how veterinarian staff and laboratory personnel can clinically manage esoteric, unexplained, or post-mortum examinations. The epidemiologic characteristics of tularemia, F. tularensis as an organism of military interest, potential laboratory management of F. tularensis, and clinical findings on a case of feline tularemia are discussed. It further raises questions as to whether or not dead animals should be treated as sentinels and be pre-screened for select agents, especially in instances of dual diagnoses. METHODS A necropsy was performed on the cat by the Fort Riley veterinarian, DNA extraction and PCR analyses were conducted by FADL microbiologists, histology and immunohistology analyses were conducted by the Kansas State Veterinary Diagnostic Laboratory, and feline tissue and blood were sent to the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) for confirmatory testing and strain identification of tularemia. RESULTS Tularemia was identified in the spleen of the cat by the Fort Riley veterinarian and during the histological sampling of the spleen by the Kansas State Veterinary Diagnostic Laboratory. A specific subsequent real-time polymerase chain reaction (RT-PCR) in vitro diagnostic detection of target DNA sequences of F. tularensis was conducted by the FADL microbiologists using a Joint Biological Agent Identification and Diagnostic System (JBAIDS) Tularemia Detection Kit to detect a presumptive qualitative result to detect tularemia in feline and blood samples. USAMRIID also performed RT-PCR and identified genomic DNA from F. tularensis Type A, (SPL15.013.02), thus confirming the FADL's initial presumptive result of F. tularensis. USAMRIID attempted to culture F. tularensis from three samples (swab, feline tissue, and transfer pipette tip), but no growth consistent with F. tularensis was observed on the cysteine heart agar with sheep blood and antibiotics (CHAB) and chocolate (CHOC) plates. DISCUSSIONS Our case study of a dual diagnosis of presumptive F. tularensis and possible rabies exposure transmission from a pet cat to its owner provides insight on how veterinarian staff and laboratory personnel can clinically manage esoteric, unexplained, or post-mortum examinations. Our case study also demonstrates the obligation for cooperation between animal health, human health, and public health professionals in the management of zoonotic diseases.
Collapse
Affiliation(s)
- Ralph Anthony Stidham
- Epidemiology and Disease Surveillance, US Army Public Health Command-Central, JBSA Fort Sam Houston, Texas, United States of America
| | - David B Freeman
- † Laboratory, Diagnostics Section, US Army Public Health Command-Central, JBSA Fort Sam Houston, Texas, United States of America
| | - Robert L von Tersch
- † Office of the Commander (Commander), US Army Public Health Command-Central, JBSA Fort Sam Houston, Texas, United States of America
| | - Peter J Sullivan
- Veterinarian Services, Fort Riley Veterinary Treatment Facility, Fort Riley, Kansas, United States of America
| | - Samantha D Tostenson
- Special Pathogens Laboratory, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| |
Collapse
|
13
|
Abstract
Francisella tularensis, the causative organism in Tularemia, is a relatively rare disease. There are a few radiological clues to elucidate its presence when suspicion arises. There should be strong consideration for Tularemia in the differential of any patient with its classic symptoms, diffuse cervical lymphadenopathy with evidence of necrosis, and enlarged adenoids. Ultrasound may demonstrate suppurative lymphadenopathy suggestive of infection, as in the case presented. CT often will demonstrate the extent of lymphadenopathy. On chest radiography, tularemia pneumonia is often the presenting finding, which may demonstrate bilateral or lobar infiltrates. Additionally, hilar lymphadenopathy and pleural effusions are often associated findings. Cavitary lesions may be present, which are better delineated on CT scan. We present a case of a 7-year-old male who presented with a painful right-sided palpable neck mass for 9 days, who was diagnosed with Tularemia after numerous admissions.
Collapse
Affiliation(s)
- Neil Anand
- Department of Radiology, Morristown Medical Center, Morristown, NJ, USA
| | - Osmani Deochand
- Department of Radiology, Morristown Medical Center, Morristown, NJ, USA
| | - Robyn Murphy
- Department of Radiology, Morristown Medical Center, Morristown, NJ, USA
| |
Collapse
|