1
|
Ayhan H, Adiguzel C, Bayram KK, Akin AT, Apaydin FG, Kalender Y. Effect of propolis supplementation on cadmium toxicity associated with renal and hepatic dysfunction in rats. J Trace Elem Med Biol 2025; 87:127587. [PMID: 39764897 DOI: 10.1016/j.jtemb.2024.127587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025]
Abstract
Cadmium (Cd), one of the toxic heavy metals, is of great importance for public health due to its use in many industrial areas. Propolis is a natural product with antioxidant and anti-inflammatory properties collected from plants by honey bees. The aim of this study was to investigate the protective role of propolis against the potential toxic effects of cadmium chloride in blood, liver and kidney tissues. For this purpose, rats were divided into four groups. Control group, propolis (150 mg/kg b.w.) treated group, cadmium chloride (1.76 mg/kg b.w. 1/50 LD50) treated group and cadmium chloride plus propolis (1.76 mg/kg b.w. and 150 mg/kg b.w. respectively) treated group. The substances were given to rats by gavage for 28 days. After 28 days of treatment, a statistically significant change was observed in serum biochemical parameters such as ALT, AST, BUN, LDH, urea, uric acid and creatinine, hematological parameters such as erythrocyte, hemoglobin and hematocrit, and IL-1β and IL-6 cytokine levels of cadmium chloride treated rats compared to the control group. In addition, significant changes were observed in mRNA expression levels of Casp-3, p53 and Tnf-α genes, HSP70, HSP90 and GRP78 protein levels and histopathological/immunohistochemical examinations. Improvement in biochemical and hematologic parameters, cytokines, mRNA expression, heat shock proteins and immunohistochemistry changes were observed in cadmium plus propolis treated group compared to cadmium treated group.
Collapse
Affiliation(s)
- Huseyin Ayhan
- Vocational School of Health Services, Ankara Yıldırım Beyazıt University, Çubuk, Ankara 06760, Turkey.
| | - Caglar Adiguzel
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Turkey
| | - Keziban Korkmaz Bayram
- Department of Medical Genetics, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Çankaya, Ankara 06800, Turkey
| | - Ali Tugrul Akin
- Faculty of Medicine, Department of Medical Biology, Istinye University, İstanbul 34396, Turkey
| | - Fatma Gokce Apaydin
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Turkey
| | - Yusuf Kalender
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Turkey
| |
Collapse
|
2
|
Shaw B, Thwin PH, Jia N, Weng H, Ma C, Zhu H, Wang L. Stress granules play a critical role in hexavalent chromium-induced malignancy in a G3BP1 dependent manner. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124997. [PMID: 39306064 PMCID: PMC11563910 DOI: 10.1016/j.envpol.2024.124997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Stress granules (SGs) are dynamic membraneless organelles influencing multiple cellular pathways including cell survival, proliferation, and malignancy. Hexavalent chromium [Cr(VI)] is a toxic heavy metal associated with severe environmental health risks. Low-level environmental exposure to Cr(VI) has been reported to cause cancer, but the role of SGs in Cr(VI)-induced health effects remains unclear. This study was intended to elucidate the impact of Cr(VI) exposure on SG dynamics and the role of SGs in Cr(VI)-induced malignancy. Results showed that both acute exposure to high concentration of Cr(VI) and prolonged exposure to low concentration of Cr(VI)-induced SG formation in human bronchial epithelium BEAS-2B cells. Cells pre-exposed to Cr(VI) exhibited a more robust SG response compared to cells without pre-exposure. An up-regulated SG response was associated with increased malignant properties in cells exposed to low concentration Cr(VI) for an extended period of time up to 12 months. Knocking out the SG core protein G3BP1 in Cr(VI)-transformed (CrT) cells reduced SG formation and malignant properties, including proliferation rate, sphere formation, and malignant markers. The results support a critical role for SGs in mediating Cr(VI)-induced malignancy in a G3BP1-dependent manner, representing a novel mechanism and a potential therapeutic target.
Collapse
Affiliation(s)
- Brian Shaw
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Phyo Han Thwin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Nan Jia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Hope Weng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Haining Zhu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA; Research Service, Department of Veteran Affairs Southern Arizona Health Care, Tucson, AZ, 85723, USA.
| | - Lei Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
3
|
Zhang Y, Hu H, Zhu Y, Xiao J, Li C, Qian C, Yu X, Zhao J, Chen X, Liu J, Zhou J. Butterfly-Inspired Multiple Cross-Linked Dopamine-Metal-Phenol Bioprosthetic Valves with Enhanced Endothelialization and Anticalcification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64522-64535. [PMID: 39535147 PMCID: PMC11615854 DOI: 10.1021/acsami.4c14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Valve replacement is the most effective means of treating heart valve diseases, and transcatheter heart valve replacement (THVR) is the hottest field at present. However, the durability of the commercial bioprosthetic valves has always been the limiting factor restricting the development of interventional valve technology. The chronic inflammatory reaction, calcification, and difficulty in endothelialization after the implantation of a glutaraldehyde cross-linked porcine aortic valve or bovine pericardium often led to valve degeneration. Improving the biocompatibility of valve materials and inducing endothelialization to promote in situ regeneration can extend the service life of valve materials. Herein, inspired by the hardening process of butterfly wings, this study proposed a dopamine-metal-phenol strategy to modify decellularized porcine pericardium (DPP). This is a strategy to make dopamine (DA) coordinate trivalent metal chromium ions (Cr(III)) with antiplatelets (PLTs) and anti-inflammatory properties, and then cross-link it with tea polyphenols (TP) to generate a valve scaffold that is mechanically comparable to glutaraldehyde-cross-linked scaffolds but avoids the cytotoxicity of aldehyde and presents better biocompatibility, hemocompatibility, anticalcification, and anti-inflammatory response properties.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Hai Hu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Yaoxi Zhu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jie Xiao
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Chenghao Li
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Chen Qian
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Xiaobo Yu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jinping Zhao
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Xing Chen
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jinping Liu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jianliang Zhou
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| |
Collapse
|
4
|
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention due to their health hazards to human cardiovascular disease. Heavy metals, including lead, cadmium, mercury, arsenic, and chromium, are found in various sources such as air, water, soil, food, and industrial products. Recent research strongly suggests a connection between cardiovascular disease and exposure to toxic heavy metals. Epidemiological, basic, and clinical studies have revealed that heavy metals can promote the production of reactive oxygen species, which can then exacerbate reactive oxygen species generation and induce inflammation, resulting in endothelial dysfunction, lipid metabolism distribution, disruption of ion homeostasis, and epigenetic changes. Over time, heavy metal exposure eventually results in an increased risk of hypertension, arrhythmia, and atherosclerosis. Strengthening public health prevention and the application of chelation or antioxidants, such as vitamins and beta-carotene, along with minerals, such as selenium and zinc, can diminish the burden of cardiovascular disease attributable to metal exposure.
Collapse
Affiliation(s)
- Ziwei Pan
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| | - Tingyu Gong
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China (T.G.)
| | - Ping Liang
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| |
Collapse
|
5
|
Granata S, Vivarelli F, Morosini C, Canistro D, Paolini M, Fairclough LC. Toxicological Aspects Associated with Consumption from Electronic Nicotine Delivery System (ENDS): Focus on Heavy Metals Exposure and Cancer Risk. Int J Mol Sci 2024; 25:2737. [PMID: 38473984 DOI: 10.3390/ijms25052737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Tobacco smoking remains one of the leading causes of premature death worldwide. Electronic Nicotine Delivery Systems (ENDSs) are proposed as a tool for smoking cessation. In the last few years, a growing number of different types of ENDSs were launched onto the market. Despite the manufacturing differences, ENDSs can be classified as "liquid e-cigarettes" (e-cigs) equipped with an atomizer that vaporizes a liquid composed of vegetable glycerin (VG), polypropylene glycol (PG), and nicotine, with the possible addition of flavorings; otherwise, the "heated tobacco products" (HTPs) heat tobacco sticks through contact with an electronic heating metal element. The presence of some metals in the heating systems, as well as in solder joints, involves the possibility that heavy metal ions can move from these components to the liquid, or they can be adsorbed into the tobacco stick from the heating blade in the case of HTPs. Recent evidence has indicated the presence of heavy metals in the refill liquids and in the mainstream such as arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), copper (Cu), and lead (Pb). The present review discusses the toxicological aspects associated with the exposition of heavy metals by consumption from ENDSs, focusing on metal carcinogenesis risk.
Collapse
Affiliation(s)
- Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucy C Fairclough
- School of Life Sciences, University of Nottingham, East Dr, Nottingham NG7 2TQ, UK
| |
Collapse
|
6
|
Fernández-Martínez NF, Rodríguez-Barranco M, Huerta JM, Gil F, Olmedo P, Molina-Montes E, Guevara M, Zamora-Ros R, Jiménez-Zabala A, Colorado-Yohar SM, Ardanaz E, Bonet C, Amiano P, Chirlaque MD, Pérez-Gómez B, Jiménez-Moleón JJ, Martín-Jiménez M, de Santiago E, Sánchez MJ. Breast cancer risk for the joint exposure to metals and metalloids in women: Results from the EPIC-Spain cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168816. [PMID: 38036124 DOI: 10.1016/j.scitotenv.2023.168816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Environmental factors play a role in breast cancer development. While metals and metalloids (MMs) include some carcinogens, their association with breast cancer depends on the element studied. Most studies focus on individual MMs, but the combined effects of metal mixtures remain unclear. The aim of this study was to analyze the relationship between the joint exposure to MMs and the risk of developing female breast cancer. We conducted a case-control study within the multicenter prospective EPIC-Spain cohort. Study population comprised 292 incident cases and 286 controls. Plasma concentrations of 16 MMs were quantified at recruitment. Potential confounders were collected using a questionnaire and anthropometric measurements. Mixed-effects logistic regression models were built to explore the effect of individual MMs. Quantile-based g computation models were applied to identify the main mixture components and to estimate the joint effect of the metal mixture. The geometric means were highest for Cu (845.6 ng/ml) and Zn (604.8 ng/ml). Cases had significantly higher Cu concentrations (p = 0.010) and significantly lower Zn concentrations (p < 0.001). Cu (+0.42) and Mn (+0.13) showed the highest positive weights, whereas Zn (-0.61) and W (-0.16) showed the highest negative weights. The joint effect of the metal mixture was estimated at an OR = 4.51 (95%CI = 2.32-8.79), suggesting a dose-response relationship. No evidence of non-linearity or non-additivity was found. An unfavorable exposure profile, primarily characterized by high Cu and low Zn levels, could lead to a significant increase in the risk of developing female breast cancer. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Nicolás Francisco Fernández-Martínez
- Instituto de Investigación Biosanitaria ibs, GRANADA, 18012 Granada, Spain; Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Miguel Rodríguez-Barranco
- Instituto de Investigación Biosanitaria ibs, GRANADA, 18012 Granada, Spain; Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.
| | - José María Huerta
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008 Murcia, Spain
| | - Fernando Gil
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Pablo Olmedo
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Esther Molina-Montes
- Instituto de Investigación Biosanitaria ibs, GRANADA, 18012 Granada, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Nutrition and Food Science, University of Granada, 18011 Granada, Spain; Institute of Nutrition and Food Technology (INYTA) 'Jose Mataix', Biomedical Research Center, University of Granada, 18071 Granada, Spain
| | - Marcela Guevara
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Instituto de Salud Pública y Laboral de Navarra, 31003 Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Raúl Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), 08908 Bellvitge, Spain; Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Ana Jiménez-Zabala
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain; BioGipuzkoa Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, 20014 San Sebastián, Spain
| | - Sandra Milena Colorado-Yohar
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008 Murcia, Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Eva Ardanaz
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Instituto de Salud Pública y Laboral de Navarra, 31003 Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Catalina Bonet
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), 08908 Bellvitge, Spain; Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Pilar Amiano
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain; BioGipuzkoa Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, 20014 San Sebastián, Spain
| | - María Dolores Chirlaque
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008 Murcia, Spain
| | - Beatriz Pérez-Gómez
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Epidemiology for Chronic Diseases, National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - José Juan Jiménez-Moleón
- Instituto de Investigación Biosanitaria ibs, GRANADA, 18012 Granada, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Legal Medicine and Toxicology, University of Granada, 18016 Granada, Spain
| | - Miguel Martín-Jiménez
- Hospital Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense, 28007 Madrid, Spain; GEICAM, Spanish Breast Cancer Group, 28703 Madrid, Spain; Consorcio de Investigación Biomédica en Red de Oncología (CIBERONC), 28029 Madrid, Spain
| | - Esperanza de Santiago
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - María-José Sánchez
- Instituto de Investigación Biosanitaria ibs, GRANADA, 18012 Granada, Spain; Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Legal Medicine and Toxicology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
7
|
Stevens D, Kramer AT, Coogan MA, Sayes CM. Developmental effects of zebrafish (Danio rerio) embryos after exposure to glyphosate and lead mixtures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115886. [PMID: 38211515 DOI: 10.1016/j.ecoenv.2023.115886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Natural aquatic environments have a heterogeneous composition; therefore, simultaneous exposure to multiple contaminants is relevant and more realistic when assessing exposure and toxicity. This study examines the combinatorial effects of two compounds found ubiquitously in drinking water across the United States: glyphosate and lead acetate. Zebrafish (Danio rerio) embryos were used as a model for investigating developmental delays following controlled exposures. Six different environmentally relevant exposure concentrations of glyphosate, ranging from 0.001 to 10 ppm, and lead acetate, ranging from 0.5 to 4 ppm, were applied first as single exposures and then as co-exposures. The sublethal endpoints of hatching and coagulation were quantified to determine potencies. Results indicate that higher concentrations of the individual chemicals correlate with later hatching with correlation coefficients of 0.71 and 0.40 for glyphosate and lead acetate respectively, while the co-exposure at lower concentrations induced earlier hatching with a correlation coefficient 0.74. In addition, increased levels of coagulation and glutathione reductase activity were observed following co-exposure, as compared to the individual exposures, suggesting potential toxicological interactions. These results support the need for further work assessing the combined potencies of aquatic contaminants rather than individual exposures.
Collapse
Affiliation(s)
- Dinny Stevens
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Alec T Kramer
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Melinda A Coogan
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| |
Collapse
|
8
|
Wise JTF, Kondo K. Increased Lipogenesis Is Important for Hexavalent Chromium-Transformed Lung Cells and Xenograft Tumor Growth. Int J Mol Sci 2023; 24:17060. [PMID: 38069382 PMCID: PMC10707372 DOI: 10.3390/ijms242317060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Hexavalent chromium, Cr(VI), is a known carcinogen and environmental health concern. It has been established that reactive oxygen species, genomic instability, and DNA damage repair deficiency are important contributors to the Cr(VI)-induced carcinogenesis mechanism. However, some hallmarks of cancer remain under-researched regarding the mechanism behind Cr(VI)-induced carcinogenesis. Increased lipogenesis is important to carcinogenesis and tumorigenesis in multiple types of cancers, yet the role increased lipogenesis has in Cr(VI) carcinogenesis is unclear. We report here that Cr(VI)-induced transformation of three human lung cell lines (BEAS-2B, BEP2D, and WTHBF-6) resulted in increased lipogenesis (palmitic acid levels), and Cr(VI)-transformed cells had an increased expression of key lipogenesis proteins (ATP citrate lyase [ACLY], acetyl-CoA carboxylase [ACC1], and fatty acid synthase [FASN]). We also determined that the Cr(VI)-transformed cells did not exhibit an increase in fatty acid oxidation or lipid droplets compared to their passage-matched control cells. Additionally, we observed increases in ACLY, ACC1, and FASN in lung tumor tissue compared with normal-adjacent lung tissue (in chromate workers that died of chromate-induced tumors). Next, using a known FASN inhibitor (C75), we treated Cr(VI)-transformed BEAS-2B with this inhibitor and measured cell growth, FASN protein expression, and growth in soft agar. We observed that FASN inhibition results in a decreased protein expression, decreased cell growth, and the inhibition of colony growth in soft agar. Next, using shRNA to knock down the FASN protein in Cr(VI)-transformed BEAS-2B cells, we saw a decrease in FASN protein expression and a loss of the xenograft tumor development of Cr(VI)-transformed BEAS-2B cells. These results demonstrate that FASN is important for Cr(VI)-transformed cell growth and cancer properties. In conclusion, these data show that Cr(VI)-transformation in vitro caused an increase in lipogenesis, and that this increase is vital for Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- James T. F. Wise
- Wise Laboratory of Nutritional Toxicology and Metabolism, School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, 269 Knapp Hall, Baton Rouge, LA 70803, USA
- School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, Baton Rouge, LA 70803, USA
- School of Nutrition and Food Sciences, Louisiana State University Agriculture Center, Baton Rouge, LA 70803, USA
- Division of Nutritional Sciences, Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City 770-8509, Japan
| |
Collapse
|
9
|
Caruso G, Nanni A, Curcio A, Lombardi G, Somma T, Minutoli L, Caffo M. Impact of Heavy Metals on Glioma Tumorigenesis. Int J Mol Sci 2023; 24:15432. [PMID: 37895109 PMCID: PMC10607278 DOI: 10.3390/ijms242015432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, an increase in the incidence of brain tumors has been observed in the most industrialized countries. This event triggered considerable interest in the study of heavy metals and their presence in the environment (air, water, soil, and food). It is probable that their accumulation in the body could lead to a high risk of the onset of numerous pathologies, including brain tumors, in humans. Heavy metals are capable of generating reactive oxygen, which plays a key role in various pathological mechanisms. Alteration of the homeostasis of heavy metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and the alteration of proteins. A large number of studies have shown that iron, cadmium, lead, nickel, chromium, and mercury levels were significantly elevated in patients affected by gliomas. In this study, we try to highlight a possible correlation between the most frequently encountered heavy metals, their presence in the environment, their sources, and glioma tumorigenesis. We also report on the review of the relevant literature.
Collapse
Affiliation(s)
- Gerardo Caruso
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Aristide Nanni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Antonello Curcio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurological Sciences, Università degli Studi di Napoli Federico II, 80125 Naples, Italy;
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, Università degli Studi di Messina, 98125 Messina, Italy;
| | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| |
Collapse
|
10
|
Altunkaynak F, Çavuşoğlu K, Yalçin E. Detection of heavy metal contamination in Batlama Stream (Turkiye) and the potential toxicity profile. Sci Rep 2023; 13:11727. [PMID: 37474634 PMCID: PMC10359263 DOI: 10.1038/s41598-023-39050-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
In this study, heavy metal pollution in Batlama stream flowing into the Black Sea from Giresun (Turkiye) province and the toxicity induced by this pollution were investigated by Allium test. Heavy metal concentrations in stream water were analyzed by using ICP-MS. Germination percentage, weight gain, root length, micronucleus (MN), mitotic index (MI), chromosomal abnormalities (CAs), proline, chlorophyll, malondialdehyde (MDA), antioxidant enzyme activities were used as indicators of physiological, cytogenetic and biochemical toxicity. In addition, Comet assay was performed for detecting DNA fragmentation. Anatomical changes caused by heavy metals in the root meristem cells were observed under the microscope. A. cepa bulbs are divided into two groups as control and treatment. The bulbs in the control group were germinated with tap water and the bulbs in the treatment group were germinated with stream water. As a result, heavy metals such as Al, Ti and Co and radioactive heavy metals such as Rb, Sr, Sb and Ba were detected in the stream water above the acceptable parametric values. Heavy metals in the water caused a decrease in germination, root elongation, weight gain, MI and chlorophyll values, and an increase in MDA, proline, SOD, CAT, MN and CAs values. Comet assays indicated the presence of severe DNA damage. In addition, heavy metals in stream water caused different types of CAs and anatomical damage in root meristem cells. As a result, it was determined that there is intense heavy metal pollution in the stream water and this pollution promotes multi-dimensional toxicity in A. cepa, which is an indicator organism. For this reason, the first priority should be to prevent pollution of water resources in order to prevent heavy metal-induced toxicity in water.
Collapse
Affiliation(s)
- Fikriye Altunkaynak
- Department of Biology, Institute of Science, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey.
| |
Collapse
|
11
|
Iyer M, Anand U, Thiruvenkataswamy S, Babu HWS, Narayanasamy A, Prajapati VK, Tiwari CK, Gopalakrishnan AV, Bontempi E, Sonne C, Barceló D, Vellingiri B. A review of chromium (Cr) epigenetic toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163483. [PMID: 37075992 DOI: 10.1016/j.scitotenv.2023.163483] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Carcinogenic metals affect a variety of cellular processes, causing oxidative stress and cancer. The widespread distribution of these metals caused by industrial, residential, agricultural, medical, and technical activities raises concern for adverse environmental and human health effects. Of these metals, chromium (Cr) and its derivatives, including Cr(VI)-induced, are of a public health concern as they cause DNA epigenetic alterations resulting in heritable changes in gene expression. Here, we review and discuss the role of Cr(VI) in epigenetic changes, including DNA methylation, histone modifications, micro-RNA changes, biomarkers of exposure and toxicity, and highlight prevention and intervention strategies to protect susceptible populations from exposure and adverse occupational health effects. Cr(VI) is a ubiquitous toxin linked to cardiovascular, developmental, neurological, and endocrine diseases as well as immunologic disorders and a high number of cancer types in humans following inhalation and skin contact. Cr alters DNA methylation levels as well as global and gene-specific histone posttranslational modifications, emphasizing the importance of considering epigenetics as a possible mechanism underlying Cr(VI) toxicity and cell-transforming ability. Our review shows that determining the levels of Cr(VI) in occupational workers is a crucial first step in shielding health problems, including cancer and other disorders. More clinical and preventative measures are therefore needed to better understand the toxicity and safeguard employees against cancer.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Saranya Thiruvenkataswamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology (PG-SF), PSG college of arts and science, Coimbatore 641014, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Chandan Kumar Tiwari
- Research and Development section, Carestream Health Inc., Oakdale, MN 55128, United States of America
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore 632 014, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, North block, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
12
|
Ge XY, Xie SH, Wang H, Ye X, Chen W, Zhou HN, Li X, Lin AH, Cao SM. Associations between serum trace elements and the risk of nasopharyngeal carcinoma: a multi-center case-control study in Guangdong Province, southern China. Front Nutr 2023; 10:1142861. [PMID: 37465140 PMCID: PMC10351973 DOI: 10.3389/fnut.2023.1142861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 07/20/2023] Open
Abstract
Background Associations between trace elements and nasopharyngeal carcinoma (NPC) have been speculated but not thoroughly examined. Methods This study registered a total of 225 newly diagnosed patients with NPC and 225 healthy controls matched by sex and age from three municipal hospitals in Guangdong Province, southern China between 2011 and 2015. Information was collected by questionnaire on the demographic characteristics and other possibly confounding lifestyle factors. Eight trace elements and the level of Epstein-Barr virus (EBV) antibody were measured in casual (spot) serum specimens by inductively coupled plasma-mass spectrometry (ICP-MS) and enzyme-linked immunosorbent assay (ELISA), respectively. Restricted cubic splines and conditional logistic regression were applied to assess the relationship between trace elements and NPC risk through single-and multiple-elements models. Results Serum levels of chromium (Cr), cobalt (Co), nickel (Ni), arsenic (As), strontium (Sr) and molybdenum (Mo) were not associated with NPC risk. Manganese (Mn) and cadmium (Cd) were positively associated with NPC risk in both single-and multiple-element models, with ORs of the highest tertile compared with the reference categories 3.90 (95% CI, 1.27 to 7.34) for Mn and 2.30 (95% CI, 1.26 to 3.38) for Cd. Restricted cubic splines showed that there was a linear increasing trend between Mn and NPC risk, while for Cd there was a J-type correlation. Conclusion Serum levels of Cd and Mn was positively related with NPC risk. Prospective researches on the associations of the two trace elements with NPC ought to be taken into account within the future.
Collapse
Affiliation(s)
- Xin-Yu Ge
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shang-Hang Xie
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Wang
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Ye
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Chen
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hang-Ning Zhou
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueqi Li
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ai-Hua Lin
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
13
|
Nikkel DJ, Wetmore SD. Distinctive Formation of a DNA-Protein Cross-Link during the Repair of DNA Oxidative Damage: Insights into Human Disease from MD Simulations and QM/MM Calculations. J Am Chem Soc 2023. [PMID: 37285289 DOI: 10.1021/jacs.3c01773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species damage DNA and result in health issues. The major damage product, 8-oxo-7,8-dihydroguanine (8oG), is repaired by human adenine DNA glycosylase homologue (MUTYH). Although MUTYH misfunction is associated with a genetic disorder called MUTYH-associated polyposis (MAP) and MUTYH is a potential target for cancer drugs, the catalytic mechanism required to develop disease treatments is debated in the literature. This study uses molecular dynamics simulations and quantum mechanics/molecular mechanics techniques initiated from DNA-protein complexes that represent different stages of the repair pathway to map the catalytic mechanism of the wild-type MUTYH bacterial homologue (MutY). This multipronged computational approach characterizes a DNA-protein cross-linking mechanism that is consistent with all previous experimental data and is a distinct pathway across the broad class of monofunctional glycosylase repair enzymes. In addition to clarifying how the cross-link is formed, accommodated by the enzyme, and hydrolyzed for product release, our calculations rationalize why cross-link formation is favored over immediate glycosidic bond hydrolysis, the accepted mechanism for all other monofunctional DNA glycosylases to date. Calculations on the Y126F mutant MutY highlight critical roles for active site residues throughout the reaction, while investigation of the N146S mutant rationalizes the connection between the analogous N224S MUTYH mutation and MAP. In addition to furthering our knowledge of the chemistry associated with a devastating disorder, the structural information gained about the distinctive MutY mechanism compared to other repair enzymes represents an important step for the development of specific and potent small-molecule inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
14
|
Xu Y, Peng T, Zhou Q, Zhu J, Liao G, Zou F, Meng X. Evaluation of the oxidative toxicity induced by lead, manganese, and cadmium using genetically modified nrf2a-mutant zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109550. [PMID: 36717045 DOI: 10.1016/j.cbpc.2023.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/30/2023]
Abstract
Heavy metal pollution has become a serious environmental concern and a threat to public health. Three of the most common heavy metals are cadmium (Cd), lead (Pb), and manganese (Mn). Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor activated in the response to oxidative stress. In this study, mutant zebrafish with an nrf2a deletion of 7 bp were constructed by the CRISPR/Cas9 system to investigate the oxidative toxicity of these three heavy metals. The results of general toxicity tests showed that Pb exposure did not cause significant damage to mutant zebrafish compared with wild-type (WT) zebrafish. However, high Mn exposure increased mortality and malformation rates in mutant zebrafish. Of concern, Cd exposure caused significant toxic damage, including increased mortality and malformation rates, apoptosis of brain neurons, and severe locomotor behavior aberration in mutant zebrafish. The results of qRT-PCR indicated that Cd exposure could induce the activation of genes related to oxidative stress resistance in WT zebrafish, while the expression of these genes was inhibited in mutant zebrafish. This study showed that of the three heavy metals, Cd had the strongest oxidative toxicity, Mn had medium toxicity, and Pb had the weakest toxicity.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Chestnuts in Fermented Rice Beverages Increase Metabolite Diversity and Antioxidant Activity While Reducing Cellular Oxidative Damage. Foods 2022; 12:foods12010164. [PMID: 36613380 PMCID: PMC9818290 DOI: 10.3390/foods12010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Foods containing chestnuts (Castanea mollissima Blume) are relatively uncommon, despite the high nutrient and starch contents and purported health benefits. In this study, we examine the flavor-related metabolites, volatile compounds, and amino acids in a traditional glutinous rice fermented beverage supplemented with chestnuts as a fermentation substrate for lactic acid bacteria (LAB). Changes in antioxidant activity towards free radicals and effects on cellular oxidative stress are compared between beverages with or without chestnuts. The fermented chestnut-rice beverage (FCRB) has higher sensory scores and a wider range of volatiles and flavor-related compounds (74 vs. 38 species compounds), but lower amino acid contents, than the traditional fermented glutinous rice beverage (TFRB). In free radical scavenging assays, the FCRB exhibits higher activity than the TFRB in vitro. Furthermore, while neither beverage induces cytotoxity in Caco-2 cells at concentrations up to 2 mg/mL, pretreatment with the FCRB results in lower rates of apoptosis and necrosis and higher overall viability in cells with H2O2-induced oxidative stress compared to pretreatment with the TFRB. The enhanced reactive oxygen species neutralization in vitro and protection against oxidative damage in cells, coupled with increased diversity of volatiles and flavor-related metabolites of LAB, support the addition of chestnuts to enhance flavor profile and antioxidant properties of fermented functional foods.
Collapse
|
16
|
Tavares A, Aimonen K, Ndaw S, Fučić A, Catalán J, Duca RC, Godderis L, Gomes BC, Janasik B, Ladeira C, Louro H, Namorado S, Nieuwenhuyse AV, Norppa H, Scheepers PTJ, Ventura C, Verdonck J, Viegas S, Wasowicz W, Santonen T, Silva MJ. HBM4EU Chromates Study-Genotoxicity and Oxidative Stress Biomarkers in Workers Exposed to Hexavalent Chromium. TOXICS 2022; 10:483. [PMID: 36006162 PMCID: PMC9412464 DOI: 10.3390/toxics10080483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
A study was conducted within the European Human Biomonitoring Initiative (HBM4EU) to characterize occupational exposure to Cr(VI). Herein we present the results of biomarkers of genotoxicity and oxidative stress, including micronucleus analysis in lymphocytes and reticulocytes, the comet assay in whole blood, and malondialdehyde and 8-oxo-2′-deoxyguanosine in urine. Workers from several Cr(VI)-related industrial activities and controls from industrial (within company) and non-industrial (outwith company) environments were included. The significantly increased genotoxicity (p = 0.03 for MN in lymphocytes and reticulocytes; p < 0.001 for comet assay data) and oxidative stress levels (p = 0.007 and p < 0.001 for MDA and 8-OHdG levels in pre-shift urine samples, respectively) that were detected in the exposed workers over the outwith company controls suggest that Cr(VI) exposure might still represent a health risk, particularly, for chrome painters and electrolytic bath platers, despite the low Cr exposure. The within-company controls displayed DNA and chromosomal damage levels that were comparable to those of the exposed group, highlighting the relevance of considering all industry workers as potentially exposed. The use of effect biomarkers proved their capacity to detect the early biological effects from low Cr(VI) exposure, and to contribute to identifying subgroups that are at higher risk. Overall, this study reinforces the need for further re-evaluation of the occupational exposure limit and better application of protection measures. However, it also raised some additional questions and unexplained inconsistencies that need follow-up studies to be clarified.
Collapse
Affiliation(s)
- Ana Tavares
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Kukka Aimonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Sophie Ndaw
- French National Research and Safety Institute, 54500 Vandœuvre-lès-Nancy, France
| | - Aleksandra Fučić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10001 Zagreb, Croatia
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Radu Corneliu Duca
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
- Department of Health Protection, Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Bruno C. Gomes
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Beata Janasik
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland
| | - Carina Ladeira
- HTRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1549-020 Lisbon, Portugal
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Sónia Namorado
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - An Van Nieuwenhuyse
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
- Department of Health Protection, Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Hannu Norppa
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Paul T. J. Scheepers
- Radboud Institute for Health Sciences, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Célia Ventura
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Jelle Verdonck
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
| | - Susana Viegas
- NOVA National School of Public Health, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Wojciech Wasowicz
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | | |
Collapse
|
17
|
Emokpae M, Kareem F. Association between the concentrations of some toxic metals and the risk of uterine fibroids among Nigerian women. ENVIRONMENTAL DISEASE 2022. [DOI: 10.4103/ed.ed_18_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
18
|
Panaiyadiyan S, Quadri JA, Nayak B, Pandit S, Singh P, Seth A, Shariff A. Association of heavy metals and trace elements in renal cell carcinoma: A case-controlled study. Urol Oncol 2021; 40:111.e11-111.e18. [PMID: 34961684 DOI: 10.1016/j.urolonc.2021.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Trace elements and/or heavy metals are important for various biological activities. However, excess amount of these elements is associated with a variety of diseases, including cancer. We aimed to analyse the alterations of trace elements levels in renal cell carcinoma (RCC) patients. MATERIALS AND METHODS In this observational study, patients with biopsy proven RCC were taken as study group while age- and sex-matched healthy volunteers were taken as control. Blood and urine samples were compared for Arsenic (As), Copper (Cu), Manganese (Mn), Selenium (Se), Cadmium (Cd), Lead (Pb) and Mercury (Hg) levels measured by inductively coupled plasma mass-spectroscopy. Serum glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) antioxidant enzymes and lipid peroxidation (LPO) levels were assessed to know the redox status between 2 groups. RESULTS A total of 76 RCC cases and 64 controls were recruited in the study. A significantly higher concentration of As, Cu, Mn, Cd, Pb and Hg were observed in the blood of RCC patients as compared to controls. However, blood Se level was significantly lower in RCC patients. In 33 (43.4%) patients, one or more heavy metals were higher in the blood above their permitted level as compared to 10 (15.6%) subjects in control group. RCC patients had a higher urinary Mn and Se levels compared to controls. A significantly lower GSH-Px (182.08 ± 132.91 vs. 236.95 ± 132.94, P = 0.04) and a higher LPO levels (26.02 ± 20.79 vs. 14.06 ± 8.44, P = 0.003) were noted in RCC patients than controls. SOD levels were comparable between two groups. CONCLUSIONS A significantly altered heavy metals concentration is noted in the blood and urine in RCC patients as compared to healthy controls. An associated lower levels of GSH-Px antioxidant enzyme and increased LPO in RCC patients signifies an imbalance in the redox status.
Collapse
Affiliation(s)
- Sridhar Panaiyadiyan
- Department of Urology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Javed Ahsan Quadri
- Clinical Ecotoxicology (diagnostic and Research) Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Brusabhanu Nayak
- Department of Urology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | - Surabhi Pandit
- Department of Urology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India; Clinical Ecotoxicology (diagnostic and Research) Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhjot Singh
- Department of Urology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ahmadullah Shariff
- Clinical Ecotoxicology (diagnostic and Research) Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
19
|
Ventura C, Gomes BC, Oberemm A, Louro H, Huuskonen P, Mustieles V, Fernández MF, Ndaw S, Mengelers M, Luijten M, Gundacker C, Silva MJ. Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008-2020. ENVIRONMENTAL RESEARCH 2021; 197:110998. [PMID: 33713715 DOI: 10.1016/j.envres.2021.110998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr(VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its association with cancer were those indicating oxidative stress (e.g., 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione (GSH)) and DNA or chromosomal damage (comet and micronucleus assays). With respect to Cd and to some extent Cr, β-2-microglobulin (B2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are well-established, sensitive, and the most common effect biomarkers to relate Cd or Cr exposure to renal tubular dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule (KIM)-1 could serve as sensitive biomarkers of acute kidney injury in response to both metals, but need further investigation in HBM studies. Omics-based biomarkers, i.e., changes in the (epi-)genome, transcriptome, proteome, and metabolome associated with Cr and/or Cd exposure, are promising effect biomarkers, but more HBM data are needed to confirm their significance. The combination of established effect markers and omics biomarkers may represent the strongest approach, especially if based on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.
Collapse
Affiliation(s)
- Célia Ventura
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Bruno Costa Gomes
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Pasi Huuskonen
- Finnish Institute of Occupational Health, PO Box 40, FI-00032 Työterveyslaitos, Finland
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Sophie Ndaw
- French National Research and Safety Institute (INRS), France
| | - Marcel Mengelers
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Department of Food Safety, Bilthoven, the Netherlands
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090 Vienna, Austria.
| | - Maria João Silva
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
20
|
Saran U, Tyagi A, Chandrasekaran B, Ankem MK, Damodaran C. The role of autophagy in metal-induced urogenital carcinogenesis. Semin Cancer Biol 2021; 76:247-257. [PMID: 33798723 DOI: 10.1016/j.semcancer.2021.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Environmental and/or occupational exposure to metals such as Arsenic (As), Cadmium (Cd), and Chromium (Cr) have been shown to induce carcinogenesis in various organs, including the urogenital system. However, the mechanisms responsible for metal-induced carcinogenesis remain elusive. We and others have shown that metals are potent inducers of autophagy, which has been suggested to be an adaptive stress response to allow metal-exposed cells to survive in hostile environments. Albeit few, recent experimental studies have shown that As and Cd promote tumorigenesis via autophagy and that inhibition of autophagic signaling suppressed metal-induced carcinogenesis. In light of the newly emerging role of autophagic involvement in metal-induced carcinogenesis, the present review focuses explicitly on the mechanistic role of autophagy and potential signaling pathways involved in As-, Cd-, and Cr-induced urogenital carcinogenesis.
Collapse
Affiliation(s)
- Uttara Saran
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY, United States
| | | | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY, United States; College of Pharmacy, Department of Pharmaceutical Sciences, Texas A&M, College Station, TX, United States.
| |
Collapse
|
21
|
Rajendran G, Taylor JA, Woolbright BL. Natural products as a means of overcoming cisplatin chemoresistance in bladder cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:69-84. [PMID: 35582013 PMCID: PMC9019192 DOI: 10.20517/cdr.2020.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Cisplatin remains an integral part of the treatment for muscle invasive bladder cancer. A large number of patients do not respond to cisplatin-based chemotherapy and efficacious salvage regimens are limited. Immunotherapy has offered a second line of treatment; however, only approximately 20% of patients respond, and molecular subtyping of tumors indicates there may be significant overlap in those patients that respond to cisplatin and those patients that respond to immunotherapy. As such, restoring sensitivity to cisplatin remains a major hurdle to improving patient care. One potential source of compounds for enhancing cisplatin is naturally derived bioactive products such as phytochemicals, flavonoids and others. These compounds can activate a diverse array of different pathways, many of which can directly promote or inhibit cisplatin sensitivity. The purpose of this review is to understand current drug development in the area of natural products and to assess how these compounds may enhance cisplatin treatment in bladder cancer patients.
Collapse
Affiliation(s)
- Ganeshkumar Rajendran
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Benjamin L Woolbright
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
22
|
El-Sherbiny HMM, Sallam KI. Residual contents and health risk assessment of mercury, lead and cadmium in sardine and mackerel from the Mediterranean Sea Coast, Egypt. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
23
|
Kumar A, Ali M, Kumar R, Kumar M, Sagar P, Pandey RK, Akhouri V, Kumar V, Anand G, Niraj PK, Rani R, Kumar S, Kumar D, Bishwapriya A, Ghosh AK. Arsenic exposure in Indo Gangetic plains of Bihar causing increased cancer risk. Sci Rep 2021; 11:2376. [PMID: 33504854 PMCID: PMC7841152 DOI: 10.1038/s41598-021-81579-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Reportedly, 300 million people worldwide are affected by the consumption of arsenic contaminated groundwater. India prominently figures amongst them and the state of Bihar has shown an upsurge in cases affected by arsenic poisoning. Escalated arsenic content in blood, leaves 1 in every 100 human being highly vulnerable to being affected by the disease. Uncontrolled intake may lead to skin, kidney, liver, bladder, or lung related cancer but even indirect forms of cancer are showing up on a regular basis with abnormal arsenic levels as the probable cause. But despite the apparent relation, the etiology has not been understood clearly. Blood samples of 2000 confirmed cancer patients were collected from pathology department of our institute. For cross-sectional design, 200 blood samples of subjects free from cancer from arsenic free pockets of Patna urban agglomeration, were collected. Blood arsenic levels in carcinoma patients as compared to sarcomas, lymphomas and leukemia were found to be higher. The geospatial map correlates the blood arsenic with cancer types and the demographic area of Gangetic plains. Most of the cancer patients with high blood arsenic concentration were from the districts near the river Ganges. The raised blood arsenic concentration in the 2000 cancer patients strongly correlates the relationship of arsenic with cancer especially the carcinoma type which is more vulnerable. The average arsenic concentration in blood of the cancer patients in the Gangetic plains denotes the significant role of arsenic which is present in endemic proportions. Thus, the study significantly correlates and advocates a strong relation of the deleterious element with the disease. It also underlines the need to address the problem by deciphering the root cause of the elevated cancer incidences in the Gangetic basin of Bihar and its association with arsenic poisoning.
Collapse
Affiliation(s)
- Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India.
| | - Mohammad Ali
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Ranjit Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Mukesh Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Prity Sagar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Ritu Kumari Pandey
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Vivek Akhouri
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Vikas Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Gautam Anand
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Pintoo Kumar Niraj
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Rita Rani
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Santosh Kumar
- Department of Applied Geoscience and Engineering, Delft University of Technology, Delft, The Netherlands
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | | | - Ashok Kumar Ghosh
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| |
Collapse
|
24
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Back to Nucleus: Combating with Cadmium Toxicity Using Nrf2 Signaling Pathway as a Promising Therapeutic Target. Biol Trace Elem Res 2020; 197:52-62. [PMID: 31786752 DOI: 10.1007/s12011-019-01980-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
There are concerns about the spread of heavy metals in the environment, and human activities are one of the most important factors in their spread. These agents have the high half-life resulting in their persistence in the environment. So, prevention of their spread is the first step. However, heavy metals are an inevitable part of modern and industrial life and they are applied in different fields. Cadmium is one of the heavy metals which has high carcinogenesis ability. Industrial waste, vehicle emissions, paints, and fertilizers are ways of exposing human to cadmium. This potentially toxic agent harmfully affects the various organs and systems of body such as the liver, kidney, brain, and cardiovascular system. Oxidative stress is one of the most important pathways of cadmium toxicity. So, improving the antioxidant defense system can be considered as a potential target. On the other hand, the Nrf2 signaling pathway involves improving the antioxidant capacity by promoting the activity of antioxidant enzymes such as catalase and superoxide dismutase. At the present review, we demonstrate how Nrf2 signaling pathway can be modulated to diminish the cadmium toxicity.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
25
|
Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention. Clin Exp Med 2020; 20:173-190. [PMID: 32016615 DOI: 10.1007/s10238-020-00611-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Health-threatening consequences of carcinogen exposure are mediated via occurrence of electrophiles or reactive oxygen species. As a result, the accumulation of biomolecular damage leads to the cancer initiation, promotion or progression. Accordingly, there is an association between lifestyle factors including inappropriate diet or carcinogen formation during food processing, mainstream, second or third-hand tobacco smoke and other environmental or occupational carcinogens and malignant transformation. Nevertheless, increasing evidence supports the protective effects of naturally occurring phytochemicals against carcinogen exposure as well as carcinogenesis in general. Isolated phytochemicals or their mixtures present in the whole plant food demonstrate efficacy against malignancy induced by carcinogens widely spread in our environment. Phytochemicals also minimize the generation of carcinogenic substances during the processing of meat and meat products. Based on numerous data, selected phytochemicals or plant foods should be highly recommended to become a stable and regular part of the diet as the protectors against carcinogenesis.
Collapse
|
26
|
Land WG. Role of Damage-Associated Molecular Patterns in Light of Modern Environmental Research: A Tautological Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2020; 14:583-604. [PMID: 32837525 PMCID: PMC7415330 DOI: 10.1007/s41742-020-00276-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 05/06/2023]
Abstract
Two prominent models emerged as a result of intense interdisciplinary discussions on the environmental health paradigm, called the "exposome" concept and the "adverse outcome pathway" (AOP) concept that links a molecular initiating event to the adverse outcome via key events. Here, evidence is discussed, suggesting that environmental stress/injury-induced damage-associated molecular patterns (DAMPs) may operate as an essential integrating element of both environmental health research paradigms. DAMP-promoted controlled/uncontrolled innate/adaptive immune responses reflect the key events of the AOP concept. The whole process starting from exposure to a distinct environmental stress/injury-associated with the presence/emission of DAMPs-up to the manifestation of a disease may be regarded as an exposome. Clinical examples of such a scenario are briefly sketched, in particular, a model in relation to the emerging COVID-19 pandemic, where the interaction of noninfectious environmental factors (e.g., particulate matter) and infectious factors (SARS CoV-2) may promote SARS case fatality via superimposition of both exogenous and endogenous DAMPs.
Collapse
Affiliation(s)
- Walter Gottlieb Land
- German Academy for Transplantation Medicine, Munich, Germany
- Molecular ImmunoRheumatology, Laboratory of Excellence Transplantex, Faculty of Medicine, INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Chen QY, Murphy A, Sun H, Costa M. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicol Appl Pharmacol 2019; 377:114636. [PMID: 31228494 DOI: 10.1016/j.taap.2019.114636] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Chromium (Cr) is a naturally occurring metallic element found in the Earth's crust. While trivalent chromium ([Cr(III)] is considered non-carcinogenic, hexavalent chromium [Cr(VI)] has long been established as an IARC class I human carcinogen, known to induce cancers of the lung. Current literature suggests that Cr(VI) is capable of inducing carcinogenesis through both genetic and epigenetic mechanisms. Although much has been learned about the molecular etiology of Cr(VI)-induced lung carcinogenesis, more remains to be explored. In particular, the explicit epigenetic alterations induced by Cr(VI) in lung cancer including histone modifications and miRNAs, remain understudied. Through comprehensive review of available literature found between 1973 and 2019, this article provides a summary of updated understanding of the molecular mechanisms of Cr(VI)-carcinogenesis. In addition, this review identifies potential research gaps in the areas of histone modifications and miRNAs, which may prompt new niches for future research.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| |
Collapse
|
28
|
Wise JTF, Wang L, Alstott MC, Ngalame NNO, Wang Y, Zhang Z, Shi X. Investigating the Role of Mitochondrial Respiratory Dysfunction during Hexavalent Chromium-Induced Lung Carcinogenesis. J Environ Pathol Toxicol Oncol 2019; 37:317-329. [PMID: 30806238 DOI: 10.1615/jenvironpatholtoxicoloncol.2018028689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a lung carcinogen and its complete mechanism of action remains to be investigated. Metabolic reprogramming of key energy metabolism pathways (e.g., increased anaerobic glycolysis in the presence of oxygen or "Warburg effect", dysregulated mitochondrial function, and lipogenesis) are important to cancer cell and tumor survival and growth. In our current understanding of Cr(VI)-induced carcinogenesis, the role for metabolic reprogramming remains unclear. In this study, we treated human lung epithelial cells (BEAS-2B) with Cr(VI) for 6 months and obtained malignantly transformed cells from an isolated colony grown in soft agar. We also used Cr(VI)-transformed cells from two other human lung cell lines (BEP2D and WTHBF-6 cells). Overall, we found that all the Cr(VI)-transformed cells had no changes in their mitochondrial respiratory functions (measured by the Seahorse Analyzer) compared with passaged-matched control cells. Using a xenograft tumor growth model, we generated tumors from these transformed cells in Nude mice. Using cells obtained from the xenograft tumor tissues, we observed that these cells had decreased maximal mitochondrial respiration, spare respiratory capacity, and coupling efficiency. These results provide evidence that, although mitochondrial dysfunction does not occur during Cr(VI)-induced transformation of lung cells, it does occur during tumor development.
Collapse
Affiliation(s)
- James T F Wise
- Division of Nutritional Sciences, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Michael C Alstott
- Markey Cancer Center, Redox Metabolism Shared Resource Facility, University of Kentucky, Lexington, KY
| | - Ntube N O Ngalame
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Yuting Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Zhuo Zhang
- Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY
| | - Xianglin Shi
- Division of Nutritional Sciences, Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY; Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
29
|
Wang Y, Mandal AK, Son YO, Pratheeshkumar P, Wise JTF, Wang L, Zhang Z, Shi X, Chen Z. Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol Appl Pharmacol 2018; 353:23-30. [PMID: 29885333 PMCID: PMC6281793 DOI: 10.1016/j.taap.2018.06.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
Abstract
Environmental and occupational exposures to cadmium increase the risk of various cancers, including lung cancer. The carcinogenic mechanism of cadmium, including its prevention remains to be investigated. Using fluorescence and electron spin resonance spin trapping, the present study shows that in immortalized lung cells (BEAS-2BR cells), exposure cadmium generated reactive oxygen species (ROS). Through ROS generation, cadmium increased the protein level of TNF-α, which activated NF-κB and its target protein COX-2, creating an inflammatory microenvironment. As measured by anchorage-independent colony formation assay, cadmium induced malignant cell transformation. Inhibition of ROS by antioxidants inhibited transformation, showing that ROS were important in the mechanism of this process. The inflammatory microenvironment created by cadmium may also contribute to the mechanism of the transformation. Using tandem fluorescence protein mCherry-GFP-LC3 construct, the present study shows that cadmium-transformed cells had a property of autophagy deficiency, resulting in accumulation of autophagosomes and increased p62. This protein upregulated Nrf2, which also upregulated p62 through positive feed-back mechanism. Constitutive Nrf2 activation increased its downstream anti-apoptotic proteins, Bcl-2 and Bcl-xl, resulting in apoptosis resistance. In untransformed BEAS-2BR cells, sulforaphane, a natural compound, increased autophagy, activated Nrf2, and decreased ROS. In cadmium-transformed BEAS-2BR cells, sulforaphane restored autophagy, decreased Nrf2, and decreased apoptosis resistance. In untransformed cells, this sulforaphane induced inducible Nrf2 to decrease ROS and possibly malignant cell transformation. In cadmium-transformed cells, it decreased constitutive Nrf2 and reduced apoptosis resistance. The dual roles of sulforaphane make this natural compound a valuable agent for prevention against cadmium-induced carcinogenesis.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, People's Republic of China; Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Ardhendu Kumar Mandal
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Poyil Pratheeshkumar
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - James T F Wise
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Division of Nutritional Sciences, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536-0305,USA
| | - Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA.
| | - Zhimin Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, People's Republic of China.
| |
Collapse
|
30
|
Xu J, Wise JTF, Wang L, Schumann K, Zhang Z, Shi X. Dual Roles of Oxidative Stress in Metal Carcinogenesis. J Environ Pathol Toxicol Oncol 2018; 36:345-376. [PMID: 29431065 DOI: 10.1615/jenvironpatholtoxicoloncol.2017025229] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It has been well established that environmental and occupational exposure to heavy metal causes cancer in several organs. Although the exact mechanism of heavy metal carcinogenesis remains elusive, metal-generated reactive oxygen species (ROS) are essential. ROS can play two roles in metal carcinogenesis; two stages in the process of metal carcinogenesis differ in the amounts of ROS activating a dual redox-mediated mechanism. In the early stage of metal carcinogenesis, ROS acts in an oncogenic role. However, in the late stage of metal carcinogenesis, ROS plays an antioncogenic role. Similarly, NF-E2-related factor 2 (Nrf2) also has two different roles, which makes it a key molecule for separating metal carcinogenesis into two different stages. In the early stage, inducible Nrf2 fights against elevated ROS to decrease cell transformation by its antioxidant protection property. In the late stage, constitutively activated Nrf2 manipulates reduced ROS to perform a comfortable environment for apoptosis resistance through an oncogenic role. Interestingly, a cunning carcinogenic mechanism takes advantage of the dual role of Nrf2 to implement the dual role of ROS through a series of redox adaption mechanisms. In this review, we discuss the paradox in the rationales behind the two opposite ROS roles and focus on their potential pharmacological application. The dual role of ROS represents a 'double-edged sword' with many possible novel ROS-mediated strategies in cancer therapy in metal carcinogenesis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Anesthesiology, Beijing Chao Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China
| | - James T F Wise
- Division of Nutritional Sciences, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kortney Schumann
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|