1
|
Kim JM, Kim TW, Park HJ, Lee SW, Yoo YJ, Yoon MJ, Chang SY, Won SJ. Estimation of the muscle force by perineural intramuscular electrical stimulation in healthy volunteers. Medicine (Baltimore) 2024; 103:e40043. [PMID: 39465818 PMCID: PMC11479414 DOI: 10.1097/md.0000000000040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
The present study aimed to evaluate the elbow flexor force induced by perineural intramuscular stimulation compared with surface electrical stimulation (ES) and maximal voluntary contraction. Thirty nondominant arms of healthy volunteers were evaluated. Isometric elbow flexion force was evaluated using a surface electrode stimulation at the biceps brachii muscle, a perineural intramuscular stimulation around the musculocutaneous nerve, and maximum voluntary contraction. The elbow flexion force was measured at the wrist volar area in a 90° elbow flexion posture, fixed with a rigid elbow orthosis. Pain and discomfort associated with ES were evaluated using a numeric rating scale. The mean maximum elbow flexion force was 16.6 ± 4.1 kgf via voluntary contraction. The mean elbow flexion force by ES was 2.9 ± 2.0 kgf, stimulation intensity was 24.8 ± 5.5 mA, and the numeric rating scale was 5.0 ± 2.5 via surface electrode stimulation and 3.1 ± 2.0 kgf, 5.0 mA, and 3.8 ± 1.9 via perineural stimulation, respectively. ES provides 16% to 18% of the maximal voluntary contraction force in elbow flexion, which corresponds to a fair grade of muscle force. Perineural intramuscular stimulation can generate an equivocal contraction force with less discomfort in elbow flexion than surface electrode stimulation.
Collapse
Affiliation(s)
- Jae Min Kim
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Woo Kim
- National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Jung Park
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Se Won Lee
- Department of Physical Medicine and Rehabilitation, Mt. View Hospital, Las Vegas, NV
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - So-youn Chang
- Department of Rehabilitation Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Jae Won
- Department of Rehabilitation Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Pu X, Huang H, Zhao X, Liu F, Leng Y, Deng Y, Huang L, Zhou X, Xu F, Huang Y, Guo S. Improving Lower Limb Function and Frailty in Frail Older Patients with Acute Myocardial Infarction After Percutaneous Coronary Intervention: A Randomized Controlled Study of Neuromuscular Electrical Stimulation. Clin Interv Aging 2024; 19:1163-1176. [PMID: 38974513 PMCID: PMC11225987 DOI: 10.2147/cia.s460805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Background A global public health problem, frailty is closely associated with poor prognosis after percutaneous coronary intervention (PCI) in older patients with acute myocardial infarction (AMI). Although exercise intervention is the most commonly used method to reverse and alleviate frailty, its application is restricted in patients with acute myocardial infarction following PCI due to cardiovascular instability and autonomic imbalance. Consequently, there is a need for a new practical intervention to address frailty syndrome in these patients. Purpose This study aimed to investigate the effect of neuromuscular electrical stimulation in frail older AMI patients post-PCI. Patients and Methods A single-blind, randomized controlled trial was carried out in the Department of Cardiovascular Medicine from March to October 2023. A total of 100 eligible participants were randomly divided into two groups: experimental (n = 50) and control (n = 50) groups, respectively. Both groups received usual care. The experimental group underwent neuromuscular electrical stimulation (NMES) on bilateral quadriceps and gastrocnemius muscles for 30 minutes daily from day 1 to day 7 after surgery. The primary outcomes measured included the frailty score, lower limb muscle strength, and lower limb muscle quality. Secondary outcomes included the activities of daily living score, inflammatory markers, and length of hospital stay. All participants were included in an intention-to-treat analysis after the study ended. Results The frailty scores of the two groups exhibited a gradual decrease over time, and the scores of the experimental group were lower than those of the control group at 4 and 7 days after surgery (P<0.001). Concurrently, the lower limb muscle strength showed an increasing trend over the time in the experimental group and a decreasing trend in the control group, and the scores of the experimental group surpassed those of the control group (p<0.001). Moreover, a statistical difference was observed in the lower limb muscle mass across the groups after 7 days postoperatively compared with baseline on both sides (p<0.05). Conclusion Neuromuscular electrical stimulation has the potential to enhance lower limb function and alleviate frailty in elderly patients with acute myocardial infarction after PCI. These findings introduce a novel intervention approach for frailty management in the elderly population.
Collapse
Affiliation(s)
- Xiamin Pu
- Department of Cardiovascular Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Houqiang Huang
- Department of Nursing, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiaolei Zhao
- Department of Hematology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Feng Liu
- Department of Cardiovascular Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yebo Leng
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ya Deng
- School of Nursing, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Lingyi Huang
- School of Nursing, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xingchen Zhou
- School of Nursing, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Fen Xu
- Department of Cardiovascular Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yongli Huang
- Department of Outpatient, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
3
|
Quadrelli M, Baccaglini T, Morra A. Quantitative 3D-CT imaging of sarcopenia mitigation in the elderly: evidence from a case report. Eur J Transl Myol 2024; 34:12715. [PMID: 38949084 PMCID: PMC11264214 DOI: 10.4081/ejtm.2024.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024] Open
Abstract
This case study examines the effectiveness of using combined CT imaging and 3D imaging in monitoring the prevention of sarcopenia through continuous daily exercises in an elderly patient. Using a 256-slice CT scanner with dose reduction technology and advanced muscle segmentation with the open-source software DAFNE, we compared changes in muscle mass and density in a 70-year-old patient in 2014 and in 2023. The obtained images allowed the creation of detailed 3D models for a more accurate and intuitive assessment of the leg musculature. Despite aging, the results of the scans performed at the beginning and end of the study period did not show significant changes in the patient's musculature, suggesting that a persistent Full-Body in-Bed Gym protocol ("Gym Bed" exercise routine) can effectively contribute to maintaining muscle mass and density in the elderly. These preliminary results highlight the potential of advanced imaging techniques not only to diagnose but also to quantify the effectiveness of non-pharmacological interventions against sarcopenia.
Collapse
Affiliation(s)
| | | | - Aldo Morra
- Synlab Euganea Medica Padova, Italy; Synlab IRCCS SDN S.p.A., Napoli.
| |
Collapse
|
4
|
Wang J, Li Y, Yang GY, Jin K. Age-Related Dysfunction in Balance: A Comprehensive Review of Causes, Consequences, and Interventions. Aging Dis 2024:AD.2024.0124-1. [PMID: 38607735 DOI: 10.14336/ad.2024.0124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/24/2024] [Indexed: 04/14/2024] Open
Abstract
This review delves into the multifaceted aspects of age-related balance changes, highlighting their prevalence, underlying causes, and the impact they have on the elderly population. Central to this discussion is the exploration of various physiological changes that occur with aging, such as alterations in the vestibular, visual, proprioceptive systems, and musculoskeletal degeneration. We examine the role of neurological disorders, cognitive decline, and medication side effects in exacerbating balance issues. The review underscores the significance of early detection and effective intervention strategies in mitigating the risks associated with balance problems, such as falls and reduced mobility. It discusses the effectiveness of diverse intervention strategies, including exercise programs, rehabilitation techniques, and technological advancements like virtual reality, wearable devices, and telemedicine. Additionally, the review stresses the importance of a holistic approach in managing balance disorders, encompassing medication review, addressing comorbidities, and environmental modifications. The paper also presents future research directions, emphasizing the need for a deeper understanding of the complex mechanisms underlying balance changes with aging and the potential of emerging technologies and interdisciplinary approaches in enhancing assessment and intervention methods. This comprehensive review aims to provide valuable insights for healthcare providers, researchers, and policymakers in developing targeted strategies to improve the quality of life and ensure the well-being of the aging population.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
5
|
Ravara B, Giuriati W, Zampieri S, Kern H, Pond AL. Translational mobility medicine and ugo carraro: a life of significant scientific contributions reviewed in celebration. Neurol Res 2024; 46:139-156. [PMID: 38043115 DOI: 10.1080/01616412.2023.2258041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/04/2023] [Indexed: 12/05/2023]
Abstract
Prof. Ugo Carraro reached 80 years of age on 23 February 2023, and we wish to celebrate him and his work by reviewing his lifetime of scientific achievements in Translational Myology. Currently, he is a Senior Scholar with the University of Padova, Italy, where, as a tenured faculty member, he founded the Interdepartmental Research Center of Myology. Prof. Carraro, a pioneer in skeletal muscle research, is a world-class expert in structural and molecular investigations of skeletal muscle biology, physiology, pathology, and care. An authority in bidimensional gel electrophoresis for myosin light chains, he was the first to separate mammalian muscle myosin heavy chain isoforms by SDS-gel electrophoresis. He has demonstrated that long-term denervated muscle can survive denervation by myofiber regeneration, and shown that an athletic lifestyle has beneficial impacts on muscle reinnervation. He has utilized his expertise in translational myology to develop and validate rehabilitative treatments for denervated and ageing skeletal muscle. He has authored more than 160 PubMed listed papers and numerous scholarly books, including his recent autobiography. Prof. Carraro founded and serves as Editor-in-Chief of the European Journal of Translational Myology and Mobility Medicine. He has organized more than 40 Padua Muscle Days Meetings and continues this, encouraging students and young scientists to participate. As he dreams endlessly, he is currently validating non-invasive analyses on saliva, a promising approach that will allow increased frequency sampling to analyze systemic factors during the transient effects of training and rehabilitation by his proposed Full-Body in- Bed Gym for bed-ridden elderly.
Collapse
Affiliation(s)
- Barbara Ravara
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
| | - Walter Giuriati
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology Sciences, Padua University Hospital, Padua, Italy
| | - Helmut Kern
- Physiko- und Rheumatherapie, Ludwig Boltzmann Institute for Rehabilitation Research, Sankt Pölten, Austria
| | - Amber L Pond
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
6
|
Ravara B, Giuriati W, Maccarone MC, Kern H, Masiero S, Carraro U. Optimized progression of Full-Body In-Bed Gym workout: an educational case report. Eur J Transl Myol 2023. [PMID: 37358234 PMCID: PMC10388607 DOI: 10.4081/ejtm.2023.11525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023] Open
Abstract
People suffering from fatigue syndromes spend less time exercising each day, thus aggravating their motor difficulties. Indeed, muscles and mobility deteriorate with age, while exercising muscles is the only sure countermeasure. It is useful to offer a safe and toll-free rehabilitation training: Full-Body In-Bed Gym, easy to learn and performe at home. We suggest a 10-20 min daily routine of easy and safe physical exercises that may improve the main 200 skeletal muscles used for every-day activities. Many of the exercises can be performed in bed (Full-Body In-Bed Gym), so hospital patients can learn this light workout before leaving the hospital. The routine consists of series of repetitions of 15 bodyweight exercises to be performed one after the other without time breaks in between. Alternating sequences of arm and leg exercises are followed by moving body parts in lying and sitting positions in bed. These are followed by series of tiptoeing off the bed. Progressive improvements can be tested by a series of push-ups on the floor. Starting from 3-5, number of repetitions are increased by adding 3 more every week. To maintain or even shorten total daily time of workout each movement is weekly speeded up. The devoted time every morning (or at least five days a week) to train all the major muscles of the body can remain under 10 minutes. Because there are no breaks during and between sets, the final push-ups become very challenging: at the end of the daily workout heart rate, depth and number of ventilations and frontal perspiration increase for a few minutes. We here provide an example of how to implement the progression of the Full-Body In-Bed Gym presenting an educational Case Report of a trained 80-year old person in stable pharmacological managements. In addition to strengthening the main muscles, including the ventilatory muscles, Although performed in bed, Full-Body In-Bed Gym is a resistance training equivalent to a short jog.. Started in early winter and continued regularly throughout spring and summer, Full-Body In-Bed Gym can help maintain independence of frail people, including those younger persons suffering with the fatigue syndrome related to the viral infection of the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Barbara Ravara
- Department of Biomedical Sciences, University of Padova, Padua, Italy; CIR-Myo-Interdepartmental Research Center of Myology, University of Padova, Padua, Italy; A&C M-C Foundation for Translational Myology, Padua.
| | - Walter Giuriati
- Department of Biomedical Sciences, University of Padova, Padua.
| | - Maria Chiara Maccarone
- Physical Medicine and Rehabilitation School, University of Padova, Padua, Italy; Department of Neuroscience, Section of Rehabilitation, University of Padova, Padua.
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation Research, St. Pölten, Austria; Institute of Physical Medicine and Rehabilitation, Prim. Dr. H Kern GmbH, Amstetten.
| | - Stefano Masiero
- CIR-Myo-Interdepartmental Research Center of Myology, University of Padova, Padua, Italy; Department of Neuroscience, Section of Rehabilitation, University of Padova, Padua.
| | - Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Padua, Italy; CIR-Myo-Interdepartmental Research Center of Myology, University of Padova, Padua, Italy; A&C M-C Foundation for Translational Myology, Padua.
| |
Collapse
|
7
|
Delbono O, Wang Z, Messi ML. Brainstem noradrenergic neurons: Identifying a hub at the intersection of cognition, motility, and skeletal muscle regulation. Acta Physiol (Oxf) 2022; 236:e13887. [PMID: 36073023 PMCID: PMC9588743 DOI: 10.1111/apha.13887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Brainstem noradrenergic neuron clusters form a node integrating efferents projecting to distinct areas such as those regulating cognition and skeletal muscle structure and function, and receive dissimilar afferents through established circuits to coordinate organismal responses to internal and environmental challenges. Genetic lineage tracing shows the remarkable heterogeneity of brainstem noradrenergic neurons, which may explain their varied functions. They project to the locus coeruleus, the primary source of noradrenaline in the brain, which supports learning and cognition. They also project to pre-ganglionic neurons, which lie within the spinal cord and form synapses onto post-ganglionic neurons. The synapse between descending brainstem noradrenergic neurons and pre-ganglionic spinal neurons, and these in turn with post-ganglionic noradrenergic neurons located at the paravertebral sympathetic ganglia, support an anatomical hierarchy that regulates skeletal muscle innervation, neuromuscular transmission, and muscle trophism. Whether any noradrenergic neuron subpopulation is more susceptible to damaged protein deposit and death with ageing and neurodegeneration is a relevant question that answer will help us to detect neurodegeneration at an early stage, establish prognosis, and anticipate disease progression. Loss of muscle mass and strength with ageing, termed sarcopenia, may predict impaired cognition with ageing and neurodegeneration and establish an early time to start interventions aimed at reducing central noradrenergic neurons hyperactivity. Complex multidisciplinary approaches, including genetic tracing, specific circuit labelling, optogenetics and chemogenetics, electrophysiology, and single-cell transcriptomics and proteomics, are required to test this hypothesis pre-clinical.
Collapse
Affiliation(s)
- Osvaldo Delbono
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Zhong‐Min Wang
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - María Laura Messi
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
8
|
Shin HE, Kim M, Lee D, Jang JY, Soh Y, Yun DH, Kim S, Yang J, Kim MK, Lee H, Won CW. Therapeutic effects of functional electrical stimulation on physical performance and muscle strength in post-stroke older adults: a review. Ann Geriatr Med Res 2022; 26:16-24. [PMID: 35313099 PMCID: PMC8984173 DOI: 10.4235/agmr.22.0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Stroke-related disabilities cause poor physical performance, especially among older adults, and can lead to sarcopenia. Functional electrical stimulation (FES) has been used to improve physical performance in individuals with neurological disorders and increase muscle mass and strength to counteract muscle atrophy. This review covers the principles, underlying mechanisms, and therapeutic effects of FES on physical performance and skeletal muscle function in post-stroke older adults. We found that FES restored weakened dorsiflexor and hip abductor strength during the swing and stance phases of gait, respectively, to help support weight-bearing and upright posture and facilitate static and dynamic balance in this population. FES may also be effective in improving muscle mass and strength to prevent muscle atrophy. However, previous studies on this topic in post-stroke older adults are scarce, and further studies are needed to confirm this supposition.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Miji Kim
- Department of Biomedical Science and Technology, East-West Medical Research Institute, Kyung Hee University College of Medicine, Seoul, Korea
| | - Daehyun Lee
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jae Young Jang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yunsoo Soh
- Department of Physical Medicine & Rehabilitation Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Korea
| | - Dong Hwan Yun
- Department of Physical Medicine & Rehabilitation Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Korea
| | - Sunyoung Kim
- Department of Family Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Jisoo Yang
- Department of Family Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Maeng Kyu Kim
- Sports Medicine Lab., Department of Physical Education, Kyungpook National University, Daegu, Korea
| | | | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, Kyung Hee University College of Medicine, Seoul, Korea
- Corresponding Authors: Chang Won Won, MD, PhD Department of Family Medicine, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea E-mail:
| |
Collapse
|
9
|
Coletti C, Acosta GF, Keslacy S, Coletti D. Exercise-mediated reinnervation of skeletal muscle in elderly people: An update. Eur J Transl Myol 2022; 32. [PMID: 35234025 PMCID: PMC8992679 DOI: 10.4081/ejtm.2022.10416] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Sarcopenia is defined by the loss of muscle mass and function. In aging sarcopenia is due to mild chronic inflammation but also to fiber-intrinsic defects, such as mitochondrial dysfunction. Age-related sarcopenia is associated with physical disability and lowered quality of life. In addition to skeletal muscle, the nervous tissue is also affected in elderly people. With aging, type 2 fast fibers preferentially undergo denervation and are reinnervated by slow-twitch motor neurons. They spread forming new neuro-muscular junctions with the denervated fibers: the result is an increased proportion of slow fibers that group together since they are associated in the same motor unit. Grouping and fiber type shifting are indeed major histological features of aging skeletal muscle. Exercise has been proposed as an intervention for age-related sarcopenia due to its numerous beneficial effects on muscle mechanical and biochemical features. In 2013, a precursor study in humans was published in the European Journal of Translation Myology (formerly known as Basic and Applied Myology), highlighting the occurrence of reinnervation in the musculature of aged, exercise-trained individuals as compared to the matching control. This paper, entitled «Reinnervation of Vastus lateralis is increased significantly in seniors (70-years old) with a lifelong history of high-level exercise», is now being reprinted for the second issue of the «Ejtm Seminal Paper Series». In this short review we discuss those results in the light of the most recent advances confirming the occurrence of exercise-mediated reinnervation, ultimately preserving muscle structure and function in elderly people who exercise.
Collapse
Affiliation(s)
- Claudia Coletti
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Gilberto F Acosta
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Stefan Keslacy
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Dario Coletti
- DAHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy; Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France; Interuniversity institute of Myology, Ro.
| |
Collapse
|
10
|
Zeng YS, Ding Y, Xu HY, Zeng X, Lai BQ, Li G, Ma YH. Electro-acupuncture and its combination with adult stem cell transplantation for spinal cord injury treatment: A summary of current laboratory findings and a review of literature. CNS Neurosci Ther 2022; 28:635-647. [PMID: 35174644 PMCID: PMC8981476 DOI: 10.1111/cns.13813] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/18/2022] Open
Abstract
The incidence and disability rate of spinal cord injury (SCI) worldwide are high, imposing a heavy burden on patients. Considerable research efforts have been directed toward identifying new strategies to effectively treat SCI. Governor Vessel electro‐acupuncture (GV‐EA), used in traditional Chinese medicine, combines acupuncture with modern electrical stimulation. It has been shown to improve the microenvironment of injured spinal cord (SC) by increasing levels of endogenous neurotrophic factors and reducing inflammation, thereby protecting injured neurons and promoting myelination. In addition, axons extending from transplanted stem cell‐derived neurons can potentially bridge the two severed ends of tissues in a transected SC to rebuild neuronal circuits and restore motor and sensory functions. However, every single treatment approach to severe SCI has proven unsatisfactory. Combining different treatments—for example, electro‐acupuncture (EA) with adult stem cell transplantation—appears to be a more promising strategy. In this review, we have summarized the recent progress over the past two decades by our team especially in the use of GV‐EA for the repair of SCI. By this strategy, we have shown that EA can stimulate the nerve endings of the meningeal branch. This would elicit the dorsal root ganglion neurons to secrete excess amounts of calcitonin gene‐related peptide centrally in the SC. The neuropeptide then activates the local cells to secrete neurotrophin‐3 (NT‐3), which mediates the survival and differentiation of donor stem cells overexpressing the NT‐3 receptor, at the injury/graft site of the SC. Increased local production of NT‐3 facilitates reconstruction of host neural tissue such as nerve fiber regeneration and myelination. All this events in sequence would ultimately strengthen the cortical motor‐evoked potentials and restore the motor function of paralyzed limbs. The information presented herein provides a basis for future studies on the clinical application of GV‐EA and adult stem cell transplantation for the treatment of SCI.
Collapse
Affiliation(s)
- Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
miR-27b-3p Attenuates Muscle Atrophy by Targeting Cbl-b in Skeletal Muscles. Biomolecules 2022; 12:biom12020191. [PMID: 35204692 PMCID: PMC8961554 DOI: 10.3390/biom12020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
As it is well known, muscle atrophy is a process in which protein degradation increases and protein synthesis decreases. This process is regulated by a variety of links. Among them, microRNAs play an essential role in this process, which has attracted widespread attention. In this paper, we find that miR-27b-3p and Cbl-b genes are significantly differentially expressed in the induced atrophy model. The dual-luciferase experiment and Western blot analysis confirmed that miR-27b-3p could regulate the expression of Cbl-b. In C2C12-differentiated myotubes, the overexpression of the Cbl-b gene showed that Cbl-b could upregulate the expression of MuRF-1 and Atrogin-1, which are related marker genes of muscle atrophy, at both the mRNA and protein levels, indicating that the Cbl-b gene can specifically affect muscle atrophy. The knockdown of the Cbl-b gene after C2C12-differentiated myotubes induced atrophy treatment can downregulate the expression of muscle-atrophy-related genes, indicating that manual intervention to downregulate the expression of Cbl-b has a certain alleviating effect on muscle atrophy. These data suggest that miR-27b-3p can regulate the expression of the Cbl-b gene and then exert a particular influence on muscle atrophy through the Cbl-b gene.
Collapse
|
12
|
Electrical stimulation alters muscle morphological properties in denervated upper limb muscles. EBioMedicine 2021; 74:103737. [PMID: 34896792 PMCID: PMC8671101 DOI: 10.1016/j.ebiom.2021.103737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
Background Damage to lower motor neuron causes denervation and degeneration of the muscles affected. Experimental and clinical studies of muscle denervation in lower extremities demonstrated that direct electrical stimulation (ES) of muscle can prevent denervation atrophy and restore contractility. The aim of this study was to identify possible myogenic effect of ES on denervated forearm and hand muscles in persons with spinal cord injury (SCI) and tetraplegia. Methods This prospective interventional study with repeated measurement design included 22 patients aged 48·6 (± 15·7), 0·25 (0·1/46) years after spinal cord lesion, AIS A-D. In each patient, two electrophysiologically-confirmed denervated muscles in the hand and forearm were analyzed – one extrinsic (Extensor Carpi Ulnaris - ECU) and one intrinsic (1st Dorsal Interosseus - IOD1). Muscles were stimulated for 33 min, five times per week over a 12-weeks period. Using ultrasonography (USG), muscle thickness (MT) and pennation angle (PA) of these muscles were determined at start and end of the stimulation period. Findings MT of IOD1 increased from 6·3 mm (± 3·2 mm) to 9·2 mm (± 2·4 mm) (p = 0·004) and the PA from 5·5° (± 3·0°) to 11° (± 2·2°) (p = 0·001). The corresponding values for the ECU were 5·5 mm (± 2·5 mm) to 7·0 mm (± 2·2 mm) (p = 0·039) and 5·5° (± 3·4°) to 9·4° (± 3·8°) (p = 0·005), respectively. The correlation of MT between baseline and completion was r = 0·58 (p = 0·037) for the ECU and r = 0·63 (p = 0·008) for the IOD1. Interpretation 12 weeks of direct muscle stimulation increases the MT and PA of the denervated intrinsic and extrinsic hand muscles studied. Funding Swiss Paraplegic Centre, Switzerland
Collapse
|
13
|
Carraro U, Kern H, Albertin G. Paolo Gava, a professional engineer, who has become a Master athlete, an amateur scientist and a lifelong friend. Eur J Transl Myol 2021; 31. [PMID: 34738776 PMCID: PMC8758952 DOI: 10.4081/ejtm.2021.10260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Paolo Gava, (Conegliano, Treviso, September 1, 1946 – Stra, Venezia, Italy, July 19, 2021) was a sustainable resources engineer, who worked in Italy, France and England, leading research programs well before the current international interest in countering global warming. Passionate about Tango, Paolo kept himself in shape for many decades by running or pedaling or roller-skating, after years of training as a semi-professional athlete, competing and winning Italian and European short distance races in the Master classes. Then, Paolo applied his engineering skills to optimize comparisons between the results of the different Classes of Master Athletes, questioning the rules used by Italian and World Master Sports Associations. Friendly discussing during an after-dinner, he shocked us claiming that, in absence of diseases and trauma (Early Aging), the aging decay is a linear process from 30 to 110 years. Under our friendly pressure he was able to publish his first biomedical article, detailing his mathematical approaches and results in a 2015 issue of Experimental Aging Research, titled: Age-associated power decline from running, jumping and throwing male master world records. To honor his other legacies during his last six years of life, we add here further examples of Paolo's scientific studies and his relationships with senior colleagues and young students of sports and aging sciences.
Collapse
Affiliation(s)
- Ugo Carraro
- CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; Department of Biomedical Sciences (DBS), University of Padova, Italy; A-C M-C Foundation for Translational Myology, Padova.
| | - Helmut Kern
- Physiko- und Rheumatherapie, St. Pölten, Austria; Ludwig Boltzmann Institute of Rehabilitation Research, St Pölten, Austria; Institute of Physical Medicine and Rehabilitation, Prim. Dr. H Kern GmbH, Amstetten.
| | - Giovanna Albertin
- CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; Department of Neuroscience (DNS), Section of Human Anatomy, University of Padova.
| |
Collapse
|
14
|
Skeletal muscle weakness in older adults home-restricted due to COVID-19 pandemic: a role for full-body in-bed gym and functional electrical stimulation. Aging Clin Exp Res 2021; 33:2053-2059. [PMID: 34047931 PMCID: PMC8160559 DOI: 10.1007/s40520-021-01885-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/09/2021] [Indexed: 01/03/2023]
Abstract
Persons suffering with systemic neuromuscular disorders or chronic organ failures, spend less time for daily physical activity, aggravating their mobility impairments. From 2020, patients at risk are also older adults, who, though negative for the SARS-Cov-2 infection, suffer with a fatigue syndrome due to home restriction/quarantine. Besides eventual psycological managements, it could be useful to offer to these patients a rehabilitation workouts easy to learn and to independently repeat at home (Full-Body In-Bed Gym). Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation (FES), we suggest for this fatigue syndrome a 10–20 min long daily routine of easy and safe physical exercises that may recover from muscle weakness the main 400 skeletal muscles used for every-day activities. Leg muscles could be trained also by an adjunctive neuro-muscular electrical stimulation (NMES) in frail old persons. Many of the exercises could be performed in bed (Full-Body in-Bed Gym), thus hospitalized patients can learn this light training before leaving the hospital. Full-Body in-Bed Gym is, indeed, an extension of well-established cardiovascular-ventilation rehabilitation training performed by patients after heavy surgery. Blood pressure readings, monitored before and after daily routine of Full-Body in-Bed Gym, demonstrate a transient decrease in peripheral resistance due to increased blood flow to major body muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the fatigue syndrome related to the restrictions/quarantine imposed to the general population during the COVID-19 pandemic.
Collapse
|
15
|
Long-term effect of task-oriented functional electrical stimulation in chronic Guillain Barré syndrome-a single-subject study. Spinal Cord Ser Cases 2021; 7:53. [PMID: 34183649 DOI: 10.1038/s41394-021-00419-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Functional electrical stimulation (FES) can enhance motor learning of hand fine motor skills in neurological diseases with upper motoneuron lesions. Nevertheless, FES is rarely applied in patients with chronic Guillan-Barré syndrome (GBS) with preserved deep tendon reflexes allowing for stimulation via nerve. This single case report documents the results of an FES-supported, task-oriented grasp training to regain hand closure and pinch grip. STUDY DESIGN Single-subject repeated measures study. SETTING International FES Centre®, Swiss Paraplegic Centre Nottwil. METHODS Three individually defined goals were formulated and scored by using the goal attainment scale. With a focus on these goals, FES was applied bilaterally to improve hand closure and pinch grip. Based on principles of motor learning FES was executed together with task-oriented movements. The hand closure distance (cm) between the tip of the middle finger and the palmar side of the hand was measured and the achievement of personal, predefined goals evaluated. RESULTS After 16 weeks of daily stimulation, hand closure could be voluntarily performed. Regained opposition of the thumb to the index finger enabled improved individually defined fine motor control. Restored function remained unchanged in the follow-up at 6 months without stimulation. CONCLUSION Improving fine motor skills in chronic GBS with intact deep tendon reflexes was possible utilizing FES combined with task-oriented grasp training. These improvements were maintained over time indicating the combination was effective in promoting functionally meaningful motor gains.
Collapse
|
16
|
Soendenbroe C, Andersen JL, Mackey AL. Muscle-nerve communication and the molecular assessment of human skeletal muscle denervation with aging. Am J Physiol Cell Physiol 2021; 321:C317-C329. [PMID: 34161153 DOI: 10.1152/ajpcell.00174.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Muscle fiber denervation is a major contributor to the decline in physical function observed with aging. Denervation can occur through breakdown of the neuromuscular junctions (NMJ) itself, affecting only that particular fiber, or through the death of a motor neuron, which can lead to a loss of all the muscle fibers in that motor unit. In this review, we discuss the muscle-nerve relationship, where signaling from both the motor neuron and the muscle fiber is required for maximal preservation of neuromuscular function in old age. Physical activity is likely to be the most important single factor that can contribute to this preservation. Furthermore, we propose that inactivity is not an innocent bystander, but plays an active role in denervation through the production of signals hostile to neuron survival. Investigating denervation in human muscle tissue samples is challenging due to the shared protein profile of regenerating and denervated muscle fibers. In this review, we provide a detailed overview of the key traits observed in immunohistochemical preparations of muscle biopsies from healthy, young, and elderly individuals. Overall, a combination of assessing tissue samples, circulating biomarkers, and electrophysiological assessments in humans will prove fruitful in the quest to gain more understanding of denervation of skeletal muscle. In addition, cell culture models represent a valuable tool in the search for key signaling factors exchanged between muscle and nerve, and which exercise has the capacity to alter.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L Andersen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Carraro U, Albertin G, Martini A, Giuriati W, Guidolin D, Masiero S, Kern H, Hofer C, Marcante A, Ravara B. To contrast and reverse skeletal muscle weakness by Full-Body In-Bed Gym in chronic COVID-19 pandemic syndrome. Eur J Transl Myol 2021; 31. [PMID: 33709653 PMCID: PMC8056156 DOI: 10.4081/ejtm.2021.9641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 01/30/2023] Open
Abstract
Mobility-impaired persons, either very old or younger but suffering with systemic neuromuscular disorders or chronic organ failures, spend small amounts of time for daily physical activity, contributing to aggravate their poor mobility by resting muscle atrophy. Sooner or later the limitations to their mobility enforce them to bed and to more frequent hospitalizations. We include among these patients at risk those who are negative for the SARS-COV-2 infection, but suffering with COVID-19 pandemic syndrome. Beside managements of psychological symptoms, it is mandatory to offer to the last group physical rehabilitation approaches easy to learn and self-managed at home. Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation, we suggest also for chronic COVID-19 pandemic syndrome a 10-20 min long daily routine of easy and safe physical exercises that can activate, and recover from weakness, the main 400 skeletal muscles used for every-day mobility activities. Persons can do many of them in bed (Full-Body in-Bed Gym), and hospitalized patients can learn this light training before leaving the hospital. It is, indeed, an extension of well-established cardiovascular-respiratory rehabilitation training performed after heavy surgical interventions. Blood pressure readings, monitored before and after daily routine, demonstrate a transient decrease in peripheral resistance due to increased blood flow of many muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the COVID-19 pandemic syndrome.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Italy; CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; A-C M-C Foundation for Translational Myology, Padova.
| | - Giovanna Albertin
- CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; A-C M-C Foundation for Translational Myology, Padova.
| | - Alessandro Martini
- Department of Neuroscience, University of Padova, Italy; Padova University Research Center "I Approve", University of Padov.
| | | | - Diego Guidolin
- Department of Neuroscience, Section of Human Anatomy, University of Padova.
| | - Stefano Masiero
- CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; Department of Neuroscience, Section of Rehabilitation, University of Padova.
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation Research, St. Pölten, Austria; Physiko- und Rheumatherapie, St. Pölten.
| | | | - Andrea Marcante
- UOC Recovery and Functional Rehabilitation, Lonigo Hospital, Azienda ULSS 8 Berica, Lonigo.
| | - Barbara Ravara
- Department of Biomedical Sciences, University of Padova, Italy; CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; AC M-C Foundation for Translational Myology, Padova, Italy; Department of Neuroscience, Section of Human Anatomy, University of Padova.
| |
Collapse
|
18
|
Carraro U, Albertin G, Martini A, Giuriati W, Guidolin D, Masiero S, Kern H, Hofer C, Marcante A, Ravara B. To contrast and reverse skeletal muscle weakness by Full-Body In-Bed Gym in chronic COVID-19 pandemic syndrome. Eur J Transl Myol 2021. [DOI: 10.4081/ejtm.2020.9641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mobility-impaired persons, either very old or younger but suffering with systemic neuromuscular disorders or chronic organ failures, spend small amounts of time for daily physical activity, contributing to aggravate their poor mobility by resting muscle atrophy. Sooner or later the limitations to their mobility enforce them to bed and to more frequent hospitalizations. We include among these patients at risk those who are negative for the SARS-COV-2 infection, but suffering with COVID-19 pandemic syndrome. Beside managements of psychological symptoms, it is mandatory to offer to the last group physical rehabilitation approaches easy to learn and self-managed at home. Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation, we suggest also for chronic COVID-19 pandemic syndrome a 10–20 min long daily routine of easy and safe physical exercises that can activate, and recover from weakness, the main 400 skeletal muscles used for every-day mobility activities. Persons can do many of them in bed (Full-Body in-Bed Gym), and hospitalized patients can learn this light training before leaving the hospital. It is, indeed, an extension of well-established cardiovascular-respiratory rehabilitation training performed after heavy surgical interventions. Blood pressure readings, monitored before and after daily routine, demonstrate a transient decrease in peripheral resistance due to increased blood flow of many muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the COVID-19 pandemic syndrome.
Collapse
|
19
|
Karniel N, Raveh E, Schwartz I, Portnoy S. Functional electrical stimulation compared with ankle-foot orthosis in subacute post stroke patients with foot drop: A pilot study. Assist Technol 2021; 33:9-16. [PMID: 30945999 DOI: 10.1080/10400435.2019.1579269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Background: The conventional treatment for foot drop includes an ankle-foot orthosis (AFO) or functional electrical stimulation (FES). Goal: To compare gait parameters in patients following a subacute post stroke with foot drop treated with AFO or FES. Method: Twenty one subacute patients with stroke with foot drop were fitted with FES (N = 10) or AFO (N = 11). Evaluations were performed at baseline, following 4 weeks and 12 weeks. Spatiotemporal gait parameters and symmetry, dynamic electromyography, 10-m walk test, 6-min walk test, timed up and go, functional ambulation classification, and perception of improvement in walking were measured. The gait analysis measures were collected without the assistive devices while the functional measures were collected with them. Results: Both groups showed improvement in all of the outcome measures, with no between-groups differences. The swing duration's and step length's symmetry indicated better gait symmetry in the FES group after 12 weeks (p = 0.037, effect size = -0.538 and p = 0.028 effect size = -0.568, respectively). The FES group perceived significant improvement in gait after 4 weeks, while subjects in the AFO group reported to perceive improvement only after 12 weeks. Conclusions: Our findings suggest that FES is at least as effective as traditional AFO and may be more so.
Collapse
Affiliation(s)
- Naama Karniel
- Physical Medicine and Rehabilitation, Hadassah Mount Scopus University Hospital , Jerusalem, Israel
| | - Eitan Raveh
- Faculty of Medicine, Occupational therapy, School of Health Professions, Tel Aviv University Sackler , Tel Aviv, Israel
| | - Isabella Schwartz
- Physical Medicine and Rehabilitation, Hadassah Mount Scopus University Hospital , Jerusalem, Israel
| | - Sigal Portnoy
- Physical Medicine and Rehabilitation, Hadassah Mount Scopus University Hospital , Jerusalem, Israel.,Faculty of Medicine, Occupational therapy, School of Health Professions, Tel Aviv University Sackler , Tel Aviv, Israel
| |
Collapse
|
20
|
Bersch I, Fridén J. Upper and lower motor neuron lesions in tetraplegia: implications for surgical nerve transfer to restore hand function. J Appl Physiol (1985) 2020; 129:1214-1219. [DOI: 10.1152/japplphysiol.00529.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nerve transfers (neurotizations) performed under optimal conditions can restore some voluntary control in muscles of the upper extremities in patients with tetraplegia. However, the type of motoneuron lesions in target muscles for nerve transfers influences the functional outcome. Using standardized maps of motor point topography, surface electrical stimulation reliably defines the kind and extent of motoneuron lesion in the selected muscles. In a muscle with an intact lower motor motoneuron, nerve transfers can often successfully reinnervate the chosen key muscle. Conversely, in a lower motoneuron lesion, the nerve transfer outcome is less predictable. However, direct muscle stimulation appears to ameliorate the morphological precondition, a finding that necessitates new preoperative approaches to optimize reinnervation in denervated/partially denervated muscles. Therefore, understanding the impact of electrical stimulation in diagnostics, prognostics, and treatments of upper limbs in tetraplegia is critical for neurotization procedures.
Collapse
Affiliation(s)
- Ines Bersch
- Swiss Paraplegic Centre, Nottwil, Switzerland
- Department of Orthopaedics, Institute of Clinical Sciences at the University of Gothenburg, Gothenburg, Sweden
| | - Jan Fridén
- Swiss Paraplegic Centre, Nottwil, Switzerland
- Department of Orthopaedics, Institute of Clinical Sciences at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Messa GAM, Piasecki M, Rittweger J, McPhee JS, Koltai E, Radak Z, Simunic B, Heinonen A, Suominen H, Korhonen MT, Degens H. Absence of an aging‐related increase in fiber type grouping in athletes and non‐athletes. Scand J Med Sci Sports 2020; 30:2057-2069. [DOI: 10.1111/sms.13778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Guy A. M. Messa
- Department of Life Sciences Research Centre for Musculoskeletal Science and Sports Medicine Manchester Metropolitan University Manchester UK
| | - Mathew Piasecki
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre University of Nottingham Nottingham UK
| | - Jörn Rittweger
- Division Space Physiology Institute of Aerospace Medicine German Aerospace Center Cologne Germany
- Department of Paediatric and Adolescent Medicine University of Cologne Cologne Germany
| | - Jamie S. McPhee
- Department of Sport and Exercise Sciences Manchester Metropolitan University Manchester UK
| | - Erika Koltai
- Research Institute of Sport Science University of Physical Education Budapest Hungary
| | - Zsolt Radak
- Research Institute of Sport Science University of Physical Education Budapest Hungary
| | - Bostjan Simunic
- Science and Research Centre Koper Institute for Kinesiology Research Koper Sloveni
| | - Ari Heinonen
- Gerontology Research Centre Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Harri Suominen
- Gerontology Research Centre Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Marko T. Korhonen
- Gerontology Research Centre Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Hans Degens
- Department of Life Sciences Research Centre for Musculoskeletal Science and Sports Medicine Manchester Metropolitan University Manchester UK
- Institute of Sport Science and Innovations Lithuanian Sports University Kaunas Lithuania
- University of Medicine and Pharmacy of Targu Mures Targu Mures Rumania
| |
Collapse
|
22
|
Abstract
Individuals that maintain healthy skeletal tissue tend to live healthier, happier lives as proper muscle function enables maintenance of independence and actuation of autonomy. The onset of skeletal muscle decline begins around the age of 30, and muscle atrophy is associated with a number of serious morbidities and mortalities. Satellite cells are responsible for regeneration of skeletal muscle and enter a reversible non-dividing state of quiescence under homeostatic conditions. In response to injury, satellite cells are able to activate and re-enter the cell cycle, creating new cells to repair and create nascent muscle fibres while preserving a small population that can return to quiescence for future regenerative demands. However, in aged muscle, satellite cells that experience prolonged quiescence will undergo programmed cellular senescence, an irreversible non-dividing state that handicaps the regenerative capabilities of muscle. This review examines how periodic activation and cycling of satellite cells through exercise can mitigate senescence acquisition and myogenic decline.
Collapse
Affiliation(s)
- William Chen
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - David Datzkiw
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
23
|
Carraro U. Thirty years of translational research in Mobility Medicine: Collection of abstracts of the 2020 Padua Muscle Days. Eur J Transl Myol 2020; 30:8826. [PMID: 32499887 PMCID: PMC7254447 DOI: 10.4081/ejtm.2019.8826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
More than half a century of skeletal muscle research is continuing at Padua University (Italy) under the auspices of the Interdepartmental Research Centre of Myology (CIR-Myo), the European Journal of Translational Myology (EJTM) and recently also with the support of the A&CM-C Foundation for Translational Myology, Padova, Italy. The Volume 30(1), 2020 of the EJTM opens with the collection of abstracts for the conference "2020 Padua Muscle Days: Mobility Medicine 30 years of Translational Research". This is an international conference that will be held between March 18-21, 2020 in Euganei Hills and Padova in Italy. The abstracts are excellent examples of translational research and of the multidimensional approaches that are needed to classify and manage (in both the acute and chronic phases) diseases of Mobility that span from neurologic, metabolic and traumatic syndromes to the biological process of aging. One of the typical aim of Physical Medicine and Rehabilitation is indeed to reduce pain and increase mobility enough to enable impaired persons to walk freely, garden, and drive again. The excellent contents of this Collection of Abstracts reflect the high scientific caliber of researchers and clinicians who are eager to present their results at the PaduaMuscleDays. A series of EJTM Communications will also add to this preliminary evidence.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
24
|
Ravara B, Zampieri S, Kern H, Carraro U. Blood contamination, a problem or a lucky chance to analyze non-invasively Myokines in mouth fluids? Eur J Transl Myol 2019; 29:8713. [PMID: 31908751 PMCID: PMC6926435 DOI: 10.4081/ejtm.2019.8713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 01/15/2023] Open
Abstract
Use of saliva in clinical studies are increasing to identify methods less invasive than blood sampling in search for systemic changes of biomarkers related to physical activity, aging, late aging and rehabilitation. The consensus is that the diagnostic value of whole saliva is compromised by the presence of blood, but we are looking at the contamination as a major opportunity for non-invasive analyses of serological biomarkers. The aim of this preliminary study was to evaluate the presence of serum in mouth fluids of healthy seniors and the eventual changes after a modest trauma, i.e., tooth brushing. Seven heathy persons, aged more than 65 years, drooling saliva in a test tube provided the fluids for the analyses. After low speed centrifugation, small aliquots of supernatants were frozen in liquid nitrogen and stored at -80° until use. Aliquots were thawed and used for quantification by the Lowry method of total proteins and by colorimetric ELISA of serum albumin, fibrinogen and lysozyme. Hemoglobin content was quantified by Spectrophotometry. Adjustment of saliva dilution, after a preliminary test, increased the homogeneity of the analytes’ content determined by colorimetric ELISA. The control reference to judge the quantity of serum in saliva was a pool of sera from age-matched healthy persons. Saliva collected from the seven healthy elderly person before and after tooth-and-gum, brushing presented measurable amount of the analytes, including fibrinogen, a minor component of the pooled sera. Tooth brushing did not induced statistically significant difference in analytes’ contents, suggesting that a measurable blood contamination is a frequent event in elderly persons. In conclusion, fibrinogen analysis in saliva is a promising approach to quantify serological biomarkers by a non-invasive procedure that will increase acceptability and frequency of analyses during follow-up in aging and rehabilitation.
Collapse
Affiliation(s)
- Barbara Ravara
- CIR-Myo, Interdepartmental Research Center of Myology, University of Padova, Italy.,Department of Biomedical Sciences (DSB), University of Padova, Italy.,A&C M-C Foundation for Translational Myology, Padova, Italy
| | - Sandra Zampieri
- CIR-Myo, Interdepartmental Research Center of Myology, University of Padova, Italy.,Ludwig Boltzmann Institute of Rehabilitation Research, St Pölten, Austria.,Institute of Physical Medicine and Rehabilitation, Prim. Dr. H Kern GmbH, Amstetten, Austria.,Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Italy
| | - Helmut Kern
- Ludwig Boltzmann Institute of Rehabilitation Research, St Pölten, Austria.,Institute of Physical Medicine and Rehabilitation, Prim. Dr. H Kern GmbH, Amstetten, Austria
| | - Ugo Carraro
- CIR-Myo, Interdepartmental Research Center of Myology, University of Padova, Italy.,Department of Biomedical Sciences (DSB), University of Padova, Italy.,A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
25
|
Taylor MJ, Schils S, Ruys AJ. Home FES: An Exploratory Review. Eur J Transl Myol 2019; 29:8285. [PMID: 31969976 PMCID: PMC6974778 DOI: 10.4081/ejtm.2019.8285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
This review of literature focuses on the multiple uses of Functional Electrical Stimulation (FES) and how this modality may be a valuable home-based therapy. Papers pertaining to home FES exercise were collected using the Web of Science, Google Scholar databases and collegial hints. In our opinion, the following statements summarize the results. FES may be used to induce health benefits in populations with paralysis, and in persons with musculoskeletal, cardiorespiratory and renal pathology. The EU Project Rise showed how FES could have a variety of encouraging outcomes for patients with denervated muscles following traumatic injuries. As suggested by recent literature, FES has proven to be a viable form of exercise for elderly individuals. Thus, Home FES may be an option for patients looking for an additional form of muscle and cardiopulmonary physical therapy.
Collapse
Affiliation(s)
- Matthew J. Taylor
- Faculty of Engineering and IT, The University of Sydney, Camperdown, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia
- Discipline of Anatomy and Histology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Sheila Schils
- EquiNew, River Falls, Wisconsin, United States of America
| | - Andrew J. Ruys
- Faculty of Engineering and IT, The University of Sydney, Camperdown, Australia
| |
Collapse
|
26
|
Gava P, Ravara B. Master World Records show minor gender differences of performance decline with aging. Eur J Transl Myol 2019; 29:8327. [PMID: 31579476 PMCID: PMC6767836 DOI: 10.4081/ejtm.2019.8327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aging behaviours are significantly different in females and males, e.g., the former have a longer life expectancy, but consistently a weaker muscle force. Our purpose is to analyse possible gender-differential declines of skeletal muscle performance. The method to find out the decline of performances with aging is based on a parametric analysis of the World Records of Master athletes in different Track and Field events. The analysis is a transformation (normalization) of sports results into dimensionless parameters ranging from the maximum value of 1 (for the absolute world record) to decreasing values with decreasing performances. Master athletes compete in age groups of 5 years till the age of 100 years, thus their World Records are lists of up to 16 data. Results of the normalization procedure are trend-lines indicating that the decline starts not later than the age of thirty years for both women and women. The decline with aging of the muscle performances indicates only minor gender differences in the aging process and all trend-lines tend to zero at about the age of 110 years. The approach, making use of a homogeneous cohort of testers, gets rid of the main confounding factors biasing other kind of studies of the muscle performance decline with aging, in particular clinical studies. Comparing normalized female and male World Records of Master athletes, a surprise emerged: aging decline is very similar, if not identical, the unique exception to the general rule of gender differences in sports activities. The substantial identity of decline trends among females and males suggests that neuro-hormonal differences among genders poorly influence the aging decline, being conceivably related to fundamental cell bioregulators, such as those of cellular energy metabolism and/or their epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- Paolo Gava
- A&C M-C Foundation for Translational Myology, Padova, Italy
| | - Barbara Ravara
- A&C M-C Foundation for Translational Myology, Padova, Italy.,Interdepartmental Research Center of Myology, Department of Biomedical Science, University of Padova, Italy
| |
Collapse
|
27
|
Anderson LB, Latour CD, Khader O, Massey BH, Cobb B, Pond AL. Ether-a-go-go related gene-1a potassium channel abundance varies within specific skeletal muscle fiber type. Eur J Transl Myol 2019; 29:8402. [PMID: 31579487 PMCID: PMC6767934 DOI: 10.4081/ejtm.2019.8402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 01/24/2023] Open
Abstract
The ERG1A K+ channel, which is partially responsible for repolarization of the cardiac action potential, has also been reported in skeletal muscle where it modulates ubiquitin proteolysis. Because ERG1A protein appears variably expressed in muscles composed of mixed fiber types, we hypothesized that its abundance in skeletal muscle might differ with fiber type. Indeed, skeletal muscle fibers vary in speed of contraction (fast or slow), which is mainly determined by myosin heavy chain (MyHC) isoform content, but a sarcolemmal K+ channel might also modulate contraction speed. To test our hypothesis, we cryo-sectioned Soleus (SOL), Extensor Digitorum Longus (EDL), and Gastrocnemius muscles from five rats. These muscles were chosen because the SOL and EDL contain an abundance of slow- and fast-twitch fibers, respectively, while the Gastrocnemius has a more heterogeneous composition. The muscle sections were co-immunostained for the ERG1A protein and either the fast- or slow-twitch MyHC to identify fiber type. ERG1A fluorescence was then measured in the sarcolemma of each fiber type and compared. The data reveal that the ERG1A protein is more abundant in the fibers of the SOL than in the EDL muscles, suggesting ERG1A may be more abundant in the slow than the fast fibers, and this was confirmed with immunoblot. However, because of the homogeneity of fiber type within these muscles, it was not possible to get enough data from both fiber types within a single muscle to compare ERG1A composition within fiber type. However, immunohistochemistry of sections from the fiber type heterogeneous Gastrocnemius muscle reveals that slow fibers had, on average, a 17.2% greater ERG1A fluorescence intensity than fast fibers (p<0.03). Further, immunoblot reveals that ERG1A protein is 41.6% more abundant (p=0.051) in old than in young rat Gastrocnemius muscle. We postulate that this membrane bound voltage-gated channel may affect membrane characteristics, the duration of the action potential generated, and/or the speed of contraction. Indeed, ERG1A protein is more abundant in aged and atrophic skeletal muscle, both of which exhibit slower rates of contraction.
Collapse
Affiliation(s)
- Luke B. Anderson
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL
| | - Chase D. Latour
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - Omar Khader
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL
| | | | - Brittan Cobb
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL
| | - Amber L. Pond
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL
| |
Collapse
|
28
|
Carraro U. Collection of the Abstracts of the 2019Sp PMD: Translational Myology and Mobility Medicine. Eur J Transl Myol 2019; 29:8155. [PMID: 31019666 PMCID: PMC6460219 DOI: 10.4081/ejtm.2019.8155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy and the A&C M-C Foundation for Translational Myology, Padova, Italy organized with the scientific support of Helmut Kern, Jonathan C. Jarvis, Viviana Moresi, Marco Narici, Feliciano Protasi, Marco Sandri and Ugo Carraro, the 2019SpringPaduaMuscleDays: Translational Myology and Mobility Medicine, an International Conference held March 28-30, 2019 in Euganei Hills and Padova (Italy). Presentations and discussions of the Three Physiology Lectures and of the seven Sessions (I: Spinal Cord Neuromodulation and h-bFES in SC; II: Muscle epigenetics in aging and myopathies; III: Experimental approaches in animal models; IV: Face and Voice Rejuvenation; V: Muscle Imaging; VI: Official Meeting of the EU Center of Active Aging; VII: Early Rehabilitation after knee and hip replacement) were at very high levels. This was true in the past and will be true in future events thanks to researchers and clinicians who were and are eager to attend the PaduaMuscleDays.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
29
|
Taylor MJ, Fornusek C, Ruys AJ. The duty cycle in Functional Electrical Stimulation research. Part II: Duty cycle multiplicity and domain reporting. Eur J Transl Myol 2018; 28:7733. [PMID: 30662696 PMCID: PMC6317134 DOI: 10.4081/ejtm.2018.7733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
In part I of this review, we introduced the duty cycle as a fundamental parameter in controlling the effect of electrical stimulation pulse trains on muscle structural and functional properties with special emphasis on fatigue. Following on from a survey of the literature, we discuss here the relative ability of intermittent and continuous stimulation to fatigue muscle. In addition, pertinent literature is explored on a more deeper level, highlighting contentions regarding the duty cycle across studies. In response to literature inconsistencies, we propose frameworks upon which the duty cycle parameter may be specified. We present the idea of domain reporting for the duty cycle, and illustrate with practical examples. In addition we dig further into the literature and present a set of notations that have been used by different researchers to report the duty cycle. We also propose the idea of the duty cycle multiple, which together with domain reporting, will help researchers understand more precisely duty cycles of electrical stimulation. As a case study, we also show how the duty cycle has been looked at by researchers in the context of pressure sore attenuation in patients. Together with part I, it is hoped that the frameworks suggested provide a complete picture of how duty cycle has been discussed across the literature, and gives researchers a more trans-theoretical basis upon which they may report the duty cycle in their studies. This may also lead to a more precise specification of electrical stimulation protocols used in patients.
Collapse
Affiliation(s)
- Matthew J. Taylor
- Faculty of Engineering and IT, University of Sydney, Camperdown, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, Australia
| | - Ché Fornusek
- Faculty of Medicine and Health, University of Sydney, Lidcombe, Australia
| | - Andrew J. Ruys
- Faculty of Engineering and IT, University of Sydney, Camperdown, Australia
| |
Collapse
|
30
|
Sajer S, Guardiero GS, Scicchitano BM. Myokines in Home-Based Functional Electrical Stimulation-Induced Recovery of Skeletal Muscle in Elderly and Permanent Denervation. Eur J Transl Myol 2018; 28:7905. [PMID: 30662701 PMCID: PMC6317133 DOI: 10.4081/ejtm.2018.7905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Neuromuscular disorders, disuse, inadequate nutrition, metabolic diseases, cancer and aging produce muscle atrophy and this implies that there are different types of molecular triggers and signaling pathways for muscle wasting. Exercise and muscle contractions may counteract muscle atrophy by releasing a group of peptides, termed myokines, to protect the functionality and to enhance the exercise capacity of skeletal muscle. In this review, we are looking at the role of myokines in the recovery of permanent denervated and elderly skeletal muscle tissue. Since sub-clinical denervation events contribute to both atrophy and the decreased contractile speed of aged muscle, we saw a parallel to spinal cord injury and decided to look at both groups together. The muscle from lifelong active seniors has more muscle bulk and more slow fiber-type groupings than those of sedentary seniors, demonstrating that physical activity maintains slow motoneurons that reinnervate the transiently denervated muscle fibers. Furthermore, we summarized the evidence that muscle degeneration occur with irreversible Conus and Cauda Equina syndrome, a spinal cord injury in which the human leg muscles may be permanently disconnected from the peripheral nervous system. In these patients, suffering with an estreme case of muscle disuse, a complete loss of muscle fibers occurs within five to ten years after injury. Their recovered tetanic contractility, induced by home-based Functional Electrical Stimulation, can restore the muscle size and function in compliant Spinal Cord Injury patients, allowing them to perform electrical stimulation-supported stand-up training. Myokines are produced and released by muscle fibers under contraction and exert both local and systemic effects. Changes in patterns of myokine secretion, particularly of IGF-1 isoforms, occur in long-term Spinal Cord Injury persons and also in very aged people. Their modulation in Spinal Cord Injury and late aging are also key factors of home-based Functional Electrical Stimulation - mediated muscle recovery. Thus, Functional Electrical Stimulation should be prescribed in critical care units and nursing facilities, if persons are unable or reluctant to exercise. This will result in less frequent hospitalizations and a reduced burden on patients' families and public health services.
Collapse
Affiliation(s)
- Sascha Sajer
- Department of Physiko&Rheuma-Therapie, Institute for Physical Medicine, St. Pölten, Austria
| | - Giulio Sauro Guardiero
- A&C M-C Foundation for Translational Myology, Padova, Italy
- Interdepartmental Research Centre of Myology, University of Padova, Italy
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
31
|
Suzuki T, Ikeda M, Minami M, Matayoshi Y, Nakao M, Nakamura T, Abo M. Beneficial Effect of Intradialytic Electrical Muscle Stimulation in Hemodialysis Patients: A Randomized Controlled Trial. Artif Organs 2018; 42:899-910. [DOI: 10.1111/aor.13161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Tadashi Suzuki
- Department of Rehabilitation Medicine; The Jikei University Katsushika Medical Center
| | - Masato Ikeda
- Division of Nephrology and Hypertension; The Jikei University Katsushika Medical Center, Katsushika-ku
| | - Masayoshi Minami
- Department of Rehabilitation Medicine; The Jikei University Katsushika Medical Center
| | - Yukiko Matayoshi
- Department of Rehabilitation Medicine; The Jikei University Katsushika Medical Center
| | - Masatsugu Nakao
- Division of Nephrology and Hypertension; The Jikei University Katsushika Medical Center, Katsushika-ku
| | - Takayoshi Nakamura
- Department of Rehabilitation Medicine; The Jikei University Katsushika Medical Center
| | - Masahiro Abo
- Department of Rehabilitation Medicine; The Jikei University School of Medicine, Minato-ku; Tokyo Japan
| |
Collapse
|
32
|
Time course of denervation-induced changes in gastrocnemius muscles of adult and old rats. Exp Gerontol 2018; 106:165-172. [DOI: 10.1016/j.exger.2018.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/31/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
|
33
|
U C, G A, P G, B R, F P, S Z, H K, Pond A. Muscle and skin improve by home-based FES and full-body in-bed gym. ACTA ACUST UNITED AC 2018; 3. [PMID: 30820477 PMCID: PMC6390968 DOI: 10.15761/bem.1000s1003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
All progressive muscle contractile impairments, including advanced age-related muscle power decline, need permanent management. Most elderly persons, in particular octogenarians, spend small amounts of time in daily physical activity, resulting in a decline in body condition with more and more frequent hospitalizations and finally potentially forcing them to bed permanently. Further several neurological injuries, which are even more acutely debilitating than those problems related to aging, are responsible for early limitation of mobility. Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based functional electrical stimulation (h-bFES) in both elderly and SCI patients, we suggest that the elderly and early aging patients participate in hbFES and add a 20 min daily routine of 12 easy and safe physical exercises, namely home-based Full-Body In-Bed Gym. Continued regularly, h-bFES and the Full-Body In-Bed Gym will help to maintain the independence of frail older people and may reduce the risks of serious consequences of accidental falls and pressure sore complications.
Collapse
Affiliation(s)
- Carraro U
- Interdepartmental Research Center of Myology (CIR-Myo), Department of Biomedical Science, University of Padova, Italy.,A&C M-C Foundation for Translational Myology, Padova, Italy.,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| | - Albertin G
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Gargiulo P
- Institute for Biomedical and Neural Engineering/Biomedical Technology Centre Reykjavik University and Landspitali, Reykjavik, Iceland
| | - Ravara B
- Interdepartmental Research Center of Myology (CIR-Myo), Department of Biomedical Science, University of Padova, Italy.,A&C M-C Foundation for Translational Myology, Padova, Italy
| | - Piccione F
- IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| | - Zampieri S
- Interdepartmental Research Center of Myology (CIR-Myo), Department of Biomedical Science, University of Padova, Italy.,Physiko- und Rheumatherapie, St. Poelten, Austria
| | - Kern H
- Physiko- und Rheumatherapie, St. Poelten, Austria
| | - Amber Pond
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, Il, USA
| |
Collapse
|
34
|
Carraro U. Exciting perspectives for Translational Myology in the Abstracts of the 2018Spring PaduaMuscleDays: Giovanni Salviati Memorial - Chapter III - Abstracts of March 16, 2018. Eur J Transl Myol 2018; 28:7365. [PMID: 30057727 PMCID: PMC6047881 DOI: 10.4081/ejtm.2018.7365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 11/23/2022] Open
Abstract
Myologists working in Padua (Italy) were able to continue a half-century tradition of studies of skeletal muscles, that started with a research on fever, specifically if and how skeletal muscle contribute to it by burning bacterial toxin. Beside main publications in high-impact-factor journals by Padua myologists, I hope to convince readers (and myself) of the relevance of the editing Basic and Applied Myology (BAM), retitled from 2010 European Journal of Translational Myology (EJTM), of the institution of the Interdepartmental Research Center of Myology of the University of Padova (CIR-Myo), and of a long series of International Conferences organized in Euganei Hills and Padova, that is, the PaduaMuscleDays. The 2018Spring PaduaMuscleDays (2018SpPMD), were held in Euganei Hills and Padua (Italy), in March 14-17, and were dedicated to Giovanni Salviati. The main event of the “Giovanni Salviati Memorial”, was held in the Aula Guariento, Accademia Galileiana di Scienze, Lettere ed Arti of Padua to honor a beloved friend and excellent scientist 20 years after his premature passing. Using the words of Prof. Nicola Rizzuto, we all share his believe that Giovanni “will be remembered not only for his talent and originality as a biochemist, but also for his unassuming and humanistic personality, a rare quality in highly successful people like Giovanni. The best way to remember such a person is to gather pupils and colleagues, who shared with him the same scientific interests and ask them to discuss recent advances in their own fields, just as Giovanni have liked to do”. Since Giovanni’s friends sent many abstracts still influenced by their previous collaboration with him, all the Sessions of the 2018SpPMD reflect both to the research aims of Giovanni Salviati and the traditional topics of the PaduaMuscleDays, that is, basics and applications of physical, molecular and cellular strategies to maintain or recover functions of skeletal muscles. The translational researches summarized in the 2018SpPMD Abstracts are at the appropriate high level to attract approval of Ethical Committees, the interest of International Granting Agencies and approval for publication in top quality, international journals. The abstracts of the March 16, 2018 Padua Muscle Day are listed in this chapter III. All 2018SpPMD Abstracts are indexed at the end of the Chapter IV.
Collapse
Affiliation(s)
- Ugo Carraro
- Laboratory of Translational Myology, Department of Biomedical Sciences, University of Padova.,A&C M-C Foundation for Translational Myology, Padova.,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| |
Collapse
|
35
|
Carraro U. Exciting perspectives for Translational Myology in the Abstracts of the 2018Spring PaduaMuscleDays: Giovanni Salviati Memorial - Chapter IV - Abstracts of March 17, 2018. Eur J Transl Myol 2018; 28:7366. [PMID: 30057728 PMCID: PMC6047882 DOI: 10.4081/ejtm.2018.7366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 02/08/2023] Open
Abstract
Myologists working in Padua (Italy) were able to continue a half-century tradition of studies of skeletal muscles, that started with a research on fever, specifically if and how skeletal muscle contribute to it by burning bacterial toxin. Beside main publications in high-impact-factor journals by Padua myologists, I hope to convince readers (and myself) of the relevance of the editing Basic and Applied Myology (BAM), retitled from 2010 European Journal of Translational Myology (EJTM), of the institution of the Interdepartmental Research Center of Myology of the University of Padova (CIR-Myo), and of a long series of International Conferences organized in Euganei Hills and Padova, that is, the PaduaMuscleDays. The 2018Spring PaduaMuscleDays (2018SpPMD), were held in Euganei Hills and Padua (Italy), in March 14-17, and were dedicated to Giovanni Salviati. The main event of the “Giovanni Salviati Memorial”, was held in the Aula Guariento, Accademia Galileiana di Scienze, Lettere ed Arti of Padua to honor a beloved friend and excellent scientist 20 years after his premature passing. Using the words of Prof. Nicola Rizzuto, we all share his believe that Giovanni “will be remembered not only for his talent and originality as a biochemist, but also for his unassuming and humanistic personality, a rare quality in highly successful people like Giovanni. The best way to remember such a person is to gather pupils and colleagues, who shared with him the same scientific interests and ask them to discuss recent advances in their own fields, just as Giovanni have liked to do”. Since Giovanni’s friends sent many abstracts still influenced by their previous collaboration with him, all the Sessions of the 2018SpPMD reflect both to the research aims of Giovanni Salviati and the traditional topics of the PaduaMuscleDays, that is, basics and applications of physical, molecular and cellular strategies to maintain or recover functions of skeletal muscles. The translational researches summarized in the 2018SpPMD Abstracts are at the appropriate high level to attract endorsement of Ethical Committees, the interest of International Granting Agencies and approval for publication in top quality international journals. The abstracts of the presentations of the March 16, 2018 Padua Muscle Day and those of the remaining Posters are listed in this chapter IV. The Author Index of the 2018Spring PaduaMuscleDays follows at page 78.
Collapse
Affiliation(s)
- Ugo Carraro
- Laboratory of Translational Myology, Department of Biomedical Sciences, University of Padova.,A&C M-C Foundation for Translational Myology, Padova.,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| |
Collapse
|
36
|
Carraro U, Gava K, Baba A, Marcante A, Piccione F. To Contrast and Reverse Skeletal Muscle Atrophy by Full-Body In-Bed Gym, a Mandatory Lifestyle for Older Olds and Borderline Mobility-Impaired Persons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:549-560. [PMID: 30390269 DOI: 10.1007/978-981-13-1435-3_25] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Older olds, that is octogenarians, spend small amounts of time for daily physical activity, contributing to aggravate their independence limitations up to force them to bed and to more and more frequent hospitalizations. All progressive muscle contractile impairments, including advanced age-related muscle power decline, need permanent management. Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based functional electrical stimulation and guided by common sense, we suggested to older olds a 15-30 min daily routine of 12 easy and safe physical exercises. Since persons can do many of them in bed (full-body in-bed gym), hospitalized elderly can continue this kind of light training that is an extension of the well-established cardiovascular-ventilation rehabilitation before and after admission. Monitoring arterial blood pressure before and after the daily routine demonstrates that peripheral resistance decreases in a few minutes by the functional hyperemia of the trained body muscles. Continued regularly, full-body in-bed gym helps to maintain the independence of frail older people and may reduce the risks of serious consequences of accidental falls.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Center of Myology (CIR-Myo), Department of Biomedical Science, University of Padova, Padova, Italy. .,A&C M-C Foundation for Translational Myology, Padova, Italy. .,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy.
| | | | - Alfonc Baba
- IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| | | | | |
Collapse
|
37
|
To Reverse Atrophy of Human Muscles in Complete SCI Lower Motor Neuron Denervation by Home-Based Functional Electrical Stimulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:585-591. [PMID: 30390271 DOI: 10.1007/978-981-13-1435-3_27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
After spinal cord injury (SCI), patients spend daily several hours in wheelchairs, sitting on their hamstring muscles. SCI causes muscle atrophy and wasting, which is especially severe after complete and permanent damage to lower motor neurons. A European Union (EU)-supported work demonstrates that electrical fields produced by large electrodes and purpose-developed electrical stimulators recover both quadriceps and hamstring muscles, producing a cushioning effect capable of benefitting SCI patients, even in the worst case of complete and long-term lower motor neuron denervation of leg muscles. We reported that 20 out of 25 patients completed a 2-year h-bFES program, which resulted in (1) a 35% increase in cross-sectional area of the quadriceps muscles (P < 0.001), (2) a 75% increase in mean diameter of quadriceps muscle fibers (P < 0.001), and (3) improvement of the ultrastructural organization of contractile machinery and of the Ca2+-handling system. Though not expected, after 2 years during which the 20 subjects performed 5 days per week h-bFES of the atrophic quadriceps muscles, the CT cross-sectional area of the hamstring muscles also augmented, increasing from 26.9+/-8.4 (cm2) to 30.7+/-9.8 (cm2), representing a significant (p ≤ 0.05) 15% increase. Here we show by quantitative muscle color computed tomography (QMC-CT) that h-bFES-induced tissue improvements are present also in the hamstring muscles: a once supposed drawback (lack of specificity of muscle activation by large surface electrodes) is responsible for a major positive clinical effect. Interestingly, 2 years of home-based FES by large surface electrodes reversed also the denervation-induced skin atrophy, increasing epidermis thickness. Finally, we would like to attract attention of the readers to quantitative muscle color computed tomography (QMC-CT), a sensitive quantitative imaging analysis of anatomically defined skeletal muscles introduced by our group to monitor atrophy/degeneration of skeletal muscle tissue. Worldwide acceptance of QMC-CT will provide physicians an improved tool to quantitate skeletal muscle atrophy/degeneration before and during rehabilitation strategies so that therapy for mobility-impaired persons can be better prescribed, evaluated, and altered where needed.
Collapse
|
38
|
Sajer S. Mobility disorders and pain, interrelations that need new research concepts and advanced clinical commitments. Eur J Transl Myol 2017; 27:7179. [PMID: 29299226 PMCID: PMC5745518 DOI: 10.4081/ejtm.2017.7179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
This Perspective will discuss topics recently suggested by Prof. Helmut Kern, Vienna, Austria, to advance the research activities of his team, that is: Topic A, 10 years post RISE; Topic B, New research for new solutions on old research questions; Topic C, Working groups on nerve regeneration, training-parameters of seniors in different ages, muscle adaptation; and studies of connective tissue and cartilage. This Perspective summarizes some of the basic concepts and of the evidence-based tools for developing further translational research activities. Clinically relevant results will ask for continuous interests of Basic and Applied Myologists and for the support during the next five to ten years of public and private granting agencies. All together, they will end in protocols, devices and multidisciplinary managements for persons suffering with muscle denervation, neuromuscular-related or non-related pain and for the increasing population of old, older and oldest senior citizens in Europe and beyond.
Collapse
Affiliation(s)
- Sascha Sajer
- Physiko- und Rheumatherapie, St. Poelten, Austria
| |
Collapse
|
39
|
Coste CA, Bergeron V, Berkelmans R, Martins EF, Fornusek C, Jetsada A, Hunt KJ, Tong R, Triolo R, Wolf P. Comparison of strategies and performance of functional electrical stimulation cycling in spinal cord injury pilots for competition in the first ever CYBATHLON. Eur J Transl Myol 2017; 27:7219. [PMID: 29299228 PMCID: PMC5745381 DOI: 10.4081/ejtm.2017.7219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 01/25/2023] Open
Abstract
Functional Electrical Stimulation (FES) can elicit muscular contraction and restore motor function in paralyzed limbs. FES is a rehabilitation technique applied to various sensorimotor deficiencies and in different functional situations, e.g. grasping, walking, standing, transfer, cycling and rowing. FES can be combined with mechanical devices. FES-assisted cycling is mainly used in clinical environments for training sessions on cycle ergometers, but it has also been adapted for mobile devices, usually tricycles. In October 2016, twelve teams participated in the CYBATHLON competition in the FES-cycling discipline for persons with motor-complete spinal cord injury. It was the first event of this kind and a wide variety of strategies, techniques and designs were employed by the different teams in the competition. The approaches of the teams are detailed in this special issue. We hope that the knowledge contained herein, together with recent positive results of FES for denervated degenerating muscles, will provide a solid basis to encourage improvements in FES equipment and open new opportunities for many patients in need of safe and effective FES management. We hope to see further developments and/or the benefit of new training strategies at future FES competitions, e.g. at the Cybathlon 2020 (www.cybathlon.ethz.ch).
Collapse
Affiliation(s)
| | | | | | | | | | - Arnin Jetsada
- Department of Biomedical Engineering, Mahidol University, Thailand
| | - Kenneth J. Hunt
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Switzerland
| | - Raymond Tong
- Dept of Biomedical Engineering, The Chinese University of Hong Kong, China
| | - Ronald Triolo
- Case Western Reserve University and the Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
| | - Peter Wolf
- Sensory-Motor Systems Lab, ETH Zurich, Switzerland
| |
Collapse
|
40
|
Samiee F, Zarrindast MR. Effect of electrical stimulation on motor nerve regeneration in sciatic nerve ligated-mice. Eur J Transl Myol 2017; 27:6488. [PMID: 29118955 PMCID: PMC5656805 DOI: 10.4081/ejtm.2017.6488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to investigate the effect of electrical stimulation on sciatic nerve regeneration and functional recovery of target muscles. Mice were randomly divided into 3 groups: ligated without electrical stimulation, ligated with electrical stimulation and control (non-ligated). The unilateral peripheral mononeuropathy was produced on the right hind limb. Sciatic nerve was then electrically stimulated daily for a period of 2 weeks (duration: 0.2 msec, frequency: 100Hz, amplitude: 15mA). Evoked surface EMG was recorded from biceps femoris (BF) and gluteus maximus (GM) muscles on the 3rd, 7th, 10th and 14th day after sciatic nerve ligation. Muscle force and sensitivity was determined by processing of the recorded EMG signals in time and frequency domains respectively. The results showed electrical stimulation (ES) produced a significant increase in the EMG response of BF, and muscle force significantly increased on the 14th day (p<0.001), however no significant difference was found in GM muscle force between experimental groups. This may be due to possible innervation by inferior gluteal nerve. Frequency analysis of BF signals indicates that hyperalgesia remained after 14 days in both ligated groups. On the 14th day no difference in GM muscle sensitivity was found between groups. In conclusion, the results of this study have shown that the electrical stimulation of sciatic nerve accelerates nerve repair and indirectly improves BF muscle force to a comparable level with control without effect on muscle sensitivity. However, ES had no effect on GM muscle force and sensitivity.
Collapse
Affiliation(s)
- Farzaneh Samiee
- Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
41
|
Taylor MJ, Fornusek C, Ruys AJ, Bijak M, Bauman AE. The Vienna FES Interview Protocol - A mixed-methods protocol to elucidate the opinions of various individuals responsible for the provision of FES exercise. Eur J Transl Myol 2017; 27:6604. [PMID: 29118956 PMCID: PMC5656807 DOI: 10.4081/ejtm.2017.6604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023] Open
Abstract
Functional Electrical Stimulation (FES) is the production of electrically elicited muscle contractions to perform a function or task. It has been used as a method to regain lost body functions or support weak body functions, and as such, has been clinically available since the early seventies. Some methods are applied routinely while others have not been translated to the bedside, or are still largely restricted to laboratory use. Progress in this field might be achieved by a strong cooperation of patients, clinicians, therapists and engineers. A better insight into multiple perspectives may help in understanding the shortcomings of current FES technology. This will help direct future research efforts into design of systems and potential application in relevant populations. In addition, these findings can assist with the translation of FES technology into a community context. We outline an interview protocol designed for use at the 12th Vienna International Workshop on Functional Electrical Stimulation where the mentioned experts from the field of FES met.
Collapse
Affiliation(s)
| | - Ché Fornusek
- Faculty of Health Sciences, University of Sydney, Lidcombe, Australia
| | - Andrew J Ruys
- Faculty of Engineering and IT, University of Sydney, Camperdown, Australia
| | - Manfred Bijak
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
42
|
Kern H, Hofer C, Loefler S, Zampieri S, Gargiulo P, Baba A, Marcante A, Piccione F, Pond A, Carraro U. Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and Aging. Implications for their recovery by Functional Electrical Stimulation, updated 2017. Neurol Res 2017; 39:660-666. [PMID: 28403681 DOI: 10.1080/01616412.2017.1314906] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Long-term lower motor neuron denervation of skeletal muscle is known to result in degeneration of muscle with replacement by adipose and fibrotic tissues. However, long-term survival of a subset of skeletal myofibers also occurs. METHODS We performed transverse and longitudinal studies of patients with spinal cord injury (SCI), patients specifically complete Conus and Cauda Equina Syndrome and also of active and sedentary seniors which included analyses of muscle biopsies from the quadriceps m. RESULTS Surprisingly, we discovered that human denervated myofibers survive years of denervation after full and irreversible disconnection from their motor neurons. We found that atrophic myofibers could be rescued by home-based Functional Electrical Stimulation (h-bFES), using purpose developed stimulators and electrodes. Although denervated myofibers quickly lose the ability to sustain high-frequency contractions, they respond to very long impulses that are able to allow for re-emergence of tetanic contractions. A description of the early muscle changes in humans are hampered by a paucity of patients suffering complete Conus and Cauda Equina Syndrome, but the cohort enrolled in the EU RISE Project has shown that even five years after SCI, severe atrophic myofibers with a peculiar cluster reorganization of myonuclei are present in human muscles and respond to h-bFES. CONCLUSIONS Human myofibers survive permanent denervation longer than generally accepted and they respond to h-bFES beyond the stage of simple atrophy. Furthermore, long-term denervation/reinnervation events occur in elderly people and are part of the mechanisms responsible for muscle aging and again h-bFES was beneficial in delaying aging decay.
Collapse
Affiliation(s)
- Helmut Kern
- a Physiko- und Rheumatherapie , St. Poelten , Austria
| | - Cristian Hofer
- b Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation , Vienna , Austria
| | | | - Sandra Zampieri
- a Physiko- und Rheumatherapie , St. Poelten , Austria.,c Department of Biomedical Sciences , University of Padova , Padova , Italy
| | - Paolo Gargiulo
- d Instutute for Biomedical and Neural Engineering/Biomedical Technology Centre , Reykjavik University and Landspitali , Reykjavik , Iceland
| | - Alfonc Baba
- e IRCCS Fondazione Ospedale San Camillo , Venice , Italy
| | | | | | - Amber Pond
- f Anatomy Department , Southern Illinois University School of Medicine , Carbondale , IL , USA
| | - Ugo Carraro
- e IRCCS Fondazione Ospedale San Camillo , Venice , Italy
| |
Collapse
|
43
|
Nonlinear Trimodal Regression Analysis of Radiodensitometric Distributions to Quantify Sarcopenic and Sequelae Muscle Degeneration. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:8932950. [PMID: 28115982 PMCID: PMC5223076 DOI: 10.1155/2016/8932950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 12/12/2022]
Abstract
Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported in extant methods. This study reports the development and utility of a nonlinear trimodal regression analysis method utilized on radiodensitometric distributions of upper leg muscles from CT scans of a healthy young adult, a healthy elderly subject, and a spinal cord injury patient. The method was then employed with a THA cohort to assess pre- and postsurgical differences in their healthy and operative legs. Results from the initial representative models elicited high degrees of correlation to HU distributions, and regression parameters highlighted physiologically evident differences between subjects. Furthermore, results from the THA cohort echoed physiological justification and indicated significant improvements in muscle quality in both legs following surgery. Altogether, these results highlight the utility of novel parameters from entire HU distributions that could provide insight into the optimal quantification of muscle degeneration.
Collapse
|
44
|
Coste CA, Mayr W, Bijak M, Musarò A, Carraro U. FES in Europe and Beyond: Current Translational Research. Eur J Transl Myol 2016; 26:6369. [PMID: 28078074 PMCID: PMC5220221 DOI: 10.4081/ejtm.2016.6369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Capacity of adult neural and muscle tissues to respond to external Electrical Stimulation (ES) is the biological basis for the development and implementation of mobility impairment physiotherapy protocols and of related assistive technologies, e.g, Functional Electrical Stimulation (FES). All body tissues, however, respond to electrical stimulation and, indeed, the most successful application of FES is electrical stimulation of the heart to revert or limit effects of arrhythmias (Pace-makers and Defibrillators). Here, we list and discuss results of FES current research activities, in particular those presented at 2016 Meetings: the PaduaMuscleDays, the Italian Institute of Myology Meeting, the 20th International Functional Electrical Stimulation Society (IFESS) conference held in Montpellier and the Vienna Workshop on FES. Several papers were recently e-published in the European Journal of Translational Myology as reports of meeting presentations. All the events and publications clearly show that FES research in Europe and beyond is alive and promisses translation of results into clinical management of a very large population of persons with deficiencies.
Collapse
Affiliation(s)
| | - Winfried Mayr
- Center for Medical Physics and Biomedical Engineering / Medical University of Vienna , Austria
| | - Manfred Bijak
- Center for Medical Physics and Biomedical Engineering / Medical University of Vienna , Austria
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti; DAHFMO-Unit of Histology and Medical Embryology, IIM; Sapienza University of Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Ugo Carraro
- IRCCS Fondazione Ospedale San Camillo , Venice, Italy
| |
Collapse
|
45
|
Mosole S, Carraro U, Kern H, Loefler S, Zampieri S. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen. Eur J Transl Myol 2016; 26:5972. [PMID: 28078066 PMCID: PMC5220213 DOI: 10.4081/ejtm.2016.5972] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. TRIAL REGISTRATION ClinicalTrials.gov: NCT01679977.
Collapse
Affiliation(s)
- Simone Mosole
- Laboratory of Translation Myology, Department of Biomedical Sciences, University of Padova, Italy
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Ugo Carraro
- IRCCS Fondazione Ospedale San Camillo, Venice, Italy
| | - Helmut Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
- Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria
| | - Stefan Loefler
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Sandra Zampieri
- Laboratory of Translation Myology, Department of Biomedical Sciences, University of Padova, Italy
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| |
Collapse
|
46
|
Abstract
Not available.
Collapse
|