1
|
Mao Q, Zhu X, Zhang X, Kong Y. Effect of air pollution on the global burden of cardiovascular diseases and forecasting future trends of the related metrics: a systematic analysis from the Global Burden of Disease Study 2021. Front Med (Lausanne) 2024; 11:1472996. [PMID: 39464269 PMCID: PMC11502364 DOI: 10.3389/fmed.2024.1472996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Background This study assesses the worldwide cardiovascular disease (CVD) burden attributed to air pollution, utilizing data from the Global Burden of Disease Study 2021. Methods We explored the impact of air pollution on CVDs globally, regionally, and nationally, while considering correlations with age, gender, and socio-demographic index (SDI). A decomposition analysis was conducted to discern the contributions of aging, population growth, and epidemiological shifts to the changes in disability-adjusted life years (DALYs) from 1990 to 2021. Additionally, an ARIMA model was used to forecast the future CVD burden through 2050. Results In 2021, air pollution was responsible for approximately 2.46 million deaths and 58.3 million disability-adjusted life years (DALYs) attributable to CVDs, with a discernible decrease over the period studied. The greatest impacts were observed in individuals aged 75-79 and over 80, particularly among males. The decomposition analysis indicated that shifts in epidemiology were the primary factors driving these changes. Future projections suggest potential increases in mortality and DALY rates in regions with low and high-middle SDI, alongside rising age-standardized death and mortality rates in high SDI areas. Conclusion These findings underscore the urgency of implementing targeted CVD prevention and air pollution control strategies to mitigate the impact on public health.
Collapse
Affiliation(s)
- Qingsong Mao
- Hepatobiliary Pancreatic Surgery, Banan Hospital Affiliated of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Zhu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyi Zhang
- College of Education, Wenzhou University, Wenzhou, China
| | - Yuzhe Kong
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
2
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
3
|
Zeng B, Wu Y, Huang Y, Colucci M, Bancaro N, Maddalena M, Valdata A, Xiong X, Su X, Zhou X, Zhang Z, Jin Y, Huang W, Bai J, Zeng Y, Zou X, Zhan Y, Deng L, Wei Q, Yang L, Alimonti A, Qi F, Qiu S. Carcinogenic health outcomes associated with endocrine disrupting chemicals exposure in humans: A wide-scope analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135067. [PMID: 38964039 DOI: 10.1016/j.jhazmat.2024.135067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are persistent and pervasive compounds that pose serious risks. Numerous studies have explored the effects of EDCs on human health, among which tumors have been the primary focus. However, because of study design flaws, lack of effective exposure levels of EDCs, and inconsistent population data and findings, it is challenging to draw clear conclusions on the effect of these compounds on tumor-related outcomes. Our study is the first to systematically integrate observational studies and randomized controlled trials from over 20 years and summarize over 300 subgroup associations. We found that most EDCs promote tumor development, and that exposure to residential environmental pollutants may be a major source of pesticide exposure. Furthermore, we found that phytoestrogens exhibit antitumor effects. The findings of this study can aid in the development of global EDCs regulatory health policies and alleviate the severe risks associated with EDCs exposure.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwei Wu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yin Huang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Aurora Valdata
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Xingyu Xiong
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xingyang Su
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xianghong Zhou
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zilong Zhang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuming Jin
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Weichao Huang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jincheng Bai
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuxiao Zeng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Zou
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, China
| | - Linghui Deng
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Neurodegenerative Disorders Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Qiang Wei
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Yang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Wen S, Tan Q, Baheti R, Wan J, Yu S, Zhang B, Huang Y. Bibliometric analysis of global research on air pollution and cardiovascular diseases: 2012-2022. Heliyon 2024; 10:e32840. [PMID: 38975195 PMCID: PMC11225841 DOI: 10.1016/j.heliyon.2024.e32840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Background The relationship between air pollution and cardiovascular diseases (CVDs) has garnered significant interest among researchers globally. This study employed bibliometric analysis to provide an overview of current research on the association between air pollution and CVDs, offering a comprehensive analysis of global research trends in this area. Methods An exhaustive scrutiny of literature pertaining to the nexus between air pollution and CVDs from 2012 to 2022 was conducted through rigorous screening of the Web of Science Core Collection (WoSCC). Publications were exclusively considered in English. Subsequently, sophisticated analytical tools including CiteSpace 6.2.4R, Vosviewer 1.6.19, HistCite 2.1, Python 3.7.5, Microsoft Charticulator, and Bibliometrix Online Analysis Platform were deployed to delineate research trends in this domain. Results The analysis of the dataset, comprising 1710 documents, unveiled a consistent escalation in scientific publications, peaking in 2022 with a total of 248 publications. Moreover, Environmental Science and Toxicology stood out as the predominant categories. Examination of keyword frequency highlighted the terms 'air pollution', 'cardiovascular disease', and 'particulate matter' as the most prevalent. Notably, the most prolific entities, in terms of authors, journals, organizations, and countries, were identified as Robert D. Brook, Environmental Health Perspectives, Harvard University, and the United States, respectively. Conclusion The findings presented a notable increase in high-quality publications on this topic over the past 11 years, suggesting a positive outlook for future research. The study concluded with an examination of three key themes in research trends related to air pollution and CVDs: the initial physiological response to pollutant exposure, the pathways through which pollutants are transmitted, and the subsequent effects on target organs. Additionally, various air pollutants, such as particulate matter, nitric dioxide, and ozone, could contribute to multiple CVDs, including coronary heart disease, hypertension, and heart failure. Although some hypotheses have been put forward, the mechanisms of air pollution-related CVDs still need to be explored in the future.
Collapse
Affiliation(s)
- Song Wen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Qing Tan
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Rewaan Baheti
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, Hubei, China
| | - Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, Hubei, China
| | - Shuilian Yu
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Bin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yuqing Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
5
|
Fu B, Chen T, Jiang B, Feng H, Zhu Z, Li M, Zhang G, Jiang Y. 6PPDQ induces cardiomyocyte senescence via AhR/ROS-mediated autophagic flux blockage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123872. [PMID: 38604309 DOI: 10.1016/j.envpol.2024.123872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Recently, attention has been drawn to the adverse outcomes of N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ) on human health, but its cardiac toxicity has been relatively understudied. This work aims to investigate the effects of 6PPDQ on differentiated H9c2 cardiomyocytes. Our findings demonstrated that exposure to 6PPDQ altered cellular morphology and disrupted the expression of cardiac-specific markers. Significantly, 6PPDQ exposure led to cardiomyocyte senescence, characterized by elevated β-Galactosidase activity, upregulation of cell cycle inhibitor, induction of DNA double-strand breaks, and remodeling of Lamin B1. Furthermore, 6PPDQ hindered autophagy flux by promoting the formation of autophagosomes while inhibiting the degradation of autolysosomes. Remarkably, restoration of autophagic flux using rapamycin counteracted 6PPDQ-induced cardiomyocyte senescence. Additionally, our study revealed that 6PPDQ significantly increased the ROS production. However, ROS scavenger effectively reduced the blockage of autophagic flux and cardiomyocyte senescence caused by 6PPDQ. Furthermore, we discovered that 6PPDQ activated the Aryl hydrocarbon receptor (AhR) signaling pathway. AhR antagonist was found to reverse the blockage of autophagy and alleviate cardiac senescence, while also reducing ROS levels in 6PPDQ-treated group. In conclusion, our research unveils that exposure to 6PPDQ induces ROS overproduction through AhR activation, leading to disruption of autophagy flux and ultimately contributing to cardiomyocyte senescence.
Collapse
Affiliation(s)
- Baoqiang Fu
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Tao Chen
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Bin Jiang
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Haobin Feng
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Ziyu Zhu
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Min Li
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Guoxing Zhang
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Yan Jiang
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|
6
|
Figueiredo T, Midão L, Rocha P, Cruz S, Lameira G, Conceição P, Ramos RJG, Batista L, Corvacho H, Almada M, Martins A, Rocha C, Ribeiro A, Alves F, Costa E. The interplay between climate change and ageing: A systematic review of health indicators. PLoS One 2024; 19:e0297116. [PMID: 38656926 PMCID: PMC11042704 DOI: 10.1371/journal.pone.0297116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/28/2023] [Indexed: 04/26/2024] Open
Abstract
Climate change and rapid population ageing pose challenges for communities and public policies. This systematic review aims to gather data from studies that present health indicators establishing the connection between climate change and the physical and mental health of the older population (≥ 65 years), who experience a heightened vulnerability to the impacts of climate change when compared to other age cohorts. This review was conducted according to the PICO strategy and following Cochrane and PRISMA guidelines. Three databases (PubMed, Scopus and Greenfile) were searched for articles from 2015 to 2022. After applying inclusion and exclusion criteria,nineteen studies were included. The findings indicated that various climate change phenomena are associated with an elevated risk of mortality and morbidity outcomes in older adults. These included cardiovascular, respiratory, renal, and mental diseases, along with physical injuries. Notably, the impact of climate change was influenced by gender, socioeconomic status, education level, and age-vulnerability factors. Climate change directly affected the health of older adults through ambient temperature variability, extreme and abnormal temperatures, strong winds, sea temperature variability, extreme El Niño-southern Oscillation (ENSO) conditions and droughts, and indirectly by air pollution resulting from wildfires. This review presents further evidence confirming that climate change significantly impacts the health and well-being of older adults. It highlights the urgency for implementing effective strategies to facilitate adaptation and mitigation, enhancing the overall quality of life for all individuals.
Collapse
Affiliation(s)
- Teodora Figueiredo
- Porto4Ageing—Competence Center on Active and Healthy Ageing of the University of Porto, Faculty of Pharmacy of the University of Porto, Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Biomolecular Sciences Unit, Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Luís Midão
- Porto4Ageing—Competence Center on Active and Healthy Ageing of the University of Porto, Faculty of Pharmacy of the University of Porto, Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Biomolecular Sciences Unit, Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Pedro Rocha
- CINTESIS@RISE, “Department of Behavioral Sciences”, ICBAS, University of Porto, Porto, Portugal
| | - Sara Cruz
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Gisela Lameira
- Faculty of Architecture, University of Porto, Porto, Portugal
| | - Paulo Conceição
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Rui J. G. Ramos
- Faculty of Architecture, University of Porto, Porto, Portugal
| | - Luísa Batista
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Helena Corvacho
- CONSTRUCT (LFC), Faculty of Engineering University of Porto, Porto, Portugal
| | - Marta Almada
- Porto4Ageing—Competence Center on Active and Healthy Ageing of the University of Porto, Faculty of Pharmacy of the University of Porto, Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Biomolecular Sciences Unit, Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Ana Martins
- Faculty of Architecture, University of Porto, Porto, Portugal
| | - Cecília Rocha
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Anabela Ribeiro
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal
| | - Fernando Alves
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Elísio Costa
- Porto4Ageing—Competence Center on Active and Healthy Ageing of the University of Porto, Faculty of Pharmacy of the University of Porto, Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Biomolecular Sciences Unit, Faculty of Pharmacy of the University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Wang K, Lei L, Li G, Lan Y, Wang W, Zhu J, Liu Q, Ren L, Wu S. Association between Ambient Particulate Air Pollution and Soluble Biomarkers of Endothelial Function: A Meta-Analysis. TOXICS 2024; 12:76. [PMID: 38251031 PMCID: PMC10819696 DOI: 10.3390/toxics12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The burden of cardiovascular diseases caused by ambient particulate air pollution is universal. An increasing number of studies have investigated the potential effects of exposure to particulate air pollution on endothelial function, which is one of the important mechanisms for the onset and development of cardiovascular disease. However, no previous study has conducted a summary analysis of the potential effects of particulate air pollution on endothelial function. OBJECTIVES To summarize the evidence for the potential effects of short-term exposure to ambient particulate air pollution on endothelial function based on existing studies. METHODS A systematic literature search on the relationship between ambient particulate air pollution and biomarkers of endothelial function including endothelin-1 (ET-1), E-selectin, intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) was conducted in PubMed, Scopus, EMBASE, and Web of Science up to 20 May 2023. Subsequently, a meta-analysis was conducted using a random effects model. RESULTS A total of 18 studies were included in this meta-analysis. A 10 μg/m3 increase in short-term exposure to ambient PM2.5 was associated with a 1.55% (95% CI: 0.89%, 2.22%) increase in ICAM-1 and a 1.97% (95% CI: 0.86%, 3.08%) increase in VCAM-1. The associations of ET-1 (0.22%, 95% CI: -4.94%, 5.65%) and E-selectin (3.21%, 95% CI: -0.90% 7.49%) with short-term exposure to ambient PM2.5 were statistically insignificant. CONCLUSION Short-term exposure to ambient PM2.5 pollution may significantly increase the levels of typical markers of endothelial function, including ICAM-1 and VCAM-1, suggesting potential endothelial dysfunction following ambient air pollution exposure.
Collapse
Affiliation(s)
- Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Ge Li
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China;
| | - Jiaqi Zhu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Lihua Ren
- School of Nursing, Peking University, Beijing 100191, China;
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| |
Collapse
|
8
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
9
|
Yong KH, Teo YN, Azadbakht M, Phung H, Chu C. The Scorching Truth: Investigating the Impact of Heatwaves on Selangor's Elderly Hospitalisations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105910. [PMID: 37239636 DOI: 10.3390/ijerph20105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Global climate change has contributed to the intensity, frequency, and duration of heatwave events. The association between heatwaves and elderly mortality is highly researched in developed countries. In contrast, heatwave impact on hospital admissions has been insufficiently studied worldwide due to data availability and sensitivity. In our opinion, the relationship between heatwaves and hospital admissions is worthwhile to explore as it could have a profound impact on healthcare systems. Therefore, we aimed to investigate the associations between heatwaves and hospitalisations for the elderly by age group in Selangor, Malaysia, from 2010 to 2020. We further explored the impact of heatwaves on the risks of cause-specific hospital admissions across age groups within the elderly. This study applied generalized additive models (GAMs) with the Poisson family and distributed lag models (DLMs) to estimate the effect of heatwaves on hospitalisations. According to the findings, there was no significant increase in hospitalisations for those aged 60 and older during heatwaves; however, a rise in mean apparent temperature (ATmean) by 1 °C significantly increased the risk of hospital admission by 12.9%. Heatwaves had no immediate effects on hospital admissions among elderly patients, but significant delay effects were identified for ATmean with a lag of 0-3 days. The hospital admission rates of the elderly groups started declining after a 5-day average following the heatwave event. Females were found to be relatively more vulnerable than males during heatwave periods. Consequently, these results can provide a reference to improve public health strategies to target elderly people who are at the greatest risk of hospitalisations due to heatwaves. Development of early heatwave and health warning systems for the elderly would assist with preventing and reducing health risks while also minimising the burden on the whole hospital system in Selangor, Malaysia.
Collapse
Affiliation(s)
- Kun Hing Yong
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD 4111, Australia
| | - Yen Nee Teo
- Institute of Malaysian and International Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mohsen Azadbakht
- Department of Infrastructure Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hai Phung
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD 4111, Australia
| | - Cordia Chu
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
10
|
Rehman A, Kumari R, Kamthan A, Tiwari R, Srivastava RK, van der Westhuizen FH, Mishra PK. Cell-free circulating mitochondrial DNA: An emerging biomarker for airborne particulate matter associated with cardiovascular diseases. Free Radic Biol Med 2023; 195:103-120. [PMID: 36584454 DOI: 10.1016/j.freeradbiomed.2022.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The association of airborne particulate matter exposure with the deteriorating function of the cardiovascular system is fundamentally driven by the impairment of mitochondrial-nuclear crosstalk orchestrated by aberrant redox signaling. The loss of delicate balance in retrograde communication from mitochondria to the nucleus often culminates in the methylation of the newly synthesized strand of mitochondrial DNA (mtDNA) through DNA methyl transferases. In highly metabolic active tissues such as the heart, mtDNA's methylation state alteration impacts mitochondrial bioenergetics. It affects transcriptional regulatory processes involved in biogenesis, fission, and fusion, often accompanied by the integrated stress response. Previous studies have demonstrated a paradoxical role of mtDNA methylation in cardiovascular pathologies linked to air pollution. A pronounced alteration in mtDNA methylation contributes to systemic inflammation, an etiological determinant for several co-morbidities, including vascular endothelial dysfunction and myocardial injury. In the current article, we evaluate the state of evidence and examine the considerable promise of using cell-free circulating methylated mtDNA as a predictive biomarker to reduce the more significant burden of ambient air pollution on cardiovascular diseases.
Collapse
Affiliation(s)
- Afreen Rehman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | | | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
11
|
Rider CV. Mixture Math: Deciding What to Add in a Cumulative Risk Assessment. CURRENT OPINION IN TOXICOLOGY 2022; 31:100358. [PMID: 35813121 PMCID: PMC9262140 DOI: 10.1016/j.cotox.2022.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Component-based approaches for cumulative risk assessment provide an important tool for informing public health policy. While current quantitative cumulative risk assessments focus narrowly on pesticides that share a mechanism of action, growing scientific evidence supports expansion of their application to encompass stressors that target a common disease. Case studies have demonstrated dose additive effects of chemicals with different mechanisms of action on liver steatosis, craniofacial malformations, and male reproductive tract developmental disruption. Evidence also suggests that nonchemical stressors such as noise or psychosocial stress can modify effects of chemicals. Focused research attention is required before nonchemical stressors can routinely be included in quantitative cumulative risk assessments.
Collapse
Affiliation(s)
- Cynthia V. Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
12
|
Sudre CH, Moriconi S, Rehwald R, Smith L, Tillin T, Barnes J, Atkinson D, Ourselin S, Chaturvedi N, Hughes AD, Jäger HR, Cardoso MJ. Accelerated vascular aging: Ethnic differences in basilar artery length and diameter, and its association with cardiovascular risk factors and cerebral small vessel disease. Front Cardiovasc Med 2022; 9:939680. [PMID: 35966566 PMCID: PMC9366336 DOI: 10.3389/fcvm.2022.939680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims Risk of stroke and dementia is markedly higher in people of South Asian and African Caribbean descent than white Europeans in the UK. This is unexplained by cardiovascular risk factors (CVRF). We hypothesized this might indicate accelerated early vascular aging (EVA) and that EVA might account for stronger associations between cerebral large artery characteristics and markers of small vessel disease. Methods 360 participants in a tri-ethnic population-based study (120 per ethnic group) underwent cerebral and vertebral MRI. Length and median diameter of the basilar artery (BA) were derived from Time of Flight images, while white matter hyperintensities (WMH) volumes were obtained from T1 and FLAIR images. Associations between BA characteristics and CVRF were assessed using multivariable linear regression. Partial correlation coefficients between WMH load and BA characteristics were calculated after adjustment for CVRF and other potential confounders. Results BA diameter was strongly associated with age in South Asians (+11.3 μm/year 95% CI = [3.05; 19.62]; p = 0.008), with unconvincing relationships in African Caribbeans (3.4 μm/year [-5.26, 12.12]; p = 0.436) or Europeans (2.6 μm/year [-5.75, 10.87]; p = 0.543). BA length was associated with age in South Asians (+0.34 mm/year [0.02; 0.65]; p = 0.037) and African Caribbeans (+0.39 mm/year [0.12; 0.65]; p = 0.005) but not Europeans (+0.08 mm/year [-0.26; 0.41]; p = 0.653). BA diameter (rho = 0.210; p = 0.022) and length (rho = 0.261; p = 0.004) were associated with frontal WMH load in South Asians (persisting after multivariable adjustment for CVRF). Conclusions Compared with Europeans, the basilar artery undergoes more accelerated EVA in South Asians and in African Caribbeans, albeit to a lesser extent. Such EVA may contribute to the higher burden of CSVD observed in South Asians and excess risk of stroke, vascular cognitive impairment and dementia observed in these ethnic groups.
Collapse
Affiliation(s)
- Carole H. Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, United Kingdom,Department of Computer Science, Centre for Medical Image Computing, University College London, London, United Kingdom,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom,*Correspondence: Carole H. Sudre
| | - Stefano Moriconi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Rafael Rehwald
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom,Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lorna Smith
- Centre for Medical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Therese Tillin
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Josephine Barnes
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - David Atkinson
- Centre for Medical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Sébastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Nish Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Alun D. Hughes
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - H. Rolf Jäger
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - M. Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|