1
|
Takkar B, Sheemar A, Jayasudha R, Soni D, Narayanan R, Venkatesh P, Shivaji S, Das T. Unconventional avenues to decelerated diabetic retinopathy. Surv Ophthalmol 2022; 67:1574-1592. [PMID: 35803389 DOI: 10.1016/j.survophthal.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of diabetes mellitus (DM), causing significant visual impairment worldwide. Current gold standards for retarding the progress of DR include blood sugar control and regular fundus screening. Despite these measures, the incidence and prevalence of DR and vision-threatening DR remain high. Given its slowly progressive course and long latent period, opportunities to contain or slow DR before it threatens vision must be explored. This narrative review assesses the recently described unconventional strategies to retard DR progression. These include gut-ocular flow, gene therapy, mitochondrial dysfunction-oxidative stress, stem cell therapeutics, neurodegeneration, anti-inflammatory treatments, lifestyle modification, and usage of phytochemicals. These therapies impact DR directly, while some of them also influence DM control. Most of these strategies are currently in the preclinical stage, and clinical evidence remains low. Nevertheless, our review suggests that these approaches have the potential for human use to prevent the progression of DR.
Collapse
Affiliation(s)
- Brijesh Takkar
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India.
| | - Abhishek Sheemar
- Department of Ophthalmology, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Deepak Soni
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sisinthy Shivaji
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Taraprasad Das
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
2
|
Bhattacharya S, Yin J, Huo W, Chaum E. Modeling of mitochondrial bioenergetics and autophagy impairment in MELAS-mutant iPSC-derived retinal pigment epithelial cells. Stem Cell Res Ther 2022; 13:260. [PMID: 35715869 PMCID: PMC9205099 DOI: 10.1186/s13287-022-02937-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage in the retinal pigment epithelium (RPE) have been implicated in the pathogenesis of age-related macular degeneration (AMD). However, a deeper understanding is required to determine the contribution of mitochondrial dysfunction and impaired mitochondrial autophagy (mitophagy) to RPE damage and AMD pathobiology. In this study, we model the impact of a prototypical systemic mitochondrial defect, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), in RPE health and homeostasis as an in vitro model for impaired mitochondrial bioenergetics. Methods We used induced pluripotent stem cells (iPSCs) derived from skin biopsies of MELAS patients (m.3243A > G tRNA leu mutation) with different levels of mtDNA heteroplasmy and differentiated them into RPE cells. Mitochondrial depletion of ARPE-19 cells (p0 cells) was also performed using 50 ng/mL ethidium bromide (EtBr) and 50 mg/ml uridine. Cell fusion of the human platelets with the p0 cells performed using polyethylene glycol (PEG)/suspension essential medium (SMEM) mixture to generate platelet/RPE “cybrids.” Confocal microscopy, FLowSight Imaging cytometry, and Seahorse XF Mito Stress test were used to analyze mitochondrial function. Western Blotting was used to analyze expression of autophagy and mitophagy proteins. Results We found that MELAS iPSC-derived RPE cells exhibited key characteristics of native RPE. We observed heteroplasmy-dependent impairment of mitochondrial bioenergetics and reliance on glycolysis for generating energy in the MELAS iPSC-derived RPE. The degree of heteroplasmy was directly associated with increased activation of signal transducer and activator of transcription 3 (STAT3), reduced adenosine monophosphate-activated protein kinase α (AMPKα) activation, and decreased autophagic activity. In addition, impaired autophagy was associated with aberrant lysosomal function, and failure of mitochondrial recycling. The mitochondria-depleted p0 cells replicated the effects on autophagy impairment and aberrant STAT3/AMPKα signaling and showed reduced mitochondrial respiration, demonstrating phenotypic similarities between p0 and MELAS iPSC-derived RPE cells. Conclusions Our studies demonstrate that the MELAS iPSC-derived disease models are powerful tools for dissecting the molecular mechanisms by which mitochondrial DNA alterations influence RPE function in aging and macular degeneration, and for testing novel therapeutics in patients harboring the MELAS genotype. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02937-6.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Weihong Huo
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Edward Chaum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Usategui-Martín R, Puertas-Neyra K, Galindo-Cabello N, Hernández-Rodríguez LA, González-Pérez F, Rodríguez-Cabello JC, González-Sarmiento R, Pastor JC, Fernandez-Bueno I. Retinal Neuroprotective Effect of Mesenchymal Stem Cells Secretome Through Modulation of Oxidative Stress, Autophagy, and Programmed Cell Death. Invest Ophthalmol Vis Sci 2022; 63:27. [PMID: 35486068 PMCID: PMC9055551 DOI: 10.1167/iovs.63.4.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Purpose Degenerative mechanisms of retinal neurodegenerative diseases (RND) share common cellular and molecular signalization pathways. Curative treatment does not exist and cell-based therapy, through the paracrine properties of mesenchymal stem cells (MSC), is a potential unspecific treatment for RND. This study aimed to evaluate the neuroprotective capability of human bone marrow (bm) MSC secretome and its potential to modulate retinal responses to neurodegeneration. Methods An in vitro model of spontaneous retinal neurodegeneration was used to compare three days of monocultured neuroretina (NR), NR cocultured with bmMSC, and NR cultured with bmMSC secretome. We evaluated retinal morphology markers (Lectin peanut agglutinin, rhodopsin, protein kinase C α isoform, neuronal-specific nuclear protein, glial fibrillary acidic protein, TdT-mediated dUTP nick-end labeling, and vimentin) and proteins involved in apoptosis (apoptosis-inductor factor, caspase-3), necroptosis (MLKL), and autophagy (p62). Besides, we analyzed the relative mRNA expression through qPCR of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, CASP9), necroptosis (MLKL, RIPK1, RIPK3), autophagy (ATG7, BCLIN1, LC3B, mTOR, SQSTM1), oxidative stress (COX2, CYBA, CYBB, GPX6, SOD1, TXN2, TXNRD1) and inflammation (IL1, IL6, IL10, TGFb1, TNFa). Results The bmMSC secretome preserves retinal morphology, limits pro-apoptotic- and pro-necroptotic-related gene and protein expression, modulates autophagy-related genes and proteins, and stimulates the activation of antioxidant-associated genes. Conclusions The neuroprotective ability of the bmMSC secretome is associated with activation of antioxidant machinery, modulation of autophagy, and inhibition of apoptosis and necroptosis during retinal degeneration. The neuroprotective effect of bmMSC secretomes in the presence/absence of MSC looks similar. Our current results reinforce the hypothesis that the human bmMSC secretome slows retinal neurodegeneration and may be a therapeutic option for treating RND.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Kevin Puertas-Neyra
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain
| | - Nadia Galindo-Cabello
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Postgraduate Unit, Faculty of Biological Sciences, National University of San Marcos, Lima, Peru
| | | | - Fernando González-Pérez
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, Valladolid, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Institute of Molecular and Cellular Biology of Cancer, University of Salamanca-CSIC, Salamanca, Spain
| | - José Carlos Pastor
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| |
Collapse
|
4
|
Chiang MC, Chern E. Current Development, Obstacle and Futural Direction of Induced Pluripotent Stem Cell and Mesenchymal Stem Cell Treatment in Degenerative Retinal Disease. Int J Mol Sci 2022; 23:ijms23052529. [PMID: 35269671 PMCID: PMC8910526 DOI: 10.3390/ijms23052529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Degenerative retinal disease is one of the major causes of vision loss around the world. The past several decades have witnessed emerging development of stem cell treatment for retinal disease. Nevertheless, sourcing stem cells remains controversial due to ethical concerns and their rarity. Furthermore, induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are both isolated from patients’ mature tissues; thus, issues such as avoiding moral controversy and adverse events related to immunosuppression and obtaining a large number of cells have opened a new era in regenerative medicine. This review focuses on the current application and development, clinical trials, and latest research of stem cell therapy, as well as its limitations and future directions.
Collapse
|
5
|
Saçaki CS, Mogharbel BF, Stricker PEF, Dziedzic DSM, Irioda AC, Perussolo MC, Somma AT, Montiani-Ferreira F, Moreno JCD, Dornbusch P, Sato M, Shiokawa N, de Noronha L, Nagashima S, Bacelar-Galdino M, Franco CRC, Abdelwahid E, Carvalho KAT. Potential of Human Neural Precursor Cells in Diabetic Retinopathy Therapeutics - Preclinical Model. Curr Eye Res 2021; 47:450-460. [PMID: 34749546 DOI: 10.1080/02713683.2021.2002909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose: This study aimed to evaluate a cell therapy strategy with human neural precursor cells (hNPCs) to treat diabetic retinopathy (DR) in Wistar rats induced to diabetes by injecting streptozotocin. Material and methods: Wharton's Jelly Mesenchymal stem cells (WJ-MSCs) were isolated, expanded, and seeded onto a biopolymer substrate to develop neurospheres and obtain the hNPCs. The animals were divided into three groups; non-diabetic (ND) n = four; diabetic without treatment (DM) n = nine; and diabetic with cell therapy (DM + hNPCs) n = nine. After eight weeks of diabetes induction and DR characteristics installed, intravitreal injection of hNPCs (1 x 106 cel/µL) was performed in the DM + hNPCs group. Optical Coherence Tomography (OCT) and Electroretinography (ERG) evaluations were before and during diabetes and after cell therapy. Four weeks post-treatment, histopathological and immunohistochemistry analyses were performed. Results: The repair of the retinal structures in the treated group (DM + hNPCs) was observed by increased thickness of neuroretinal layers, especially in the ganglion cell and photoreceptor layers, higher ERG oscillatory potentials (OPs) amplitudes, and transplanted hNPCs integration into the Retinal Pigment Epithelium. Conclusions: The results indicate that hNPCs reduced DR progression by a neuroprotective effect and promoted retinal repair, making them potential candidates for regenerating the neuroretinal tissue.
Collapse
Affiliation(s)
- Claudia Sayuri Saçaki
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Priscila Elias Ferreira Stricker
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Dilcele Silva Moreira Dziedzic
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Maiara Carolina Perussolo
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - André Tavares Somma
- Veterinary Medicine Department, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Peterson Dornbusch
- Veterinary Medicine Department, Federal University of Paraná, Curitiba, Brazil
| | - Mário Sato
- Ophthalmology Department, Federal University of Paraná, Curitiba, Brazil
| | - Naoye Shiokawa
- Ophthalmology Department, Federal University of Paraná, Curitiba, Brazil
| | - Lúcia de Noronha
- Pathology Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Curitiba, Brazil
| | - Seigo Nagashima
- Pathology Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Curitiba, Brazil
| | | | | | - Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute,Chicago, USA
| | - Katherine Athayde Teixeirade Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| |
Collapse
|
6
|
Agrawal M, Rasiah PK, Bajwa A, Rajasingh J, Gangaraju R. Mesenchymal Stem Cell Induced Foxp3(+) Tregs Suppress Effector T Cells and Protect against Retinal Ischemic Injury. Cells 2021; 10:3006. [PMID: 34831229 PMCID: PMC8616393 DOI: 10.3390/cells10113006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) are well known for immunomodulation; however, the mechanisms involved in their benefits in the ischemic retina are unknown. This study tested the hypothesis that MSC induces upregulation of transcription factor forkhead box protein P3 (Foxp3) in T cells to elicit immune modulation, and thus, protect against retinal damage. Induced MSCs (iMSCs) were generated by differentiating the induced pluripotent stem cells (iPSC) derived from urinary epithelial cells through a noninsertional reprogramming approach. In in-vitro cultures, iMSC transferred mitochondria to immune cells via F-actin nanotubes significantly increased oxygen consumption rate (OCR) for basal respiration and ATP production, suppressed effector T cells, and promoted differentiation of CD4+CD25+ T regulatory cells (Tregs) in coculture with mouse splenocytes. In in-vivo studies, iMSCs transplanted in ischemia-reperfusion (I/R) injured eye significantly increased Foxp3+ Tregs in the retina compared to that of saline-injected I/R eyes. Furthermore, iMSC injected I/R eyes significantly decreased retinal inflammation as evidenced by reduced gene expression of IL1β, VCAM1, LAMA5, and CCL2 and improved b-wave amplitudes compared to that of saline-injected I/R eyes. Our study demonstrates that iMSCs can transfer mitochondria to immune cells to suppress the effector T cell population. Additionally, our current data indicate that iMSC can enhance differentiation of T cells into Foxp3 Tregs in vitro and therapeutically improve the retina's immune function by upregulation of Tregs to decrease inflammation and reduce I/R injury-induced retinal degeneration in vivo.
Collapse
Affiliation(s)
- Mona Agrawal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
| | - Pratheepa Kumari Rasiah
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
| | - Amandeep Bajwa
- James D. Eason Transplant Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Johnson Rajasingh
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
7
|
Extracellular Vesicles from Human Adipose-Derived Mesenchymal Stem Cells: A Review of Common Cargos. Stem Cell Rev Rep 2021; 18:854-901. [PMID: 33904115 PMCID: PMC8942954 DOI: 10.1007/s12015-021-10155-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
In recent years, the interest in adipose tissue mesenchymal cell–derived extracellular vesicles (AT-MSC-EVs) has increasingly grown. Numerous articles support the potential of human AT-MSC-EVs as a new therapeutic option for treatment of diverse diseases in the musculoskeletal and cardiovascular systems, kidney, skin, and immune system, among others. This approach makes use of the molecules transported inside of EVs, which play an important role in cell communication and in transmission of macromolecules. However, to our knowledge, there is no database where essential information about AT-MSC-EVs cargo molecules is gathered for easy reference. The aim of this study is to describe the different molecules reported so far in AT-MSC- EVs, their main molecular functions, and biological processes in which they are involved. Recently, the presence of 591 proteins and 604 microRNAs (miRNAs) has been described in human AT-MSC-EVs. The main molecular function enabled by both proteins and miRNAs present in human AT-MSC-EVs is the binding function. Signal transduction and gene silencing are the biological processes in which a greater number of proteins and miRNAs from human AT-MSC-EVs are involved, respectively. In this review we highlight the therapeutics effects of AT-MSC-EVs related with their participation in relevant biological processes including inflammation, angiogenesis, cell proliferation, apoptosis and migration, among others.
Collapse
|
8
|
Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials. Cells 2021; 10:cells10030588. [PMID: 33799995 PMCID: PMC8001847 DOI: 10.3390/cells10030588] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Retinal degenerative diseases, such as age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy or glaucoma, represent the main causes of a decreased quality of vision or even blindness worldwide. However, despite considerable efforts, the treatment possibilities for these disorders remain very limited. A perspective is offered by cell therapy using mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of a particular patient, expanded in vitro and used as the autologous cells. MSCs possess potent immunoregulatory properties and can inhibit a harmful inflammatory reaction in the diseased retina. By the production of numerous growth and neurotrophic factors, they support the survival and growth of retinal cells. In addition, MSCs can protect retinal cells by antiapoptotic properties and could contribute to the regeneration of the diseased retina by their ability to differentiate into various cell types, including the cells of the retina. All of these properties indicate the potential of MSCs for the therapy of diseased retinas. This view is supported by the recent results of numerous experimental studies in different preclinical models. Here we provide an overview of the therapeutic properties of MSCs, and their use in experimental models of retinal diseases and in clinical trials.
Collapse
|
9
|
Li XJ, Li CY, Bai D, Leng Y. Insights into stem cell therapy for diabetic retinopathy: a bibliometric and visual analysis. Neural Regen Res 2021; 16:172-178. [PMID: 32788473 PMCID: PMC7818871 DOI: 10.4103/1673-5374.286974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells have been confirmed to be involved in the occurrence and development of diabetic retinopathy; however, the underlying mechanisms remain unclear. In this study, we used Citespace software to visually analyze 552 articles exploring the stem cell-based treatment of diabetic retinopathy over the past 20 years, which were included in the Web of Science Core Collection. We found the following: (1) a co-citation analysis of the references cited by all 552 articles indicated 15 clusters. In cluster #0, representing the stem cell field, some highly cited landmark studies emerged between 2009–2013. For example, endothelial progenitor cells and diabetic retinopathy gradually received the full attention of scholars, in terms of their relationship and therapeutic prospects. Some researchers also verified the potential of adipose-derived stem cells to differentiate into stable retinal perivascular cells, using a variety of animal models of retinal vascular disease. All of these achievements provided references for the subsequent stem cell research. (2) An analysis of popular keywords among the 552 articles revealed that, during the past 20 years, a relative increase in basic research articles examining stem cells and endothelial progenitor cells for the treatment of diabetic retinopathy was observed. The contents of these articles primarily involved the expression of vascular endothelial growth factor, vascular regeneration, oxidative stress, and inflammatory response. (3) A burst analysis of keywords used in the 552 articles indicated that genetic and cytological research regarding the promotion of angiogenesis was an issue of concern from 2001 to 2012, including several studies addressing the expression of various growth factor genes; from 2014 to 2020, mouse models of diabetic retinopathy were recognized as mature animal models, and the most recent research has focused on macular degeneration, macular edema, neurodegeneration, and inflammatory changes in diabetic animal models. (4) Globally, the current authoritative studies have focused on basic research towards the stem cell treatment of diabetic retinopathy. Existing clinical studies are of low quality and have insufficient evidence levels, and their findings have not yet been widely accepted in clinical practice. Major challenges during stem cell transplantation remain, including stem cell heterogeneity, cell delivery, and the effective homing of stem cells to damaged tissue. However, clinical trials examining potential stem cell-based treatments of diabetic retinopathy, including the use of pluripotent stem cells, retinal pigment epithelial cells, bone marrow mesenchymal stem cells, and endothelial progenitor cells, are currently ongoing, and high-quality clinical evidence is likely to appear in the future, to promote clinical transformation.
Collapse
Affiliation(s)
- Xiang-Jun Li
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Chun-Yan Li
- Department of Endocrinology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Dan Bai
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Ying Leng
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| |
Collapse
|
10
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Perez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part II: Cell and Tissue Engineering Therapies. Front Bioeng Biotechnol 2020; 8:588014. [PMID: 33363125 PMCID: PMC7758210 DOI: 10.3389/fbioe.2020.588014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 y.o. people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting on intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, different treatment options have to be considered. Cell therapy is a very promising alternative to drug-based approaches for AMD treatment. Cells delivered to the affected tissue as a suspension have shown poor retention and low survival rate. A solution to these inconveniences has been the encapsulation of these cells on biomaterials, which contrive to their protection, gives them support, and favor their retention of the desired area. We offer a two-papers critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In this second part we review the preclinical and clinical cell-replacement approaches aiming at the development of efficient AMD-therapies, the employed cell types, as well as the cell-encapsulation and cell-implant systems. We discuss their advantages and disadvantages and how they could improve the survival and integration of the implanted cells.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V. Guinea
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - José Perez-Rigueiro
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
11
|
Jemni-Damer N, Guedan-Duran A, Cichy J, Lozano-Picazo P, Gonzalez-Nieto D, Perez-Rigueiro J, Rojo F, V Guinea G, Virtuoso A, Cirillo G, Papa M, Armada-Maresca F, Largo-Aramburu C, Aznar-Cervantes SD, Cenis JL, Panetsos F. First steps for the development of silk fibroin-based 3D biohybrid retina for age-related macular degeneration (AMD). J Neural Eng 2020; 17:055003. [PMID: 32947273 DOI: 10.1088/1741-2552/abb9c0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration is an incurable chronic neurodegenerative disease, causing progressive loss of the central vision and even blindness. Up-to-date therapeutic approaches can only slow down he progression of the disease. OBJECTIVE Feasibility study for a multilayered, silk fibroin-based, 3D biohybrid retina. APPROACH Fabrication of silk fibroin-based biofilms; culture of different types of cells: retinal pigment epithelium, retinal neurons, Müller and mesenchymal stem cells ; creation of a layered structure glued with silk fibroin hydrogel. MAIN RESULTS In vitro evidence for the feasibility of layered 3D biohybrid retinas; primary culture neurons grow and develop neurites on silk fibroin biofilms, either alone or in presence of other cells cultivated on the same biomaterial; cell organization and cellular phenotypes are maintained in vitro for the seven days of the experiment. SIGNIFICANCE 3D biohybrid retina can be built using silk silkworm fibroin films and hydrogels to be used in cell replacement therapy for AMD and similar retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing & Neuro-robotics Research Group, Complutense University of Madrid, Spain. Innovation Research Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain. These authors equally contributed to this article
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mesenchymal Stem Cell Secretome Enhancement by Nicotinamide and Vasoactive Intestinal Peptide: A New Therapeutic Approach for Retinal Degenerative Diseases. Stem Cells Int 2020; 2020:9463548. [PMID: 32676122 PMCID: PMC7336242 DOI: 10.1155/2020/9463548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/16/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSC) secrete neuroprotective molecules that may be useful as an alternative to cell transplantation itself. Our purpose was to develop different pharmaceutical compositions based on conditioned medium (CM) of adipose MSC (aMSC) stimulated by and/or combined with nicotinamide (NIC), vasoactive intestinal peptide (VIP), or both factors; and to evaluate in vitro their proliferative and neuroprotective potential. Nine pharmaceutical compositions were developed from 3 experimental approaches: (1) unstimulated aMSC-CM collected and combined with NIC, VIP, or both factors (NIC+VIP), referred to as the aMSC-CM combined composition; (2) aMSC-CM collected just after stimulation with the mentioned factors and containing them, referred to as the aMSC-CM stimulated-combined composition; and (3) aMSC-CM previously stimulated with the factors, referred to as the aMSC stimulated composition. The potential of the pharmaceutical compositions to increase cell proliferation under oxidative stress and neuroprotection were evaluated in vitro by using a subacute oxidative stress model of retinal pigment epithelium cells (line ARPE-19) and spontaneous degenerative neuroretina model. Results showed that oxidatively stressed ARPE-19 cells exposed to aMSC-CM stimulated and stimulated-combined with NIC or NIC+VIP tended to have better recovery from the oxidative stress status. Neuroretinal explants cultured with aMSC-CM stimulated-combined with NIC+VIP had better preservation of the neuroretinal morphology, mainly photoreceptors, and a lower degree of glial cell activation. In conclusion, aMSC-CM stimulated-combined with NIC+VIP contributed to improving the proliferative and neuroprotective properties of the aMSC secretome. Further studies are necessary to evaluate higher concentrations of the drugs and to characterize specifically the aMSC-secreted factors related to neuroprotection. However, this study supports the possibility of improving the potential of new effective pharmaceutical compositions based on the secretome of MSC plus exogenous factors or drugs without the need to inject cells into the eye, which can be very useful in retinal pathologies.
Collapse
|
13
|
Usategui-Martín R, Puertas-Neyra K, García-Gutiérrez MT, Fuentes M, Pastor JC, Fernandez-Bueno I. Human Mesenchymal Stem Cell Secretome Exhibits a Neuroprotective Effect over In Vitro Retinal Photoreceptor Degeneration. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1155-1166. [PMID: 32514411 PMCID: PMC7267685 DOI: 10.1016/j.omtm.2020.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
Retinal photoreceptor degeneration occurs frequently in several neurodegenerative retinal diseases such as age-related macular degeneration, retinitis pigmentosa, or genetic retinal diseases related to the photoreceptors. Despite the impact on daily life and the social and economic consequences, there is no cure for these diseases. Considering this, cell-based therapy may be an optimal therapeutic option. This study evaluated the neuroprotective in vitro potential of a secretome of human bone marrow mesenchymal stem cells (MSCs) for retinal photoreceptors in vitro. We analyzed the photoreceptor morphologic changes and the paracrine factors secreted by human bone marrow MSCs in a physically separated co-culture with degenerated neuroretinas, using organotypic neuroretinal cultures. The results showed that the secretome of human bone marrow MSCs had a neuroprotective effect over the neuroretinal general organization and neuropreserved the photoreceptors from degeneration probably by secretion of neuroprotective proteins. The study of the expression of 1,000 proteins showed increased paracrine factors secreted by MSCs that could be crucial in the neuroprotective effect of the stem cell secretome over in vitro retinal degeneration. The current results reinforce the hypothesis that the paracrine effect of the human bone marrow MSCs may slow photoreceptor neurodegeneration and be a therapeutic option in retinal photoreceptor degenerative diseases.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Kevin Puertas-Neyra
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, 47011 Valladolid, Spain
| | - María-Teresa García-Gutiérrez
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Manuel Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC), University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.,Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC), University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José Carlos Pastor
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, 47011 Valladolid, Spain.,Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, 47011 Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, 47011 Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, 47011 Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, 47011 Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, 47011 Valladolid, Spain
| |
Collapse
|
14
|
Cherkashova EA, Leonov GE, Namestnikova DD, Solov'eva AA, Gubskii IL, Bukharova TB, Gubskii LV, Goldstein DV, Yarygin KN. Methods of Generation of Induced Pluripotent Stem Cells and Their Application for the Therapy of Central Nervous System Diseases. Bull Exp Biol Med 2020; 168:566-573. [PMID: 32157511 DOI: 10.1007/s10517-020-04754-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The use of induced pluripotent stem cells (IPSC) is a promising approach to the therapy of CNS diseases. The undeniable advantage of IPSC technology is the possibility of obtaining practically all types of somatic cells for autologous transplantation bypassing bioethical problems. The review presents integrative and non-integrative methods for obtaining IPSC and the ways of their in vitro and in vivo application for the study and treatment of neurological diseases.
Collapse
Affiliation(s)
- E A Cherkashova
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia
| | - G E Leonov
- N. P. Bochkov Research Center for Medical Genetics, Moscow, Russia.
| | - D D Namestnikova
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia
| | - A A Solov'eva
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia
| | - I L Gubskii
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia
| | - T B Bukharova
- N. P. Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - L V Gubskii
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia.,N. I. Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia
| | - D V Goldstein
- N. P. Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.,Russian Medical Academy for Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
15
|
Sørensen NB. Subretinal surgery: functional and histological consequences of entry into the subretinal space. Acta Ophthalmol 2019; 97 Suppl A114:1-23. [PMID: 31709751 DOI: 10.1111/aos.14249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Gene-therapy, stem-cell transplantation and surgical robots hold the potential for treatment of currently untreatable retinal degenerative diseases. All of the techniques require entry into the subretinal space, which is a potential space located between the retina and the retinal pigment epithelium (RPE). Knowledge about obstacles and critical steps in relation to subretinal procedures is therefore needed. This thesis explores the functional and histological consequences of separation of the retina from the RPE, extensive RPE damage, a large cut in the retina (retinotomy) and RPE phagocytosis in a porcine model. METHODS Experiments were performed in 106 female domestic pigs of Danish landrace distributed over five studies. Under general anesthesia, different procedures for expansion of the subretinal space were conducted. Outcomes were visual function measured electrophysiologically with multifocal electroretinogram (mfERG) and retinal morphology examined histologically. Study I: The effect of anesthesia on mfERG was examined by repeated recordings for 3 hr in isoflurane or propofol anesthesia. Outcome was mfERG amplitude. Study II: Consequences of a large separation of the photoreceptors from the RPE were examined by injecting a perfluorocarbon-liquid (decalin) into the subretinal space. Two weeks after, in a second surgery, decalin was withdrawn. Outcomes were mfERG and histology 4 weeks after decalin injection. Study III: Extensive RPE damage was examined by expanding the subretinal space with saline and removing large sheets of RPE-cells through a retinotomy. Outcomes were mfERG and histology 2, 4 and 6 weeks after the procedure. Study IV: Consequences of a large retinotomy were examined by similar procedures as in Study III, but in study IV only a few RPE cells were removed. Outcomes were mfERG and histology 2 and 6 weeks after surgery. Study V: Clearance of the subretinal space was examined by injecting fluorescent latex beads of various sizes into the subretinal space. Outcome was histologic location of the beads at different time intervals after the procedure. RESULTS Study I: MfERG amplitudes decreased linearly as a function of time in propofol or isoflurane anesthesia. Duration of mfERG recording could be decreased without compromising quality, and thereby could time in anesthesia be reduced. Study II: MfERG and histology remained normal after reattachment of a large and 2-week long separation of the photoreceptors and RPE. Repeated entry into the subretinal space was well tolerated. Fluid injection into the subretinal space constitutes a risk of RPE-damage. Study III: Removal of large sheets of retinal pigment epithelial cells triggered a widespread rhegmatogenous-like retinal detachment resulting in visual loss. Study IV: A large retinotomy with limited damage of the RPE was well tolerated, and visual function was preserved. Study V: Subretinal latex beads up to 4 μm were phagocytosed by the RPE and passed into the sub-RPE space. Beads up to 2 μm travelled further through the Bruch's membrane and were found in the choroid, sclera and inside blood vessels. CONCLUSION A large expansion of the subretinal space, repeated entry, a large retinotomy and limited RPE damage is well tolerated and retinal function is preserved. Subretinal injection of fluid can damage the RPE and extensive RPE damage can induce a rhegmatogenous-like retinal detachment with loss of visual function. Foreign substances exit the subretinal space and can reach the systemic circulation.
Collapse
Affiliation(s)
- Nina Buus Sørensen
- Department of Ophthalmology Copenhagen University Hospital Rigshospitalet København Denmark
- Department of Neurology Zealand University Hospital Køge Denmark
| |
Collapse
|
16
|
Gaddam S, Periasamy R, Gangaraju R. Adult Stem Cell Therapeutics in Diabetic Retinopathy. Int J Mol Sci 2019; 20:ijms20194876. [PMID: 31575089 PMCID: PMC6801872 DOI: 10.3390/ijms20194876] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR), a complication of diabetes, is one of the leading causes of blindness in working-age adults. The pathology of the disease prevents the endogenous stem cells from participating in the natural repair of the diseased retina. Current treatments, specifically stem cell therapeutics, have shown variable efficacy in preclinical models due to the multi-faceted nature of the disease. Among the various adult stem cells, mesenchymal stem cells, especially those derived from adipose tissue and bone marrow, have been explored as a possible treatment for DR. This review summarizes the current literature around the various adult stem cell treatments for the disease and outlines the benefits and limitations of the therapeutics that are being explored in the field. The paracrine nature of adipose stem cells, in particular, has been highlighted as a potential solution to the lack of a homing and conducive environment that poses a challenge to the implantation of exogenous stem cells in the target tissue. Various methods of mesenchymal stem cell priming to adapt to a hostile retinal microenvironment have been discussed. Current clinical trials and potential safety concerns have been examined, and the future directions of stem cell therapeutics in DR have also been contemplated.
Collapse
Affiliation(s)
- Sriprachodaya Gaddam
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA.
| | - Ramesh Periasamy
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA.
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA.
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA.
| |
Collapse
|
17
|
Cao J, Yang R, Smith TE, Evans S, McCollum GW, Pomerantz SC, Petley T, Harris IR, Penn JS. Human Umbilical Tissue-Derived Cells Secrete Soluble VEGFR1 and Inhibit Choroidal Neovascularization. Mol Ther Methods Clin Dev 2019; 14:37-46. [PMID: 31276010 PMCID: PMC6586593 DOI: 10.1016/j.omtm.2019.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/10/2019] [Indexed: 01/21/2023]
Abstract
Exudative age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the leading cause of irreversible blindness in developed countries. Anti-vascular endothelial growth factor (VEGF) drugs are the standard treatment for AMD, but they have limitations. Cell therapy is a promising approach for ocular diseases, and it is being developed in the clinic for the treatment of retinal degeneration, including AMD. We previously showed that subretinal injection of human umbilical tissue-derived cells (hUTCs) in a rodent model of retinal degeneration preserved photoreceptors and visual function through rescue of retinal pigment epithelial (RPE) cell phagocytosis. Here we investigated the effect of hUTCs on a rat model of laser-induced CNV and on a human RPE cell line, ARPE-19, for VEGF production. We demonstrate that subretinal injection of hUTCs significantly inhibited CNV and lowered choroidal VEGF in vivo. VEGF release from ARPE-19 decreased when co-cultured with hUTCs. Soluble VEGF receptor 1 (sVEGFR1) is identified as the only factor in hUTC conditioned medium (CM) that binds to VEGF. The level of exogenous recombinant VEGF in hUTC CM was dramatically reduced and could be recovered with sVEGFR1-neutralizing antibody. This suggests that hUTC inhibits angiogenesis through the secretion of sVEGFR1 and could serve as a novel treatment for angiogenic ocular diseases, including AMD.
Collapse
Affiliation(s)
- Jing Cao
- Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Rong Yang
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Taylor E. Smith
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephanie Evans
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gary W. McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Theodore Petley
- Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Ian R. Harris
- Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - John S. Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
18
|
Stem cell-based retina models. Adv Drug Deliv Rev 2019; 140:33-50. [PMID: 29777757 DOI: 10.1016/j.addr.2018.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/16/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
From the early days of cell biological research, the eye-especially the retina-has evoked broad interest among scientists. The retina has since been thoroughly investigated and numerous models have been exploited to shed light on its development, morphology, and function. Apart from various animal models and human clinical and anatomical research, stem cell-based models of animal and human cells of origin have entered the field, especially during the last decade. Despite the observation that the retina of different species comprises endogenous stem cells, most stem cell-related research in the human retina is now based on pluripotent stem cell models. Herein, systems of two-dimensional (2D) cultures and co-cultures of distinctly differentiated retinal subtypes revealed a variety of cellular aspects but have in many aspects been replaced by three-dimensional (3D) structures-the so-called retinal organoids. These organoids not only contain all major retinal cell subtypes compared to the physiological situation, but also show a distinct layering in close proximity to the in vivo morphology. Nevertheless, all these models have inherent advantages and disadvantages, which are expounded and summarized in this review. Finally, we discuss current application aspects of stem cell-based retina models and the specific promises they hold for the future.
Collapse
|
19
|
Zhu J, Slevin M, Guo BQ, Zhu SR. Induced pluripotent stem cells as a potential therapeutic source for corneal epithelial stem cells. Int J Ophthalmol 2018; 11:2004-2010. [PMID: 30588437 DOI: 10.18240/ijo.2018.12.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness caused by limbal stem cell deficiency (LSCD) is one of the most common debilitating eye disorders. Thus far, the most effective treatment for LSCD is corneal transplantation, which is often hindered by the shortage of donors. Pluripotent stem cell technology including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have opened new avenues for treating this disease. iPSCs-derived corneal epithelial cells provide an autologous and unlimited source of cells for the treatment of LSCD. On the other hand, iPSCs of LSCD patients can be used for iPSCs-corneal disease model and new drug discovery. However, prior to clinical trial, the efficacy and safety of these cells in patients with LSCD should be proved. Here we focused on the current status of iPSCs-derived corneal epithelial cells used for cell therapy as well as for corneal disease modeling. The challenges and potential of iPSCs-derived corneal epithelial cells as a choice for clinical treatment in corneal disease were also discussed.
Collapse
Affiliation(s)
- Jie Zhu
- Queen Mary School, Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Mark Slevin
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M15GD, United Kingdom.,Research Institute of Brain Vascular Disease, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Bao-Qiang Guo
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M15GD, United Kingdom.,Research Institute of Brain Vascular Disease, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Shou-Rong Zhu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| |
Collapse
|
20
|
Elshaer SL, Evans W, Pentecost M, Lenin R, Periasamy R, Jha KA, Alli S, Gentry J, Thomas SM, Sohl N, Gangaraju R. Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2 Akita mouse. Stem Cell Res Ther 2018; 9:322. [PMID: 30463601 PMCID: PMC6249931 DOI: 10.1186/s13287-018-1059-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/05/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early-stage diabetic retinopathy (DR) is characterized by neurovascular defects. In this study, we hypothesized that human adipose-derived stem cells (ASCs) positive for the pericyte marker CD140b, or their secreted paracrine factors, therapeutically rescue early-stage DR features in an Ins2Akita mouse model. METHODS Ins2Akita mice at 24 weeks of age received intravitreal injections of CD140b-positive ASCs (1000 cells/1 μL) or 20× conditioned media from cytokine-primed ASCs (ASC-CM, 1 μL). Age-matched wildtype mice that received saline served as controls. Visual function experiments and histological analyses were performed 3 weeks post intravitreal injection. Biochemical and molecular analyses assessed the ASC-CM composition and its biological effects. RESULTS Three weeks post-injection, Ins2Akita mice that received ASCs had ameliorated decreased b-wave amplitudes and vascular leakage but failed to improve visual acuity, whereas Ins2Akita mice that received ASC-CM demonstrated amelioration of all aforementioned visual deficits. The ASC-CM group demonstrated partial amelioration of retinal GFAP immunoreactivity and DR-related gene expression but the ASC group did not. While Ins2Akita mice that received ASCs exhibited occasional (1 in 8) hemorrhagic retinas, mice that received ASC-CM had no adverse complications. In vitro, ASC-CM protected against TNFα-induced retinal endothelial permeability as measured by transendothelial electrical resistance. Biochemical and molecular analyses demonstrated several anti-inflammatory proteins including TSG-6 being highly expressed in cytokine-primed ASC-CM. CONCLUSIONS ASCs or their secreted factors mitigate retinal complications of diabetes in the Ins2Akita model. Further investigation is warranted to determine whether ASCs or their secreted factors are safe and effective therapeutic modalities long-term as current locally delivered therapies fail to effectively mitigate the progression of early-stage DR. Nonetheless, our study sheds new light on the therapeutic mechanisms of adult stem cells, with implications for assessing relative risks/benefits of experimental regenerative therapies for vision loss.
Collapse
Affiliation(s)
- Sally L. Elshaer
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
- Pharmacology & Toxicology Department, College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - William Evans
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | | | - Raji Lenin
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Ramesh Periasamy
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Kumar Abhiram Jha
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Shanta Alli
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Jordy Gentry
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Samuel M. Thomas
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Nicolas Sohl
- Cell Care Therapeutics, Inc., Monrovia, CA 91016 USA
| | - Rajashekhar Gangaraju
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
- Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| |
Collapse
|
21
|
Concentrated Conditioned Media from Adipose Tissue Derived Mesenchymal Stem Cells Mitigates Visual Deficits and Retinal Inflammation Following Mild Traumatic Brain Injury. Int J Mol Sci 2018; 19:ijms19072016. [PMID: 29997321 PMCID: PMC6073664 DOI: 10.3390/ijms19072016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023] Open
Abstract
Blast concussions are a common injury sustained in military combat today. Inflammation due to microglial polarization can drive the development of visual defects following blast injuries. In this study, we assessed whether anti-inflammatory factors released by the mesenchymal stem cells derived from adipose tissue (adipose stem cells, ASC) can limit retinal tissue damage and improve visual function in a mouse model of visual deficits following mild traumatic brain injury. We show that intravitreal injection of 1 μL of ASC concentrated conditioned medium from cells pre-stimulated with inflammatory cytokines (ASC-CCM) mitigates loss of visual acuity and contrast sensitivity four weeks post blast injury. Moreover, blast mice showed increased retinal expression of genes associated with microglial activation and inflammation by molecular analyses, retinal glial fibrillary acidic protein (GFAP) immunoreactivity, and increased loss of ganglion cells. Interestingly, blast mice that received ASC-CCM improved in all parameters above. In vitro, ASC-CCM not only suppressed microglial activation but also protected against Tumor necrosis alpha (TNFα) induced endothelial permeability as measured by transendothelial electrical resistance. Biochemical and molecular analyses demonstrate TSG-6 is highly expressed in ASC-CCM from cells pre-stimulated with TNFα and IFNγ but not from unstimulated cells. Our findings suggest that ASC-CCM mitigates visual deficits of the blast injury through their anti-inflammatory properties on activated pro-inflammatory microglia and endothelial cells. A regenerative therapy for immediate delivery at the time of injury may provide a practical and cost-effective solution against the traumatic effects of blast injuries to the retina.
Collapse
|