1
|
Huang Y, Li M, Hu Z, Hu C, Shen W, Li Y, Sun L. In Situ Studies on the Influence of Surface Symmetry on the Growth of MoSe 2 Monolayer on Sapphire Using Reflectance Anisotropy Spectroscopy and Differential Reflectance Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1457. [PMID: 39269119 PMCID: PMC11397682 DOI: 10.3390/nano14171457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The surface symmetry of the substrate plays an important role in the epitaxial high-quality growth of 2D materials; however, in-depth and in situ studies on these materials during growth are still limited due to the lack of effective in situ monitoring approaches. In this work, taking the growth of MoSe2 as an example, the distinct growth processes on Al2O3 (112¯0) and Al2O3 (0001) are revealed by parallel monitoring using in situ reflectance anisotropy spectroscopy (RAS) and differential reflectance spectroscopy (DRS), respectively, highlighting the dominant role of the surface symmetry. In our previous study, we found that the RAS signal of MoSe2 grown on Al2O3 (112¯0) initially increased and decreased ultimately to the magnitude of bare Al2O3 (112¯0) when the first layer of MoSe2 was fully merged, which is herein verified by the complementary DRS measurement that is directly related to the film coverage. Consequently, the changing rate of reflectance anisotropy (RA) intensity at 2.5 eV is well matched with the dynamic changes in differential reflectance (DR) intensity. Moreover, the surface-dominated uniform orientation of MoSe2 islands at various stages determined by RAS was further investigated by low-energy electron diffraction (LEED) and atomic force microscopy (AFM). By contrast, the RAS signal of MoSe2 grown on Al2O3 (0001) remains at zero during the whole growth, implying that the discontinuous MoSe2 islands have no preferential orientations. This work demonstrates that the combination of in situ RAS and DRS can provide valuable insights into the growth of unidirectional aligned islands and help optimize the fabrication process for single-crystal transition metal dichalcogenide (TMDC) monolayers.
Collapse
Affiliation(s)
- Yufeng Huang
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Mengjiao Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Center for Joint Quantum Studies, Tianjin University, Tianjin 300350, China
| | - Zhixin Hu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Center for Joint Quantum Studies, Tianjin University, Tianjin 300350, China
| | - Chunguang Hu
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wanfu Shen
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanning Li
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Lidong Sun
- Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz, Austria
| |
Collapse
|
2
|
Vasi S, Giofrè SV, Perathoner S, Mallamace D, Abate S, Wanderlingh U. X-ray Characterizations of Exfoliated MoS 2 Produced by Microwave-Assisted Liquid-Phase Exfoliation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3887. [PMID: 39203065 PMCID: PMC11355266 DOI: 10.3390/ma17163887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024]
Abstract
An X-ray analysis of exfoliated MoS2, produced by means of microwave-assisted liquid-phase exfoliation (LPE) from bulk powder in 1-methyl-2-pyrrolidone (NMP) or acetonitrile (ACN) + 1-methyl-2-pyrrolidone (NMP) solvents, has revealed distinct structural differences between the bulk powder and the microwave-exfoliated samples. Specifically, we performed X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements to identify the elements of our exfoliated sample deposited on a Si substrate by drop-casting, as well as their chemical state and its structural crystalline phase. In the exfoliated sample, the peaks pattern only partially resemble the theoretical Miller indices for MoS2. In contrast, the bulk powder's spectrum shows the characteristic peaks of the 2H polytype of MoS2, but with some broadening. Notable is the retention of partial crystallinity in the post-exfoliation phases, specifically in the normal-to-plane orientation, thus demonstrating the effectiveness of microwave-assisted techniques in producing 2D MoS2 and attaining desirable properties for the material. XPS measurements confirm the success of the exfoliation procedure and that the exfoliated sample retains its original structure. The exfoliation process has been optimized to maintain the structural integrity of MoS2 while enhancing its surface area and electrochemical performance, thereby making it a promising material for advanced electronic and optoelectronic applications ranging from energy storage to sensing devices under ambient conditions.
Collapse
Affiliation(s)
- Sebastiano Vasi
- Department of Mathematical and Computational Science, Physical Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.V.G.); (S.P.); (D.M.); (S.A.)
| | - Siglinda Perathoner
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.V.G.); (S.P.); (D.M.); (S.A.)
| | - Domenico Mallamace
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.V.G.); (S.P.); (D.M.); (S.A.)
| | - Salvatore Abate
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.V.G.); (S.P.); (D.M.); (S.A.)
| | - Ulderico Wanderlingh
- Department of Mathematical and Computational Science, Physical Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
3
|
Dai J, Zhang S, Wang F, Wen L, Sun Y, Ren K, Xu Y, Zeng W, Wang S. A new In Situ Oxidized 2D Layered MnBi 2Te 4 Cathode for High-Performance Aqueous Zinc-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307033. [PMID: 38552219 DOI: 10.1002/smll.202307033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/14/2024] [Indexed: 08/17/2024]
Abstract
Recently, aqueous zinc ion batteries (AZIBs) with the superior theoretical capacity, high safety, low prices, and environmental protection, have emerged as a contender for advanced energy storage. However, challenges related to cathode materials, such as dissolution, instability, and structural collapse, have hindered the progress of AZIBs. Here, a novel AZIB is constructed using an oxidized 2D layered MnBi2Te4 cathode for the first time. The oxidized MnBi2Te4 cathode with large interlayer spacing and low energy barrier for zinc ion diffusion at 240 °C, exhibited impressive characteristics, including a high reversibility capacity of 393.1 mAh g-1 (0.4 A g-1), outstanding rate performance, and long cycle stability. Moreover, the corresponding aqueous button cell also exhibits excellent electrochemical performance. To demonstrate the application in practice in the realm of flexible wearable electronics, a quasi-solid-state micro ZIB (MZIB) is constructed and shows excellent flexibility and high-temperature stability (the capacity does not significantly degrade when the temperature reaches 100 °C and the bending angle exceeds 150°). This research offers effective tactics for creating high-performance cathode materials for AZIBs.
Collapse
Affiliation(s)
- Jiaao Dai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Shaojun Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Fei Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Li Wen
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yuhao Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Ke Ren
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Yaohua Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Wei Zeng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
- East China Institute of Photo-Electron ICs, Suzhou, 215163, China
| | - Siliang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
- East China Institute of Photo-Electron ICs, Suzhou, 215163, China
| |
Collapse
|
4
|
Maleki I, Allaei SMV, Naghavi SS. Polytelluride square planar chain-induced anharmonicity results in ultralow thermal conductivity and high thermoelectric efficiency in Al 2Te 5 monolayers. Phys Chem Chem Phys 2024; 26:19724-19732. [PMID: 38982952 DOI: 10.1039/d4cp01577k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Two-dimensional (2D) metal chalcogenides provide rich ground for the development of nanoscale thermoelectrics, although achieving optimal thermoelectric efficiency is still a challenge. Here, we leverage the unique chemistry of tellurium (Te), renowned for its hypervalent bonding and catenation abilities, to tackle this challenge as manifested in Al2Te3 and Al2Te5 monolayers. While the former forms a straightforward covalent Al-Te network, the latter adopts a more intricate bonding mechanism, enabled by eccentric features of Te chemistry, to maintain charge balance. In Al2Te5, a square planar chain (SPC) known as polytelluride [Te3]2- is neutralized by the covalently bonded [Al2Te2]2+ framework. The hypervalent nature of Te results in bizarre Born effective charges of 7 and -4 for adjacent Te atoms within the square planar chain, a feature that induces significant anharmonicity in Al2Te5 monolayers. Enhanced anharmonic lattice vibrations and the accordion pattern bestow glass-like, strongly anisotropic thermal conductivity to the Al2Te5 monolayer. The calculated κL values of 1.8 and 0.5 W m-1 K-1 along the a- and b-axes at 600 K are one order of magnitude lower than those of Al2Te3, and even lower than monolayers that contain heavy cations like Bi2Te3. Moreover, the tellurium chain dominates the valence band maximum and conduction band minimum of Al2Te5, leading to a high valley degeneracy of 10, and thus a high power factor and figure of merit (zT). Using rigorous first-principles calculations of electron relaxation time, the estimated hole-doped and electron-doped zT of, respectively, 1.5 and 0.5 at 600 K is achieved for Al2Te5. The pioneering zT of Al2Te5 compared to that of Al2Te3 is rooted merely in its amorphous-like lattice thermal transport and its polytelluride chain. These findings underscore the importance of aluminum telluride and polymeric-based inorganic compounds as practical and cost-effective thermoelectric materials, pending further experimental validation.
Collapse
Affiliation(s)
- Iraj Maleki
- Department of Physics, University of Tehran, Tehran 14395-547, Iran.
| | - S Mehdi Vaez Allaei
- Department of Physics, University of Tehran, Tehran 14395-547, Iran.
- New Uzbekistan University, Movarounnahr Street 1, Tashkent 100000, Uzbekistan
| | - S Shahab Naghavi
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran.
| |
Collapse
|
5
|
Zhao K, He D, Liu X, Ren F, Wang J, Yan Y, Huang M, Wang Y, Zhang X. Enhance Carrier Diffusion of Monolayer MoSe 2 by Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34349-34357. [PMID: 38912925 DOI: 10.1021/acsami.4c05143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Two-dimensional materials hold great potentials for beyond-CMOS (complementary metal-oxide-semiconductor) electronical and optoelectrical applications, and the development of field effect transistors (FET) with excellent performance using such materials is of particular interest. How to improve the performance of devices thus becomes an urgent issue. The performance of FETs depends greatly on the intrinsic electrical properties of the channel materials, meanwhile the device interface quality, such as extrinsic scattering of charged impurities, charge traps, and substrate surface roughness have a great influence on the performance. In this paper, the impact of the interface quality on the carrier diffusion behaviors of monolayer (ML) MoSe2 has been investigated by using an in situ ultrafast laser technique to avoid the surface contamination during device fabrication process. Two types of self-assembled monolayers (SAMs) are introduced to modify the gate dielectric surface through an interface engineering approach to obtain chemical-stable interfaces. The results showed that the transport properties of ML MoSe2 were enhanced after interface engineering, for example, the carrier mobility of ML MoSe2 was improved from ∼59.4 to ∼166.5 cm2 V-1 s-1 after the SAM modification. Meanwhile, the photocarrier dynamics of ML MoSe2 before and after interfacial engineering were also carefully studied. Our studies provide a feasible method for improving the carrier diffusion behaviors of such materials, and making them suited for application in future integrated circuit.
Collapse
Affiliation(s)
- Kun Zhao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaojing Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Fangying Ren
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Jiarong Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Yige Yan
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Mohan Huang
- Department of Optical Engineering, Zhejiang A&F University, Linan 311300, P. R. China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
6
|
Myers A, Li Z, Gish MK, Earley JD, Johnson JC, Hermosilla-Palacios MA, Blackburn JL. Ultrafast Charge Transfer Cascade in a Mixed-Dimensionality Nanoscale Trilayer. ACS NANO 2024; 18:8190-8198. [PMID: 38465641 PMCID: PMC10958597 DOI: 10.1021/acsnano.3c12179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Innovation in optoelectronic semiconductor devices is driven by a fundamental understanding of how to move charges and/or excitons (electron-hole pairs) in specified directions for doing useful work, e.g., for making fuels or electricity. The diverse and tunable electronic and optical properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs) and one-dimensional (1D) semiconducting single-walled carbon nanotubes (s-SWCNTs) make them good quantum confined model systems for fundamental studies of charge and exciton transfer across heterointerfaces. Here we demonstrate a mixed-dimensionality 2D/1D/2D MoS2/SWCNT/WSe2 heterotrilayer that enables ultrafast photoinduced exciton dissociation, followed by charge diffusion and slow recombination. Importantly, the heterotrilayer serves to double charge carrier yield relative to a MoS2/SWCNT heterobilayer and also demonstrates the ability of the separated charges to overcome interlayer exciton binding energies to diffuse from one TMDC/SWCNT interface to the other 2D/1D interface, resulting in Coulombically unbound charges. Interestingly, the heterotrilayer also appears to enable efficient hole transfer from SWCNTs to WSe2, which is not observed in the identically prepared WSe2/SWCNT heterobilayer, suggesting that increasing the complexity of nanoscale trilayers may modify dynamic pathways. Our work suggests "mixed-dimensionality" TMDC/SWCNT based heterotrilayers as both interesting model systems for mechanistic studies of carrier dynamics at nanoscale heterointerfaces and for potential applications in advanced optoelectronic systems.
Collapse
Affiliation(s)
- Alexis
R. Myers
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemistry, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Zhaodong Li
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- The
Institute of Technological Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| | - Melissa K. Gish
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Justin D. Earley
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemistry, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Justin C. Johnson
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | | | | |
Collapse
|
7
|
Park CS, Kwon Y, Kim Y, Cho HD, Kim H, Yang W, Kim DY. Strong Room-Temperature Ferromagnetism of MoS 2 Compound Produced by Defect Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:334. [PMID: 38392707 PMCID: PMC10892600 DOI: 10.3390/nano14040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Ferromagnetic materials have been attracting great interest in the last two decades due to their application in spintronics devices. One of the hot research areas in magnetism is currently the two-dimensional materials, transition metal dichalcogenides (TMDCs), which have unique physical properties. The origins and mechanisms of transition metal dichalcogenides (TMDCs), especially the correlation between magnetism and defects, have been studied recently. We investigate the changes in magnetic properties with a variation in annealing temperature for the nanoscale compound MoS2. The pristine MoS2 exhibits diamagnetic properties from low-to-room temperature. However, MoS2 compounds annealed at different temperatures showed that the controllable magnetism and the strongest ferromagnetic results were obtained for the 700 °C-annealed sample. These magnetizations are attributed to the unpaired electrons of vacancy defects that are induced by annealing, which are confirmed using Raman spectroscopy and electron paramagnetic resonance spectroscopy (EPR).
Collapse
Affiliation(s)
- Chang-Soo Park
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul 04620, Republic of Korea; (C.-S.P.); (H.D.C.)
| | - Younghae Kwon
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul 04620, Republic of Korea; (C.-S.P.); (H.D.C.)
| | - Youjoong Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea; (Y.K.); (W.Y.)
| | - Hak Dong Cho
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul 04620, Republic of Korea; (C.-S.P.); (H.D.C.)
| | - Heetae Kim
- Institute for Rare Isotope Science, Institute for Basic Science, Daejeon 34000, Republic of Korea;
| | - Woochul Yang
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea; (Y.K.); (W.Y.)
| | - Deuk Young Kim
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul 04620, Republic of Korea; (C.-S.P.); (H.D.C.)
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea; (Y.K.); (W.Y.)
| |
Collapse
|
8
|
Li L, Xiu X, Lyu H, Yang H, Safari A, Zhang S. Miniature Ultrasonic Spatial Localization Module in the Lightweight Interactive. MICROMACHINES 2023; 15:71. [PMID: 38258190 PMCID: PMC10819174 DOI: 10.3390/mi15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
The advancement of spatial interaction technology has greatly enriched the domain of consumer electronics. Traditional solutions based on optical technologies suffers high power consumption and significant costs, making them less ideal in lightweight implementations. In contrast, ultrasonic solutions stand out due to their lower power consumption and cost-effectiveness, capturing widespread attention and interest. This paper addresses the challenges associated with the application of ultrasound sensors in spatial localization. Traditional ultrasound systems are hindered by blind spots, large physical dimensions, and constrained measurement ranges, limiting their practical applicability. To overcome these limitations, this paper proposes a miniature ultrasonic spatial localization module employing piezoelectric micromechanical ultrasonic transducers (PMUTs). The module is comprised of three devices each with dimension of 1.2 mm × 1.2 mm × 0.5 mm, operating at a frequency of around 180 kHz. This configuration facilitates a comprehensive distance detection range of 0-800 mm within 80° directivity, devoid of blind spot. The error rate and failure range of measurement as well as their relationship with the SNR (signal-to-noise ratio) are also thoroughly investigated. This work heralds a significant enhancement in hand spatial localization capabilities, propelling advancements in acoustic sensor applications of the meta-universe.
Collapse
Affiliation(s)
- Lieguang Li
- School of Microelectronics, Shanghai University, Shanghai 200444, China; (L.L.); (X.X.); (H.Y.)
| | - Xueying Xiu
- School of Microelectronics, Shanghai University, Shanghai 200444, China; (L.L.); (X.X.); (H.Y.)
| | - Haochen Lyu
- Department of Materials Science and Engineering in Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (H.L.); (A.S.)
| | - Haolin Yang
- School of Microelectronics, Shanghai University, Shanghai 200444, China; (L.L.); (X.X.); (H.Y.)
| | - Ahmad Safari
- Department of Materials Science and Engineering in Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (H.L.); (A.S.)
| | - Songsong Zhang
- School of Microelectronics, Shanghai University, Shanghai 200444, China; (L.L.); (X.X.); (H.Y.)
| |
Collapse
|
9
|
Kang YZ, An GH, Jeon MG, Shin SJ, Kim SJ, Choi M, Lee JB, Kim TY, Rahman IN, Seo HY, Oh S, Cho B, Choi J, Lee HS. Increased Mobility and Reduced Hysteresis of MoS 2 Field-Effect Transistors via Direct Surface Precipitation of CsPbBr 3-Nanoclusters for Charge Transfer Doping. NANO LETTERS 2023; 23:8914-8922. [PMID: 37722002 DOI: 10.1021/acs.nanolett.3c02293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Transition-metal dichalcogenides (TMDs) and metal halide perovskites (MHPs) have been investigated for various applications, owing to their unique physical properties and excellent optoelectronic functionalities. TMD monolayers synthesized via chemical vapor deposition (CVD), which are advantageous for large-area synthesis, exhibit low mobility and prominent hysteresis in the electrical signals of field-effect transistors (FETs) because of their native defects. In this study, we demonstrate an increase in electrical mobility by ∼170 times and reduced hysteresis in the current-bias curves of MoS2 FETs hybridized with CsPbBr3 for charge transfer doping, which is implemented via solution-based CsPbBr3-nanocluster precipitation on CVD-grown MoS2 monolayer FETs. Electrons injected from CsPbBr3 into MoS2 induce heavy n-doping and heal point defects in the MoS2 channel layer, thus significantly increasing mobility and reducing hysteresis in the hybrid FETs. Our results provide a foundation for improving the reliability and performance of TMD-based FETs by hybridizing them with solution-based perovskites.
Collapse
Affiliation(s)
- Yae Zy Kang
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Gwang Hwi An
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Min-Gi Jeon
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - So Jeong Shin
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Su Jin Kim
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Min Choi
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Jae Baek Lee
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Tae Yeon Kim
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Ikhwan Nur Rahman
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Hyun Young Seo
- Department of Advanced Material Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Seyoung Oh
- Department of Advanced Material Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Byungjin Cho
- Department of Advanced Material Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Jihoon Choi
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyun Seok Lee
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| |
Collapse
|
10
|
Shafi AM, Uddin MG, Cui X, Ali F, Ahmed F, Radwan M, Das S, Mehmood N, Sun Z, Lipsanen H. Strain Engineering for Enhancing Carrier Mobility in MoTe 2 Field-Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303437. [PMID: 37551999 PMCID: PMC10582429 DOI: 10.1002/advs.202303437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Molybdenum ditelluride (MoTe2 ) exhibits immense potential in post-silicon electronics due to its bandgap comparable to silicon. Unlike other 2D materials, MoTe2 allows easy phase modulation and efficient carrier type control in electrical transport. However, its unstable nature and low-carrier mobility limit practical implementation in devices. Here, a deterministic method is proposed to improve the performance of MoTe2 devices by inducing local tensile strain through substrate engineering and encapsulation processes. The approach involves creating hole arrays in the substrate and using atomic layer deposition grown Al2 O3 as an additional back-gate dielectric layer on SiO2 . The MoTe2 channel is passivated with a thick layer of Al2 O3 post-fabrication. This structure significantly improves hole and electron mobilities in MoTe2 field-effect transistors (FETs), approaching theoretical limits. Hole mobility up to 130 cm-2 V-1 s-1 and electron mobility up to 160 cm-2 V-1 s-1 are achieved. Introducing local tensile strain through the hole array enhances electron mobility by up to 6 times compared to the unstrained devices. Remarkably, the devices exhibit metal-insulator transition in MoTe2 FETs, with a well-defined critical point. This study presents a novel technique to enhance carrier mobility in MoTe2 FETs, offering promising prospects for improving 2D material performance in electronic applications.
Collapse
Affiliation(s)
- Abde Mayeen Shafi
- Department of Electronics and NanoengineeringAalto UniversityTietotie 3FI‐02150Finland
| | - Md Gius Uddin
- Department of Electronics and NanoengineeringAalto UniversityTietotie 3FI‐02150Finland
| | - Xiaoqi Cui
- Department of Electronics and NanoengineeringAalto UniversityTietotie 3FI‐02150Finland
| | - Fida Ali
- Department of Electronics and NanoengineeringAalto UniversityTietotie 3FI‐02150Finland
| | - Faisal Ahmed
- Department of Electronics and NanoengineeringAalto UniversityTietotie 3FI‐02150Finland
| | - Mohamed Radwan
- Department of Electronics and NanoengineeringAalto UniversityTietotie 3FI‐02150Finland
| | - Susobhan Das
- Department of Electronics and NanoengineeringAalto UniversityTietotie 3FI‐02150Finland
| | - Naveed Mehmood
- Department of Electronics and NanoengineeringAalto UniversityTietotie 3FI‐02150Finland
| | - Zhipei Sun
- Department of Electronics and NanoengineeringAalto UniversityTietotie 3FI‐02150Finland
- QTF Centre of ExcellenceDepartment of Applied PhysicsAalto UniversityAaltoFI‐00076Finland
| | - Harri Lipsanen
- Department of Electronics and NanoengineeringAalto UniversityTietotie 3FI‐02150Finland
| |
Collapse
|
11
|
Li M, Li T, Jing Y. Nb 2S 2C Monolayers with Transition Metal Atoms Embedded at the S Vacancy Are Promising Single-Atom Catalysts for CO Oxidation. ACS OMEGA 2023; 8:31051-31059. [PMID: 37663518 PMCID: PMC10468833 DOI: 10.1021/acsomega.3c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/07/2023] [Indexed: 09/05/2023]
Abstract
Single atoms anchored on stable and robust two-dimensional (2D) materials are attractive catalysts for carbon monoxide (CO) oxidation. Here, 3d (Fe-Zn), 4d (Ru-Cd), and 5d (Os-Hg) transition metal-decorated Nb2S2C monolayers were systematically studied as potential single-atom catalysts for low-temperature CO oxidation reactions by performing first-principles calculations. Sulfur vacancies are essential for stabilizing the transition metals anchored on the surface of defective Nb2S2C. After estimating the structure stability, the aggregation trend of the embedded metal atoms, and adsorption strength of reactants and products, Zn-decorated defective Nb2S2C is predicted to be a promising catalyst to facilitate CO oxidation through the Langmuir-Hinshelwood (LH) mechanism with an energy barrier of only 0.25 eV. Our investigation indicates that defective carbosulfides can be promising substrates to generate efficient and low-cost single-atom catalysts for low-temperature CO oxidation.
Collapse
Affiliation(s)
- Manman Li
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| | - Tianchun Li
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| | - Yu Jing
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| |
Collapse
|
12
|
Gao K, Li W, Wang X, Sun S, Zhang B. Fabrication of AIE Polymer-Functionalized Reduced Graphene Oxide for Information Storage. Molecules 2023; 28:6271. [PMID: 37687100 PMCID: PMC10488735 DOI: 10.3390/molecules28176271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Reduced graphene oxide (RGO) has been extensively studied and applied in optoelectronic systems, but its unstable dispersion in organic solvents has limited its application. To overcome this problem, the newly designed and developed aggregation-induced emission (AIE) material poly[(9,9-bis(6-azidohexyl)-9H-fluorene)-alt-(9-(4-(1,2,2-triphenylvinyl)phenyl)-9H-carbazole)] (PAFTC) was covalently grafted onto RGO to produce (PFTC-g-RGO). The solubility of two-dimensional graphene was improved by incorporating it into the backbone of PAFTC to form new functional materials. In resistive random access memory (RRAM) devices, PFTC-g-RGO was used as the active layer material after it was characterized. The fabricated Al/PFTC-g-RGO/ITO device exhibited nonvolatile bistable resistive switching performances with a long retention time of over 104 s, excellent endurance of over 200 switching cycles, and an impressively low turn-ON voltage. This study provides important insights into the future development of AIE polymer-functionalized nanomaterials for information storage.
Collapse
Affiliation(s)
- Kai Gao
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyang Wang
- Guangxi Key Laboratory of Information Material, Engineering Research Center of Electronic Information Materials and Devices, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Sai Sun
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Boschetto G, Carapezzi S, Todri-Sanial A. Non-volatile resistive switching mechanism in single-layer MoS 2 memristors: insights from ab initio modelling of Au and MoS 2 interfaces. NANOSCALE ADVANCES 2023; 5:4203-4212. [PMID: 37560426 PMCID: PMC10408618 DOI: 10.1039/d3na00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Non-volatile memristive devices based on two-dimensional (2D) layered materials provide an attractive alternative to conventional flash memory chips. Single-layer semiconductors, such as monolayer molybdenum disulphide (ML-MoS2), enable the aggressive downscaling of devices towards greater system integration density. The "atomristor", the most compact device to date, has been shown to undergo a resistive switching between its high-resistance (HRS) and low-resistance (LRS) states of several orders of magnitude. The main hypothesis behind its working mechanism relies on the migration of sulphur vacancies in the proximity of the metal contact during device operation, thus inducing the variation of the Schottky barrier at the metal-semiconductor interface. However, the interface physics is not yet fully understood: other hypotheses were proposed, involving the migration of metal atoms from the electrode. In this work, we aim to elucidate the mechanism of the resistive switching in the atomristor. We carry out density functional theory (DFT) simulations on model Au and ML-MoS2 interfaces with and without the presence of point defects, either vacancies or substitutions. To construct realistic interfaces, we combine DFT with Green's function surface simulations. Our findings reveal that it is not the mere presence of S vacancies but rather the migration of Au atoms from the electrode to MoS2 that modulate the interface barrier. Indeed, Au atoms act as conductive "bridges", thus facilitating the flow of charge between the two materials.
Collapse
Affiliation(s)
- Gabriele Boschetto
- Laboratory of Computer Science, Robotics, and Microelectronics, University of Montpellier, CNRS 161 Rue Ada 34095 Montpellier France
| | - Stefania Carapezzi
- Laboratory of Computer Science, Robotics, and Microelectronics, University of Montpellier, CNRS 161 Rue Ada 34095 Montpellier France
| | - Aida Todri-Sanial
- Laboratory of Computer Science, Robotics, and Microelectronics, University of Montpellier, CNRS 161 Rue Ada 34095 Montpellier France
- Department of Electrical Engineering, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven Netherlands
| |
Collapse
|
14
|
Bui HT, Lam ND, Linh DC, Mai NT, Chang H, Han SH, Oanh VTK, Pham AT, Patil SA, Tung NT, Shrestha NK. Escalating Catalytic Activity for Hydrogen Evolution Reaction on MoSe 2@Graphene Functionalization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2139. [PMID: 37513150 PMCID: PMC10384179 DOI: 10.3390/nano13142139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Developing highly efficient and durable hydrogen evolution reaction (HER) electrocatalysts is crucial for addressing the energy and environmental challenges. Among the 2D-layered chalcogenides, MoSe2 possesses superior features for HER catalysis. The van der Waals attractions and high surface energy, however, stack the MoSe2 layers, resulting in a loss of edge active catalytic sites. In addition, MoSe2 suffers from low intrinsic conductivity and weak electrical contact with active sites. To overcome the issues, this work presents a novel approach, wherein the in situ incorporated diethylene glycol solvent into the interlayers of MoSe2 during synthesis when treated thermally in an inert atmosphere at 600 °C transformed into graphene (Gr). This widened the interlayer spacing of MoSe2, thereby exposing more HER active edge sites with high conductivity offered by the incorporated Gr. The resulting MoSe2-Gr composite exhibited a significantly enhanced HER catalytic activity compared to the pristine MoSe2 in an acidic medium and demonstrated a superior HER catalytic activity compared to the state-of-the-art Pt/C catalyst, particularly at a high current density beyond ca. 55 mA cm-2. Additionally, the MoSe2-Gr catalyst demonstrated long-term electrochemical stability during HER. This work, thus, presents a facile and novel approach for obtaining an efficient MoSe2 electrocatalyst applicable in green hydrogen production.
Collapse
Affiliation(s)
- Hoa Thi Bui
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Nguyen Duc Lam
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Do Chi Linh
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Nguyen Thi Mai
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - HyungIl Chang
- Department of Chemistry, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sung-Hwan Han
- Department of Chemistry, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Vu Thi Kim Oanh
- Institute of Physic and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Anh Tuan Pham
- Institute of Engineering and Technology, Thu Dau Mot University, Binh Duong 75000, Vietnam
| | - Supriya A Patil
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Nabeen K Shrestha
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
15
|
Asaithambi A, Kazemi Tofighi N, Ghini M, Curreli N, Schuck PJ, Kriegel I. Energy transfer and charge transfer between semiconducting nanocrystals and transition metal dichalcogenide monolayers. Chem Commun (Camb) 2023; 59:7717-7730. [PMID: 37199319 PMCID: PMC10281493 DOI: 10.1039/d3cc01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Nowadays, as a result of the emergence of low-dimensional hybrid structures, the scientific community is interested in their interfacial carrier dynamics, including charge transfer and energy transfer. By combining the potential of transition metal dichalcogenides (TMDs) and nanocrystals (NCs) with low-dimensional extension, hybrid structures of semiconducting nanoscale matter can lead to fascinating new technological scenarios. Their characteristics make them intriguing candidates for electronic and optoelectronic devices, like transistors or photodetectors, bringing with them challenges but also opportunities. Here, we will review recent research on the combined TMD/NC hybrid system with an emphasis on two major interaction mechanisms: energy transfer and charge transfer. With a focus on the quantum well nature in these hybrid semiconductors, we will briefly highlight state-of-the-art protocols for their structure formation and discuss the interaction mechanisms of energy versus charge transfer, before concluding with a perspective section that highlights novel types of interactions between NCs and TMDs.
Collapse
Affiliation(s)
- Aswin Asaithambi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Nastaran Kazemi Tofighi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Michele Ghini
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
- Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicola Curreli
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ilka Kriegel
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| |
Collapse
|
16
|
Tilmann R, Bartlam C, Hartwig O, Tywoniuk B, Dominik N, Cullen CP, Peters L, Stimpel-Lindner T, McEvoy N, Duesberg GS. Identification of Ubiquitously Present Polymeric Adlayers on 2D Transition Metal Dichalcogenides. ACS NANO 2023. [PMID: 37220885 DOI: 10.1021/acsnano.3c01649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The interest in 2D materials continues to grow across numerous scientific disciplines as compounds with unique electrical, optical, chemical, and thermal characteristics are being discovered. All these properties are governed by an all-surface nature and nanoscale confinement, which can easily be altered by extrinsic influences, such as defects, dopants or strain, adsorbed molecules, and contaminants. Here, we report on the ubiquitous presence of polymeric adlayers on top of layered transition metal dichalcogenides (TMDs). The atomically thin layers, not evident from common analytic methods, such as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), or scanning electron microscopy (SEM), could be identified with highly resolved time-of-flight secondary ion mass spectrometry (TOF-SIMS). The layers consist of hydrocarbons, which preferentially adsorb to the hydrophobic van der Waals surfaces of TMDs, derived from the most common methods. Fingerprint fragmentation patterns enable us to identify certain polymers and link them to those used during preparation and storage of the TMDs. The ubiquitous presence of polymeric films on 2D materials has wide reaching implications for their investigation, processing, and applications. In this regard, we reveal the nature of polymeric residues after commonly used transfer procedures on MoS2 films and investigate several annealing procedures for their removal.
Collapse
Affiliation(s)
- Rita Tilmann
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Cian Bartlam
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Oliver Hartwig
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Bartlomiej Tywoniuk
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Nikolas Dominik
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Conor P Cullen
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Lisanne Peters
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Tanja Stimpel-Lindner
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Niall McEvoy
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Georg S Duesberg
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| |
Collapse
|
17
|
Zhou Y, Zhang JH, Li S, Qiu H, Shi Y, Pan L. Triboelectric Nanogenerators Based on 2D Materials: From Materials and Devices to Applications. MICROMACHINES 2023; 14:mi14051043. [PMID: 37241666 DOI: 10.3390/mi14051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Recently, there has been an increasing consumption of fossil fuels such as oil and natural gas in both industrial production and daily life. This high demand for non-renewable energy sources has prompted researchers to investigate sustainable and renewable energy alternatives. The development and production of nanogenerators provide a promising solution to address the energy crisis. Triboelectric nanogenerators, in particular, have attracted significant attention due to their portability, stability, high energy conversion efficiency, and compatibility with a wide range of materials. Triboelectric nanogenerators (TENGs) have many potential applications in various fields, such as artificial intelligence (AI) and the Internet of Things (IoT). Additionally, by virtue of their remarkable physical and chemical properties, two-dimensional (2D) materials, such as graphene, transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), MXenes, and layered double hydroxides (LDHs), have played a crucial role in the advancement of TENGs. This review summarizes recent research progress on TENGs based on 2D materials, from materials to their practical applications, and provides suggestions and prospects for future research.
Collapse
Affiliation(s)
- Yukai Zhou
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jia-Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Songlin Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Hao Qiu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
18
|
Ye X, Du Y, Wang M, Liu B, Liu J, Jafri SHM, Liu W, Papadakis R, Zheng X, Li H. Advances in the Field of Two-Dimensional Crystal-Based Photodetectors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1379. [PMID: 37110964 PMCID: PMC10146229 DOI: 10.3390/nano13081379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Two-dimensional (2D) materials have sparked intense interest among the scientific community owing to their extraordinary mechanical, optical, electronic, and thermal properties. In particular, the outstanding electronic and optical properties of 2D materials make them show great application potential in high-performance photodetectors (PDs), which can be applied in many fields such as high-frequency communication, novel biomedical imaging, national security, and so on. Here, the recent research progress of PDs based on 2D materials including graphene, transition metal carbides, transition-metal dichalcogenides, black phosphorus, and hexagonal boron nitride is comprehensively and systematically reviewed. First, the primary detection mechanism of 2D material-based PDs is introduced. Second, the structure and optical properties of 2D materials, as well as their applications in PDs, are heavily discussed. Finally, the opportunities and challenges of 2D material-based PDs are summarized and prospected. This review will provide a reference for the further application of 2D crystal-based PDs.
Collapse
Affiliation(s)
- Xiaoling Ye
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Yining Du
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Mingyang Wang
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Benqing Liu
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Jiangwei Liu
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China;
| | - Syed Hassan Mujtaba Jafri
- Department of Electrical Engineering, Mirpur University of Science and Technology (MUST), Mirpur Azad Jammu and Kashmir 10250, Pakistan;
| | - Wencheng Liu
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Raffaello Papadakis
- Department of Chemistry, Uppsala University, 75120 Uppsala, Sweden;
- TdB Labs AB, Uppsala Business Park, 75450 Uppsala, Sweden
| | - Xiaoxiao Zheng
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Hu Li
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
- Department of Materials Science and Engineering, Uppsala University, 75121 Uppsala, Sweden
| |
Collapse
|
19
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
20
|
Ogura H, Kawasaki S, Liu Z, Endo T, Maruyama M, Gao Y, Nakanishi Y, Lim HE, Yanagi K, Irisawa T, Ueno K, Okada S, Nagashio K, Miyata Y. Multilayer In-Plane Heterostructures Based on Transition Metal Dichalcogenides for Advanced Electronics. ACS NANO 2023; 17:6545-6554. [PMID: 36847351 DOI: 10.1021/acsnano.2c11927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In-plane heterostructures of transition metal dichalcogenides (TMDCs) have attracted much attention for high-performance electronic and optoelectronic devices. To date, mainly monolayer-based in-plane heterostructures have been prepared by chemical vapor deposition (CVD), and their optical and electrical properties have been investigated. However, the low dielectric properties of monolayers prevent the generation of high concentrations of thermally excited carriers from doped impurities. To solve this issue, multilayer TMDCs are a promising component for various electronic devices due to the availability of degenerate semiconductors. Here, we report the fabrication and transport properties of multilayer TMDC-based in-plane heterostructures. The multilayer in-plane heterostructures are formed through CVD growth of multilayer MoS2 from the edges of mechanically exfoliated multilayer flakes of WSe2 or NbxMo1-xS2. In addition to the in-plane heterostructures, we also confirmed the vertical growth of MoS2 on the exfoliated flakes. For the WSe2/MoS2 sample, an abrupt composition change is confirmed by cross-sectional high-angle annular dark-field scanning transmission electron microscopy. Electrical transport measurements reveal that a tunneling current flows at the NbxMo1-xS2/MoS2 in-plane heterointerface, and the band alignment is changed from a staggered gap to a broken gap by electrostatic electron doping of MoS2. The formation of a staggered gap band alignment of NbxMo1-xS2/MoS2 is also supported by first-principles calculations.
Collapse
Affiliation(s)
- Hiroto Ogura
- Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Seiya Kawasaki
- Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Zheng Liu
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| | - Takahiko Endo
- Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Mina Maruyama
- Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Yanlin Gao
- Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Yusuke Nakanishi
- Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Hong En Lim
- Department of Chemistry, Saitama University, Saitama 338-8570, Japan
| | - Kazuhiro Yanagi
- Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Toshifumi Irisawa
- Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Keiji Ueno
- Department of Chemistry, Saitama University, Saitama 338-8570, Japan
| | - Susumu Okada
- Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Kosuke Nagashio
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| |
Collapse
|
21
|
Luan L, Sun K, Zhang D, Bai K, Han L, Xu C, Li L, Duan L. First-principles study on the electronic structure and photocatalytic property of a novel two-dimensional ZrS 2/InSe heterojunction. RSC Adv 2023; 13:11150-11159. [PMID: 37056969 PMCID: PMC10086572 DOI: 10.1039/d2ra08000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/17/2023] [Indexed: 04/15/2023] Open
Abstract
Photocatalytic water cracking technology provides a broad prospect for solving the current energy crisis using solar energy and water resources. In this paper, a two-dimensional ZrS2/InSe heterojunction for accelerating the process of hydrogen production from water decomposition was constructed, and its electronic structure and photocatalytic property were studied using first-principles calculation. The results show that the lattice mismatch rate of the heterojunction from monolayer ZrS2 and monolayer InSe is 2.48%, and its binding energy is -1.696 eV, indicating that the structure of the heterojunction is stable. The ZrS2/InSe heterojunction is an indirect bandgap with a bandgap value of 1.41 eV and a typical type-II band arrangement. Importantly, the ZrS2/InSe heterostructure has a Z-scheme structure, which is beneficial to the separation of photogenerated electron hole pairs. Moreover, the ZrS2/InSe heterojunction has a strong absorption ability for visible light (up to 3.84 × 105 cm-1), which is helpful for improving its photocatalytic efficiency. The two-dimensional ZrS2/InSe heterojunction is a very promising photocatalyst, as concluded from the above studies.
Collapse
Affiliation(s)
- Lijun Luan
- School of Materials Science and Engineering, Chang'an University Xi'an 710064 China
| | - Kaili Sun
- School of Materials Science and Engineering, Chang'an University Xi'an 710064 China
| | - Di Zhang
- School of Materials Science and Engineering, Chang'an University Xi'an 710064 China
| | - Kaiyang Bai
- School of Materials Science and Engineering, Chang'an University Xi'an 710064 China
| | - Liuyang Han
- School of Materials Science and Engineering, Chang'an University Xi'an 710064 China
| | - Changyan Xu
- School of Materials Science and Engineering, Chang'an University Xi'an 710064 China
| | - Long Li
- School of Materials Science and Engineering, Chang'an University Xi'an 710064 China
| | - Li Duan
- School of Materials Science and Engineering, Chang'an University Xi'an 710064 China
| |
Collapse
|
22
|
Tang Q, Zhong F, Li Q, Weng J, Li J, Lu H, Wu H, Liu S, Wang J, Deng K, Xiao Y, Wang Z, He T. Infrared Photodetection from 2D/3D van der Waals Heterostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1169. [PMID: 37049263 PMCID: PMC10096675 DOI: 10.3390/nano13071169] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
An infrared photodetector is a critical component that detects, identifies, and tracks complex targets in a detection system. Infrared photodetectors based on 3D bulk materials are widely applied in national defense, military, communications, and astronomy fields. The complex application environment requires higher performance and multi-dimensional capability. The emergence of 2D materials has brought new possibilities to develop next-generation infrared detectors. However, the inherent thickness limitations and the immature preparation of 2D materials still lead to low quantum efficiency and slow response speeds. This review summarizes 2D/3D hybrid van der Waals heterojunctions for infrared photodetection. First, the physical properties of 2D and 3D materials related to detection capability, including thickness, band gap, absorption band, quantum efficiency, and carrier mobility, are summarized. Then, the primary research progress of 2D/3D infrared detectors is reviewed from performance improvement (broadband, high-responsivity, fast response) and new functional devices (two-color detectors, polarization detectors). Importantly, combining low-doped 3D and flexible 2D materials can effectively improve the responsivity and detection speed due to a significant depletion region width. Furthermore, combining the anisotropic 2D lattice structure and high absorbance of 3D materials provides a new strategy in high-performance polarization detectors. This paper offers prospects for developing 2D/3D high-performance infrared detection technology.
Collapse
Affiliation(s)
- Qianying Tang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhong
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Qing Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Jialu Weng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhe Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangyu Lu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuning Liu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Deng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yunlong Xiao
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Zhen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Ting He
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| |
Collapse
|
23
|
Khan U, Nairan A, Khan K, Li S, Liu B, Gao J. Salt-Assisted Low-Temperature Growth of 2D Bi 2 O 2 Se with Controlled Thickness for Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206648. [PMID: 36538737 DOI: 10.1002/smll.202206648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Bi2 O2 Se is the most promising 2D material due to its semiconducting feature and high mobility, making it propitious channel material for high-performance electronics that demands highly crystalline Bi2 O2 Se at low-growth temperature. Here, a low-temperature salt-assisted chemical vapor deposition approach for growing single-domain Bi2 O2 Se on a millimeter scale with thicknesses of multilayer to monolayer is presented. Because of the advantage of thickness-dependent growth, systematical scrutiny of layer-dependent Raman spectroscopy of Bi2 O2 Se from monolayer to bulk is investigated, revealing a redshift of the A1g mode at 162.4 cm-1 . Moreover, the long-term environmental stability of ≈2.4 nm thick Bi2 O2 Se is confirmed after exposing the sample for 1.5 years to air. The backgated field effect transistor (FET) based on a few-layered Bi2 O2 Se flake represents decent carrier mobility (≈287 cm2 V-1 s-1 ) and an ON/OFF ratio of up to 107 . This report indicates a technique to grow large-domain thickness controlled Bi2 O2 Se single crystals for electronics.
Collapse
Affiliation(s)
- Usman Khan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Adeela Nairan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Sean Li
- School of Materials Science and Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| |
Collapse
|
24
|
Saeed M, Palacios P, Wei MD, Baskent E, Fan CY, Uzlu B, Wang KT, Hemmetter A, Wang Z, Neumaier D, Lemme MC, Negra R. Graphene-Based Microwave Circuits: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108473. [PMID: 34957614 DOI: 10.1002/adma.202108473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Over the past two decades, research on 2D materials has received much interest. Graphene is the most promising candidate regarding high-frequency applications thus far due to is high carrier mobility. Here, the research about the employment of graphene in micro- and millimeter-wave circuits is reviewed. The review starts with the different methodologies to grow and transfer graphene, before discussing the way graphene-based field-effect-transistors (GFETs) and diodes are built. A review on different approaches for realizing these devices is provided before discussing the employment of both GFETs and graphene diodes in different micro- and millimeter-wave circuits, showing the possibilities but also the limitations of this 2D material for high-frequency applications.
Collapse
Affiliation(s)
- Mohamed Saeed
- Chair of High Frequency Electronics, RWTH Aachen University, Koppernikusstr. 16, 52074, Aachen, Germany
| | - Paula Palacios
- Chair of High Frequency Electronics, RWTH Aachen University, Koppernikusstr. 16, 52074, Aachen, Germany
| | - Muh-Dey Wei
- Chair of High Frequency Electronics, RWTH Aachen University, Koppernikusstr. 16, 52074, Aachen, Germany
| | - Eyyub Baskent
- Chair of High Frequency Electronics, RWTH Aachen University, Koppernikusstr. 16, 52074, Aachen, Germany
| | - Chun-Yu Fan
- Chair of High Frequency Electronics, RWTH Aachen University, Koppernikusstr. 16, 52074, Aachen, Germany
| | - Burkay Uzlu
- AMO GmbH, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
| | - Kun-Ta Wang
- AMO GmbH, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
| | - Andreas Hemmetter
- AMO GmbH, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
| | - Zhenxing Wang
- AMO GmbH, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
| | - Daniel Neumaier
- AMO GmbH, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
- Chair of Smart Sensor Systems, University of Wuppertal, Lise-Meitner-Str. 13, 42119, Wuppertal, Germany
| | - Max C Lemme
- AMO GmbH, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
| | - Renato Negra
- Chair of High Frequency Electronics, RWTH Aachen University, Koppernikusstr. 16, 52074, Aachen, Germany
| |
Collapse
|
25
|
Gupta D, Chauhan V, Kumar R. Sputter deposition of 2D MoS2 thin films -A critical review from a surface and structural perspective. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Ranasinghe JC, Jain A, Wu W, Zhang K, Wang Z, Huang S. Engineered 2D materials for optical bioimaging and path toward therapy and tissue engineering. JOURNAL OF MATERIALS RESEARCH 2022; 37:1689-1713. [PMID: 35615304 PMCID: PMC9122553 DOI: 10.1557/s43578-022-00591-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) layered materials as a new class of nanomaterial are characterized by a list of exotic properties. These layered materials are investigated widely in several biomedical applications. A comprehensive understanding of the state-of-the-art developments of 2D materials designed for multiple nanoplatforms will aid researchers in various fields to broaden the scope of biomedical applications. Here, we review the advances in 2D material-based biomedical applications. First, we introduce the classification and properties of 2D materials. Next, we summarize surface and structural engineering methods of 2D materials where we discuss surface functionalization, defect, and strain engineering, and creating heterostructures based on layered materials for biomedical applications. After that, we discuss different biomedical applications. Then, we briefly introduced the emerging role of machine learning (ML) as a technological advancement to boost biomedical platforms. Finally, the current challenges, opportunities, and prospects on 2D materials in biomedical applications are discussed. Graphical abstract
Collapse
Affiliation(s)
- Jeewan C. Ranasinghe
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Arpit Jain
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Wenjing Wu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Kunyan Zhang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Ziyang Wang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Shengxi Huang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
27
|
Li M, Zhou Z, Hu L, Wang S, Zhou Y, Zhu R, Chu X, Vinu A, Wan T, Cazorla C, Yi J, Chu D. Hydrazine Hydrate Intercalated 1T-Dominant MoS 2 with Superior Ambient Stability for Highly Efficient Electrocatalytic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16338-16347. [PMID: 35362942 DOI: 10.1021/acsami.2c02675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metallic 1T-phase MoS2 exhibits superior hydrogen evolution reaction (HER) performance than natural 2H-phase MoS2 owing to its higher electrical conductivity and abundance of active sites. However, the reported 1T-MoS2 catalysts usually suffer from extreme instability, which results in quick phase transformation at ambient conditions. Herein, we present a facile approach to engineer the phase of MoS2 by introducing intercalated hydrazine. Interestingly, the as-synthesized 1T-dominant MoS2 sample demonstrates excellent ambient stability without noticeable degradation for 3 months. Additionally, the 1T-dominant MoS2 exhibits superior electrical conductivity (∼700 times higher than that of 2H-MoS2) and improved electrochemical catalytic performance (current density ∼12 times larger than that of 2H-MoS2 at an overpotential of 300 mV vs the reversible hydrogen electrode, RHE). Through experimental characterizations and density functional theory (DFT) calculation, we conclude that the stabilization of the metallic phase could be attributed to the electron donation from hydrazine molecules to the adjacent Mo atoms. The phase control strategy in this work provides a guideline to develop other highly efficient and stable two-dimensional (2D) electrocatalysts.
Collapse
Affiliation(s)
- Mengyao Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zizhen Zhou
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Long Hu
- School of Engineering, Macquarie University Sustainable Energy Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Shuangyue Wang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yingze Zhou
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Renbo Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xueze Chu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Claudio Cazorla
- Department de Física, University Politècnica de Catalunya, Campus Nord B4-B5, Barcelona 08034, Spain
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
CO oxidation on MXene (Mo2CS2) supported single-atom catalyst: a termolecular Eley-Rideal mechanism. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Chen F, Tang Q, Ma T, Zhu B, Wang L, He C, Luo X, Cao S, Ma L, Cheng C. Structures, properties, and challenges of emerging
2D
materials in bioelectronics and biosensors. INFOMAT 2022. [DOI: 10.1002/inf2.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Qing Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Bihui Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Liyun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
- Department of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| |
Collapse
|
30
|
Sakib N, Paul S, Nayir N, van Duin ACT, Neshani S, Momeni K. Role of tilt grain boundaries on the structural integrity of WSe 2 monolayers. Phys Chem Chem Phys 2022; 24:27241-27249. [DOI: 10.1039/d2cp03492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Grain boundaries in transition metal dichalcogenides have a profound effect on their characteristics.
Collapse
Affiliation(s)
- Nuruzzaman Sakib
- Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA
- Department of Mechanical Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shiddartha Paul
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nadire Nayir
- Physics department, Karamanoglu Mehmetbey University, Karaman, Turkey
- Department of Mechanical Engineering and 2-Dimensional Crystal Consortium (2DCC) Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Adri C. T. van Duin
- Department of Mechanical Engineering and 2-Dimensional Crystal Consortium (2DCC) Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Sara Neshani
- Department of Electrical Engineering, University of Alabama, Tuscaloosa, AL, USA
| | - Kasra Momeni
- Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
31
|
Babariya B, Raval D, Gupta SK, Gajjar PN. Selective and sensitive toxic gas sensors mechanism in 2D Janus MoSSe monolayer. Phys Chem Chem Phys 2022; 24:15292-15304. [DOI: 10.1039/d2cp01648f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With an inspiration of sensing toxic gases, this paper aims to explore potential of Janus MoSSe monolayer as gas sensor. Here, we focused on adsorption mechanism after the exposure of...
Collapse
|
32
|
Yan S, Cazorla A, Babuji A, Solano E, Ruzié C, Geerts YH, Ocal C, Barrena E. Temperature-induced polymorphism of a benzothiophene derivative: reversibility and impact on the thin film morphology. Phys Chem Chem Phys 2022; 24:24562-24569. [DOI: 10.1039/d2cp03467k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report the formation of a high temperature polymorph when C8O–BTBT–OC8 films are annealed, with different scenarios after cooling.
Collapse
Affiliation(s)
- Shunya Yan
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
| | - Alba Cazorla
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
| | - Adara Babuji
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
| | - Eduardo Solano
- ALBA synchrotron, C/de la Llum 2-26, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Christian Ruzié
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, 1050 Bruxelles, Belgium
| | - Yves H. Geerts
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, 1050 Bruxelles, Belgium
- International Solvay Institutes of Physics and Chemistry, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 231, 1050 Bruxelles, Belgium
| | - Carmen Ocal
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
| | - Esther Barrena
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
33
|
Do TN, Nguyen ST, Nguyen CQ. Adjusting the electronic properties and contact types of graphene/F-diamane-like C 4F 2 van der Waals heterostructure: a first principles study. RSC Adv 2021; 11:37981-37987. [PMID: 35498061 PMCID: PMC9044009 DOI: 10.1039/d1ra06986a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
Motivated by the successful exfoliation of two-dimensional F-diamane-like C4F2 monolayer and the superior properties of graphene-based vdW heterostructures, in this work, we perform a first principles study to investigate the atomic structure, electronic properties and contact types of the graphene/F-diamane-like C4F2 heterostructure. The graphene/C4F2 vdW heterostructure is structurally stable at room temperature. In the ground state, the graphene/C4F2 heterostructure forms n-type Schottky contact with a Schottky barrier height of 0.46/1.03 eV given by PBE/HSE06. The formation of the graphene/C4F2 heterostructure tends to decrease in the band gap of the semiconducting C4F2 layer, suggesting that such a heterostructure may have strong optical absorption. Furthermore, the electronic properties and contact types of the graphene/C4F2 heterostructure can be adjusted by applying an external electric field, which leads to the change in the Schottky barrier height and the transformation from Schottky to ohmic contact. Our findings reveal the potential of the graphene/C4F2 heterostructure as a tunable hybrid material with strong potential in electronic applications.
Collapse
Affiliation(s)
- Thi-Nga Do
- Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials Science, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Son-Tung Nguyen
- Faculty of Electrical Engineering Technology, Hanoi University of Industry Hanoi 100000 Vietnam
| | - Cuong Q Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
34
|
Nutting D, Prando GA, Severijnen M, Barcelos ID, Guo S, Christianen PCM, Zeitler U, Galvão Gobato Y, Withers F. Electrical and optical properties of transition metal dichalcogenides on talc dielectrics. NANOSCALE 2021; 13:15853-15858. [PMID: 34518845 DOI: 10.1039/d1nr04723j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advanced van der Waals (vdW) heterostructure devices rely on the incorporation of high quality dielectric materials which need to possess a low defect density as well as being atomically smooth and uniform. In this work we explore the use of talc dielectrics as a potentially clean alternative substrate to hexagonal boron nitride (hBN) for few-layer transition metal dichalcogenide (TMDC) transistors and excitonic TMDC monolayers. We find that talc dielectric transistors show small hysteresis which does not depend strongly on sweep rate and show negligible leakage current for our studied dielectric thicknesses. We also show narrow photoluminescence linewidths down to 10 meV for different TMDC monolayers on talc which highlights that talc is a promising material for future van der Waals devices.
Collapse
Affiliation(s)
- Darren Nutting
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
| | - Gabriela A Prando
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
- Physics Department, Federal University of São Carlos, São Carlos, Brazil.
| | - Marion Severijnen
- High Field Magnet Laboratory (HFML - EMFL), Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Ingrid D Barcelos
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Shi Guo
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
| | - Peter C M Christianen
- High Field Magnet Laboratory (HFML - EMFL), Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Uli Zeitler
- High Field Magnet Laboratory (HFML - EMFL), Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Yara Galvão Gobato
- Physics Department, Federal University of São Carlos, São Carlos, Brazil.
- High Field Magnet Laboratory (HFML - EMFL), Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Freddie Withers
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
| |
Collapse
|
35
|
Low-Temperature Fabrication of IZO Thin Film for Flexible Transistors. NANOMATERIALS 2021; 11:nano11102552. [PMID: 34684993 PMCID: PMC8539277 DOI: 10.3390/nano11102552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
Solution-processed thin film transistors (TFTs) used in flexible electronics require them to be fabricated under low temperature. Ultraviolet (UV) treatment is an effective method to transform the solution precursors into dense semiconductor films. In our work, high-quality indium zinc oxide (IZO) thin films were prepared from nitrate-based precursors after UV treatment at room temperature. After UV treatment, the structure of IZO thin films was gradually rearranged, resulting in good M–O–M network formation and bonds. TFTs using IZO as a channel layer were also fabricated on Si and Polyimide (PI) substrate. The field effect mobility, threshold voltage (Vth), and subthreshold swing (SS) for rigid and flexible IZO TFTs are 14.3 and 9.5 cm2/Vs, 1.1 and 1.7 V, and 0.13 and 0.15 V/dec., respectively. This low-temperature processed route will definitely contribute to flexible electronics fabrication.
Collapse
|
36
|
Bokka N, Karhade J, Sahatiya P. Deep learning enabled classification of real-time respiration signals acquired by MoSSe quantum dot-based flexible sensors. J Mater Chem B 2021; 9:6870-6880. [PMID: 34612334 DOI: 10.1039/d1tb01237a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Respiration rate is a vital parameter which is useful for the earlier identification of diseases. In this context, various types of devices have been fabricated and developed to monitor different breath rates. However, the disposability and biocompatibility of such sensors and the poor classification of different breath rates from sensor data are significant issues in medical services. This report attempts to focus on two important things: the classification of respiration signals from sensor data using deep learning and the disposability of devices. The use of the novel Janus MoSSe quantum dot (MoSSe QD) structure allows for stable respiration sensing because of unchanged wear rates under humid conditions, and also, the electron affinity and work function values suggest that MoSSe has a higher tendency to donate electrons and interact with the hydrogen molecule. Furthermore, for the real-time classification of different respiration signals, a 1D convolutional neural network (1D CNN) was incorporated. This algorithm was applied to four different breath patterns which achieved a state-of-the-art 10-trial accuracy of 98.18% for normal, 95.25% for slow, 97.64% for deep, and 98.18% for fast breaths. The successful demonstration of a stable, low-cost, and disposable respiration sensor with a highly accurate classification of signals is a major step ahead in developing wearable respiration sensors for future personal healthcare monitoring systems.
Collapse
Affiliation(s)
- Naveen Bokka
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Hyderabad, 500078, India.
| | | | | |
Collapse
|
37
|
Self-Powered Sensors: New Opportunities and Challenges from Two-Dimensional Nanomaterials. Molecules 2021; 26:molecules26165056. [PMID: 34443640 PMCID: PMC8398567 DOI: 10.3390/molecules26165056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Nanomaterials have gained considerable attention over the last decade, finding applications in emerging fields such as wearable sensors, biomedical care, and implantable electronics. However, these applications require miniaturization operating with extremely low power levels to conveniently sense various signals anytime, anywhere, and show the information in various ways. From this perspective, a crucial field is technologies that can harvest energy from the environment as sustainable, self-sufficient, self-powered sensors. Here we revisit recent advances in various self-powered sensors: optical, chemical, biological, medical, and gas. A timely overview is provided of unconventional nanomaterial sensors operated by self-sufficient energy, focusing on the energy source classification and comparisons of studies including self-powered photovoltaic, piezoelectric, triboelectric, and thermoelectric technology. Integration of these self-operating systems and new applications for neuromorphic sensors are also reviewed. Furthermore, this review discusses opportunities and challenges from self-powered nanomaterial sensors with respect to their energy harvesting principles and sensing applications.
Collapse
|
38
|
Garg M, Gupta A, Sharma AL, Singh S. Advancements in 2D Materials Based Biosensors for Oxidative Stress Biomarkers. ACS APPLIED BIO MATERIALS 2021; 4:5944-5960. [DOI: 10.1021/acsabm.1c00625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mayank Garg
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arushi Gupta
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit L. Sharma
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Singh
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
39
|
Recent Advances in Two-Dimensional Transition Metal Dichalcogenide Nanocomposites Biosensors for Virus Detection before and during COVID-19 Outbreak. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5070190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The deadly Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak has become one of the most challenging pandemics in the last century. Clinical diagnosis reports a high infection rate within a large population and a rapid mutation rate upon every individual infection. The polymerase chain reaction has been a powerful and gold standard molecular diagnostic technique over the past few decades and hence a promising tool to detect the SARS-CoV-2 nucleic acid sequences. However, it can be costly and involved in complicated processes with a high demand for on-site tests. This pandemic emphasizes the critical need for designing cost-effective and fast diagnosis strategies to prevent a potential viral source by ultrasensitive and selective biosensors. Two-dimensional (2D) transition metal dichalcogenide (TMD) nanocomposites have been developed with unique physical and chemical properties crucial for building up nucleic acid and protein biosensors. In this review, we cover various types of 2D TMD biosensors available for virus detection via the mechanisms of photoluminescence/optical, field-effect transistor, surface plasmon resonance, and electrochemical signals. We summarize the current state-of-the-art applications of 2D TMD nanocomposite systems for sensing proteins/nucleic acid from different types of lethal viruses. Finally, we identify and discuss the advantages and limitations of TMD-based nanocomposites biosensors for viral recognition.
Collapse
|
40
|
Efficient ReSe 2 Photodetectors with CVD Single-Crystal Graphene Contacts. NANOMATERIALS 2021; 11:nano11071650. [PMID: 34201696 PMCID: PMC8303534 DOI: 10.3390/nano11071650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 01/16/2023]
Abstract
Rhenium-based 2D transition metal dichalcogenides such as ReSe2 are suitable candidates as photoactive materials for optoelectronic devices. Here, photodetectors based on mechanically exfoliated ReSe2 crystals were fabricated using chemical vapor deposited (CVD) graphene single-crystal (GSC) as lateral contacts. A “pick & place” method was adopted to transfer the desired crystals to the intended position, easing the device fabrication while reducing potential contaminations. A similar device with Au was fabricated to compare contacts’ performance. Lastly, a CVD hexagonal boron nitride (hBN) substrate passivation layer was designed and introduced in the device architecture. Raman spectroscopy was carried out to evaluate the device materials’ structural and electronic properties. Kelvin probe force measurements were done to calculate the materials’ work function, measuring a minimal Schottky barrier height for the GSC/ReSe2 contact (0.06 eV). Regarding the electrical performance, I-V curves showed sizable currents in the GSC/ReSe2 devices in the dark and under illumination. The devices presented high photocurrent and responsivity, along with an external quantum efficiency greatly exceeding 100%, confirming the non-blocking nature of the GSC contacts at high bias voltage (above 2 V). When introducing the hBN passivation layer, the device under white light reached a photo-to-dark current ratio up to 106.
Collapse
|
41
|
Ogura H, Kaneda M, Nakanishi Y, Nonoguchi Y, Pu J, Ohfuchi M, Irisawa T, Lim HE, Endo T, Yanagi K, Takenobu T, Miyata Y. Air-stable and efficient electron doping of monolayer MoS 2 by salt-crown ether treatment. NANOSCALE 2021; 13:8784-8789. [PMID: 33928997 DOI: 10.1039/d1nr01279g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To maximize the potential of transition-metal dichalcogenides (TMDCs) in device applications, the development of a sophisticated technique for stable and highly efficient carrier doping is critical. Here, we report the efficient n-type doping of monolayer MoS2 using KOH/benzo-18-crown-6, resulting in a doped TMDC that is air-stable. MoS2 field-effect transistors show an increase in on-current of three orders of magnitude and degenerate the n-type behaviour with high air-stability for ∼1 month as the dopant concentration increases. Transport measurements indicate a high electron density of 3.4 × 1013 cm-2 and metallic-type temperature dependence for highly doped MoS2. First-principles calculations support electron doping via surface charge transfer from the K/benzo-18-crown-6 complex to monolayer MoS2. Patterned doping is demonstrated to improve the contact resistance in MoS2-based devices.
Collapse
Affiliation(s)
- Hiroto Ogura
- Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397, Japan.
| | - Masahiko Kaneda
- Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397, Japan.
| | - Yusuke Nakanishi
- Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397, Japan.
| | - Yoshiyuki Nonoguchi
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Jiang Pu
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
| | - Mari Ohfuchi
- Fujitsu Laboratories Ltd, Atsugi, 243-0197, Japan
| | | | - Hong En Lim
- Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397, Japan.
| | - Takahiko Endo
- Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397, Japan.
| | - Kazuhiro Yanagi
- Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397, Japan.
| | - Taishi Takenobu
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397, Japan.
| |
Collapse
|
42
|
Pataniya PM, Patel V, Sumesh CK. MoS 2/WSe 2nanohybrids for flexible paper-based photodetectors. NANOTECHNOLOGY 2021; 32:315709. [PMID: 33848985 DOI: 10.1088/1361-6528/abf77a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Flexible photodetectors functionalized by transition metal dichalcogenides have attracted great attention due to their excellent photo-harvesting efficiency. However, the field of optoelectronics still requires advancement in the production of large-area, broad band and flexible photodetectors. Here we report a flexible, stable, broad band and fast photodetector based on a MoS2/WSe2heterostructure on ordinary photocopy paper with pencil-drawn graphite electrodes. Ultrathin MoS2/WSe2nanohybrids have been synthesized by an ultrahigh yield liquid-phase exfoliation technique. The thin sheets of WSe2, and MoS2contain two to four layers with a highly c-oriented crystalline structure. Subsequently, the photodetector was exploited under ultra-broad spectral range from 400 to 780 nm. The photodetector exhibits excellent figure of merit such as on/off ratio of the order of 103, photoresponsivity of 124 mA W-1and external quantum efficiency of 23.1%. Encouragingly, rise/decay time of about 0.1/0.3 s was realized, which is better than in previous reports on paper-based devices.
Collapse
Affiliation(s)
- Pratik M Pataniya
- Department of Physical Science, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHRUSAT, Changa-388421, Gujarat, India
| | - Vikas Patel
- Sophisticated Instrumentation Centre for Applied Research and Testing (SICART), Vallabh Vidyanagar, Anand, Gujarat-388 120, India
| | - C K Sumesh
- Department of Physical Science, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHRUSAT, Changa-388421, Gujarat, India
| |
Collapse
|
43
|
Lucrezi R, Heil C. Superconductivity and strong anharmonicity in novel Nb-S phases. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:174001. [PMID: 33429377 DOI: 10.1088/1361-648x/abda7a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
In this work we explore the phase diagram of the binary Nb-S system from ambient pressures up to 250 GPa usingab initioevolutionary crystal structure prediction. We find several new stable compositions and phases, especially in the high-pressure regime, and investigate their electronic, vibrational, and superconducting properties. Our calculations show that all materials, besides the low-pressure phases of pure sulfur, are metals with low electron-phonon (ep) coupling strengths and critical superconducting temperatures below 15 K. Furthermore, we investigate the effects of phonon anharmonicity on lattice dynamics, ep interactions, and superconductivity for the novel high-pressure phase of Nb2S, demonstrating that the inclusion of anharmonicity stabilizes the lattice and enhances the ep interaction.
Collapse
Affiliation(s)
- Roman Lucrezi
- Institute of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Christoph Heil
- Institute of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| |
Collapse
|
44
|
A bio-syncretic phototransistor based on optogenetically engineered living cells. Biosens Bioelectron 2021; 178:113050. [PMID: 33548650 DOI: 10.1016/j.bios.2021.113050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Human eyes rely on photosensitive receptors to convert light intensity into action potentials for visual perception, and thus bio-inspired photodetectors with bioengineered photoresponsive elements for visual prostheses have received considerable attention by virtue of superior biological functionality and better biocompatibility. However, the current bioengieered photodetectors based on biological elements face a lot of challenges such as slow response time and lack of effective detection of weak bioelectrical signals, resulting in difficulty to perform imaging. Here, we report a human eye-inspired phototransistor by integrating optogenetically engineered living cells and a graphene-based transistor. The living cells, engineered with photosensitive ion channels, channelrhodopsin-2 (ChR2), and thus endowed with the capability of transducing light intensity into bioelectrical signals, are coupled with the graphene layer of the transistor and can regulate the transistor's output. The results show that the photosensitive ion channels enable the phototransistor to output stronger photoelectrical currents with relatively fast response (~25 ms) and wider dynamic range, and demonstrate the transistor owns optical and biological gating with a significant large on/off ratio of 197.5 and high responsivity of 1.37 mA W-1. An artificial imaging system, which mimics the pathway of human visual information transmission from the retina through the lateral geniculate nucleus to the visual cortex, is constructed with the transistor and demonstrate the feasibility of imaging using the bioengineered cells. This work shows a potential that optogenetically engineered cells can be used to develop novel visual prostheses and paves a new avenue for engineering bio-syncretic sensing devices.
Collapse
|
45
|
Ahmad W, Gong Y, Abbas G, Khan K, Khan M, Ali G, Shuja A, Tareen AK, Khan Q, Li D. Evolution of low-dimensional material-based field-effect transistors. NANOSCALE 2021; 13:5162-5186. [PMID: 33666628 DOI: 10.1039/d0nr07548e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Field-effect transistors (FETs) have tremendous applications in the electronics industry due to their outstanding features such as small size, easy fabrication, compatibility with integrated electronics, high sensitivity, rapid detection and easy measuring procedures. However, to meet the increasing demand of the electronics industry, efficient FETs with controlled short channel effects, enhanced surface stability, reduced size, and superior performances based on low-dimensional materials are desirable. In this review, we present the developmental roadmap of FETs from conventional to miniaturized devices and highlight their prospective applications in the field of optoelectronic devices. Initially, a detailed study of the general importance of bulk and low-dimensional materials is presented. Then, recent advances in low-dimensional material heterostructures, classification of FETs, and the applications of low-dimensional materials in field-effect transistors and photodetectors are presented in detail. In addition, we also describe current issues in low-dimensional material-based FETs and propose potential approaches to address these issues, which are crucial for developing electronic and optoelectronic devices. This review will provide guidelines for low-dimensional material-based FETs with high performance and advanced applications in the future.
Collapse
Affiliation(s)
- Waqas Ahmad
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Youning Gong
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Ghulam Abbas
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Maaz Khan
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ghafar Ali
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ahmed Shuja
- Centre for Advanced Electronics & Photovoltaic Engineering, International Islamic University, Islamabad, Pakistan
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Qasim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Delong Li
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
46
|
Seok H, Megra YT, Kanade CK, Cho J, Kanade VK, Kim M, Lee I, Yoo PJ, Kim HU, Suk JW, Kim T. Low-Temperature Synthesis of Wafer-Scale MoS 2-WS 2 Vertical Heterostructures by Single-Step Penetrative Plasma Sulfurization. ACS NANO 2021; 15:707-718. [PMID: 33411506 DOI: 10.1021/acsnano.0c06989] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted considerable attention owing to their synergetic effects with other 2D materials, such as graphene and hexagonal boron nitride, in TMD-based heterostructures. Therefore, it is important to understand the physical properties of TMD-TMD vertical heterostructures for their applications in next-generation electronic devices. However, the conventional synthesis process of TMD-TMD heterostructures has some critical limitations, such as nonreproducibility and low yield. In this paper, we synthesize wafer-scale MoS2-WS2 vertical heterostructures (MWVHs) using plasma-enhanced chemical vapor deposition (PE-CVD) via penetrative single-step sulfurization discovered by time-dependent analysis. This method is available for fabricating uniform large-area vertical heterostructures (4 in.) at a low temperature (300 °C). MWVHs were characterized using various spectroscopic and microscopic techniques, which revealed their uniform nanoscale polycrystallinity and the presence of vertical layers of MoS2 and WS2. In addition, wafer-scale MWVHs diodes were fabricated and demonstrated uniform performance by current mapping. Furthermore, mode I fracture tests were performed using large double cantilever beam specimens to confirm the separation of the MWVHs from the SiO2/Si substrate. Therefore, this study proposes a synthesis mechanism for TMD-TMD heterostructures and provides a fundamental understanding of the interfacial properties of TMD-TMD vertical heterostructures.
Collapse
Affiliation(s)
- Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yonas Tsegaye Megra
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chaitanya K Kanade
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Vinit K Kanade
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minjun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inkoo Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pil J Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyeong-U Kim
- Plasma Engineering Laboratory, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Ji Won Suk
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Smart Fabrication Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
47
|
Kolesnik DL, Pyaskovskaya ON, Gnatyuk OP, Cherepanov VV, Karakhim SO, Polovii IO, Posudievsky OY, Konoshchuk NV, Strelchuk VV, Nikolenko AS, Dovbeshko GI, Solyanik GI. The effect of 2D tungsten disulfide nanoparticles on Lewis lung carcinoma cells in vitro. RSC Adv 2021; 11:16142-16150. [PMID: 35479162 PMCID: PMC9030634 DOI: 10.1039/d1ra01469b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 11/21/2022] Open
Abstract
The unique physicochemical properties of modern two-dimensional (2D) nanomaterials with graphene-like structures make them promising candidates for biology and medicine purposes. In this article, we investigate the influence of the two-dimensional tungsten disulfide (2D WS2) water suspension nanoparticles obtained by an improved mechanochemical method from powdered WS2 on morphological and structural characteristics of Lewis lung carcinoma cells using FT-IR, Raman spectroscopy, and confocal microscopy. The characterization of the 2D WS2 nanoparticles by different physical methods is given also. We have highlighted that 2D WS2 does not exert cytotoxic activity in the case of 1 day incubation with tumor cells. Prolongation of the incubation period up to 2 days has caused a statistically significant (p < 0.05) concentration-dependent decrease of the number of viable cells by more than 30% with the maximum cytotoxic effect at concentrations of 2D WS2 close to 2 μg ml−1. In the Raman spectra of 2D WS2 treated cells the bands centered at 354 cm−1 and 419 cm−1, which are assigned to characteristics and modes of WS2 nanoparticles were observed. The obtained data indicate, that the cytotoxic effect of 2D WS2 on tumor cells in the case of long-term incubation is realized particularly through the ability of 2D WS2 to enter tumor cells and/or accumulate on their surface, which gives a rationale to conduct further studies of their antitumor efficacy in vitro and in vivo when combined with chemotherapeutic drugs. WS2 2D nanoparticles show no cytotoxic and/or cytostatic effect on Lewis lung carcinoma cells after one day incubation. Only after two days incubation we registered cytotoxic effect. Cells incubated with 2D WS2 nanoparticles have luminescence in the blue spectral region.![]()
Collapse
Affiliation(s)
- D. L. Kolesnik
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| | - O. N. Pyaskovskaya
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| | - O. P. Gnatyuk
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - V. V. Cherepanov
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - S. O. Karakhim
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine
- Kyiv 01601
- Ukraine
| | - I. O. Polovii
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - O. Yu. Posudievsky
- L. V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - N. V. Konoshchuk
- L. V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - V. V. Strelchuk
- V. E. Lashkaryev Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - A. S. Nikolenko
- V. E. Lashkaryev Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - G. I. Dovbeshko
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - G. I. Solyanik
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| |
Collapse
|
48
|
Mir S, Yadav VK, Singh JK. Recent Advances in the Carrier Mobility of Two-Dimensional Materials: A Theoretical Perspective. ACS OMEGA 2020; 5:14203-14211. [PMID: 32596556 PMCID: PMC7315419 DOI: 10.1021/acsomega.0c01676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/29/2020] [Indexed: 05/12/2023]
Abstract
Since the breakthrough of graphene, 2D materials have engrossed tremendous research attention due to their extraordinary properties and potential applications in electronic and optoelectronic devices. The high carrier mobility in the semiconducting material is critical to guarantee a high switching speed and low power dissipation in the corresponding device. Here, we review significant recent advances and important new developments in the carrier mobility of 2D materials based on theoretical investigations. We focus on some of the most widely studied 2D materials, their development, and future applications. Based on the current progress in this field, we conclude the review by providing challenges and an outlook in this field.
Collapse
Affiliation(s)
| | - Vivek Kumar Yadav
- Department of Chemical Engineering, IIT Kanpur, Kanpur 208016, India
| | - Jayant Kumar Singh
- Department of Chemical Engineering, IIT Kanpur, Kanpur 208016, India
- Prescience
Insilico Private Limited, Old Madras Road, Bangalore 560049, India
- E-mail:
| |
Collapse
|
49
|
Zhang X, Teng SY, Loy ACM, How BS, Leong WD, Tao X. Transition Metal Dichalcogenides for the Application of Pollution Reduction: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1012. [PMID: 32466377 PMCID: PMC7353444 DOI: 10.3390/nano10061012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023]
Abstract
The material characteristics and properties of transition metal dichalcogenide (TMDCs) have gained research interest in various fields, such as electronics, catalytic, and energy storage. In particular, many researchers have been focusing on the applications of TMDCs in dealing with environmental pollution. TMDCs provide a unique opportunity to develop higher-value applications related to environmental matters. This work highlights the applications of TMDCs contributing to pollution reduction in (i) gas sensing technology, (ii) gas adsorption and removal, (iii) wastewater treatment, (iv) fuel cleaning, and (v) carbon dioxide valorization and conversion. Overall, the applications of TMDCs have successfully demonstrated the advantages of contributing to environmental conversation due to their special properties. The challenges and bottlenecks of implementing TMDCs in the actual industry are also highlighted. More efforts need to be devoted to overcoming the hurdles to maximize the potential of TMDCs implementation in the industry.
Collapse
Affiliation(s)
- Xixia Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Sin Yong Teng
- Institute of Process Engineering & NETME Centre, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic;
| | - Adrian Chun Minh Loy
- Department of Chemical Engineering, Monash University, Clayton, Melbourne 3800, Australia;
| | - Bing Shen How
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching 93350, Malaysia;
| | - Wei Dong Leong
- Department of Chemical and Environmental Engineering, University of Nottingham, Semenyih 43500, Malaysia;
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
| |
Collapse
|
50
|
Elafandi S, Ahmadi Z, Azam N, Mahjouri-Samani M. Gas-Phase Formation of Highly Luminescent 2D GaSe Nanoparticle Ensembles in a Nonequilibrium Laser Ablation Process. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10050908. [PMID: 32397239 PMCID: PMC7279401 DOI: 10.3390/nano10050908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Interest in layered two-dimensional (2D) materials has been escalating rapidly over the past few decades due to their promising optoelectronic and photonic properties emerging from their atomically thin 2D structural confinements. When these 2D materials are further confined in lateral dimensions toward zero-dimensional (0D) structures, 2D nanoparticles and quantum dots with new properties can be formed. Here, we report a nonequilibrium gas-phase synthesis method for the stoichiometric formation of gallium selenide (GaSe) nanoparticles ensembles that can potentially serve as quantum dots. We show that the laser ablation of a target in an argon background gas condenses the laser-generated plume, resulting in the formation of metastable nanoparticles in the gas phase. The deposition of these nanoparticles onto the substrate results in the formation of nanoparticle ensembles, which are then post-processed to crystallize or sinter the nanoparticles. The effects of background gas pressures, in addition to crystallization/sintering temperatures, are systematically studied. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, and time-correlated single-photon counting (TCSPC) measurements are used to study the correlations between growth parameters, morphology, and optical properties of the fabricated 2D nanoparticle ensembles.
Collapse
|