1
|
Jiang M, Zhu Y, Jia Z, Zhong X, Sun Q, Wang Y, Yao J. Boron and Oxygen Dual-Doped Carbon Nitride Nanotubes with Frustrated Lewis Pairs for Efficient Electrocatalytic Ammonia Synthesis. SMALL METHODS 2024:e2401672. [PMID: 39632457 DOI: 10.1002/smtd.202401672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Indexed: 12/07/2024]
Abstract
This work reports boron and oxygen dual-doped carbon nitride nanotubes (B/O-CNNTs) prepared via a copolymerization process for electrocatalytic ammonia synthesis from nitrogen gas (NRR) and nitrate (NO3RR) sources, respectively. By adjusting the dosage of boron oxide precursor, the texture and content of B/O dual dopants and the coordination environment in the resulting 1D CNNTs can be tuned. The best B/O-CNNTs can achieve maximum Faradaic efficiencies of 35% and 96% at -1.1 V versus RHE with corresponding ammonia yields of 16.7 and 211.4 µg h-1 mg-1, respectively. A comparatively higher selectivity is achieved in the NRR process compared to NO3RR. The B/O-induced coordinations boost electron transfer rates along the longitudinal axis. The presence of carbon vacancies and the unique 1D nanotubular structure enhance interactions among reactants. Concurrently, the formed frustrated Lewis pairs are pivotal in activating chemisorbed nitrogen gas or nitrate, resulting in notable accelerations of ammonia generation kinetics. In situ UV-vis spectroscopy reveals that the ideal potential of -1.1 V versus RHE facilitates the involvement of free electrons in the reaction, as it aligns with the conduction potential of B/O-CNNTs. This study paves the way for the design of non-metal-based electrocatalysts with dual dopants for sustainable electrocatalysis toward ammonia synthesis.
Collapse
Affiliation(s)
- Meng Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yuxiang Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Zhengtao Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xiang Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Qiufan Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
2
|
Gao Z, Xu M, Liu R, Xu H, Chu D, Yang D, Feng M, Wang T, Jin G. Designing a flower-shaped ZnS/CoS heterojunction for efficient electroreduction of N 2 to NH 3. Chem Commun (Camb) 2024; 60:10878-10881. [PMID: 39252573 DOI: 10.1039/d4cc02860k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) is a highly promising process for synthesizing ammonia and holds great potential to replace the traditional Haber-Bosch process. Here, we report a novel flower-shaped ZnS/CoS composite electrocatalyst for the NRR. Remarkably, the ZnS/CoS-105 heterojunction catalyst achieved an NH3 yield rate of 20.42 μg h-1 mgcat.-1 and a faradaic efficiency (FE) of 11.83% at -0.45 V VS. RHE in an aqueous 0.1 M Na2SO4 solution. In addition, ZnS/CoS-105 showed remarkable stability (up to 24 h) for the NRR process.
Collapse
Affiliation(s)
- Ze Gao
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Ming Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Renming Liu
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Hang Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Dongxue Chu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Daming Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Ting Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Guangyong Jin
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| |
Collapse
|
3
|
Min DH, Jung M, Nguyen PM, Xiong P, Lee SJ, Han X, Li W, Yu X, Shin H, Dunn B, Park HS. Anion Storing Boron Nitride Hybrid Nanosheets for High-Performance Dual Ion and Zinc Alkaline Full Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405548. [PMID: 39295494 DOI: 10.1002/smll.202405548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Indexed: 09/21/2024]
Abstract
Hexagonal boron nitride (BN), a well-known member of 2D materials, has a structure similar to graphene and is often referred to as white graphene. Despite its unique physical and chemical properties for energy storage applications, there have been very few studies on how BN stores anion carriers. Herein, the hybrid architecture and anion storage mechanism of BN nanosheets for high-performance hybrid energy storage full cells based on dual-ion and Zinc (Zn) alkaline systems is demonstrated. The chemical bonding between BN and reduced graphene oxide (rGO) is attributed to the formation of the heterointerface, which facilitates the charge transfer kinetics during an OH storing process. Based on the reversible surface redox reaction of BN and rGO hybrid (BN@rGO) confirmed by computational and spectroscopic analyses, the BN@rGO electrode is applied to both Na and OH dual-ion and Zn alkaline full cells. In the dual-ion system, Ti3C2‖BN@rGO full cells extended the operating voltage range up to 1.7 V, delivering a cell capacity of 49.4 mAh g-1 at 1000 mA g-1 and retaining 80% of its initial capacity after 40 000 cycles. In the Zn alkaline system, Zn‖BN@rGO full cells achieved a cell capacity of 58.1 mAh g-1 at 1000 mA g-1 and retained 80% capacity over 90 000 cycles.
Collapse
Affiliation(s)
- Dong Hyun Min
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Mingyu Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Phuong Minh Nguyen
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Peixun Xiong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sang Joon Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xiaotong Han
- School of Chemistry and Chemical Engineering, Chongqing University, No.55 University City South Road, Chongqing, 401331, P. R. China
| | - Wenwu Li
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xu Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Hyeyoung Shin
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Bruce Dunn
- Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| | - Ho Seok Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
| |
Collapse
|
4
|
Li Q, Zhang K, Che X, Gao T, Wang S, Ni G. Preparation of BN Nanoparticle with High Sintering Activity and Its Formation Mechanism. Molecules 2024; 29:3458. [PMID: 39124863 PMCID: PMC11313934 DOI: 10.3390/molecules29153458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Hexagonal boron nitride (h-BN) nanoparticles have attracted increasing attention due to their unique structure and properties. However, it is difficult to synthesize h-BN nanoparticles with uniform spherical morphology due to their crystal characteristic. The morphology control by tuning their precursor synthesis is a promising and effective strategy to solve this problem. Especially, the treatment temperature of precursors plays an important role in the morphology and surface area of h-BN nanoparticles. Herein, h-BN nanoparticles with different morphologies were synthesized via regulating the treatment temperature of precursors. The result shows that treatment temperature will affect the microstructure and state of precursor and further influence the morphology of h-BN products. Benefiting from the unique structure, the h-BN obtained using 250 °C precursors shows higher specific surface area (61.1 m2 g-1) than that of 85 °C (36.5 m2 g-1) and 145 °C (27.9 m2 g-1). h-BN products obtained using 250 °C precursors show higher specific surface area than that of 85 °C and 145 °C. The optimal condition for obtaining high-quality spherical h-BN is the pretreatment temperature of 250 °C and sintering temperature of 1300 °C. Importantly, compared with commercial h-BN nanoparticles, the synthesized h-BN nanoparticles show more uniform structure and larger specific surface area, indicating that sintering activity will be greatly improved. Furthermore, the reaction pathway and formation mechanism of h-BN was revealed by DFT calculations. The result shows that the five stationary states and five transition states exist in the reaction pathway, and the energy barrier can be overcome at high temperatures to form a ring h-BN. In view of its simplicity and efficiency, this work is promising for designing and guiding the synthesis of h-BN nanoparticles with uniform morphology.
Collapse
Affiliation(s)
- Qun Li
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| | - Kuo Zhang
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| | - Xiangming Che
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| | - Tengchao Gao
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| | - Shuhuan Wang
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| | - Guolong Ni
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China; (Q.L.); (K.Z.); (X.C.); (T.G.); (S.W.)
- Tangshan Key Laboratory of Special Metallurgy and Material Manufacture, Tangshan 063210, China
| |
Collapse
|
5
|
Chhetri A, Biswas A, Podder S, Dey RS, Mitra J. Strategic design of VO 2 encased in N-doped carbon as an efficient electrocatalyst for the nitrogen reduction reaction in neutral and acidic media. NANOSCALE 2024. [PMID: 38651787 DOI: 10.1039/d4nr00640b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Electrocatalytic nitrogen fixation to ammonia (NH3), a precursor for fertilizer production and a promising energy carrier, has garnered widespread interest as an environment-friendly and sustainable alternative to the energy-intensive fossil-feedstock-dependent Haber-Bosch process. The large-scale deployment of this process is contingent on the identification of inexpensive, Earth-abundant systems that can operate efficiently, irrespective of the electrolyte pH for the selective production of NH3. In this regard, we discuss the scalable synthesis of VO2 anchored on N-doped carbon (VO2@CN), and its applicability as a robust electrocatalyst for the nitrogen reduction reaction (NRR). Benefitting from the presence of exposed VO2, which presumably acts as the active site for nitrogen reduction, and its activity over a broad pH range (from acidic to neutral), VO2@CN exhibits a high NH3 yield of 0.31 and 0.52 μmol h-1 mgcat-1 and a maximum Faradaic efficiency (FE) of 67.9% and 61.9% at -0.1 V vs. RHE, under neutral and acidic conditions, respectively. The obscured reaction intermediates of the NRR were identified from in situ ATR-IR studies under both electrolyte conditions. Additionally, the high selectivity of the catalyst was ascertained from the absence of hydrazine production and the competing hydrogen evolution reaction (HER). However, ammonia production underwent a reduction over 12 h of continuous operation presumably owing to the leaching of catalyst under these electrolysis conditions, which was more pronounced in electrolytes with acidic pH. Overall, the present report unveils the performance of an earth-abundant vanadium oxide-based system as an efficient electrocatalyst for the NRR under acidic and neutral pH conditions.
Collapse
Affiliation(s)
- Ashis Chhetri
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashmita Biswas
- Institute of Nano Science and Technology, Sector 81, Mohali 140306, Punjab, India.
| | - Sumana Podder
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology, Sector 81, Mohali 140306, Punjab, India.
| | - Joyee Mitra
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Kong Y, Li X, Puente Santiago AR, He T. Nonmetal Atom Doping Induced Orbital Shifts and Charge Modulation at the Edge of Two-Dimensional Boron Carbonitride Leading to Enhanced Photocatalytic Nitrogen Reduction. J Am Chem Soc 2024; 146:5987-5997. [PMID: 38381029 DOI: 10.1021/jacs.3c12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Electronic structure, particularly charge state analysis, plays a crucial role in comprehending catalytic mechanisms. This study focuses on metal-free boron carbonitride (BCN) nanosheets as a case study to investigate the impact of heteroatom doping on the charge state of active sites at the edge of two-dimensional (2D) metal-free nanomaterials. Our observations revealed that the doping induces a shift in the frontier py orbital near the Fermi level, accompanied by alterations in its charge state. These changes provide insights into the nitrogen adsorption descriptors and the critical hydrogenation step, ultimately leading to the proposal of a competitive charge transfer mechanism. Additionally, this exploration has led to the screening of five BCN-type structures (P@T1-C1, S@T1-B1, O@T1-B1, P@T1-B1C2, and P@T1-B1C3) with promising nitrogen reduction reaction (NRR) performances. The BCN structure (S@T1-B1) exhibited the lowest NRR overpotential reaching -0.2 V, which is associated with the proposed charge competition mechanism. Furthermore, the investigation delves into the key step hydrogenation mechanism, descriptors, and volcano diagrams of the conformational relationships. In addition, the proposed doping strategy endows the 2D-BCN with more sensitivity toward the solar spectrum, suggesting its application as a potential photocatalyst. Overall, this study establishes a strong foundation for the advancement of nonmetal-atom-doped BCN nanosheets in nitrogen reduction applications, while also providing a versatile framework for fine-tuning edge-site activity within the broader context of two-dimensional photo/electrocatalytic materials.
Collapse
Affiliation(s)
- Youchao Kong
- Department of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Xiaoshuang Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Alain R Puente Santiago
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tianwei He
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
7
|
Guo W, Yu L, Tang L, Wan Y, Lin Y. Recent Advances in Mechanistic Understanding of Metal-Free Carbon Thermocatalysis and Electrocatalysis with Model Molecules. NANO-MICRO LETTERS 2024; 16:125. [PMID: 38376726 PMCID: PMC10879078 DOI: 10.1007/s40820-023-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/21/2024]
Abstract
Metal-free carbon, as the most representative heterogeneous metal-free catalysts, have received considerable interests in electro- and thermo-catalytic reactions due to their impressive performance and sustainability. Over the past decade, well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms. However, active sites, key intermediate species, precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods. In this Review, we summarize the extensive efforts on model catalysts since the 2000s, particularly in the past decade, to overcome the influences of material and structure limitations in metal-free carbon catalysis. Using both nanomolecule model and bulk model, the real contribution of each alien species, defect and edge configuration to a series of fundamentally important reactions, such as thermocatalytic reactions, electrocatalytic reactions, were systematically studied. Combined with in situ techniques, isotope labeling and size control, the detailed reaction mechanisms, the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level. Furthermore, the outlook of model carbon catalysis has also been proposed in this work.
Collapse
Affiliation(s)
- Wei Guo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Linhui Yu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Ling Tang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Yan Wan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Yangming Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
8
|
Dai X, Du ZY, Sun Y, Chen P, Duan X, Zhang J, Li H, Fu Y, Jia B, Zhang L, Fang W, Qiu J, Ma T. Enhancing Green Ammonia Electrosynthesis Through Tuning Sn Vacancies in Sn-Based MXene/MAX Hybrids. NANO-MICRO LETTERS 2024; 16:89. [PMID: 38227269 PMCID: PMC10792155 DOI: 10.1007/s40820-023-01303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Renewable energy driven N2 electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production. However, relevant out-lab research is still in its infancy. Herein, a novel Sn-based MXene/MAX hybrid with abundant Sn vacancies, Sn@Ti2CTX/Ti2SnC-V, was synthesized by controlled etching Sn@Ti2SnC MAX phase and demonstrated as an efficient electrocatalyst for electrocatalytic N2 reduction. Due to the synergistic effect of MXene/MAX heterostructure, the existence of Sn vacancies and the highly dispersed Sn active sites, the obtained Sn@Ti2CTX/Ti2SnC-V exhibits an optimal NH3 yield of 28.4 µg h-1 mgcat-1 with an excellent FE of 15.57% at - 0.4 V versus reversible hydrogen electrode in 0.1 M Na2SO4, as well as an ultra-long durability. Noticeably, this catalyst represents a satisfactory NH3 yield rate of 10.53 µg h-1 mg-1 in the home-made simulation device, where commercial electrochemical photovoltaic cell was employed as power source, air and ultrapure water as feed stock. The as-proposed strategy represents great potential toward ammonia production in terms of financial cost according to the systematic technical economic analysis. This work is of significance for large-scale green ammonia production.
Collapse
Affiliation(s)
- Xinyu Dai
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Institute of Clean Energy Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Zhen-Yi Du
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Ying Sun
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Institute of Clean Energy Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Ping Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, People's Republic of China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junjun Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, People's Republic of China
| | - Hui Li
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Yang Fu
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Wenhui Fang
- College of Chemical Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jieshan Qiu
- College of Chemical Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
9
|
Iqbal A, Tripathi A, Thapa R. C 2 Product Formation over the C 1 Product and HER on the 111 Plane of Specific Cu Alloy Nanoparticles Identified through Multiparameter Optimization. Inorg Chem 2024; 63:1462-1470. [PMID: 38175274 DOI: 10.1021/acs.inorgchem.3c03984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
C2 products are more desirable than C1 products during CO2 electroreduction (CO2ER) because the former possess higher energy density and greater industrial value. For CO2ER, Cu is a well-known catalyst, but the selectivity toward C2 products is still a big challenge for researchers due to complex intermediates, different final products, and large space of the catalyst due to its morphology, plane, size, host surface etc. Using density functional theory (DFT) calculations, we find that alloying of Cu nanoparticles can help to enhance the selectivity toward C2 products during CO2ER with a low overpotential. By a systematic investigation of 111 planes (which prefer the C1 product in the case of bulk Cu), the alloys show the generation of C2 products via *CO-*CO dimerization (* indicates adsorbed state). It also suppresses the counter-pathway of hydrogenation of *CO to *CHO, which leads to C1 products. Further, we find that *CH2CHO is the bifurcating intermediate to distinguish between ethanol and ethylene as the final product. We have used simple graphical construction to identify the catalyst for CO2ER over HER, and vice versa. We have also defined the case of hydrogen poisoning and projected a parity plot to recognize the catalyst for C2 product evolution over the C1 product. Our study reveals that Cu-Ag and Cu-Zn catalysts selectively promote ethanol production on 111 planes. Moreover, an edge-doped 2SO2 graphene nanoribbon as the host layer further lowers the barrier and selectively promotes ethanol on Cu38- and Cu79-based alloys. This work provides new theoretical insights into designing Cu-based nanoalloy catalysts for C2 product formation on the 111 plane.
Collapse
Affiliation(s)
- Asif Iqbal
- Department of Physics, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
| | - Anjana Tripathi
- Department of Physics, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
| | - Ranjit Thapa
- Department of Physics, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
- Centre for Computational and Integrative Sciences, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
| |
Collapse
|
10
|
Zhang S, Zha Y, Ye Y, Li K, Lin Y, Zheng L, Wang G, Zhang Y, Yin H, Shi T, Zhang H. Oxygen-Coordinated Single Mn Sites for Efficient Electrocatalytic Nitrate Reduction to Ammonia. NANO-MICRO LETTERS 2023; 16:9. [PMID: 37932531 PMCID: PMC10628069 DOI: 10.1007/s40820-023-01217-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection. Here, we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen (O) coordination on bacterial cellulose-converted graphitic carbon (Mn-O-C). Evidence of the atomically dispersed Mn-(O-C2)4 moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy. As a result, the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH3 yield rate (RNH3) of 1476.9 ± 62.6 μg h-1 cm-2 at - 0.7 V (vs. reversible hydrogen electrode, RHE) and a faradaic efficiency (FE) of 89.0 ± 3.8% at - 0.5 V (vs. RHE) under ambient conditions. Further, when evaluated with a practical flow cell, Mn-O-C shows a high RNH3 of 3706.7 ± 552.0 μg h-1 cm-2 at a current density of 100 mA cm-2, 2.5 times of that in the H cell. The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C2)4 sites not only effectively inhibit the competitive hydrogen evolution reaction, but also greatly promote the adsorption and activation of nitrate (NO3-), thus boosting both the FE and selectivity of NH3 over Mn-(O-C2)4 sites.
Collapse
Affiliation(s)
- Shengbo Zhang
- Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yuankang Zha
- Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yixing Ye
- Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Ke Li
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture, School of Information and Computer, Anhui Agricultural University, Hefei, 230026, People's Republic of China.
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing, 100049, People's Republic of China
| | - Guozhong Wang
- Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yunxia Zhang
- Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Huajie Yin
- Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Tongfei Shi
- Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Haimin Zhang
- Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
11
|
Jia L, Xue H, Xian F, Sugahara Y, Sakai N, Nan J, Yamauchi Y, Sasaki T, Ma R. Porous and Partially Dehydrogenated Fe 2+ -Containing Iron Oxyhydroxide Nanosheets for Efficient Electrochemical Nitrogen Reduction Reaction (ENRR). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303221. [PMID: 37330649 DOI: 10.1002/smll.202303221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Indexed: 06/19/2023]
Abstract
The design and development of efficient catalysts for electrochemical nitrogen reduction reaction (ENRR) under ambient conditions are critical for the alternative ammonia (NH3 ) synthesis from N2 and H2 O, wherein iron-based electrocatalysts exhibit outstanding NH3 formation rate and Faradaic efficiency (FE). Here, the synthesis of porous and positively charged iron oxyhydroxide nanosheets by using layered ferrous hydroxide as a starting precursor, which undergoes topochemical oxidation, partial dehydrogenated reaction, and final delamination, is reported. As the electrocatalyst of ENRR, the obtained nanosheets with a monolayer thickness and 10-nm mesopores display exceptional NH3 yield rate (28.5 µg h-1 mgcat. -1 ) and FE (13.2%) at a potential of -0.4 V versus RHE in a phosphate buffered saline (PBS) electrolyte. The values are much higher than those of the undelaminated bulk iron oxyhydroxide. The larger specific surface area and positive charge of the nanosheets are beneficial for providing more exposed reactive sites as well as retarding hydrogen evolution reaction. This study highlights the rational control on the electronic structure and morphology of porous iron oxyhydroxide nanosheets, expanding the scope of developing non-precious iron-based highly efficient ENRR electrocatalysts.
Collapse
Affiliation(s)
- Lulu Jia
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Hairong Xue
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Fang Xian
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yoshiyuki Sugahara
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishi-waseda, Shinjuku-ku, Tokyo, 169-0051, Japan
| | - Nobuyuki Sakai
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingbo Nan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yusuke Yamauchi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishi-waseda, Shinjuku-ku, Tokyo, 169-0051, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Takayoshi Sasaki
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
12
|
Biswas A, Ghosh B, Sudarshan K, Gupta SK, Dey RS. Ample Lewis Acidic Sites in Mg 2B 2O 5 Facilitate N 2 Electroreduction through Bonding-Antibonding Interactions. Inorg Chem 2023; 62:14094-14102. [PMID: 37594321 DOI: 10.1021/acs.inorgchem.3c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Extensive research on the electrochemical nitrogen reduction reaction (NRR) has put forward a sound list of potential catalyst materials with properties inducing N2 adsorption, protonation, and reduction. However, rather than a random selection of catalysts, it is essential to understand the vitals in terms of orbital orientation and charge distribution that actually manipulate the rate-determining steps of NRR. Realizing these factors, herein we have explored a main group earth-abundant Mg-based electrocatalyst Mg2B2O5 for NRR due to the abundance of Lewis acid sites in the catalyst favoring the bonding-antibonding interactions with the N2 molecules. Positron annihilation studies indicate that the electronic charge distribution within the catalyst has shallow surface oxygen vacancies. These features in the catalyst enabled a sound Faradaic efficiency of 46.4% at -0.1 V vs reversible hydrogen electrode for the selective NH3 production in neutral electrolyte. In situ Fourier transform infrared suggests a maximum N-N bond polarization at -0.1 V and detected H-N-H and -NH2 intermediates during the course of the NRR on the catalyst surface. In a broader picture, the biocompatibility of Mg2+ diversifies the utility of this catalyst material in N2/biofuel cell applications that would certainly offer a green alternative toward our goal of a sustainable society.
Collapse
Affiliation(s)
- Ashmita Biswas
- Institute of Nano Science and Technology, Mohali, Sector-81, Mohali 140306, Punjab, India
| | - Bikram Ghosh
- Institute of Nano Science and Technology, Mohali, Sector-81, Mohali 140306, Punjab, India
| | - Kathi Sudarshan
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Santosh K Gupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology, Mohali, Sector-81, Mohali 140306, Punjab, India
| |
Collapse
|
13
|
Ji XY, Sun K, Liu ZK, Liu X, Dong W, Zuo X, Shao R, Tao J. Identification of Dynamic Active Sites Among Cu Species Derived from MOFs@CuPc for Electrocatalytic Nitrate Reduction Reaction to Ammonia. NANO-MICRO LETTERS 2023; 15:110. [PMID: 37121962 PMCID: PMC10149566 DOI: 10.1007/s40820-023-01091-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Direct electrochemical nitrate reduction reaction (NITRR) is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia. However, the restructuration of the high-activity Cu-based electrocatalysts in the NITRR process has hindered the identification of dynamical active sites and in-depth investigation of the catalytic mechanism. Herein, Cu species (single-atom, clusters, and nanoparticles) with tunable loading supported on N-doped TiO2/C are successfully manufactured with MOFs@CuPc precursors via the pre-anchor and post-pyrolysis strategy. Restructuration behavior among Cu species is co-dependent on the Cu loading and reaction potential, as evidenced by the advanced operando X-ray absorption spectroscopy, and there exists an incompletely reversible transformation of the restructured structure to the initial state. Notably, restructured CuN4&Cu4 deliver the high NH3 yield of 88.2 mmol h-1 gcata-1 and FE (~ 94.3%) at - 0.75 V, resulting from the optimal adsorption of NO3- as well as the rapid conversion of *NH2OH to *NH2 intermediates originated from the modulation of charge distribution and d-band center for Cu site. This work not only uncovers CuN4&Cu4 have the promising NITRR but also identifies the dynamic Cu species active sites that play a critical role in the efficient electrocatalytic reduction in nitrate to ammonia.
Collapse
Affiliation(s)
- Xue-Yang Ji
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing, 102488, People's Republic of China
| | - Ke Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing, 102488, People's Republic of China
| | - Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing, 102488, People's Republic of China
| | - Xinghui Liu
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, Tamilnadu, 602105, India.
| | - Weikang Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xintao Zuo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing, 102488, People's Republic of China.
| |
Collapse
|
14
|
Biswas A, Ghosh B, Dey RS. Refining the Spectroscopic Detection Technique: A Pivot in the Electrochemical Ammonia Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3810-3820. [PMID: 36854657 DOI: 10.1021/acs.langmuir.3c00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ammonia has been recognized as the future fuel because of its immense advantages over liquid hydrogen. The research trend nowadays is mostly inclined toward the electrochemical ammonia synthesis since it offers a sustainable method of green ammonia production. The indophenol blue method is one of the largely used colorimetric techniques to detect ammonia spectroscopically but lacks a proper experimental protocol. The unresolved speculations related to this method concerning stability of dye, sequence of mixing of reagents, importance of pH in the dye formation, or sensitivity of the method to interferants need vigorous experimental verification and a legitimate protocol has to be set up for a reliable and reproducible data. This work thus aims to unveil the artefacts of this method and explore the mechanisms involved such that it becomes easy for a newcomer as well as existing researchers in the field to understand the requirement of rigorous optimizations in this technique.
Collapse
Affiliation(s)
- Ashmita Biswas
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, 140306 Punjab, India
| | - Bikram Ghosh
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, 140306 Punjab, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, 140306 Punjab, India
| |
Collapse
|