1
|
Zou X, Zhang H, Benson JM, Gao H, Burris DL, Fox JM, Jia X. Modeling the Maturation of the Vocal Fold Lamina Propria Using a Bioorthogonally Tunable Hydrogel Platform. Adv Healthc Mater 2023; 12:e2301701. [PMID: 37530909 PMCID: PMC10834846 DOI: 10.1002/adhm.202301701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Toward the goal of establishing an engineered model of the vocal fold lamina propria (LP), mesenchymal stem cells (MSCs) are encapsulated in hyaluronic acid (HA)-based hydrogels employing tetrazine ligation with strained alkenes. To mimic matrix stiffening during LP maturation, diffusion-controlled interfacial bioorthogonal crosslinking is carried out on the soft cellular construct using HA modified with a ferocious dienophile, trans-cyclooctene (TCO). Cultures are maintained in MSC growth media for 14 days to afford a model of a newborn LP that is homogeneously soft (nLP), a homogeneously stiffened construct zero (sLP0) or 7 days (sLP7) post cell encapsulation, and a mature LP model (mLP) with a stiff top layer and a soft bottom layer. Installation of additional HA crosslinks restricts cell spreading. Compared to the nLP controls, sLP7 conditions upregulate the expression of fibrous matrix proteins (Col I, DCN, and FN EDA), classic fibroblastic markers (TNC, FAP, and FSP1), and matrix remodeling enzymes (MMP2, TIMP1, and HAS3). Day 7 stiffening also upregulates the catabolic activities, enhances ECM turnover, and promotes YAP expression. Overall, in situ delayed matrix stiffening promotes a fibroblast transition from MSCs and enhances YAP-regulated mechanosensing.
Collapse
Affiliation(s)
- Xiaoyu Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Jamie M. Benson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - David L. Burris
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Joseph. M. Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, Delaware, USA
| |
Collapse
|
2
|
Biehl A, Colmon R, Timofeeva A, Gracioso Martins AM, Dion GR, Peters K, Freytes DO. Scalable and High-Throughput In Vitro Vibratory Platform for Vocal Fold Tissue Engineering Applications. Bioengineering (Basel) 2023; 10:602. [PMID: 37237672 PMCID: PMC10215097 DOI: 10.3390/bioengineering10050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The vocal folds (VFs) are constantly exposed to mechanical stimulation leading to changes in biomechanical properties, structure, and composition. The development of long-term strategies for VF treatment depends on the characterization of related cells, biomaterials, or engineered tissues in a controlled mechanical environment. Our aim was to design, develop, and characterize a scalable and high-throughput platform that mimics the mechanical microenvironment of the VFs in vitro. The platform consists of a 24-well plate fitted with a flexible membrane atop a waveguide equipped with piezoelectric speakers which allows for cells to be exposed to various phonatory stimuli. The displacements of the flexible membrane were characterized via Laser Doppler Vibrometry (LDV). Human VF fibroblasts and mesenchymal stem cells were seeded, exposed to various vibratory regimes, and the expression of pro-fibrotic and pro-inflammatory genes was analyzed. Compared to current bioreactor designs, the platform developed in this study can incorporate commercial assay formats ranging from 6- to 96-well plates which represents a significant improvement in scalability. This platform is modular and allows for tunable frequency regimes.
Collapse
Affiliation(s)
- Andreea Biehl
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA (R.C.); (A.M.G.M.)
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| | - Ramair Colmon
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA (R.C.); (A.M.G.M.)
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| | - Anastasia Timofeeva
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (A.T.); (K.P.)
| | - Ana Maria Gracioso Martins
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA (R.C.); (A.M.G.M.)
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| | - Gregory R. Dion
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Kara Peters
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (A.T.); (K.P.)
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA (R.C.); (A.M.G.M.)
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| |
Collapse
|
3
|
Gracioso Martins AM, Biehl A, Sze D, Freytes DO. Bioreactors for Vocal Fold Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:182-205. [PMID: 33446061 PMCID: PMC8892964 DOI: 10.1089/ten.teb.2020.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/14/2021] [Indexed: 02/03/2023]
Abstract
It is estimated that almost one-third of the United States population will be affected by a vocal fold (VF) disorder during their lifespan. Promising therapies to treat VF injury and scarring are mostly centered on VF tissue engineering strategies such as the injection of engineered biomaterials and cell therapy. VF tissue engineering, however, is a challenging field as the biomechanical properties, structure, and composition of the VF tissue change upon exposure to mechanical stimulation. As a result, the development of long-term VF treatment strategies relies on the characterization of engineered tissues under a controlled mechanical environment. In this review, we highlight the importance of bioreactors as a powerful tool for VF tissue engineering with a focus on the current state of the art of bioreactors designed to mimic phonation in vitro. We discuss the influence of the phonatory environment on the development, function, injury, and healing of the VF tissue and its importance for the development of efficient therapeutic strategies. A concise and comprehensive overview of bioreactor designs, principles, operating parameters, and scalability are presented. An in-depth analysis of VF bioreactor data to date reveals that mechanical stimulation significantly influences cell viability and the expression of proinflammatory and profibrotic genes in vitro. Although the precision and accuracy of bioreactors contribute to generating reliable results, diverse gene expression profiles across the literature suggest that future efforts should focus on the standardization of bioreactor parameters to enable direct comparisons between studies. Impact statement We present a comprehensive review of bioreactors for vocal fold (VF) tissue engineering with a focus on the influence of the phonatory environment on the development, function, injury, and healing of the VFs and the importance of mimicking phonation on engineered VF tissues in vitro. Furthermore, we put forward a strong argument for the continued development of bioreactors in this area with an emphasis on the standardization of bioreactor designs, principles, operating parameters, and oscillatory regimes to enable comparisons between studies.
Collapse
Affiliation(s)
- Ana M. Gracioso Martins
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andreea Biehl
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Daphne Sze
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Vocal fold (VF) fibrosis remains an insoluble problem in most cases, with a severe impact on vocal quality and effort. This review examines current investigations and research strands that explore the understanding of VF wound healing and applied treatments for the management of VF scar. RECENT FINDINGS Recent work focused on VF fibrosis has examined wound healing in the glottis, fibrosis-modifying medication, and tissue engineering approaches that span cytokine and growth factor therapy, scaffold and cell delivery platforms, seeded scaffolds, conditioned media and stem cell therapy. Many show promise and may deliver improvements in the wound bed favouring less fibrogenic healing patterns, ultimately with the goal of preserving or restoring VF vibration. Further collaborative research is required that examines combined approaches, long term outcomes, better three-dimensional modelling of cell-cell interactions and delivery modalities for molecular therapies. SUMMARY VF fibrosis research continues to expand and explore a variety of mechanistic pathways in order to understand VF healing and identify novel and complementary targets for manipulation. Many different approaches show promise and may also offer synergistic benefits. Research continues to strive for healing that more closely resembles true VF architecture and function.
Collapse
|