1
|
Cetiz MV, Isah M, Ak G, Bakar K, Himidi AA, Mohamed A, Glamočlija J, Nikolić F, Gašic U, Cespedes-Acuna CL, Zengin G. Exploring of Chemical Profile and Biological Activities of Three Ocimum Species From Comoros Islands: A Combination of In Vitro and In Silico Insights. Cell Biochem Funct 2024; 42:e70000. [PMID: 39432386 DOI: 10.1002/cbf.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
Ocimum species have a great interest in different traditional medicinal systems. This study examined the chemical composition, antioxidant properties, enzyme inhibitory effects, and antibacterial and antifungal activities of the aerial parts of Ocimum gratissimum, Ocimum americanum, and Ocimum basilicum from the Comoros Islands. The extracts were analyzed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) to determine their chemical composition. Antioxidant activity was assessed using 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), chelating ability, and phosphomolybdenum radical scavenging assays. Enzyme inhibitory activities against acetylcholinesterase (AChE), butrylcholinesterase (BChE), tyrosinase, amylase, and glucosidase were evaluated using spectrophotometric methods. Antibacterial and antifungal activities were tested using the broth microdilution method against selected pathogenic microorganisms. The selected enzymes and proteins were evaluated using in silico methods with biomolecules from these plants. In addition, 111 different metabolites were identified in the tested extracts using advanced HPLC/MS techniques. The most significant number of detected compounds were derivatives of hydroxycinnamic acids, followed by flavonoid glycosides and aglycones and derivatives of hydroxybenzoic acids. All three Ocimum species exhibited significant antioxidant activities, O. gratissimum exhibited the best-reducing abilities in CUPRAC and FRAP assays. In addition, enzyme inhibitory assays revealed that O. americanum had the most potent inhibitory effect on tyrosinase (48.01 ± 3.89 mg kojic acid equivalent [KAE]/g), and amylase (1.08 ± 0.02 mmol acarbose equivalent [ACAE]/g). Antibacterial and antifungal tests demonstrated that the extracts possess broad-spectrum activity. Molecular docking results showed that compounds exhibited remarkable binding energies with target enzymes and proteins. The molecular dynamics simulations identified chicoric acid with MurE of Staphylococcus aureus complex as the most promising drug candidate. These findings support their traditional medical and nutraceutical uses and suggest possibilities for natural functional applications.
Collapse
Affiliation(s)
- Mehmet Veysi Cetiz
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, Wurzburg, Germany
| | - Musa Isah
- Department of Microbiology, Kebbi State University of Science and Technology Aliero, Aliero, Kebbi State, Nigeria
- Biomedicine Programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Gunes Ak
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Kassim Bakar
- Laboratoire Aliments, Réactivité et Synthèse des Substances Naturelles, Faculté des Sciences et Techniques, Université des Comores, Moroni, Comoros
| | - Azali Ahamada Himidi
- Laboratoire Aliments, Réactivité et Synthèse des Substances Naturelles, Faculté des Sciences et Techniques, Université des Comores, Moroni, Comoros
| | - Andilyat Mohamed
- Herbier National des Comores, Faculté des Sciences et Techniques, Université des Comores, Moroni, Comoros
| | - Jasmina Glamočlija
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Filip Nikolić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Carlos L Cespedes-Acuna
- Plant Biochemistry and Phytochemical Ecology Lab, Departmento de Ciencias Basicas, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
2
|
Gajowniczek-Ałasa D, Baranowska-Wójcik E, Szwajgier D. Vegan and Vegetarian Soups Are Excellent Sources of Cholinesterase Inhibitors. Nutrients 2024; 16:2025. [PMID: 38999773 PMCID: PMC11243061 DOI: 10.3390/nu16132025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND The cholinesterase theory stands as the most popular worldwide therapy for Alzheimer's disease (AD). Given the absence of a cure for AD, a plant-based diet has been repeatedly shown as positive in the prevention of AD, including exploring ready-made products in stores and the development of new functional foods. GOAL This study compared the anti-acetyl- and butyrylcholinesterase activity of thirty-two Polish market soups and five newly formulated soups intended to be functional. Additionally, the research aimed to assess the significance of animal content, distinguishing between vegan and vegetarian options, in cholinesterase inhibition. MATERIALS AND METHODS The anticholinesterase activity was investigated using a spectrophotometric method, and the inhibitory activity was expressed as % inhibition of the enzyme. The study categorized soups into three groups based on ingredients: those containing animal-derived components, vegetarian soups and vegan soups. RESULTS Soups exhibited varying levels of activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), indicating differences in their compositions. Composition appeared to be the primary factor influencing anticholinesterase activity, as soups within each group showed significant variability in activity levels. While some commercial soups demonstrated notable anticholinesterase activity, they did not surpass the effectiveness of the optimized soups developed in the laboratory. Certain ingredients were associated with higher anticholinesterase activity, such as coconut, potato, onion, garlic, parsley and various spices and herbs. CONCLUSIONS Vegetarian and vegan soups exhibited comparable or even superior anticholinesterase activity compared to animal-derived soups, highlighting the importance of plant-based ingredients. The study underscores the need for further research to explore the mechanisms underlying the anticholinesterase activity of soups, including the impact of ingredient combinations and processing methods.
Collapse
Affiliation(s)
- Dorota Gajowniczek-Ałasa
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
3
|
Haouam C, Boudiba S, Tamfu AN, Kucukaydin S, Hanini K, Zohra HF, Hioun S, Botezatu AD, Ceylan Ö, Boudiba L, Duru ME, Dinica RM. Assessment of Chemical Composition and In Vitro Antioxidant, Antidiabetic, Anticholinesterase and Microbial Virulence-Quenching Effects of Salad Burnet ( Sanguisorba minor L.) Harvested from Algeria. PLANTS (BASEL, SWITZERLAND) 2023; 12:4134. [PMID: 38140461 PMCID: PMC10748046 DOI: 10.3390/plants12244134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Sanguisorba minor is a medicinal vegetable used in seasoning desserts, juices, and beverages. An evaluation of the total flavonoid, phenolic, tannin and anthocyanin contents indicated that these classes of compounds are distributed variably in the different fractions. In summary, the HPLC-DAD analyses enabled the identification and quantification of thirteen phenolic compounds in an ethyl acetate extract (EAE), nine in a dichloromethane extract (DCME), seven in an aqueous extract (AQE) and four in a butanol extract (BE). Rutin was the most abundant phenolic compound in the BE (278.4 ± 1.20 µg/g) and AQE (32.87 ± 0.23 µg/g) fractions, while apigenin was the most abundant in the DCME (84.75 ± 0.60 µg/g) and EAE (156.8 ± 0.95 µg/g) fractions. The presence of phenolic compounds in the fractions conferred good antioxidant capacity, especially the EAE and DCME fractions, which both exhibited higher antioxidant effects than BHA and α-tocopherol in DPPH• and CUPRAC assays. Additionally, in the ABTS•+ assay, EAE (IC50 = 9.27 ± 0.33 µg/mL) was more active than α-tocopherol (IC50 = 35.50 ± 0.55 µg/mL), and BHA (IC50 = 12.70 ± 0.10 µg/mL). At 200 µg/mL, the fractions inhibited acetylcholinesterase and butyrylcholinesterase as well as α-amylase and α-glucosidase, indicating that they can slow neurodegeneration and hyperglycemia. Minimal inhibitory concentration (MIC) values ranged from 0.312 mg/mL to 1.25 mg/mL, and fractions showed good biofilm inhibition against Staphylococcus aureus and Escherichia coli. The extracts exhibited good violacein inhibition in Chromobacterium violaceum CV12472 and Chromobacterium violaceum CV026, despite the supply of external acyl-homoserine lactone to CV026. The antioxidant, quorum-sensing, antibiofilm and enzyme inhibition attributes indicate the potential for the application of S. minor as a food preservative.
Collapse
Affiliation(s)
- Chahrazed Haouam
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Sameh Boudiba
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Selcuk Kucukaydin
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla 48000, Turkey
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey
| | - Karima Hanini
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Haouaouchi Fatma Zohra
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
- Laboratory of Organic Materials and Heterochemistry (LOMH), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria
| | - Soraya Hioun
- Department of Natural and Life Sciences FSESNV, Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria
| | - Andreea Dediu Botezatu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University, 47 Domneasca Str., 800008 Galati, Romania
| | - Özgür Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey
| | - Louiza Boudiba
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|
4
|
Munvera AM, Alfred Ngenge T, Ouahouo BMW, Kucukaydin S, Nyemb JN, Fokam Mafo MA, Djappa Tchapo EC, Mkounga P, Nkengfack AE. Cholinesterase, α-glucosidase, tyrosinase and urease inhibitory activities of compounds from fruits of Rinorea oblongifolia C.H. Wright (Violaceae). Nat Prod Res 2023; 37:4169-4180. [PMID: 36757210 DOI: 10.1080/14786419.2023.2176491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
From Rinorea oblongifolia fruits, 3-Nor-4β-friedelan-24-ol (1) and 3-decyl-6,7,8-trimethoxy-2H,5H-furo[4,3,2-de]isochromene-2,5-dione (4), new derivatives alongside, 28-hydroxyfriedelan-3-one (2), friedelin (3), 3,3',4,4',5'-pentamethylcoruleoellagic acid (5), hexamethylcoruleoellagic acid (6), 3',4,4',5,5'-pentamethylcoruleoellagic acid (7), and fatty compounds 8-11 were isolated and characterized using HRESIMS, EIMS, 1D and 2D NMR. In vitro enzyme inhibition of compounds 1, 2, 4, 5, 6 and 7 were evaluated on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glucosidase, urease and tyrosinase. Against AChE and BChE, the phenolic compounds 4, 5, 6, and 7 had good activity probably due to the phenolic nature and methoxy substituents. Compounds 4, 5, 6 and 7 exhibited good α-glucosidase inhibition especially compound 4 whose IC50 = 42.45 ± 0.46 µg/mL was close that of acarbose (IC50 = 20.52 ± 0.84 µg/mL) standard drug. Urease and tyrosinase were appreciably inhibited by the compounds. Overall results of enzyme inhibitory assays indicate Rinorea oblongifolia, fruits and its constituents as potential remedy for enzymatic disorders.
Collapse
Affiliation(s)
- Aristide Mfifen Munvera
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde, Cameroon
| | - Tamfu Alfred Ngenge
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla, Turkey
| | | | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla, Turkey
| | - Jean Noel Nyemb
- Department of Refining and Petrochemistry, National Advanced School of Mines and Petroleum Industries, University of Maroua, Kaélé, Cameroon
| | - Marcelle Aude Fokam Mafo
- Institute of Medical Research and Medicinal Plants, Ministre de la Recherche Scientifique et de l'Innovation, Yaoundé, Cameroon
| | | | - Pierre Mkounga
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde, Cameroon
| | | |
Collapse
|
5
|
Ikome HN, Tamfu AN, Abdou JP, Fouotsa H, Nangmo PK, Lah FCW, Tchinda AT, Ceylan O, Frederich M, Nkengfack AE. Disruption of Biofilm Formation and Quorum Sensing in Pathogenic Bacteria by Compounds from Zanthoxylum Gilletti (De Wild) P.G. Waterman. Appl Biochem Biotechnol 2023; 195:6113-6131. [PMID: 36811771 DOI: 10.1007/s12010-023-04380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Microbial resistance is facilitated by biofilm formation and quorum-sensing mediated processes. In this work, the stem bark (ZM) and fruit extracts (ZMFT) of Zanthoxylum gilletii were subjected to column chromatography and afforded lupeol (1), 2,3-epoxy-6,7-methylenedioxyconiferyl alcohol (3), nitidine chloride (4), nitidine (7), sucrose (6) and sitosterol-β-D-glucopyranoside (2). The compounds were characterized using MS and NMR spectral data. The samples were evaluated for antimicrobial, antibiofilm and anti-quorum sensing activities. Highest antimicrobial activity was exhibited by compounds 3, 4 and 7 against Staphylococcus aureus (MIC 200 µg/mL), compounds 3 and 4 against Escherichia coli (MIC = 100 µg/mL) and compounds 4 and 7 against Candida albicans (MIC = 50 µg/mL). At MIC and sub-MIC concentrations, all samples inhibited biofilm formation by pathogens and violacein production in C. violaceum CV12472 except compound 6. Good disruption of QS-sensing in C. violaceum revealed by inhibition zone diameters were exhibited by compounds 3 (11.5 ± 0.5 mm), 4 (12.5 ± 1.5 mm), 5 (15.0 ± 0.8 mm), 7 (12.0 ± 1.5 mm) as well as the crude extracts from stem barks (16.5 ± 1.2 mm) and seeds (13.0 ± 1.4 mm). The profound inhibition of quorum sensing mediated processes in test pathogens by compounds 3, 4, 5 and 7 suggests the methylenedioxy- group that these compounds possess as the possible pharmacophore.
Collapse
Affiliation(s)
- Hermia Nalova Ikome
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon
| | - Alfred Ngenge Tamfu
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon.
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, 48147, Mugla, Turkey.
| | - Jean Pierre Abdou
- Department of Chemistry, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaondere, Cameroon
| | - Hugues Fouotsa
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
| | - Pamela Kemda Nangmo
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon
| | - Fidèle Castro Weyepe Lah
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon
| | - Alembert Tiabou Tchinda
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon.
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, 48147, Mugla, Turkey
| | - Michel Frederich
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicine, CIRM, University of Liege, 4000, Liege, Belgium
| | | |
Collapse
|
6
|
Yaldiz G, Camlica M, Erdonmez D. Investigation of some basil genotypes in terms of their effect on bacterial communication system, and antimicrobial activity. Microb Pathog 2023; 182:106247. [PMID: 37453480 DOI: 10.1016/j.micpath.2023.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The exponential growth of multiresistant bacterial strains creates the need to explore new or combined strategies to combat bacterial resistance. Medicinal plant-derived compounds against pathogenic bacteria may provide new, simple approaches to developing more environmentally friendly antimicrobial agents. Many researchers focus on exploring novel or combined strategies for combating bacterial resistance. Aromatic plants containing essential oils, such as basil, are often used as therapeutic agents in the pharmaceutical industry. Recent research has shown that basil is effective against certain harmful food phytopathogenic bacteria and has antimicrobial and anti-quorum sensing properties, which were investigated in this study. Our results have shown that the essential oil and ethanol extract of basil exhibits both antibacterial activity and anti-quorum sensing activity against some Gram-negative and Gram-positive bacterial species. It has also been found to have antifungal effects on C. albicans. Among the tested microorganisms, the genotypes of PI 531396, PI 296390, PI 414199, PI 253157, PI 296391, PI 652071, midnight, and Dino cultivars have been found to be more effective than other genotypes. The highest effect on quorum sensing system was found in Moonlight and Dino cultivars, PI 296391, PI 414199, PI 652070, PI 172997 and PI 190100 genotypes. Dendrogram analysis has shown that there is a relationship between different genotypes depending on microorganisms and anti-quorum sensing activity. Ames 29184, PI 207498, and PI 379412 genotypes were in the same group. Biplot analyses were performed to determine the relationship between the studied properties, and the results showed that more than 47% of the total variation was in all forms.
Collapse
Affiliation(s)
- Gulsum Yaldiz
- Department of Field Crops, Faculty of Agriculture, Bolu Abant İzzet Baysal University, 14280, Bolu, Türkiye.
| | - Mahmut Camlica
- Department of Field Crops, Faculty of Agriculture, Bolu Abant İzzet Baysal University, 14280, Bolu, Türkiye
| | - Demet Erdonmez
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Düzce University, Düzce, Türkiye
| |
Collapse
|
7
|
Talla RM, Tamfu AN, Wakeu BNK, Ceylan O, Mbazoa CD, Kapche GDWF, Lenta BN, Sewald N, Wandji J. Evaluation of anti-quorum sensing and antibiofilm effects of secondary metabolites from Gambeya lacourtiana (De Wild) Aubr. & Pellegr against selected pathogens. BMC Complement Med Ther 2023; 23:300. [PMID: 37620848 PMCID: PMC10464238 DOI: 10.1186/s12906-023-04115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Microbial infections cause serious health problems especially with the rising antibiotic resistance which accounts for about 700,000 human deaths annually. Antibiotics which target bacterial death encounter microbial resistance with time, hence, there is an urgent need for the search of antimicrobial substances which target disruption of virulence factors such as biofilm and quorum sensing (QS) with selective pressure on the pathogens so as to avoid resistance. METHODS Natural products are suitable leads for antimicrobial drugs that can inhibit bacterial biofilms and QS. Twenty compounds isolated from the medicinal plant Gambeya lacourtiana were evaluated for their antibiofilm and anti-quorum sensing effects against selected pathogenic bacteria. RESULTS Most of the compounds inhibited violacein production in Chromobacterium violaceum CV12472 and the most active compound, Epicatechin had 100% inhibition at MIC (Minimal Inhibitory Concentration) and was the only compound to inhibit violacein production at MIC/8 with percentage inhibition of 17.2 ± 0.9%. Since the bacteria C. violaceum produces violacein while growing, the inhibition of the production of this pigment reflects the inhibition of signal production. Equally, some compounds inhibited violacein production by C. violaceum CV026 in the midst of an externally supplied acylhomoserine lactone, indicating that they disrupted signal molecule reception. Most of the compounds exhibited biofilm inhibition on Staphyloccocus aureus, Escherichia coli and Candida albicans and it was observed that the Gram-positive bacteria biofilm was most susceptible. The triterpenoids bearing carboxylic acid group, the ceramide and epicatechin were the most active compounds compared to others. CONCLUSION Since some of the compounds disrupted QS mediated processes in bacteria, it indicates that this plant is a source of antibiotics drugs that can reduce microbial resistance.
Collapse
Affiliation(s)
- Rostan Mangoua Talla
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
- Department of Chemistry, Higher Teacher Training C ollege, The University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Koc-man University, Mugla, 48147, Turkey.
| | - Brussine Nadège Kweka Wakeu
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Koc-man University, Mugla, 48147, Turkey
| | - Céline Djama Mbazoa
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | | | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training C ollege, The University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon
| | - Norbert Sewald
- Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501, Bielefeld, Germany
| | - Jean Wandji
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
8
|
Chemometric classification of chestnut honeys from different regions in Turkey based on their phenolic compositions and biological activities. Food Chem 2023; 415:135727. [PMID: 36871408 DOI: 10.1016/j.foodchem.2023.135727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
The objective of this study was to investigate the phenolic composition and biological properties of chestnut honeys of 41 stations in Turkey's the Black Sea and Marmara regions. A total of sixteen phenolic compounds and organic acids were detected using HPLC-DAD and levulinic, gallic, protocatechuic, vanilic, trans-cinnamic acids and (4-hydroxyphenyl) ethanol were identified in all studied chestnut honeys. Antioxidant activities were measured by ABTS•+, β-carotene-linoleic acid, CUPRAC, DPPH•, and metal chelating assays. Antimicrobial activities were carried out against gram positive, gram negative bacteria and Candida species using well diffusion test. Anti-inflammatory activities were evaluated against COX-1 and COX-2 whereas enzyme inhibitory activities were assessed on AChE, BChE, urease, and tyrosinase. The chemometric classification of chestnut honeys were carried out using PCA and HCA and it was seen that some phenolic compounds contributed significantly to the classification of chestnut honeys from various geographical origin.
Collapse
|
9
|
Erener G, Turan C, Gungor E, Altop A. Effect of chamomile (Matricaria chamomilla L.), linden (Tilia cordata Mill.), and green tea (Camellia sinensis L.) aqueous extract administration in the drinking water during pre-slaughter feed withdrawal period in broiler chickens. Trop Anim Health Prod 2023; 55:252. [PMID: 37382686 DOI: 10.1007/s11250-023-03663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Feed withdrawal (FW) and other pre-slaughter stressors have detrimental effects on the meat quality of broiler chickens. Herbal extracts can be used for their sedative effects to reduce the harmful impacts of pre-slaughter stress on broiler chickens. This study aimed to investigate the effect of chamomile (CAE), linden (LAE), and green tea (GAE) aqueous extracts (AE) in drinking water during the pre-slaughter FW period on the meat and liver quality, serum corticosterone level, and some cecal microorganisms of broilers. A total of 450 male and female 42-day-old chickens were allocated to a completely randomized design with five treatment groups and two sexes in six replicates, 12 birds (six male and six female) for each replicate. Treatment groups were chickens offered ad libitum feed and drinking water (control, CT), broilers exposed to FW for 10 h before the slaughter with unsupplemented drinking water (FW), with drinking water supplemented 50 ml/L CAE, LAE, and GAE. Chickens that experienced FW had lower (P < 0.001) slaughter body weight, carcass, gastrointestinal tract (GIT) and inner organ weights, and GIT length (P = 0.002). However, the dressing percentage was higher (P < 0.001) in FW and AE groups than CT group. The FW increased (P < 0.001) the ultimate pH of thigh meat compared with the CT group. The FW also decreased (P = 0.026) the lightness (L*) value of thigh meat of broilers, although CAE and LAE did not change the L* value compared with the CT group. Similarly, the redness (a*) value of thigh meat was lower (P = 0.003) in chickens exposed to FW but was not affected by GAE administration. However, FW or AE did not impact the serum corticosterone level and cecal microbial loads in broiler chickens. The obtained result showed that CAE, LAE, or GAE can be used in drinking water to reduce the harmful effects of FW on the meat quality of broiler chickens.
Collapse
Affiliation(s)
- Guray Erener
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Cumhur Turan
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Emrah Gungor
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, 55139, Samsun, Turkey.
| | - Aydin Altop
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|
10
|
Characterization of Turkish Astragalus honeys according to their phenolic profiles and biological activities with a chemometric approach. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
11
|
Luca SV, Zengin G, Sinan KI, Skalicka-Woźniak K, Trifan A. Post-Distillation By-Products of Aromatic Plants from Lamiaceae Family as Rich Sources of Antioxidants and Enzyme Inhibitors. Antioxidants (Basel) 2023; 12:antiox12010210. [PMID: 36671072 PMCID: PMC9855019 DOI: 10.3390/antiox12010210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
There is currently no use for the vast quantities of post-distillation by-products, such as spent plant materials and residual waters, produced by the essential oil (EO) industry of aromatic herbs. In this study, the EOs of three Lamiaceae species (thyme, oregano, and basil) and their total, spent, and residual water extracts were phytochemically characterized and biologically assessed. The collected information was put through a series of analyses, including principal component analysis, heatmap analysis, and Pearson correlation analysis. Concerning the EOs, 58 volatile compounds were present in thyme (e.g., p-cymene, thymol), 44 compounds in oregano (e.g., thymol, carvacrol), and 67 compounds in basil (e.g., eucalyptol, linalool, estragole, (E)-methyl cinnamate). The LC-HRMS/MS analysis of the total, spent, and residual water extracts showed the presence of 31 compounds in thyme (e.g., quercetin-O-hexoside, pebrellin, eriodictyol), 31 compounds in oregano (e.g., rosmarinic acid, apigenin, kaempferol, salvianolic acids I, B, and E), and 25 compounds in basil (e.g., fertaric acid, cichoric acid, caftaric acid, salvianolic acid A). The EOs of the three Lamiaceae species showed the highest metal-reducing properties (up to 1792.32 mg TE/g in the CUPRAC assay), whereas the spent extracts of oregano and basil displayed very high radical-scavenging properties (up to 266.59 mg TE/g in DPPH assay). All extracts exhibited anti-acetylcholinesterase (up to 3.29 mg GALAE/g), anti-tyrosinase (up to 70.00 mg KAE/g), anti-amylase (up to 0.66 mmol ACAE/g), and anti-glucosidase (up to 1.22 mmol ACAE/g) effects. Thus, the present research demonstrated that both the raw extracts (EOs and total extracts) and the post-distillation by-products (spent material and residual water extracts) are rich in bioactive metabolites with antioxidant and enzyme inhibitory properties.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Correspondence: (S.V.L.); (G.Z.)
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
- Correspondence: (S.V.L.); (G.Z.)
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | | | - Adriana Trifan
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
12
|
Chronic Gastric Ulcer Healing Actions of the Aqueous Extracts of Staple Plant Foods of the North-West, Adamawa, and West Regions of Cameroon. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2657278. [PMID: 36654868 PMCID: PMC9842419 DOI: 10.1155/2023/2657278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Aim This study is aimed at establishing phenolic compound profile and assessing the possible antiulcer activities of aqueous extracts of some staple plant foods from the West and North-West regions of Cameroon against chronic gastric ulcer models in rats. Materials and Methods Phenolic constituents of extracts were evaluated using HPLC-DAD. Aqueous extracts of Corchorus olitorius, Solanum nigrum, Vigna unguiculata, Triumfetta pentandra, "nkui" spices, and "yellow soup" spices were tested at two doses (200 and 400 mg/kg). After treatments, animals were sacrificed, healing percentage and antioxidant status (catalase, superoxide dismutase, and glutathione peroxidase) were evaluated, and histological examination of gastric mucosa was realized. Results HPLC-DAD revealed that p-hydroxybenzoic and protocatechuic acids were the phenolic compound present in all extracts. Oral administration of extracts (200 and 400 mg/kg) significantly reduced ulcer surface value and significantly increased mucus production compared to the control groups (p < 0.05). Histological study supported the observed healing activity of different extracts characterized by a reduced inflammatory response. Moreover, administration of aqueous extracts increased the activity of antioxidant enzymes. Conclusion This study revealed that aqueous extracts of Solanum nigrum, Corchorus olitorius, Vigna unguiculata, Triumfetta pentandra, "yellow soup" spices, and "nkui" spices possess healing antiulcer effects against models of gastric ulcers. The antiulcer mechanisms involved may include increase of gastric mucus production and improvement of the antioxidant activity of gastric tissue. These activities may be due to the phenolic compounds identified in the extracts, especially p-hydroxybenzoic and protocatechuic acids present in all extracts and with known antioxidant, cytoprotective, and healing properties. However, all the diets may promote the healing process of chronic ulcers caused by excessive alcohol consumption/stress.
Collapse
|
13
|
Qasem A, Assaggaf H, Mrabti HN, Minshawi F, Rajab BS, Attar AA, Alyamani RA, Hamed M, Mrabti NN, Baaboua AE, Omari NE, Alshahrani MM, Awadh AAA, Sheikh RA, Ming LC, Goh KW, Bouyahya A. Determination of Chemical Composition and Investigation of Biological Activities of Ocimum basilicum L. Molecules 2023; 28:614. [PMID: 36677672 PMCID: PMC9866482 DOI: 10.3390/molecules28020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 01/11/2023] Open
Abstract
This study aimed to determine the chemical composition of the essential oils (EOs) of Ocimum basilicum L., as well as to evaluate the antibacterial, antidiabetic, dermatoprotective, and anti-inflammatory properties, and the EOs and aqueous extracts of O. basilicum. The antibacterial activity was evaluated against bacterial strains, Gram-positive and Gram-negative, using the well diffusion and microdilution methods, whereas the antidiabetic activity was assessed in vitro using two enzymes involved in carbohydrate digestion, α-amylase and α-glucosidase. On the other hand, the dermatoprotective and anti-inflammatory activities were studied by testing tyrosinase and lipoxygenase inhibition activity, respectively. The results showed that the chemical composition of O. basilicum EO (OBEO) is dominated by methyl chavicol (86%) and trans-anethol (8%). OBEO exhibited significant antibacterial effects against Gram-negative and Gram-positive strains, demonstrated by considerable diameters of the inhibition zones and lower MIC and MBC values. In addition, OBEO exhibited significant inhibition of α-amylase (IC50 = 50.51 ± 0.32 μg/mL) and α-glucosidase (IC50 = 39.84 ± 1.2 μg/mL). Concerning the anti-inflammatory activity, OBEO significantly inhibited lipoxygenase activity (IC50 = 18.28 ± 0.03 μg/mL) compared to the aqueous extract (IC50 = 24.8 ± 0.01 μg/mL). Moreover, tyrosinase was considerably inhibited by OBEO (IC50 = 68.58 ± 0.03 μg/mL) compared to the aqueous extract (IC50 = 118.37 ± 0.05 μg/mL). The toxicological investigations revealed the safety of O. basilicum in acute and chronic toxicity. The finding of in silico analysis showed that methyl chavicol and trans-anethole (main compounds of OBEO) validate the pharmacokinetics of these compounds and decipher some antibacterial targets.
Collapse
Affiliation(s)
- Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hanae Naceiri Mrabti
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, B.P. 8359006 Lille, France
| | - Faisal Minshawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bodour S. Rajab
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ammar A. Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Reema A. Alyamani
- Faculty of Applied Medical Sciences, Clinical Nutrition Department, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nidal Naceiri Mrabti
- Engineering Materials, Modeling and Environmental Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Aicha El Baaboua
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan 93000, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ryan Adnan Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10100, Morocco
| |
Collapse
|
14
|
A Network Pharmacology-Based Study on the Mechanism of Dibutyl Phthalate of Ocimum basilicum L. against Alzheimer's Disease through the AKT/GSK-3 β Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9494548. [PMID: 36593772 PMCID: PMC9805396 DOI: 10.1155/2022/9494548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 12/25/2022]
Abstract
Background Ocimum basilicum L. (OBL) is mainly used to treat neurological diseases in China. The preliminary work of this group showed that OBL improves cognitive impairment in Alzheimer's disease (AD). However, the underlying pharmacological mechanism remains unclear. Methods The components of OBL were compiled by literature search, and their active ingredients were screened by online database. The drug targets of OBL in the treatment of AD were predicted and analyzed using information derived from sources such as the SwissTargetPrediction tool. And through the network visual analysis function of Cytoscape software and protein-protein interaction analysis (PPI), the core targets of OBL treatment of AD are predicted. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to analyze the related signaling pathways affected by OBL. Moreover, AutoDock software was used to assess the potential binding affinity between the core targets and the active compounds. Subsequently, in vivo experiment was conducted to verify the findings of network pharmacology. Results A total of 35 active compounds and 188 targets of OBL were screened, of which 43 common targets were related to AD. The active compounds of 35 OBLs induced 118 GO and 78 KEGG. The results of PPI and network topology parameter analysis show that targets such as MAPK1, GSK3B, NR3C2, ESR1, and EGFR are known as the core targets for the treatment of AD by OBL and are docked with the active ingredients of OBL. Molecular docking results suggest that diterbutyl phthalate (DBP) may be the main active component of OBL for the treatment of AD. Flow cytometry analysis results showed that apoptosis decreased with increasing DBP dose. In addition, DBP significantly decreased the levels of lactate dehydrogenase (LDH) and reactive oxygen species (ROS) in the supernatant of Aβ 25-35-induced injury HT22 cell cultures, and it can be speculated that DBP has the ability to protect the stability of injured neuronal cells and improve the permeability of cell membranes, thus stabilizing the intracellular environment. Mechanistically, DBP may increase the mRNA levels of AKT, GSK-3β, etc. in AD cell models and regulate the phosphorylation of AKT/GSK-3β pathway-related. Conclusions Conclusively, our study suggests that DBP, the main active component of OBL, has potential in the prevention or treatment of AD.
Collapse
|
15
|
Molecular Docking Analysis of Cinnamomum zeylanicum Phytochemicals against Secreted Aspartyl proteinase 4-6 of Candida albicans as Anti-Candidiasis Oral. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
16
|
Ngenge Tamfu A, Boukhedena W, Boudiba S, Deghboudj S, Ceylan O. Synthesis and evaluation of inhibitory potentials of microbial biofilms and quorum-sensing by 3-(1,3-dithian-2-ylidene) pentane-2,4-dione and ethyl-2-cyano-2-(1,3-dithian-2-ylidene) acetate. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e87834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The virulence and resistance of pathogenic microorganisms are promoted by quorum-sensing (QS) mediated traits and biofilms. The development of antimicrobial agents which can reduce the incidence of microbial resistance by disrupting the establishment of biofilms and QS, constitute a suitable strategy to reduce the emergence of pathogenic strains that are resistant to antibiotics. In this study, 3-(1,3-dithian-2-ylidene) pentane-2,4-dione (1) and ethyl-2-cyano-2-(1,3-dithian-2-ylidene) acetate (2) were successfully synthesized and characterized using EIMS, 1H NMR and 13C NMR techniques. On S. aureus, both compounds had MIC (minimal inhibitory concentrations) of 0.625 mg/mL while on E. coli and C. albicans, compound 2 showed higher activity than compound 1. All compounds inhibited formation of biofilms by C. albicans and S. aureus at sub-MIC with compound 1 being more active than compound 2. On E. coli, only compound 1 inhibited biofilm formation. Violacein production of violacein in C. violaceum CV12472 and quorum sensing in C. violaceum CV026 were inhibited indicating that the compounds could block signal production and reception. Anti-quorum sensing at sub-MIC concentrations revealed by inhibition zones were 13.0±0.5 mm and 8.0±0.5 mm at MIC and MIC/2 respectively for compound 1 and for compound 2, they were 11.5±0.4 mm and 7.5±0.0 mm at MIC and MIC/2 respectively. Concentration-dependent swarming motility was exhibited by both compounds with compound 1 slightly more active than compound 2. The results indicate that the organosulphur compounds could be suitable candidates for modern antibiotics.
Collapse
|
17
|
Alain KY, Tamfu AN, Kucukaydin S, Ceylan O, Cokou Pascal AD, Félicien A, Koko Dominique SC, Duru ME, Dinica RM. Phenolic profiles, antioxidant, antiquorum sensing, antibiofilm and enzyme inhibitory activities of selected Acacia species collected from Benin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Tamfu AN, Ceylan O, Cârâc G, Talla E, Dinica RM. Antibiofilm and Anti-Quorum Sensing Potential of Cycloartane-Type Triterpene Acids from Cameroonian Grassland Propolis: Phenolic Profile and Antioxidant Activity of Crude Extract. Molecules 2022; 27:4872. [PMID: 35956824 PMCID: PMC9369644 DOI: 10.3390/molecules27154872] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Propolis is very popular for its beneficial health properties, such as antimicrobial activity and antioxidant effects. It is one of the most long-serving traditional medicines to mankind due to its interesting chemical diversity and therapeutic properties. The detailed chemical information of propolis samples is very necessary to guarantee its safety and for it to be accepted into health care systems. The phenolic profile of the hydroethanolic extract was determined using HPLC-DAD, and the antioxidant was evaluated using five complementary methods. Triterpenoids were isolated using column chromatography and characterized using 1H NMR and 13C NMR. The effects of the extract and the isolated compounds on quorum sensing mediated processes and biofilm formation in bacteria were evaluated. Protocatechic acid (40.76 ± 0.82 µg/g), 4-hydroxybenzoic acid (24.04 ± 0.21 µg/g), vanillic acid (29.90 ± 1.05 µg/g), quercetin (43.53 ± 1.10 µg/g), and luteolin (4.44 ± 0.48 µg/g) were identified and quantified. The extract showed good antioxidant activity in the DPPH•, ABTS•+, CUPRAC, and metal chelating assays, and this antioxidant effect was confirmed by cyclic voltammetry. 27-Hydroxymangiferonic acid (1), Ambolic acid (2), and Mangiferonic acid (3) were isolated from anti-quorum sensing activity at MIC, and it was indicated that the most active sample was the extract with inhibition diameter zone of 18.0 ± 1.0 mm, while compounds 1, 2, and 3 had inhibition zones of 12.0 ± 0.5 mm, 9.0 ± 1.0 mm, and 12.3 ± 1.0 mm, respectively. The samples inhibited the P. aeruginosa PA01 swarming motility at the three tested concentrations (50, 75, and 100 μg/mL) in a dose-dependent manner. The propolis extract was able to inhibit biofilm formation by S. aureus, E. coli, P. aeruginosa, C. albicans, and C. tropicalis at MIC concentration. Compound 1 proved biofilm inhibition on S. aureus, L. monocytogenes, E. faecalis, E. coli, and C. tropicalis at MIC and MIC/2; compound 2 inhibited the formation of biofilm at MIC on S. aureus, E. faecalis, E. coli, S. typhi, C. albicans, and C. tropicalis; and compound 3 inhibited biofilm formation on E. faecalis, E. coli, C. albicans, and C. tropicalis and further biofilm inhibition on E. coli at MIC/4 and MIC/8. The studied propolis sample showed important amounts of cycloartane-type triterpene acids, and this indicates that there can be significant intra-regional variation probably due to specific flora within the vicinity. The results indicate that propolis and its compounds can reduce virulence factors of pathogenic bacteria.
Collapse
Affiliation(s)
- Alfred Ngenge Tamfu
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon;
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Geta Cârâc
- Department of Chemistry, Faculty of Sciences and Environment, Physics and Environment, Dunarea de Jos University, Galati, 47 Domneasca Str., 800008 Galati, Romania;
| | - Emmanuel Talla
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon;
| | - Rodica Mihaela Dinica
- Department of Chemistry, Faculty of Sciences and Environment, Physics and Environment, Dunarea de Jos University, Galati, 47 Domneasca Str., 800008 Galati, Romania;
| |
Collapse
|
19
|
Ultrasound-Assisted Extraction of Syringa vulgaris Mill., Citrus sinensis L. and Hypericum perforatum L.: Phenolic Composition, Enzyme Inhibition and Anti-quorum Sensing Activities. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00315-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Trifan A, Zengin G, Brebu M, Skalicka-Woźniak K, Luca SV. Phytochemical Characterization and Evaluation of the Antioxidant and Anti-Enzymatic Activity of Five Common Spices: Focus on Their Essential Oils and Spent Material Extractives. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122692. [PMID: 34961163 PMCID: PMC8708095 DOI: 10.3390/plants10122692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 05/27/2023]
Abstract
The essential oil industry of aromatic herbs and spices is currently producing a significant amount of by-products, such as the spent plant materials remaining after steam or hydrodistillation, that are simply discarded. The aim of this study was to comparatively investigate the phytochemical composition, antioxidant and multi-enzymatic inhibitory potential of the essential oils and spent plant material extractives obtained from cinnamon, cumin, clove, laurel, and black pepper. The essential oils were characterized by the presence of several phytochemical markers (cinnamaldehyde, cuminaldehyde, eugenol, eucalyptol, α-terpinene, limonene, β-caryophyllene or β-pinene). On the other hand, the LC-HRMS/MS profiling of the spent material extracts allowed the annotation of species specific and non-specific metabolites, such as organic acids, phenolic acids, flavonoids, proanthocyanidins, hydrolysable tannins, fatty acids, or piperamides. All samples exhibited very strong antioxidant effects, with the clove essential oil displaying the strongest radical scavenging (525.78 and 936.44 mg TE/g in DPPH and ABTS assays), reducing (2848.28 and 1927.98 mg TE/g in CUPRAC and FRAP), and total antioxidant capacity (68.19 mmol TE/g). With respect to the anti-acetylcholinesterase (0.73-2.95 mg GALAE/g), anti-butyrylcholinesterase (0-3.41 mg GALAE/g), anti-tyrosinase (0-76.86 mg KAE/g), anti-amylase and anti-glucosidase (both 0-1.00 mmol ACAE/g) assays, the spice samples showed a modest activity. Overall, our study reports that, not only the volatile fractions of common spices, but also their spent plant materials remaining after hydrodistillation can be regarded as rich sources of bioactive molecules with antioxidant and multi-enzymatic inhibitory effects.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Mihai Brebu
- Physical Chemistry of Polymers Laboratory, “Petru Poni” Institute of Macromolecular Chemistry, 700481 Iasi, Romania;
| | | | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
21
|
Ngenge Tamfu A, Roland N, Munvera Mfifen A, Kucukaydin S, Gaye M, Veronica Botezatu A, Emin Duru M, Mihaela Dinica R. Phenolic composition, antioxidant and enzyme inhibitory activities of Parkia biglobosa (Jacq.) Benth., Tithonia diversifolia (Hemsl) A. Gray, and Crossopteryx febrifuga (Afzel.) Benth. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
22
|
Beddiar H, Boudiba S, Benahmed M, Tamfu AN, Ceylan Ö, Hanini K, Kucukaydin S, Elomri A, Bensouici C, Laouer H, Akkal S, Boudiba L, Dinica RM. Chemical Composition, Anti-Quorum Sensing, Enzyme Inhibitory, and Antioxidant Properties of Phenolic Extracts of Clinopodium nepeta L. Kuntze. PLANTS (BASEL, SWITZERLAND) 2021; 10:1955. [PMID: 34579487 PMCID: PMC8468494 DOI: 10.3390/plants10091955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023]
Abstract
Phenolic extracts of Clinopodium nepeta were prepared and their preliminary phenolic profiles determined using HPLC-DAD with 26 phenolic standards. Apigenin (21.75 ± 0.41 µg/g), myricetin (72.58 ± 0.57 µg/g), and rosmarinic acid (88.51 ± 0.55 µg/g) were the most abundant compounds in DCM (dichloromethane), AcOEt (ethyl acetate), and BuOH (butanol) extracts, respectively. The DCM and AcOEt extracts inhibited quorum-sensing mediated violacein production by C. violaceum CV12472. Anti-quorum-sensing zones on C. violaceum CV026 at MIC (minimal inhibitory concentration) were 10.3 ± 0.8 mm for DCM extract and 12.0 ± 0.5 mm for AcOEt extract. Extracts showed concentration-dependent inhibition of swarming motility on flagellated P. aeruginosa PA01 and at the highest test concentration of 100 μg/mL, AcOEt (35.42 ± 1.00%) extract displayed the best activity. FRAP assay indicated that the BuOH extract (A0.50 = 17.42 ± 0.25 µg/mL) was more active than standard α-tocopherol (A0.50 = 34.93 ± 2.38 µg/mL). BuOH extract was more active than other extracts except in the ABTS●+, where the DCM extract was most active. This antioxidant activity could be attributed to the phenolic compounds detected. C. nepeta extracts showed moderate inhibition on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, and α-amylase. The results indicate that C. nepeta is a potent source of natural antioxidants that could be used in managing microbial resistance and Alzheimer's disease.
Collapse
Affiliation(s)
- Hatem Beddiar
- Laboratory of Organic Materials and Heterochemistry, Tebessa University, Constantine Road, Tebessa 12002, Algeria; (H.B.); (M.B.)
| | - Sameh Boudiba
- Laboratory of Bioactive Molecules and Applications, Tebessa University, Constantine Road, Tebessa 12002, Algeria; (S.B.); (K.H.)
| | - Merzoug Benahmed
- Laboratory of Organic Materials and Heterochemistry, Tebessa University, Constantine Road, Tebessa 12002, Algeria; (H.B.); (M.B.)
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Özgür Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Karima Hanini
- Laboratory of Bioactive Molecules and Applications, Tebessa University, Constantine Road, Tebessa 12002, Algeria; (S.B.); (K.H.)
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey;
| | - Abdelhakim Elomri
- CNRS, COBRA (UMR 6014), Normandie University, UNIROUEN, INSA Rouen, 76000 Rouen, France;
| | - Chawki Bensouici
- Research Center on Biotechnology, Ali Mendjli New City UV 03, BP E73, Constantine 25000, Algeria;
| | - Hocine Laouer
- Laboratory for the Valorization of Natural Biological Resources, Ferhat Abbas University, UFA-Setif 1, Setif 19000, Algeria;
| | - Salah Akkal
- Laboratory of Phytochemistry, Physicochemical and Biological Analyses, Mentouri University, Ain El Bey Road, Constantine 25000, Algeria;
| | - Louiza Boudiba
- Laboratory of Water and Environment, Tebessa University, Constantine Road, Tebessa 12002, Algeria;
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|