1
|
Wareing B, Aktalay Hippchen A, Kolle SN, Birk B, Funk-Weyer D, Landsiedel R. Limitations and Modifications of Skin Sensitization NAMs for Testing Inorganic Nanomaterials. TOXICS 2024; 12:616. [PMID: 39195718 PMCID: PMC11360696 DOI: 10.3390/toxics12080616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Since 2020, the REACh regulation requires toxicological data on nanoforms of materials, including the assessment of their skin-sensitizing properties. Small molecules' skin sensitization potential can be assessed by new approach methodologies (NAMs) addressing three key events (KE: protein interaction, activation of dendritic cells, and activation of keratinocytes) combined in a defined approach (DA) described in the OECD guideline 497. In the present study, the applicability of three NAMs (DPRA, LuSens, and h-CLAT) to nine materials (eight inorganic nanomaterials (NM) consisting of CeO2, BaSO4, TiO2 or SiO2, and quartz) was evaluated. The NAMs were technically applicable to NM using a specific sample preparation (NANOGENOTOX dispersion protocol) and method modifications to reduce interaction of NM with the photometric and flowcytometric read-outs. The results of the three assays were combined according to the defined approach described in the OECD guideline No. 497; two of the inorganic NM were identified as skin sensitizers. However, data from animal studies (for ZnO, also human data) indicate no skin sensitization potential. The remaining seven test substances were assessed as "inconclusive" because all inorganic NM were outside the domain of the DPRA, and the achievable test concentrations were not sufficiently high according to the current test guidelines of all three NAMs. The use of these NAMs for (inorganic) NM and the relevance of the results in general are challenged in three ways: (i) NAMs need modification to be applicable to insoluble, inorganic matter; (ii) current test guidelines lack adequate concentration metrics and top concentrations achievable for NM; and (iii) NM may not cause skin sensitization by the same molecular and cellular key events as small organic molecules do; in fact, T-cell-mediated hypersensitivity may not be the most relevant reaction of the immune system to NM. We conclude that the NAMs adopted by OECD test guidelines are currently not a good fit for testing inorganic NM.
Collapse
Affiliation(s)
- Britta Wareing
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Ayse Aktalay Hippchen
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Susanne N. Kolle
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Barbara Birk
- BASF SE, Agriculture Solutions, 67117 Limburgerhof, Germany;
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, 14195 Berlin, Germany
| |
Collapse
|
2
|
Maharjan A, Gautam R, Lee G, Kim D, Lee D, Acharya M, Kim H, Heo Y, Kim C. Assessment of skin sensitization potential of zinc oxide, aluminum oxide, manganese oxide, and copper oxide nanoparticles through the local lymph node assay: 5-bromo-deoxyuridine flow cytometry method. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-11. [PMID: 38796781 DOI: 10.1080/15287394.2024.2357466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The advent of nanotechnology has significantly spurred the utilization of nanoparticles (NPs) across diverse sectors encompassing industry, agriculture, engineering, cosmetics, and medicine. Metallic oxides including zinc oxide (ZnO), copper oxide (CuO), manganese oxide (Mn2O3), and aluminum oxide (Al2O3), in their NP forms, have become prevalent in cosmetics and various dermal products. Despite the expanding consideration of these compounds for dermal applications, their potential for initiating skin sensitization (SS) has not been comprehensively examined. An in vivo assay, local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method (LLNA: BrdU-FCM) recognized as an alternative testing method for screening SS potential was used to address these issues. Following the OECD TG 442B guidelines, NPs suspensions smaller than 50 nm size were prepared for ZnO and Al2O3 at concentrations of 10, 25, and 50%, and Mn2O3 and CuO at concentrations of 5, 10, and 25%, and applied to the dorsum of each ear of female BALB/c mice on a daily basis for 3 consecutive days. Regarding the prediction of test substance to skin sensitizer if sensitization index (SI)≥2.7, all 4 NPs were classified as non-sensitizing. The SI values were below 2.06, 1.33, 1.42, and 0.99 for ZnO, Al2O3, Mn2O3, and CuO, respectively, at all test concentrations. Although data presented were negative with respect to adverse SS potential for these 4 NPs, further confirmatory tests addressing other key events associated with SS adverse outcome pathway need to be carried out to arrive at an acceptable conclusion on the skin safety for both cosmetic and dermal applications.
Collapse
Affiliation(s)
- Anju Maharjan
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Ravi Gautam
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - GiYong Lee
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DongYoon Kim
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DaEun Lee
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Manju Acharya
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Heo
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - ChangYul Kim
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
McLean P, Marshall J, García-Bilbao A, Beal D, Katsumiti A, Carrière M, Boyles MSP. A comparison of dermal toxicity models; assessing suitability for safe(r)-by-design decision-making and for screening nanomaterial hazards. Toxicol In Vitro 2024; 97:105792. [PMID: 38364873 DOI: 10.1016/j.tiv.2024.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The objective of Safe-by-Design (SbD) is to support the development of safer products and production processes, and enable safe use throughout a materials' life cycle; an intervention at an early stage of innovation can greatly benefit industry by reducing costs associated with the development of products later found to elicit harmful effects. Early hazard screening can support this process, and is needed for all of the expected nanomaterial exposure routes, including inhalation, ingestion and dermal. In this study, we compare in vitro and ex vivo cell models that represent dermal exposures (including HaCaT cells, primary keratinocytes, and reconstructed human epidermis (RhE)), and when possible consider these in the context of regulatory accepted OECD TG for in vitro dermal irritation. Various benchmark nanomaterials were used to assess markers of cell stress in each cell model. In addition, we evaluated different dosing strategies that have been used when applying the OECD TG for dermal irritation in assessment of nanomaterials, and how inconsistencies in the approach used can have considerable impact of the conclusions made. Although we could not demonstrate alignment of all models used, there was an indication that the simpler in vitro cell model aligned more closely with RhE tissue than ex vivo primary keratinocytes, supporting the use of HaCaT cells for screening of dermal toxicity of nanomaterials and in early-stage SbD decision-making.
Collapse
Affiliation(s)
- Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Jessica Marshall
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Amaia García-Bilbao
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | - David Beal
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew S P Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK; Centre for Biomedicine and Global Health, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK.
| |
Collapse
|
4
|
Cha DH, Kim GH, Nepal RU, Nepal MR, Jeong TC. A convenient spectrophotometric test for screening skin-sensitizing chemicals using reactivity with glutathione in chemico. Toxicol Res 2024; 40:203-213. [PMID: 38525138 PMCID: PMC10959841 DOI: 10.1007/s43188-023-00218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/08/2023] [Accepted: 11/08/2023] [Indexed: 03/26/2024] Open
Abstract
To initiate skin sensitization, haptens react with endogenous proteins. During this process, skin sensitizers react with small endogenous molecules containing thiol or amino groups. In this study, a simple spectrophotometric method to identify skin sensitizers in chemico was developed using the reactivity of glutathione (GSH) with test chemicals in a 96-well plate. To quantitate the remaining GSH following the reaction with a skin sensitizer, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) was employed. The optimized experimental conditions included the pH- and time-dependent stability of GSH, stability of derivatized products of GSH with optimal concentration and incubation time of DTNB, incubation time of GSH with the test chemicals, and molar ratios of GSH to the test chemicals. With the optimized conditions with both acetonitrile and DMSO as vehicles and incubation of GSH with test chemicals in 1:10 and 1:15 ratios for 24 h at 4 °C, 23 skin sensitizers and 23 non-sensitizers, based on the local lymph node assay, were tested to determine the predictive capacity of individual conditions. The best result showed a predictive capacity of 95.2% sensitivity, 91.3% specificity, and 93.2% accuracy, with 93.2% consistency in three trials, when 5.8% depletion was used as a cut-off value in 1:10 of GSH:test chemicals in DMSO. It would be an economic and useful screening tool for determining the skin sensitization potential of small molecules, because the present method employs simple endogenous GSH as an electron donor for sensitizers with a spectrophotometric detection system in 96-well plates, and because the method requires neither experimental animals nor cell cultures. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00218-9.
Collapse
Affiliation(s)
- Dong Ho Cha
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| | - Geon Ho Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| | - Rahul U. Nepal
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| | - Mahesh R. Nepal
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| |
Collapse
|
5
|
Association of NRF2 with HIF-2α-induced cancer stem cell phenotypes in chronic hypoxic condition. Redox Biol 2023; 60:102632. [PMID: 36791645 PMCID: PMC9950657 DOI: 10.1016/j.redox.2023.102632] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023] Open
Abstract
The acquisition of the cancer stem cell (CSC) properties is often mediated by the surrounding microenvironment, and tumor hypoxia is considered an important factor for CSC phenotype development. High levels of NRF2 (Nuclear Factor Erythroid 2-Like 2; NFE2L2), a transcription factor that maintains cellular redox balance, have been associated with facilitated tumor growth and therapy resistance. In this study, we investigated the role of NRF2 in hypoxia-induced CSC phenotypes in colorectal cancer cells. Chronic hypoxia for 72 h resulted in CSC phenotypes, including elevation of krupple-like factor 4 (KLF4) and octamer-binding transcription factor 4 (OCT4), and an increase in cancer migration and spheroid growth with concomitant hypoxia-inducible factor 2α (HIF-2α) accumulation. All these chronic hypoxia-induced CSC properties were attenuated following HIF-2α-specific silencing. In this chronic hypoxia model, NRF2 inhibition by shRNA-based silencing or brusatol treatment blocked HIF-2α accumulation, which consequently resulted in decreased CSC marker expression and inhibition of CSC properties such as spheroid growth. In contrast, NRF2 overactivation by genetic or chemical approach enhanced the chronic hypoxia-induced HIF-2α accumulation and cancer migration. As a molecular mechanism of the NRF2-inhibition-mediated HIF-2α dysregulation, we demonstrated that miR-181a-2-3p, whose expression is elevated in NRF2-silenced cells, targeted the HIF-2α 3'UTR and subsequently suppressed the chronic hypoxia-induced HIF-2α and CSC phenotypes. The miR-181a-2-3p inhibitor treatment in NRF2-silenced cells could restore the levels of HIF-2α and CSC markers, and increased cancer migration and sphere formation under chronic hypoxia. In line with this, the miR-181a-2-3p inhibitor transfection could increase tumorigenicity of NRF2-silenced colorectal cancer cells. Collectively, our study suggests the involvement of NRF2/miR181a-2-3p signaling in the development of HIF-2α-mediated CSC phenotypes in sustained hypoxic environments.
Collapse
|
6
|
Deng T, Xu X, Fu J, Xu Y, Qu W, Pi J, Wang H. Application of ARE-reporter systems in drug discovery and safety assessment. Toxicol Appl Pharmacol 2022; 454:116243. [PMID: 36115658 DOI: 10.1016/j.taap.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The human body is continuously exposed to xenobiotics and internal or external oxidants. The health risk assessment of exogenous chemicals remains a complex and challenging issue. Alternative toxicological test methods have become an essential strategy for health risk assessment. As a core regulator of constitutive and inducible expression of antioxidant response element (ARE)-dependent genes, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in maintaining cellular redox homeostasis. Consistent with the properties of Nrf2-mediated antioxidant response, Nrf2-ARE activity is a direct indicator of oxidative stress and thus has been used to identify and characterize oxidative stressors and redox modulators. To screen and distinguish chemicals or environmental insults that affect the cellular antioxidant activity and/or induce oxidative stress, various in vitro cell models expressing distinct ARE reporters with high-throughput and high-content properties have been developed. These ARE-reporter systems are currently widely applied in drug discovery and safety assessment. In the present review, we provide an overview of the basic structures and applications of various ARE-reporter systems employed for discovering Nrf2-ARE modulators and characterizing oxidative stressors.
Collapse
Affiliation(s)
- Tianqi Deng
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaoge Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Huihui Wang
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Martin S, de Haan L, Miro Estruch I, Eder KM, Marzi A, Schnekenburger J, Blosi M, Costa A, Antonello G, Bergamaschi E, Riganti C, Beal D, Carrière M, Taché O, Hutchison G, Malone E, Young L, Campagnolo L, La Civita F, Pietroiusti A, Devineau S, Baeza A, Boland S, Zong C, Ichihara G, Fadeel B, Bouwmeester H. Pre-validation of a reporter gene assay for oxidative stress for the rapid screening of nanobiomaterials. FRONTIERS IN TOXICOLOGY 2022; 4:974429. [PMID: 36171865 PMCID: PMC9511406 DOI: 10.3389/ftox.2022.974429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Engineered nanomaterials have been found to induce oxidative stress. Cellular oxidative stress, in turn, can result in the induction of antioxidant and detoxification enzymes which are controlled by the nuclear erythroid 2-related factor 2 (NRF2) transcription factor. Here, we present the results of a pre-validation study which was conducted within the frame of BIORIMA (“biomaterial risk management”) an EU-funded research and innovation project. For this we used an NRF2 specific chemically activated luciferase expression reporter gene assay derived from the human U2OS osteosarcoma cell line to screen for the induction of the NRF2 mediated gene expression following exposure to biomedically relevant nanobiomaterials. Specifically, we investigated Fe3O4-PEG-PLGA nanomaterials while Ag and TiO2 “benchmark” nanomaterials from the Joint Research Center were used as reference materials. The viability of the cells was determined by using the Alamar blue assay. We performed an interlaboratory study involving seven different laboratories to assess the applicability of the NRF2 reporter gene assay for the screening of nanobiomaterials. The latter work was preceded by online tutorials to ensure that the procedures were harmonized across the different participating laboratories. Fe3O4-PEG-PLGA nanomaterials were found to induce very limited NRF2 mediated gene expression, whereas exposure to Ag nanomaterials induced NRF2 mediated gene expression. TiO2 nanomaterials did not induce NRF2 mediated gene expression. The variability in the results obtained by the participating laboratories was small with mean intra-laboratory standard deviation of 0.16 and mean inter laboratory standard deviation of 0.28 across all NRF2 reporter gene assay results. We conclude that the NRF2 reporter gene assay is a suitable assay for the screening of nanobiomaterial-induced oxidative stress responses.
Collapse
Affiliation(s)
- Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Kai Moritz Eder
- Biomedical Technology Center, Westfälische Wilhelms-University, Münster, Germany
| | - Anne Marzi
- Biomedical Technology Center, Westfälische Wilhelms-University, Münster, Germany
| | | | - Magda Blosi
- Institute of Science and Technology for Ceramics (ISTEC), CNR, Faenza, Italy
| | - Anna Costa
- Institute of Science and Technology for Ceramics (ISTEC), CNR, Faenza, Italy
| | | | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Chemistry, University of Torino, Torino, Italy
| | - David Beal
- Université Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France
| | - Marie Carrière
- Université Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France
| | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette, France
| | - Gary Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Eva Malone
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Lesley Young
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Luisa Campagnolo
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fabio La Civita
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Antonio Pietroiusti
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Stéphanie Devineau
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Armelle Baeza
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Sonja Boland
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Cai Zong
- Department of Occupational and Environmental Health, Tokyo University of Science, Tokyo, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Science, Tokyo, Japan
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Hans Bouwmeester,
| |
Collapse
|
8
|
Ahmad J, Wahab R, Siddiqui MA, Saquib Q, Ahmad N, Al-Khedhairy AA. Strontium-Doped Nickel Oxide Nanoparticles: Synthesis, Characterization, and Cytotoxicity Study in Human Lung Cancer A549 Cells. Biol Trace Elem Res 2022; 200:1598-1607. [PMID: 34131861 DOI: 10.1007/s12011-021-02780-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
In this manuscript, the grown and annealed strontium-doped nickel oxide nanoparticles (SrNiONPs) were synthesized using a precipitation method with nickel nitrate and strontium nitrate as precursor agents with trisodium citrate. Various characterization techniques, including X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), UV-visible, and zeta sizer, were used to thoroughly examine the samples. The XRD pattern (21 nm) was used to calculate the size, phases, and crystallinity of the material (SrNiONPs). In addition to characterization, the material was tested for cytotoxicity in lung cancer cells (A549). The viability test in A549 cells was performed using [3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide] (MTT) and Neutral Red Uptake (NRU) assay with SrNiONPs concentration ranging from 1 to 100 μg/mL. According to the MTT and NRU data, the toxicity studies are dose-dependent. SrNiONPs also increased reactive oxygen species (ROS) and were involved in apoptosis (A549 cells). Furthermore, quantitative PCR (qPCR) data revealed that the mRNA levels of apoptotic genes marker like p53, bax, and caspase-3 were upregulated, whereas bcl-2, an anti-apoptotic gene, was downregulated. As a result, apoptosis was mediated by the p53, bax, caspase3, and bcl-2 pathways, implying a potential mechanism by which SrNiONPs mediate their toxicity.
Collapse
Affiliation(s)
- Javed Ahmad
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Rizwan Wahab
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maqsood A Siddiqui
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Quaiser Saquib
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Zoology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Zoology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
9
|
Lee BM, Lee SH, Yamada T, Park S, Wang Y, Kim KB, Kwon S. Read-across approaches: current applications and regulatory acceptance in Korea, Japan, and China. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:184-197. [PMID: 34670481 DOI: 10.1080/15287394.2021.1992323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this paper was to investigate the current status of read-across approaches in the Republic of Korea, Japan, and China in terms of applications and regulatory acceptance. In the Republic of Korea, over the last 6 years, approximately 8% of safety data records used for chemical registrations were based upon read-across, and a guideline published on the use of read-across results in 2017. In Japan, read-across is generally accepted for screening hazard classification of toxicological endpoints according to the Chemical Substances Control Law (CSCL). In China, read-across data, along with data from other animal alternatives are accepted as a data source for chemical registrations, but could be only considered when testing is not technically feasible. At present, read-across is not widely used for chemical registrations and regulatory acceptance of read-across may differ among countries in Asia. With consideration of the advantages and limitations of read-across, it is expected that read-across may soon gradually be employed in Asian countries. Thus, regulatory agencies need to prepare for this progression.
Collapse
Affiliation(s)
- Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Gyeonggi-Do, Korea
| | - Sang Hee Lee
- Chemicals Registration & Evaluation Team, Risk Assessment Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Korea
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety Research, National Institute of Health Sciences, Kawasaki, Japan
| | | | - Ying Wang
- Procter & Gamble (P&G) Technology (Beijing) Co., Ltd, Beijing, PR China
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Chungnam, Korea
| | - Seok Kwon
- Global Product Stewardship, Research & Development, Singapore Innovation Center, Procter & Gamble (P&G) International Operations, Singapore, Singapore
| |
Collapse
|
10
|
Gautam R, Yang S, Maharjan A, Jo J, Acharya M, Heo Y, Kim C. Prediction of Skin Sensitization Potential of Silver and Zinc Oxide Nanoparticles Through the Human Cell Line Activation Test. FRONTIERS IN TOXICOLOGY 2021; 3:649666. [PMID: 35295130 PMCID: PMC8915822 DOI: 10.3389/ftox.2021.649666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
The development of nanotechnology has propagated the use of nanoparticles (NPs) in various fields including industry, agriculture, engineering, cosmetics, or medicine. The use of nanoparticles in cosmetics and dermal-based products is increasing owing to their higher surface area and unique physiochemical properties. Silver (Ag) NPs' excellent broad-spectrum antibacterial property and zinc oxide (ZnO) NPs' ability to confer better ultraviolet (UV) protection has led to their maximal use in cosmetics and dermal products. While the consideration for use of nanoparticles is increasing, concerns have been raised regarding their potential negative impacts. Although used in various dermal products, Ag and ZnO NPs' skin sensitization (SS) potential has not been well-investigated using in vitro alternative test methods. The human Cell Line Activation Test (h-CLAT) that evaluates the ability of chemicals to upregulate the expression of CD86 and CD54 in THP-1 cell line was used to assess the skin sensitizing potential of these NPs. The h-CLAT assay was conducted following OECD TG 442E. NPs inducing relative fluorescence intensity of CD86 ≥ 150% and/or CD54 ≥ 200% in at least two out of three independent runs were predicted to be positive. Thus, Ag (20, 50, and 80 nm) NPs and ZnO NPs were all predicted to be positive in terms of SS possibility using the h-CLAT prediction model. Although further confirmatory tests addressing other key events (KEs) of SS adverse outcome pathway (AOP) should be carried out, this study gave an insight into the need for cautious use of Ag and ZnO NPs based skincare or dermal products owing to their probable skin sensitizing potency.
Collapse
Affiliation(s)
- Ravi Gautam
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - SuJeong Yang
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Anju Maharjan
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - JiHun Jo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Manju Acharya
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Yong Heo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
- Department of Toxicity Assessment, The Graduate School of Medical and Health Industry, Daegu Catholic University, Gyeongsan, South Korea
| | - ChangYul Kim
- Department of Toxicity Assessment, The Graduate School of Medical and Health Industry, Daegu Catholic University, Gyeongsan, South Korea
| |
Collapse
|
11
|
Özbaş F, Tüzün E, Yıldız A, Karakuş S. Sonosynthesis and characterization of konjac gum/xanthan gum supported ironoxide nanoparticles. Int J Biol Macromol 2021; 183:1047-1057. [PMID: 33984379 DOI: 10.1016/j.ijbiomac.2021.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022]
Abstract
In this study, an optimized method was developed for the synthesis of biological macromolecule blend supported iron oxide nanoparticles (IO NPs). The nanostructure was composed of binary polymer blends of konjac gum (KG) and xanthan gum (XG). The synthesized KG/XG@IO NPs were characterized by SEM, EDX, HRTEM, FTIR, XRD, XPS, zeta potential, DLS, TGA, and DSC. According to results, the KG/XG@IO NPs had a spherical shape with an average diameter range of ~40 nm using Scherrer's equation and Williamson-Hall equation. The results of TGA and DSC analysis confirmed that the KG/XG@IO NPs maintained good thermal stability. Our motivation was to determine the effect of the biopolymer blend matrix on the morphology, size, stability, and thermal properties of the green KG/XG@IO NPs. Furthermore, the effects of sonication process time (10-30 min), mass ratio of biological macromolecule blend (KG/XG) (1:1, 1:2, and 1:4), and amplitude frequency (5%-40%) on the rheological parameters of NPs were investigated to optimize the sonochemical process. From optimization analysis, we concluded that the sonication had a role in the size distribution and the formation of nanoparticles with the optimum mixture ratio of binary biopolymer matrix as it provided long-term stability.
Collapse
Affiliation(s)
- Fatih Özbaş
- Fatih Sultan Mehmet Vakif University, Research Center for the Conservation of Cultural Property of Foundation, 34083 Istanbul, Turkey
| | - Elif Tüzün
- Istanbul University-Cerrahpasa, Department of Chemistry, 34320 Istanbul, Turkey
| | - Ahmet Yıldız
- Istanbul University-Cerrahpasa, Department of Chemistry, 34320 Istanbul, Turkey
| | - Selcan Karakuş
- Istanbul University-Cerrahpasa, Department of Chemistry, 34320 Istanbul, Turkey.
| |
Collapse
|
12
|
Kim SH, Lee JH, Jung K, Yang JY, Shin HS, Lee JP, Jeong J, Oh JH, Lee JK. Copper and Cobalt Ions Released from Metal Oxide Nanoparticles Trigger Skin Sensitization. Front Pharmacol 2021; 12:627781. [PMID: 33679407 PMCID: PMC7933575 DOI: 10.3389/fphar.2021.627781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Human skins are exposed to nanomaterials in everyday life from various sources such as nanomaterial-containing cosmetics, air pollutions, and industrial nanomaterials. Nanomaterials comprising metal haptens raises concerns about the skin sensitization to nanomaterials. In this study, we evaluated the skin sensitization of nanomaterials comparing metal haptens in vivo and in vitro. We selected five metal oxide NPs, containing copper oxide, cobalt monoxide, cobalt oxide, nickel oxide, or titanium oxide, and two types of metal chlorides (CoCl2 and CuCl2), to compare the skin sensitization abilities between NPs and the constituent metals. The materials were applied to KeratinoSensTM cells for imitated skin-environment setting, and luciferase induction and cytotoxicity were evaluated at 48 h post-incubation. In addition, the response of metal oxide NPs was confirmed in lymph node of BALB/C mice via an in vivo method. The results showed that CuO and CoO NPs induce a similar pattern of positive luciferase induction and cytotoxicity compared to the respective metal chlorides; Co3O4, NiO, and TiO2 induced no such response. Collectively, the results implied fast-dissolving metal oxide (CuO and CoO) NPs release their metal ion, inducing skin sensitization. However, further investigations are required to elucidate the mechanism underlying NP-induced skin sensitization. Based on ion chelation data, metal ion release was confirmed as the major “factor” for skin sensitization.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jin Hee Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Kikyung Jung
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jun-Young Yang
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Hyo-Sook Shin
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jeong Pyo Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jayoung Jeong
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jae-Ho Oh
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jong Kwon Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| |
Collapse
|